JP2006330890A - Pressure reducing valve - Google Patents

Pressure reducing valve Download PDF

Info

Publication number
JP2006330890A
JP2006330890A JP2005150756A JP2005150756A JP2006330890A JP 2006330890 A JP2006330890 A JP 2006330890A JP 2005150756 A JP2005150756 A JP 2005150756A JP 2005150756 A JP2005150756 A JP 2005150756A JP 2006330890 A JP2006330890 A JP 2006330890A
Authority
JP
Japan
Prior art keywords
valve
pressure
main valve
pressure chamber
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005150756A
Other languages
Japanese (ja)
Inventor
Shimizu Nagai
清水 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005150756A priority Critical patent/JP2006330890A/en
Publication of JP2006330890A publication Critical patent/JP2006330890A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure reducing valve for performing stable pressure control by surely suppressing hunting phenomenon when a flow rate is low. <P>SOLUTION: This presure reducing valve is provided with a main valve case (40) where a fluid supply port and a fluid exhaust port are formed, a valve hole (42) for dividing the main valve case into a primary side channel and a secondary side channel, a main valve having a valve body (44) for opening/closing the valve hole, a pilot value (6) to which fluid for main valve opening/closing operation from the primary side channel is supplied for adjusting the reduction of the pressure of the fluid for the main opening/closing operation according to pressure change in the secondary side channel, a pressure chamber (52) for main valve operation to be pressurized by the fluid for main valve opening/closing operation whose pressure reduction is adjusted by the pilot valve, a constant pressure chamber (51) to be pressurized by constant pressure fluid from the primary side channel and a main valve opening/closing control means for controlling the opening/closing operation of the valve body according to a pressure difference between the constant pressure chamber and the pressure chamber for the main valve operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、減圧弁に関し、特にパイロット弁を備えた減圧弁に関する。   The present invention relates to a pressure reducing valve, and more particularly to a pressure reducing valve provided with a pilot valve.

従来、例えば水道又は建築設備等の給水又は送水設備は、安定した給水又は送水を行なうために、給水路又は送水路の途中に減圧装置である減圧弁を設けた構成とされている。そして、この減圧弁の有する圧力制御機能により、例えば夜間等に下流側での水使用量が変化しても、安定した水圧で給水又は送水をすることが可能になる。   2. Description of the Related Art Conventionally, for example, water supply or water supply equipment such as water supply or building equipment is provided with a pressure reducing valve that is a pressure reducing device in the middle of a water supply or water supply path in order to perform stable water supply or water supply. The pressure control function of the pressure reducing valve makes it possible to supply or supply water at a stable water pressure even when the amount of water used on the downstream side changes at night or the like.

ここで、従来の減圧弁は、例えば夜間等の水使用量が少ない時間帯において、減圧弁の弁開度が小さくなった際に、水圧が不安定になり易いという問題点が指摘されている。   Here, it is pointed out that the conventional pressure reducing valve has a problem that the water pressure tends to become unstable when the valve opening of the pressure reducing valve becomes small in a time zone where the amount of water used is small, such as at night. .

即ち、減圧弁の一次側圧力と二次側圧力との間の差圧(圧力損失)は、弁開度に対して略リニアな特性を有するが、例えば図8に模式的に示すように、一定の開度以下になると線形的な曲線を描いて急激に上昇し、開度がさらに0に近付くにつれて無限大に近付く。そのため、低開度領域においては、僅かな開度変化であっても圧力損失が急激に変化し、これに伴って二次側圧も急激に変化する。このような急激な二次側の圧力変化に対し減圧弁の圧力制御機能がついてこれなくなると、結果として二次側圧力が上下動を繰り返す現象、いわゆる圧力ハンチング現象が発生する場合がある。圧力ハンチング現象は、騒音、振動又はウォーターハンマーを発生させる原因となり得るため、圧力ハンチング現象の発生を防止するための対策が必要である。   That is, the differential pressure (pressure loss) between the primary side pressure and the secondary side pressure of the pressure reducing valve has a substantially linear characteristic with respect to the valve opening. For example, as schematically shown in FIG. When it becomes below a certain opening, it rises rapidly in a linear curve, and approaches infinity as the opening further approaches zero. Therefore, in the low opening range, the pressure loss changes abruptly even if the opening changes slightly, and the secondary side pressure also changes abruptly. If the pressure control function of the pressure reducing valve is not applied to such a sudden secondary pressure change, a phenomenon in which the secondary pressure repeatedly moves up and down, that is, a so-called pressure hunting phenomenon may occur as a result. Since the pressure hunting phenomenon can cause noise, vibration, or water hammer, it is necessary to take measures to prevent the pressure hunting phenomenon from occurring.

上記の問題点を解決することのできる減圧弁の一つに、パイロット弁を備えた減圧弁が知られている(例えば、特許文献1参照)。図9は、この従来の減圧弁の構成を示す縦断面図であり、主弁1、シリンダ2及びパイロット弁3を備えて構成されている。   A pressure reducing valve provided with a pilot valve is known as one of the pressure reducing valves that can solve the above-described problems (see, for example, Patent Document 1). FIG. 9 is a longitudinal sectional view showing the configuration of this conventional pressure reducing valve, which includes a main valve 1, a cylinder 2 and a pilot valve 3.

主弁ケース10の内部領域は、流体が通流する通流路として形成されており、この通流路は弁孔11により上流側の一次側流路及び下流側の二次側流路に区画されている。さらに、弁孔11の周囲には弁座12が形成され、この弁座12に対して弁体13が上方から進退自在かつ着座可能に設けられている。   The internal region of the main valve case 10 is formed as a flow path through which fluid flows, and this flow path is partitioned into a primary flow path on the upstream side and a secondary flow path on the downstream side by the valve hole 11. Has been. Further, a valve seat 12 is formed around the valve hole 11, and a valve body 13 is provided to the valve seat 12 so as to be able to advance and retract from above and to be seated.

弁体13は、主弁ケース10の上面に設けられたシリンダ2内のピストン20と弁棒21を介して接続されている。このシリンダ2の内部領域は、ピストン20によって圧力バランス室22と主弁作動用圧力室23とに区画されており、圧力バランス室22は圧力導入路24を介して二次側流路と接続され、また主弁作動用圧力室23はその途中にパイロット弁3が介在する圧力導入路25を介して一次側流路と接続されている。なお、図中26,27はO−リングであり、また図中28はオリフィスである。   The valve body 13 is connected to the piston 20 in the cylinder 2 provided on the upper surface of the main valve case 10 via a valve rod 21. The internal region of the cylinder 2 is divided into a pressure balance chamber 22 and a main valve operating pressure chamber 23 by a piston 20, and the pressure balance chamber 22 is connected to a secondary side flow path via a pressure introduction path 24. The main valve operating pressure chamber 23 is connected to the primary flow path via a pressure introduction path 25 in which the pilot valve 3 is interposed. In the figure, 26 and 27 are O-rings, and 28 in the figure is an orifice.

一方、前記パイロット弁3は、パイロット弁ケース30及び圧力ケース31を備えている。パイロット弁ケース30の内部は、パイロット弁孔32を介してパイロット弁一次側流路及びパイロット弁二次側流路に区画され、このパイロット弁孔32の周囲に形成された弁座33に対してパイロット弁体34が上方から進退自在かつ着座可能に設けられている。パイロット弁体34は、パイロット作動用圧力室35まで延設された弁棒36を介してダイヤフラム37と接続されており、さらにダイヤフラム37は調節ばね38により所定の力で上方から付勢されている。   On the other hand, the pilot valve 3 includes a pilot valve case 30 and a pressure case 31. The inside of the pilot valve case 30 is partitioned into a pilot valve primary side flow path and a pilot valve secondary side flow path via a pilot valve hole 32, and a valve seat 33 formed around the pilot valve hole 32. A pilot valve body 34 is provided so as to be able to advance and retract from above and to be seated. The pilot valve body 34 is connected to a diaphragm 37 via a valve rod 36 extending to the pilot operating pressure chamber 35, and the diaphragm 37 is urged from above by a predetermined force by an adjustment spring 38. .

このような構成の減圧弁においては、主弁1の二次側圧力が設定圧力値よりも上昇すると、圧力導入路24を介してパイロット弁作動用圧力室35の内圧が増加し、ダイヤフラム37が調節ばね38に抗して押し上げられ、パイロット弁体34が開方向に移動する。これによりパイロット弁3を通過する流体の流量が増加して主弁作動用圧力室23の内圧が上昇し、ピストン20が押し下げられて主弁開度が小さくなり、二次側圧力が低下して元の設定圧力となる。   In the pressure reducing valve having such a configuration, when the secondary side pressure of the main valve 1 rises above the set pressure value, the internal pressure of the pilot valve operating pressure chamber 35 increases via the pressure introduction path 24, and the diaphragm 37 is The pilot valve body 34 is pushed up against the adjustment spring 38 and moves in the opening direction. As a result, the flow rate of the fluid passing through the pilot valve 3 increases, the internal pressure of the main valve operating pressure chamber 23 increases, the piston 20 is pushed down, the main valve opening decreases, and the secondary pressure decreases. It becomes the original set pressure.

反対に、二次側圧力が設定圧力値を下回ると、圧力導入路24を介してパイロット弁作動用圧力室35の内圧が低下し、パイロット弁体34が閉方向に移動する。これによりパイロット弁3を通過する流体の流量が減少して主弁作動用圧力室23の内圧が低下し、ピストン20が押し上げられて主弁開度が大きくなり、二次側圧力が上昇して元の設定圧力となる。
特開2005−83502号公報(第2の実施形態及び第4の実施形態、第4図及び第10図)
On the other hand, when the secondary pressure falls below the set pressure value, the internal pressure of the pilot valve operating pressure chamber 35 decreases via the pressure introduction path 24, and the pilot valve element 34 moves in the closing direction. As a result, the flow rate of the fluid passing through the pilot valve 3 decreases, the internal pressure of the main valve operating pressure chamber 23 decreases, the piston 20 is pushed up, the main valve opening increases, and the secondary pressure increases. It becomes the original set pressure.
Japanese Patent Laying-Open No. 2005-83502 (second embodiment and fourth embodiment, FIGS. 4 and 10)

しかしながら、上述の減圧弁には以下のような問題点があった。即ち、上述の減圧弁は、二次側圧力に変化があった場合に、パイロット弁3により主弁作動用圧力室23の内圧を調整し、元の設定圧力となるように弁開度を調整する構成であるが、圧力バランス室22に二次側流体を導入してピストン20を押し上げる構成であるため、二次側圧力の変化に伴い圧力バランス室22の内圧が変化してしまう。そのためピストン20の位置制御(つまり主弁13の開度制御)が難しく、圧力ハンチング現象の抑制が充分でないという問題がある。   However, the above-described pressure reducing valve has the following problems. That is, the above-described pressure reducing valve adjusts the internal pressure of the main valve operating pressure chamber 23 by the pilot valve 3 when the secondary pressure changes, and adjusts the valve opening so as to be the original set pressure. However, since the secondary side fluid is introduced into the pressure balance chamber 22 and the piston 20 is pushed up, the internal pressure of the pressure balance chamber 22 changes as the secondary pressure changes. Therefore, there is a problem that the position control of the piston 20 (that is, the opening control of the main valve 13) is difficult and the suppression of the pressure hunting phenomenon is not sufficient.

具体例を挙げて説明すると、例えば二次側圧力が上昇した場合、詳しくは既述のように、主弁13の開度を絞って二次側圧力を下げていくが、これ伴い圧力バランス室22の内圧も低下し、ピストン20を押し上げる力が小さくなっていく。そのためピストン20の下降を停止させるブレーキ作用が充分でなくなり、ピストン20(すなわち弁体13)が適正位置を超えて下がり過ぎてしまう場合がある。低流量領域においては圧力損失の変化が大きいため、このような微小な開度のずれによっても圧力ハンチング現象を発生させてしまうことが多い。   For example, when the secondary side pressure increases, as described in detail, the opening of the main valve 13 is reduced to lower the secondary side pressure. The internal pressure of 22 also decreases, and the force that pushes up the piston 20 decreases. For this reason, the braking action for stopping the lowering of the piston 20 is not sufficient, and the piston 20 (that is, the valve body 13) may be lowered beyond the proper position. Since the change in the pressure loss is large in the low flow rate region, the pressure hunting phenomenon is often caused by such a slight deviation in the opening degree.

即ち、二次側圧力が上昇した場合、上昇した二次側圧力を元の設定圧力に復帰させるためには、弁体13を閉方向に作動させる必要がある。しかしながら、低開度領域にあっては弁開度が小さくなるほど益々圧力損失が急増する。これに対し、二次側圧力が低下した場合、低下した二次側圧力を元の設定圧力に復帰させるための動作は、弁体13を開方向に作動させる動作であり、開度が大きくなるに伴い圧力損失の変化幅は穏やかになる。そのため、弁体13を開方向に動作させる場合に比して、弁体13を閉方向に動作させる場合の圧力制御は極めて難しい。従って、より確実に安定した圧力制御を実現するためには、特に弁体の閉方向動作に対する効果的なブレーキ作用を実現するための更なる検討が必要である。   That is, when the secondary pressure increases, the valve body 13 needs to be operated in the closing direction in order to return the increased secondary pressure to the original set pressure. However, in the low opening range, the pressure loss rapidly increases as the valve opening decreases. On the other hand, when the secondary pressure decreases, the operation for returning the decreased secondary pressure to the original set pressure is an operation of operating the valve body 13 in the opening direction, and the opening degree increases. Along with this, the change width of the pressure loss becomes gentle. Therefore, compared with the case where the valve body 13 is operated in the opening direction, the pressure control when the valve body 13 is operated in the closing direction is extremely difficult. Therefore, in order to realize more reliable and stable pressure control, it is necessary to further study in order to realize an effective braking action particularly for the valve body closing direction operation.

本発明は上記問題点を解決するためになされたものであり、その目的は、効果的なブレーキ作用を備え、低開度領域時においても圧力ハンチング現象をより確実に抑制して、安定した圧力制御を行なうことのできる減圧弁を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its purpose is to provide an effective braking action and more reliably suppress the pressure hunting phenomenon even in a low opening range, thereby stabilizing the pressure. An object of the present invention is to provide a pressure reducing valve capable of performing control.

本発明の減圧弁は、流体供給口及び流体排出口が形成された主弁ケースと、この主弁ケース内を一次側流路及び二次側流路に区画する弁孔と、この弁孔を開閉する弁体と、を有する主弁と、前記一次側流路からの主弁開閉作動用流体が供給され、前記二次側流路内の圧力変化に従って当該主弁開閉作動用流体の圧力を減圧調整するパイロット弁と、前記パイロット弁により減圧調整された主弁開閉作動用流体により加圧される主弁作動用圧力室と、前記一次側流路からの定圧流体により加圧される定圧室と、前記定圧室と前記主弁作動用圧力室との間の圧力差に従って前記弁体の開閉動作を制御する主弁開閉制御手段と、を備えることを特徴とする。   The pressure reducing valve of the present invention includes a main valve case in which a fluid supply port and a fluid discharge port are formed, a valve hole that divides the inside of the main valve case into a primary side flow path and a secondary side flow path, and the valve hole. A main valve having a valve body that opens and closes, and a main valve opening / closing operation fluid from the primary side passage is supplied, and the pressure of the main valve opening / closing operation fluid is changed according to a pressure change in the secondary side passage. A pilot valve for adjusting pressure reduction, a main valve operating pressure chamber pressurized by a main valve opening / closing operating fluid pressure-reduced by the pilot valve, and a constant pressure chamber pressurized by a constant pressure fluid from the primary side flow path And a main valve opening / closing control means for controlling an opening / closing operation of the valve body in accordance with a pressure difference between the constant pressure chamber and the main valve operating pressure chamber.

なお、主弁の上流側にて流体の圧力が変化すれば前記定圧流体の圧力も変化するが、二次側圧力の変化と比較すれば変化の程度は格段に小さいため、この場合も本発明の効果を実質的に得ることができる。即ち、一次側圧力が変化する場合も、本発明の技術的範囲に含まれる。   If the fluid pressure changes on the upstream side of the main valve, the pressure of the constant-pressure fluid also changes. However, since the degree of change is much smaller than the change of the secondary side pressure, the present invention also applies to this case. The effect of can be substantially obtained. That is, the case where the primary pressure changes is also included in the technical scope of the present invention.

前記定圧室は、その内圧により弁体を閉方向に作動させ、これに抗して前記主弁作動用圧力室は、その内圧により弁体を開方向に作動させる構成とすることができる。   The constant pressure chamber may be configured to operate the valve body in the closing direction by the internal pressure, and the main valve operating pressure chamber may be configured to operate the valve body in the opening direction by the internal pressure.

前記弁体は、当該弁体の開の移動方向側に位置するように主弁に設けられたシリンダ内を弁体移動方向に沿って摺動可能なピストンと連結部材を介して接続され、さらに、前記定圧室及び主弁作動用圧力室は、当該弁体の閉の移動方向における前方側に主弁作動用圧力室が位置され、後方側に定圧室が位置されるようにシリンダ内部領域を前記ピストンで仕切って形成されている構成とすることができる。   The valve body is connected via a coupling member and a piston that is slidable along the valve body movement direction in a cylinder provided in the main valve so as to be positioned on the opening movement direction side of the valve body. The constant pressure chamber and the main valve operating pressure chamber have a cylinder internal region so that the main valve operating pressure chamber is located on the front side in the closing movement direction of the valve body, and the constant pressure chamber is located on the rear side. It can be set as the structure partitioned off with the said piston.

前記パイロット弁は、前記主弁開閉作動用流体の供給口及び排出口が形成されたパイロット弁ケースと、このパイロット弁ケース内を一次側流路及び二次側流路に区画する弁孔と、この弁孔を開閉するパイロット弁体と、を有するパイロット弁ケースと、前記主弁の二次側流路からのパイロット弁作動用流体により加圧されるパイロット弁作動用圧力室と、前記パイロット弁作動用圧力室の内圧上昇に従って前記パイロット弁体を閉方向に作動させ、当該パイロット弁作動用圧力室の内圧低下に従って前記パイロット弁を開方向に作動させるパイロット弁開閉制御手段と、を備える構成とすることができる。   The pilot valve includes a pilot valve case in which a supply port and a discharge port for the main valve opening / closing operation fluid are formed, and a valve hole that divides the inside of the pilot valve case into a primary channel and a secondary channel, A pilot valve body having a pilot valve body for opening and closing the valve hole, a pilot valve operating pressure chamber pressurized by a pilot valve operating fluid from a secondary flow path of the main valve, and the pilot valve A pilot valve opening / closing control means for operating the pilot valve body in the closing direction in accordance with an increase in the internal pressure of the operating pressure chamber and operating the pilot valve in the opening direction in accordance with a decrease in the internal pressure of the pilot valve operating pressure chamber; can do.

前記本弁の一次側流路と前記定圧室とは圧力導入路を介して接続されており、この圧力導入路の途中に流量規制手段を設けた構成とすることができる。   The primary side flow path of the main valve and the constant pressure chamber are connected via a pressure introduction path, and a flow rate regulating means may be provided in the middle of the pressure introduction path.

本発明によれば、定圧室を一次側圧力に加圧すると共に、二次側圧力の変化に従って圧力調整された一次側流路からの主弁開閉作動用流体により主弁作動用圧力室を加圧し、定圧室と主弁作動用圧力室との間の圧力差により弁体の開閉動作を制御する構成としたことにより、パイロット弁による圧力調整を除いて、定圧室及び主弁作動用圧力室の内圧は二次側圧力変化の影響を直接受けないので、圧力ハンチング現象を抑制して安定した圧力制御をすることが可能になる。   According to the present invention, the constant pressure chamber is pressurized to the primary side pressure, and the main valve operating pressure chamber is pressurized by the main valve opening / closing operation fluid from the primary side flow path adjusted in accordance with the change of the secondary side pressure. The valve body opening / closing operation is controlled by the pressure difference between the constant pressure chamber and the main valve operating pressure chamber, so that the constant pressure chamber and the main valve operating pressure chamber are not adjusted except for the pressure adjustment by the pilot valve. Since the internal pressure is not directly affected by the secondary pressure change, it is possible to suppress pressure hunting and perform stable pressure control.

本発明によれば、前記定圧室は、その内圧により弁体を閉方向に作動させ、これに抗して前記主弁作動用圧力室は、その内圧により弁体を開方向に作動させる構成とすることにより、弁体の移動動作に対するブレーキ作用を効果的に働かせることができる。その結果、弁体を適正な位置で停止させることができるので、より確実に圧力ハンチング現象を抑制することが可能となる。   According to the present invention, the constant pressure chamber operates the valve body in the closing direction by its internal pressure, and the main valve operating pressure chamber operates the valve body in the opening direction by its internal pressure. By doing so, the brake effect | action with respect to the movement operation | movement of a valve body can be worked effectively. As a result, since the valve body can be stopped at an appropriate position, the pressure hunting phenomenon can be more reliably suppressed.

本発明によれば、主弁の上面に設けられたシリンダ内部領域における上部側に定圧室が位置し、下部側に主弁作動用圧力室が位置するように、当該シリンダ内部領域をピストンで仕切った構成としたことにより、前記した場合と同様に、弁体の移動動作に対するブレーキ作用を効果的に働かせることができる。その結果、弁体を適正な位置で停止させることができるので、より確実に圧力ハンチング現象を抑制することが可能となる。   According to the present invention, the cylinder inner region is partitioned by the piston so that the constant pressure chamber is located on the upper side of the cylinder inner region provided on the upper surface of the main valve, and the main valve operating pressure chamber is located on the lower side. By adopting such a configuration, it is possible to effectively exert a braking action on the movement operation of the valve body as in the case described above. As a result, since the valve body can be stopped at an appropriate position, the pressure hunting phenomenon can be more reliably suppressed.

本発明によれば、主弁の二次側流路からのパイロット弁作動用流体によりパイロット弁作動用圧力室を加圧し、パイロット弁作動用圧力室の内圧上昇に従ってパイロット弁体を閉方向に作動させ、当該パイロット弁作動用圧力室の内圧低下に従ってパイロット弁体を開方向に作動させる構成としたことにより、主弁開閉作動用流体の圧力を安定調整することができる。その結果、主弁の低流量領域でも圧力ハンチング現象を抑制して安定した圧力制御をすることが可能になる。   According to the present invention, the pilot valve operating pressure chamber is pressurized by the pilot valve operating fluid from the secondary side passage of the main valve, and the pilot valve body is operated in the closing direction as the internal pressure of the pilot valve operating pressure chamber increases. Thus, the pressure of the main valve opening / closing operation fluid can be stably adjusted by adopting a configuration in which the pilot valve body is operated in the opening direction in accordance with the decrease in the internal pressure of the pilot valve operating pressure chamber. As a result, the pressure hunting phenomenon can be suppressed and stable pressure control can be performed even in the low flow rate region of the main valve.

本発明によれば、前記一次側流路と前記定圧室とを接続する圧力導入路の途中に流量規制手段を設けて、弁体が開方向に移動する際における移動速度を制限する構成としたことにより、弁体の開方向動作に対するブレーキ作用を働かせることができる。これにより、二次側圧力が設定圧力を下回った場合であっても、速やかに元の設定圧力に復帰させることができ、安定した圧力制御をすることが可能になる。   According to the present invention, the flow rate regulating means is provided in the middle of the pressure introduction path connecting the primary side flow path and the constant pressure chamber, and the moving speed when the valve body moves in the opening direction is limited. As a result, it is possible to apply a braking action to the opening direction operation of the valve body. As a result, even when the secondary side pressure falls below the set pressure, it can be quickly returned to the original set pressure, and stable pressure control can be performed.

本発明の好ましい実施形態に係る減圧弁について、添付図面を参照しながら詳しく説明する。図1は、本実施形態に係る減圧弁の縦断面図であり、また図2は、パイロット弁の縦断面図である。   A pressure reducing valve according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view of a pressure reducing valve according to the present embodiment, and FIG. 2 is a longitudinal sectional view of a pilot valve.

本実施形態に係る減圧弁は、主弁及びパイロット弁を備えて構成されている。まず、主弁4の構成について説明すると、主弁4の本体部をなす主弁ケース40の内部領域は、流体供給口41A及び流体排出口41Bを介して流体例えば水などの液体が通流する通流路として形成されており、この通流路は弁孔42により上流側の一次側流路及び下流側の二次側流路に区画されている。さらに、弁孔42の開口部内周面に沿って弁座43が形成され、この弁座43に向かって弁体44が上方側から進退自在かつ着座可能に設けられている。即ち、弁孔42,弁座43及び弁体44は、当該減圧弁の弁開閉手段を構成し、弁孔42に対する弁体44の離間距離を変えることにより、弁孔42を潜り抜けて二次側流路に供給する圧力を制御する。   The pressure reducing valve according to this embodiment includes a main valve and a pilot valve. First, the configuration of the main valve 4 will be described. In the inner region of the main valve case 40 that forms the main body of the main valve 4, a fluid such as water flows through the fluid supply port 41A and the fluid discharge port 41B. The passage is divided into an upstream primary passage and a downstream secondary passage by a valve hole 42. Furthermore, a valve seat 43 is formed along the inner peripheral surface of the opening of the valve hole 42, and a valve body 44 is provided toward the valve seat 43 so as to be able to advance and retract from the upper side and to be seated. That is, the valve hole 42, the valve seat 43, and the valve body 44 constitute valve opening / closing means of the pressure reducing valve. By changing the separation distance of the valve body 44 from the valve hole 42, the valve hole 42 penetrates the valve hole 42 and is secondary. The pressure supplied to the side channel is controlled.

また、流体供給口41A及び流体排出口41Bには、継手部材例えばフランジFが夫々設けられており、これらフランジFと不図示のボルト等によって、主弁ケース40は例えば配管などの流路と連結される。但し、継手部材はフランジに限られず、例えばねじ込み継手を用いることもできる。   The fluid supply port 41A and the fluid discharge port 41B are respectively provided with joint members such as flanges F. The main valve case 40 is connected to a flow path such as a pipe by means of these flanges F and bolts (not shown). Is done. However, the joint member is not limited to the flange, and for example, a screw-in joint can be used.

主弁ケース40の上面にはシリンダ5が着脱自在に設けられており、さらにシリンダ5内にはピストン50が上下方向に摺動自在に設けられている。つまり、シリンダ5の内部領域は、ピストン50により上下2室に区画されており、そのうち上部側領域は定圧室51として形成され、下部側は主弁作動用圧力室52として形成されている。さらに、ピストン50は、主弁ケース40内に延びる弁棒53を介して前記弁体44と接続されている。そして、定圧室51と主弁作動用圧力室52との間の圧力バランスを変えることにより、ピストン50が上方側あるいは下方側に移動し、これに連動して弁体44が進退することで弁開度を調整可能な構成である。即ち、シリンダ5、ピストン50及び弁棒53は本弁開閉制御手段を構成する。   A cylinder 5 is detachably provided on the upper surface of the main valve case 40, and a piston 50 is provided in the cylinder 5 so as to be slidable in the vertical direction. That is, the internal region of the cylinder 5 is divided into two upper and lower chambers by the piston 50, of which the upper side region is formed as a constant pressure chamber 51 and the lower side is formed as a main valve operating pressure chamber 52. Further, the piston 50 is connected to the valve body 44 via a valve rod 53 extending into the main valve case 40. Then, by changing the pressure balance between the constant pressure chamber 51 and the main valve operating pressure chamber 52, the piston 50 moves upward or downward, and the valve body 44 advances and retreats in conjunction with this movement. The opening can be adjusted. That is, the cylinder 5, the piston 50 and the valve rod 53 constitute the valve opening / closing control means.

なお、定圧室51には、弁開度が閉方向となるようにピストン50を下方に付勢する弾性部材例えばコイルばね54が縮設されている。このコイルばね54は、主弁ケース40の一次側圧力と二次側圧力との差圧(圧力損失)が非常に小さくなったときに、弁体44を弁座43に着座させて弁開度を全閉状態にするためのものである。また、図中55は、定圧室51と主弁作動用圧力室52との間の気密を確保するためのシール部材例えばO−リングであり、また56は、主弁ケース40とシリンダ5との間の気密を確保するためのシール部材例えばO−リングである。   The constant pressure chamber 51 is provided with an elastic member, for example, a coil spring 54, that biases the piston 50 downward so that the valve opening is in the closing direction. The coil spring 54 seats the valve body 44 on the valve seat 43 when the differential pressure (pressure loss) between the primary side pressure and the secondary side pressure of the main valve case 40 becomes very small. Is to make the fully closed state. In the figure, reference numeral 55 denotes a seal member, for example, an O-ring, for ensuring airtightness between the constant pressure chamber 51 and the main valve operating pressure chamber 52, and 56 denotes a connection between the main valve case 40 and the cylinder 5. It is a seal member, for example, an O-ring, for ensuring airtightness between them.

続いて、パイロット弁6の構成について図2を参照しながら詳しく説明する。パイロット弁6は、仕切り部材60により区画されたパイロット弁ケース61及び圧力ケース62を備えている。さらに、パイロット弁ケース61内は、パイロット弁孔63を介してパイロット弁一次側流路及びパイロット弁二次側流路に区画されている。   Next, the configuration of the pilot valve 6 will be described in detail with reference to FIG. The pilot valve 6 includes a pilot valve case 61 and a pressure case 62 that are partitioned by a partition member 60. Further, the pilot valve case 61 is partitioned into a pilot valve primary side flow path and a pilot valve secondary side flow path via a pilot valve hole 63.

パイロット弁孔63の周囲には弁座64が形成され、この弁座64に対してパイロット弁体65が下方から進退自在かつ着座可能に設けられている。パイロット弁体65は弁棒66の一端と接続されており、この弁棒66の他端は圧力ケース62内のパイロット作動用圧力室67まで延設されてダイヤフラム68と接続されている。   A valve seat 64 is formed around the pilot valve hole 63, and a pilot valve body 65 is provided to the valve seat 64 so as to be able to advance and retract from below and to be seated. The pilot valve body 65 is connected to one end of a valve stem 66, and the other end of the valve stem 66 extends to a pilot operating pressure chamber 67 in the pressure case 62 and is connected to a diaphragm 68.

前記ダイヤフラム68により、圧力ケース62内は上下に仕切られ、下部側にパイロット作動用圧力室67が形成され、上部側には圧力設定室7が形成されている。この圧力設定室7内には、ダイヤフラム68と圧力設定室7の頂壁との間に弾性体例えば調節ばね71が縮設されている。即ち、調節ばね71は、弁棒66及び弁体65を下方に移動させてパイロット弁6が開く方向にダイヤフラム68を付勢している構成である。この調節ばね71は、圧力調節ねじ72によりその端部が支持されており、この圧力調節ねじ72で調節ばね71の圧縮量(つまりダイヤフラム68への付勢力)を変えることにより、主弁4の二次側圧力の設定圧を調節できるように構成されている。即ち、当該パイロット弁6は、パイロット弁作動用圧力室67の内圧が増加すると、ダイヤフラム68が調節ばね71に抗して押し上げられ、パイロット弁体65が開方向に移動するように構成されている。   The inside of the pressure case 62 is vertically divided by the diaphragm 68, a pilot operating pressure chamber 67 is formed on the lower side, and a pressure setting chamber 7 is formed on the upper side. In the pressure setting chamber 7, an elastic body such as an adjustment spring 71 is contracted between the diaphragm 68 and the top wall of the pressure setting chamber 7. That is, the adjustment spring 71 has a configuration in which the valve rod 66 and the valve body 65 are moved downward to urge the diaphragm 68 in the direction in which the pilot valve 6 opens. The end of the adjustment spring 71 is supported by a pressure adjustment screw 72. By changing the amount of compression of the adjustment spring 71 (that is, the urging force to the diaphragm 68) by the pressure adjustment screw 72, the main valve 4 It is comprised so that the setting pressure of a secondary side pressure can be adjusted. That is, the pilot valve 6 is configured such that when the internal pressure of the pilot valve operating pressure chamber 67 increases, the diaphragm 68 is pushed up against the adjustment spring 71 and the pilot valve body 65 moves in the opening direction. .

説明を図1に戻し、主弁4の一次側流路とシリンダ5の定圧室51とは圧力導入路としての定圧導入路例えば定圧導入管8により接続されており、この定圧導入管8を介して主弁4の一次側流路からの流体(定圧流体)を定圧室51に導入して加圧する。なお、主弁4の上流側にて流体の圧力が変化すれば当該流体の圧力も変化するが、二次側圧力の変化と比較すればその変化の程度が格段に小さいため、説明の便宜上、当該流体を定圧流体と呼ぶ。   Returning to FIG. 1, the primary flow path of the main valve 4 and the constant pressure chamber 51 of the cylinder 5 are connected by a constant pressure introduction path as a pressure introduction path, for example, a constant pressure introduction pipe 8. Then, a fluid (constant pressure fluid) from the primary flow path of the main valve 4 is introduced into the constant pressure chamber 51 and pressurized. Note that if the fluid pressure changes on the upstream side of the main valve 4, the fluid pressure also changes. However, since the degree of change is much smaller than the change in the secondary pressure, for convenience of explanation, This fluid is called a constant pressure fluid.

また、定圧導入管8の途中には流量規制手段例えばオリフィス80が設けられている。このオリフィス80は、ピストン50がシリンダ5内を上昇する際に、当該ピストン50に押し出されるようにして定圧室51内から排出される流体の流量を制限し、これによってピストン50の上昇速度を制限するためのものである。   A flow rate regulating means, for example, an orifice 80 is provided in the middle of the constant pressure introduction pipe 8. The orifice 80 limits the flow rate of the fluid discharged from the constant pressure chamber 51 so as to be pushed out by the piston 50 when the piston 50 moves up in the cylinder 5, thereby limiting the rising speed of the piston 50. Is to do.

また、主弁4の二次側流路とパイロット弁作動用圧力室67とはパイロット弁作動圧導入路例えばパイロット弁作動圧導入管81により接続されており、このパイロット弁作動圧導入管81を介して主弁4の二次側流路からの流体(説明の便宜上、この流体を「パイロット弁作動用流体」と呼ぶ)をパイロット弁作動用圧力室67に導入する。既述のように、パイロット弁6は、パイロット弁作動用圧力室67の内圧の変化を作動用圧力にして開閉動作をする構成であるので、パイロット弁作動用圧力室67に主弁4の二次側圧力を導入する構成とすることにより、二次側圧力の変化に素早く反応することが可能となる。   Further, the secondary side flow path of the main valve 4 and the pilot valve operating pressure chamber 67 are connected by a pilot valve operating pressure introducing path, for example, a pilot valve operating pressure introducing pipe 81, and the pilot valve operating pressure introducing pipe 81 is connected to the pilot valve operating pressure introducing pipe 81. Then, a fluid from the secondary side passage of the main valve 4 (for convenience of explanation, this fluid is referred to as “pilot valve operating fluid”) is introduced into the pilot valve operating pressure chamber 67. As described above, the pilot valve 6 is configured to open and close using the change in the internal pressure of the pilot valve operating pressure chamber 67 as the operating pressure, so that the pilot valve operating pressure chamber 67 has two main valves 4. By adopting a configuration in which the secondary pressure is introduced, it is possible to react quickly to changes in the secondary pressure.

さらにまた、主弁4の一次側流路とシリンダ5の主弁作動用圧力室52とは主弁作動圧導入路例えば主弁作動圧導入管82を介して接続され、その途中にパイロット弁6のパイロット弁ケース61が接続されている。さらに、主弁作動用圧力室52と主弁4の二次側流路とはバイパス路例えばバイパス管83により接続されており、このバイパス路83の途中にはオリフィス84が設けられている。   Furthermore, the primary flow path of the main valve 4 and the main valve operating pressure chamber 52 of the cylinder 5 are connected via a main valve operating pressure introducing path, for example, a main valve operating pressure introducing pipe 82, and in the middle of the pilot valve 6 The pilot valve case 61 is connected. Further, the main valve operating pressure chamber 52 and the secondary flow path of the main valve 4 are connected by a bypass path, for example, a bypass pipe 83, and an orifice 84 is provided in the middle of the bypass path 83.

即ち、主弁4の一次側流路からの流体(説明の便宜上、この流体を「主弁開閉作動用流体」と呼ぶ)はパイロット弁ケース61のパイロット弁一次側流路に導入され、詳しくは後述するが、主弁二次側圧力の変化に従って圧力調整がなされた後、パイロット弁二次側流路から排出される。そして、この圧力調整後の主弁開閉作動用流体は、主弁作動圧導入管82を介して主弁作動用圧力室52に導入され、オリフィス84でさらに減圧されてから主弁4の二次側流路に戻される構成である。   That is, the fluid from the primary side flow path of the main valve 4 (for convenience of explanation, this fluid is referred to as “main valve opening / closing operation fluid”) is introduced into the pilot valve primary side flow path of the pilot valve case 61. As will be described later, after the pressure is adjusted in accordance with the change in the main valve secondary side pressure, the pressure is discharged from the pilot valve secondary side flow path. Then, the pressure adjusting fluid for main valve opening / closing operation is introduced into the main valve operating pressure chamber 52 through the main valve operating pressure introduction pipe 82 and further reduced by the orifice 84 before the secondary of the main valve 4. It is the structure returned to the side flow path.

なお、上述の例では定圧導入管8、パイロット弁作動圧導入管81、主弁作動圧導入管82及びバイパス管83を夫々別個に設けた構成としているが、本発明においてはこれに限られず、主弁一次側流路と接続された一本の圧力導入管を途中で分岐させて定圧室51及びパイロット弁6に接続し、また主弁二次側流路と接続された一本の圧力導入管を途中で分岐させて主弁作動用圧力室52及びパイロット弁6に接続する構成とすることができる。   In the above-described example, the constant pressure introduction pipe 8, the pilot valve working pressure introduction pipe 81, the main valve working pressure introduction pipe 82, and the bypass pipe 83 are provided separately, but the present invention is not limited thereto. One pressure introduction pipe connected to the main valve primary side flow path is branched in the middle to be connected to the constant pressure chamber 51 and the pilot valve 6, and one pressure introduction connected to the main valve secondary side flow path The pipe may be branched in the middle and connected to the main valve operating pressure chamber 52 and the pilot valve 6.

続いて、上述の減圧弁の作用について説明するが、まず、当該減圧弁が流体の圧力制御を行なう全体動作の流れを説明し、その後で当該減圧弁のブレーキ作用について詳しく説明する。図3を参照すれば、例えば主弁二次側圧力が設定圧力値よりも上昇した場合、パイロット弁作動圧導入路81を介してパイロット弁作動用圧力室67の内圧が増加し、ダイヤフラム68は調節ばね71に抗して押し上げられ、パイロット弁体65は閉方向に移動する。このようにパイロット弁6の開度が小さくなると、当該パイロット弁6を介して主弁作動用圧力室52に導入される本弁開閉作動用流体の流量が減少し、主弁作動用圧力室52の内圧が低下する。   Subsequently, the operation of the above-described pressure reducing valve will be described. First, the flow of the entire operation in which the pressure reducing valve performs fluid pressure control will be described, and then the braking operation of the pressure reducing valve will be described in detail. Referring to FIG. 3, for example, when the main valve secondary side pressure rises above the set pressure value, the internal pressure of the pilot valve operating pressure chamber 67 increases via the pilot valve operating pressure introduction path 81, and the diaphragm 68 is The pilot valve element 65 is pushed up against the adjustment spring 71 and moves in the closing direction. Thus, when the opening degree of the pilot valve 6 decreases, the flow rate of the main valve opening / closing operation fluid introduced into the main valve operating pressure chamber 52 via the pilot valve 6 decreases, and the main valve operating pressure chamber 52 is reduced. The internal pressure decreases.

ここで、シリンダ5内にて、ピストン50は上部の定圧室51に導入された一次側圧力による一定の圧力を下向きに受けているため、本体作動用圧力室52内の内圧が低下すると、そのつり合いが破れ、内圧が低下した分においてピストン50が下方に移動する。このとき、ピストン50に連動して弁体44も下方に移動して主弁4の弁開度が小さくなり、開度が小さくなった分において圧力損失が大きくなるので、これにより二次側圧力が低下して元の設定圧力となる。   Here, in the cylinder 5, the piston 50 receives a constant pressure due to the primary pressure introduced into the upper constant pressure chamber 51 downward, so that when the internal pressure in the main body operating pressure chamber 52 decreases, When the balance is broken and the internal pressure is reduced, the piston 50 moves downward. At this time, the valve body 44 is also moved downward in conjunction with the piston 50, the valve opening of the main valve 4 is reduced, and the pressure loss is increased when the opening is reduced. Decreases to the original set pressure.

反対に、主弁4の二次側圧力が設定圧力値よりも低下した場合には、先ずパイロット弁作動用圧力室67の内圧が低下し、パイロット弁6のダイヤフラム68が調節ばね71によって押し下げられて、パイロット弁体65は開方向に移動する。このようにパイロット弁6の開度が大きくなると、当該パイロット弁6を介して主弁作動用圧力室52に導入される本弁開閉作動用流体の流量が増加し、主弁作動用圧力室52の内圧が高くなる。そして定圧室51による下向きの押圧力に抗してピストン50が押し上げられ、弁体44も上方に移動して主弁4の弁開度が大きくなり、開度が大きくなった分において圧力損失が小さくなるので、これにより二次側圧力が上昇して元の設定圧力となる。   On the contrary, when the secondary side pressure of the main valve 4 is lower than the set pressure value, first, the internal pressure of the pilot valve operating pressure chamber 67 is lowered, and the diaphragm 68 of the pilot valve 6 is pushed down by the adjustment spring 71. Thus, the pilot valve body 65 moves in the opening direction. Thus, when the opening degree of the pilot valve 6 increases, the flow rate of the main valve opening / closing operation fluid introduced into the main valve operating pressure chamber 52 through the pilot valve 6 increases, and the main valve operating pressure chamber 52 increases. The internal pressure of becomes higher. Then, the piston 50 is pushed up against the downward pressing force by the constant pressure chamber 51, the valve body 44 is also moved upward, the valve opening of the main valve 4 is increased, and the pressure loss is increased by the increase of the opening. As a result, the secondary pressure rises to the original set pressure.

続いて、当該減圧弁のブレーキ作用について図4及ぶ図5を参照しながら説明する。なお、図5は、当該ブレーキ作用が働いているときの本弁二次側圧力変化の様子を模式的に示すものであり、比較として従来の減圧弁の二次側圧力変化の様子を点線で記載してある。まず、パイロット弁体65と弁座64との離間距離がL0であったとすると、例えば下流側流体使用量の変化によって主弁二次側圧力が設定圧力値よりも高くなった場合(図5の時刻t1)、パイロット弁作動用圧力室67の内圧上昇によりダイヤフラム68と一体的にパイロット弁体65が持ち上げられて離間距離がL1と狭くなる。そして、主弁開閉作動用流体の流量が減少することにより主弁作動用圧力室52の内圧は小さくなり、この内圧の変化(厳密には定圧室51と主弁作動用圧力室52との間の圧力差)を作動力として主弁44を閉じていく動作が開始される(図5の時刻t2)。   Next, the braking action of the pressure reducing valve will be described with reference to FIGS. FIG. 5 schematically shows the change in pressure on the secondary side of the main valve when the brake action is working. For comparison, the change in pressure on the secondary side of the conventional pressure reducing valve is shown by a dotted line. It is described. First, assuming that the separation distance between the pilot valve body 65 and the valve seat 64 is L0, for example, when the main valve secondary side pressure becomes higher than the set pressure value due to a change in the downstream fluid usage (see FIG. 5). At time t1), the pilot valve body 65 is lifted integrally with the diaphragm 68 due to the increase in the internal pressure of the pilot valve operating pressure chamber 67, and the separation distance is reduced to L1. As the flow rate of the main valve opening / closing operation fluid decreases, the internal pressure of the main valve operating pressure chamber 52 decreases, and this change in internal pressure (strictly speaking, between the constant pressure chamber 51 and the main valve operating pressure chamber 52). The operation of closing the main valve 44 is started using the difference in pressure) as the operating force (time t2 in FIG. 5).

そして、主弁開度の絞り動作が行なわれることによって主弁二次側圧力が減少し始めると、離間距離がL1からL0に向けて広がっていき、主弁作動用流体の流量が順次増加し、これに伴って主弁44の絞り動作を停止させようとするブレーキ作用が働き始める。より詳しくは、弁体44が閉方向に移動している最中における、主弁44を開方向に移動させようとする力(反力)はいわばブレーキとして作用するものであり、前記した主弁開閉作動用流体の流量が順次増加するということは、開方向への反力(ブレーキ作用)を順次大きくしていくということになる。   When the main valve secondary side pressure begins to decrease due to the throttle operation of the main valve opening, the separation distance increases from L1 to L0, and the flow rate of the main valve operating fluid increases sequentially. Along with this, a brake action for stopping the throttle operation of the main valve 44 starts to work. More specifically, the force (reaction force) that attempts to move the main valve 44 in the opening direction while the valve body 44 is moving in the closing direction acts as a brake. When the flow rate of the fluid for opening / closing operation increases sequentially, the reaction force (braking action) in the opening direction increases in sequence.

このため、主弁44(厳密にはピストン50)は、最初の二次側圧力の上昇によって発生した閉方向の力により最初は速く下降するが、その後はブレーキ作用が働き始めて徐々に下降速度を落としていき、最後は二次側圧力が元の設定圧力になると下降を停止する(図5の時刻t3)。しかも、前記したようにブレーキ作用は順次増加していくので、元の設定圧付近において主弁44の下降速度は緩やかになっている。このため、元の設定圧にて良好に弁体44を停止させることができ、また弁体44に急ブレーキをかけないことによって、弁体44が適正位置を越えて下がり過ぎることを防止することができる。   For this reason, the main valve 44 (strictly, the piston 50) descends quickly by the closing force generated by the first increase in the secondary pressure, but after that, the brake action starts to work and gradually decreases the descending speed. Finally, when the secondary pressure becomes the original set pressure, the descent stops (time t3 in FIG. 5). In addition, as described above, since the braking action increases sequentially, the lowering speed of the main valve 44 is moderate in the vicinity of the original set pressure. For this reason, the valve body 44 can be satisfactorily stopped at the original set pressure, and the valve body 44 is prevented from falling too far beyond the proper position by not applying a sudden brake to the valve body 44. Can do.

上述の実施形態によれば、主弁4の一次側圧力からの定圧流体により加圧される定圧室51と、主弁4の二次側圧力の変化に従ってパイロット弁6により圧力が減圧調整された一次側流路からの主弁開閉作動用流体により加圧される主弁作動用圧力室52と、を備えた構成とし、定圧室51と主弁作動用圧力室52との間の圧力差に従ってシリンダ5のピストン50と一体的に弁体44の開閉動作を制御することにより、パイロット弁6による圧力調整を除いて、定圧室51及び主弁作動用圧力室52の内圧は二次側圧力の変化に影響を受けることがないか、又はあったとしてもその影響は極めて小さい。その結果、例えば低流量領域における主弁4の微小な開度変化による急激な圧力損失の変化に対しても、速やかに元の設定圧力値に復帰させることができ、圧力ハンチング現象の発生をより確実に防止して安定した圧力制御を行なうことが可能になる。   According to the above-described embodiment, the pressure is reduced by the pilot valve 6 according to the change in the constant pressure chamber 51 pressurized by the constant pressure fluid from the primary pressure of the main valve 4 and the secondary pressure of the main valve 4. A main valve actuation pressure chamber 52 pressurized by a main valve opening / closing actuation fluid from the primary side flow path, and according to the pressure difference between the constant pressure chamber 51 and the main valve actuation pressure chamber 52 By controlling the opening / closing operation of the valve body 44 integrally with the piston 50 of the cylinder 5, the internal pressure of the constant pressure chamber 51 and the main valve operating pressure chamber 52 is the secondary pressure except for the pressure adjustment by the pilot valve 6. Unaffected by changes, or if any, the impact is very small. As a result, for example, a sudden change in pressure loss due to a slight change in the opening of the main valve 4 in a low flow rate region can be quickly returned to the original set pressure value, and the occurrence of the pressure hunting phenomenon can be further improved. It is possible to reliably prevent and perform stable pressure control.

さらに上述の実施形態によれば、主弁二次側圧力の上昇に伴うパイロット弁作動用圧力室67の内圧上昇に従ってパイロット弁体65を閉方向に作動させる構成としたことにより、本弁開閉作動用流体の圧力調整を良好に行なうことが可能になる。より詳しく説明すると、パイロット弁6であっても、低開度領域においては本弁4と同様に、僅かな開度変化でも圧力損失が急激に変化する。この場合、弁を閉じる方向よりも、弁を開く方向の方が圧力損失の変化幅が緩やかになるので、一旦弁開度を小さくした後(例えば、図4におけるL0→L1)、弁を開きながら圧力調整を行なうことによって(例えば、図4におけるL1→L0)、弁は安定動作となり、本弁開閉作動用流体の圧力調整を良好に行なうことが可能になる。さらに、安定動作であるため、ばね振動や弁体のハンチング現象が発生することが少ない。   Further, according to the above-described embodiment, since the pilot valve body 65 is operated in the closing direction in accordance with the increase in the internal pressure of the pilot valve operating pressure chamber 67 as the main valve secondary side pressure increases, the main valve opening / closing operation is performed. It is possible to satisfactorily adjust the pressure of the working fluid. More specifically, even in the case of the pilot valve 6, in the low opening range, as in the main valve 4, even if the opening degree is slightly changed, the pressure loss changes rapidly. In this case, the pressure loss changes more slowly in the direction in which the valve is opened than in the direction in which the valve is closed. Therefore, after the valve opening is once reduced (for example, L0 → L1 in FIG. 4), the valve is opened. However, by performing the pressure adjustment (for example, L1 → L0 in FIG. 4), the valve becomes a stable operation, and the pressure adjustment of the fluid for opening and closing the valve can be performed satisfactorily. Furthermore, since it is a stable operation, there is little occurrence of spring vibration or hunting phenomenon of the valve body.

ところで、給水又は送水設備などにおいては、夜間時に瞬間的に水使用量がゼロになる場合がある。このように主弁4の下流側が全閉になった場合、二次側圧力が設定圧力よりも若干上昇すると、パイロット弁作動用圧力室67の内圧が上昇してパイロット弁6は全閉となり、同時に主弁4も全閉状態となる。このため、主弁4の一次側流路から二次側流路への通流が完全に遮断され、かつ二次側全閉時における昇圧を確実に防止することが可能になる。   By the way, in water supply or water supply facilities, the amount of water used may instantaneously become zero at night. In this way, when the downstream side of the main valve 4 is fully closed, when the secondary side pressure is slightly higher than the set pressure, the internal pressure of the pilot valve operating pressure chamber 67 is increased and the pilot valve 6 is fully closed. At the same time, the main valve 4 is also fully closed. For this reason, the flow from the primary side flow path to the secondary side flow path of the main valve 4 is completely blocked, and it is possible to reliably prevent the pressure increase when the secondary side is fully closed.

即ち、上述のパイロット弁6は、主弁二次側圧力の上昇に伴うパイロット弁作動用圧力室67の内圧上昇に従ってパイロット弁体65を閉方向に作動させる構成としたことにより、主弁4が全閉状態になったときに、同時にパイロット弁6も全閉となり、主弁作動圧導入管82、主弁作動用圧力室52及びバイパス管83を介して二次側流路に流体が流れ込んで昇圧することを防止することが可能となる。   That is, the pilot valve 6 described above is configured to operate the pilot valve body 65 in the closing direction in accordance with the increase in the internal pressure of the pilot valve operating pressure chamber 67 as the main valve secondary side pressure increases. When the fully closed state is reached, the pilot valve 6 is also fully closed at the same time, and the fluid flows into the secondary side flow path via the main valve operating pressure introduction pipe 82, the main valve operating pressure chamber 52 and the bypass pipe 83. It is possible to prevent boosting.

さらに上述の実施形態によれば、定圧室51の内圧により弁体44を閉方向に作動させ、これに抗して主弁作動用圧力室52の内圧により弁体44を開方向に作動させる構成、より具体的には、弁体44の閉の移動方向における前方側に主弁作動用圧力室52が位置し、後方側に定圧室51が位置するようにシリンダ5の内部領域をピストン50で仕切った構成(即ち、図1の例ではシリンダ50の上部側に定圧室51が位置し、下部側に主弁作動用圧力室52が位置している構成)としたことにより、例えば二次側圧力が上昇した際に発生する弁体44を閉じようとする力を徐々に減衰させるブレーキ作用を効果的に働かせることができる。その結果、弁体44が閉方向に行き過ぎるのをより確実に抑えることができ、極めて良好な圧力制御を行なうことが可能となる。   Furthermore, according to the above-described embodiment, the valve body 44 is operated in the closing direction by the internal pressure of the constant pressure chamber 51, and the valve body 44 is operated in the opening direction by the internal pressure of the main valve operating pressure chamber 52 against this. More specifically, the internal region of the cylinder 5 is defined by the piston 50 so that the main valve operating pressure chamber 52 is positioned on the front side in the closing movement direction of the valve body 44 and the constant pressure chamber 51 is positioned on the rear side. For example, in the example of FIG. 1, the constant pressure chamber 51 is positioned on the upper side of the cylinder 50 and the main valve operating pressure chamber 52 is positioned on the lower side. A brake action that gradually attenuates the force to close the valve body 44 generated when the pressure rises can be effectively applied. As a result, it is possible to more reliably suppress the valve body 44 from excessively moving in the closing direction, and extremely good pressure control can be performed.

これに加えて、上述の実施形態によれば、定圧導入管8の途中に流量規制手段であるオリフィス80を設けて、ピストン50がシリンダ5内を上昇する際の上昇速度を制限することにより、ピストン50の上昇動作が滑らかになり、微小な位置調整を行なうことが可能となる。即ち、弁体44の閉方向動作に対するブレーキ作用のみならず、弁体44の開方向動作に対するブレーキ作用を働かせることができ、二次側圧力が設定圧力を下回った場合であっても、速やかに元の設定圧力に復帰させることが可能になる。   In addition to this, according to the above-described embodiment, by providing the orifice 80 which is a flow rate regulating means in the middle of the constant pressure introduction pipe 8, by limiting the rising speed when the piston 50 moves up in the cylinder 5, Ascending operation of the piston 50 becomes smooth, and minute position adjustment can be performed. That is, not only the braking action for the closing direction operation of the valve body 44 but also the braking action for the opening direction operation of the valve body 44 can be applied, and even when the secondary side pressure falls below the set pressure, It becomes possible to return to the original set pressure.

ここで、上述の実施形態においては、本弁4の二次側流路に弁体44を配置し、その上流側に配置された弁座42に向かって弁体44を進退させる構成を採用している。この場合、弁体44を閉方向に動作させる際には、弁体44には弁座42を潜り抜けて流入する一次側流体の流体抵抗が作用する。即ち、閉方向に動作する弁体44に対して前記流体抵抗によるブレーキ作用が働くので、結果として弁体44が閉方向に行き過ぎることを、より確実に抑えることが可能になる。   Here, in the above-mentioned embodiment, the structure which arrange | positions the valve body 44 in the secondary side flow path of this valve 4, and advances / retreats the valve body 44 toward the valve seat 42 arrange | positioned in the upstream is employ | adopted. ing. In this case, when the valve body 44 is operated in the closing direction, the fluid resistance of the primary fluid flowing through the valve seat 42 through the valve body 42 acts on the valve body 44. That is, since the braking action by the fluid resistance acts on the valve body 44 that operates in the closing direction, it is possible to more reliably suppress the valve body 44 from excessively moving in the closing direction.

続いて本発明の効果を確認するために行った実施例について説明する。   Next, examples performed to confirm the effects of the present invention will be described.

(実施例1)
本例は、図1記載の減圧弁に実際に水を供給した状態で二次側圧力を変化させ、圧力ハンチングの有無を確認した実施例1である。この実施例1に用いた試験装置について、図6を参照しながら説明すると、水を貯留した受水槽、ポンプ、減圧弁の順に配管を介して接続し、ポンプを介して減圧弁の一次側に所定の圧力で水を供給し、当該減圧弁の二次側から排出された水は再度受水槽に戻すようにした。このとき、一次側圧力の設定は、手動弁A及びバイパス路に設けた手動弁Cの開度調整により行なった。そして、減圧弁の前後に一次側及び二次側圧力を測定するための圧力計A,Bを設けておき、パイロット弁の調整ねじ(72)により二次側設定圧力を段階的に変化させ、ハンチングの有無を当該圧力計の指示値の変化(振れ)を視認することによって判定した。さらに、二次側圧力が設定圧力に落ち着いてから手動弁B(流量調整弁)を開閉させることによって流量を変化させ、そのときのハンチングの有無についても併せて確認した。その結果を図7に示す。また、詳細な試験条件は以下のとおりである。
・減圧弁の口径;3インチサイズ(80A),接続JIS10kRF
・一次側圧力;5kg/cm2(0.5MPa)
・二次側圧力;2→3→4kg/cm2(0.2→0.3→0.4MPa)の順に段階的に圧力を上げた。また2→1kg/cm2→全閉状態(0.2→0.1MPa→全閉状態)の順に段階的に圧力を下げた。
・ポンプ仕様;500〜600リットル/分,揚程圧力15k圧(150m)
Example 1
This example is Example 1 in which the secondary pressure was changed while water was actually supplied to the pressure reducing valve shown in FIG. The test apparatus used in Example 1 will be described with reference to FIG. 6. A water receiving tank storing water, a pump, and a pressure reducing valve are connected via a pipe in this order, and are connected to the primary side of the pressure reducing valve via the pump. Water was supplied at a predetermined pressure, and water discharged from the secondary side of the pressure reducing valve was returned to the water receiving tank again. At this time, the primary pressure was set by adjusting the opening of the manual valve A and the manual valve C provided in the bypass passage. And pressure gauges A and B for measuring the primary side and secondary side pressure are provided before and after the pressure reducing valve, and the secondary side set pressure is changed stepwise by the adjusting screw (72) of the pilot valve, The presence or absence of hunting was determined by visually recognizing the change (vibration) in the indicated value of the pressure gauge. Further, after the secondary pressure settled to the set pressure, the flow rate was changed by opening and closing the manual valve B (flow rate adjusting valve), and the presence or absence of hunting at that time was also confirmed. The result is shown in FIG. The detailed test conditions are as follows.
・ Diameter of pressure reducing valve: 3 inch size (80A), connection JIS10kRF
・ Primary pressure: 5kg / cm2 (0.5MPa)
Secondary pressure: The pressure was increased stepwise in the order of 2 → 3 → 4 kg / cm 2 (0.2 → 0.3 → 0.4 MPa). Further, the pressure was lowered stepwise in the order of 2 → 1 kg / cm 2 → fully closed state (0.2 → 0.1 MPa → fully closed state).
・ Pump specifications: 500-600 liters / minute, lifting pressure 15k pressure (150m)

(実施例2)
本例は、一次側圧力を7kg/cm2(0.7MPa)に設定したことを除いて実施例1と同じ試験を行なった実施例2である。その結果を図7に併せて示す。
(Example 2)
This example is Example 2 in which the same test as Example 1 was performed except that the primary pressure was set to 7 kg / cm 2 (0.7 MPa). The results are also shown in FIG.

(実施例3)
本例は、一次側圧力を9kg/cm2(0.9MPa)に設定したことを除いて実施例1と同じ試験を行なった実施例3である。その結果を図7に併せて示す。
(Example 3)
This example is Example 3 in which the same test as Example 1 was performed except that the primary pressure was set to 9 kg / cm 2 (0.9 MPa). The results are also shown in FIG.

(実施例4)
本例は、一次側圧力を12kg/cm2(1.2MPa)に設定したことを除いて実施例1と同じ試験を行なった実施例4である。その結果を図7に併せて示す。
Example 4
This example is Example 4 in which the same test as Example 1 was performed except that the primary pressure was set to 12 kg / cm 2 (1.2 MPa). The results are also shown in FIG.

(実施例5)
本例は、一次側圧力を15kg/cm2(1.5MPa)に設定したことを除いて実施例1と同じ試験を行なった実施例5である。その結果を図7に併せて示す。
(Example 5)
This example is Example 5 in which the same test as Example 1 was performed except that the primary pressure was set to 15 kg / cm 2 (1.5 MPa). The results are also shown in FIG.

(比較例1)
本例は、従来の減圧弁(図9記載の減圧弁)を用い、二次側圧力を3kg/cm2から徐々に下げていったことを除いて実施例2と同じ試験を行なった比較例である。その結果を図7に併せて示す。
(Comparative Example 1)
This example is a comparative example in which the same test as in Example 2 was performed except that a conventional pressure reducing valve (the pressure reducing valve shown in FIG. 9) was used and the secondary side pressure was gradually reduced from 3 kg / cm 2. is there. The results are also shown in FIG.

(実施例1〜5,比較例1の結果と考察)
図7に示す結果から明らかなように、図1記載の本発明の減圧弁を用いた実施例1〜5は、2→3→4kg/cm2に段階的に圧力を上げた場合、及び2→1kg/cm2→全閉状態に段階的に圧力を下げた場合のいずれもハンチングは発生しなかった。さらに、手動弁Bにより流量を変化させた場合にもハンチングは発生しなかった。一方、図9記載の従来の減圧弁を用いた比較例1は、二次側圧力を3kg/cm2に設定した場合にはハンチングは発生しなかったが、3kg/cm2よりも圧力を小さくすると、微小ではあるが二次側圧力の指示値に振れが生じる程に不安定になった。すなわち、微小ではあるがハンチングが発生した。以上の結果から、本発明の減圧弁は、低流量領域において、弁を開く方向、及び弁を閉じる方向のいずれの場合であっても、確実にハンチングを抑制することができることが確認された。なお、発明者らは上記結果を得たことに基づき、その他の製造メーカの減圧弁についても製品仕様書等により調査をしたところ、初めから3kg/cm2以下の設定は不可との明記がなされていることを確認した。
(Results and discussion of Examples 1 to 5 and Comparative Example 1)
As is apparent from the results shown in FIG. 7, Examples 1 to 5 using the pressure reducing valve of the present invention shown in FIG. 1 are obtained when the pressure is increased stepwise from 2 → 3 → 4 kg / cm 2, and 2 → No hunting occurred when the pressure was gradually reduced from 1 kg / cm @ 2 to the fully closed state. Further, no hunting occurred when the flow rate was changed by the manual valve B. On the other hand, in Comparative Example 1 using the conventional pressure reducing valve shown in FIG. 9, hunting did not occur when the secondary pressure was set to 3 kg / cm2, but when the pressure was made smaller than 3 kg / cm2, Although it was minute, it became unstable to the extent that the indicated value of the secondary pressure fluctuated. That is, although it was minute, hunting occurred. From the above results, it was confirmed that the pressure reducing valve of the present invention can surely suppress hunting in the low flow rate region regardless of whether the valve is opened or closed. Based on the above results, the inventors investigated other manufacturer's pressure reducing valves according to product specifications, etc., and it was clearly stated that a setting of 3 kg / cm 2 or less was impossible from the beginning. I confirmed.

さらに、実施例1ないし5をするにあたり、本発明の減圧弁は、調整ボルト(72)を調整することによって一次側圧力が変化しても簡単に設定変更が可能であった。一方、比較例1に用いた減圧弁は、一次,二次側の設定を変えた場合は弁が対応しきれず、そのためパイロット弁(3)及びオリフス(28)径の仕様変更が必要であった。この場合、適正な仕様への変更は熟練した作業員であっても負担が大きいという懸念がある。すなわち、本発明の減圧弁は、一次側の種々の設定圧力に対応することができ、その設定変更の作業を簡単に行なうことができることが確認された。   Furthermore, when performing Examples 1 to 5, the pressure reducing valve of the present invention can be easily changed even if the primary pressure changes by adjusting the adjusting bolt (72). On the other hand, the pressure reducing valve used in Comparative Example 1 was not able to cope with changes in the settings of the primary and secondary sides, so the specifications of the pilot valve (3) and the orifice (28) diameter had to be changed. . In this case, there is a concern that even a skilled worker is burdened with changing to an appropriate specification. That is, it has been confirmed that the pressure reducing valve of the present invention can cope with various set pressures on the primary side and can easily change the setting.

本発明の実施形態による主弁及びパイロット弁を備えた減圧弁の縦断面図である。It is a longitudinal cross-sectional view of the pressure reducing valve provided with the main valve and pilot valve by embodiment of this invention. 上記パイロット弁の縦断面図である。It is a longitudinal cross-sectional view of the pilot valve. 上記減圧弁の作用を説明するための図である。It is a figure for demonstrating the effect | action of the said pressure reduction valve. 上記パイロット弁の作用を説明するための図である。It is a figure for demonstrating the effect | action of the said pilot valve. 上記減圧弁のブレーキ作用を説明するための図である。It is a figure for demonstrating the brake effect | action of the said pressure reducing valve. 本発明の効果を確認するために行った実施例に用いた装置を示す図である。It is a figure which shows the apparatus used for the Example performed in order to confirm the effect of this invention. 本発明の効果を確認するために行った実施例の結果を示す図である。It is a figure which shows the result of the Example performed in order to confirm the effect of this invention. 減圧弁の開度と圧力損失の特性を示す図である。It is a figure which shows the characteristic of the opening degree of a pressure-reduction valve, and a pressure loss. 従来の減圧弁を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional pressure reducing valve.

符号の説明Explanation of symbols

4 主弁
42 弁孔
44 弁体
5 シリンダ
50 ピストン
51 定圧室
52 主弁作動用圧力室
6 パイロット弁
4 Main valve 42 Valve hole 44 Valve body 5 Cylinder 50 Piston 51 Constant pressure chamber 52 Main valve operating pressure chamber 6 Pilot valve

Claims (5)

流体供給口及び流体排出口が形成された主弁ケースと、この主弁ケース内を一次側流路及び二次側流路に区画する弁孔と、この弁孔を開閉する弁体と、を有する主弁と、
前記一次側流路からの主弁開閉作動用流体が供給され、前記二次側流路内の圧力変化に従って当該主弁開閉作動用流体の圧力を減圧調整するパイロット弁と、
前記パイロット弁により減圧調整された主弁開閉作動用流体により加圧される主弁作動用圧力室と、
前記一次側流路からの定圧流体により加圧される定圧室と、
前記定圧室と前記主弁作動用圧力室との間の圧力差に従って前記弁体の開閉動作を制御する主弁開閉制御手段と、を備えることを特徴とする減圧弁。
A main valve case in which a fluid supply port and a fluid discharge port are formed; a valve hole that divides the main valve case into a primary flow path and a secondary flow path; and a valve body that opens and closes the valve hole. A main valve having,
A pilot valve that is supplied with a main valve opening / closing operation fluid from the primary side flow path, and depressurizes and adjusts the pressure of the main valve opening / closing operation fluid according to a pressure change in the secondary side flow path;
A main valve actuation pressure chamber pressurized by a main valve opening / closing actuation fluid depressurized by the pilot valve;
A constant pressure chamber pressurized by a constant pressure fluid from the primary side flow path;
A main valve opening / closing control means for controlling an opening / closing operation of the valve body in accordance with a pressure difference between the constant pressure chamber and the main valve operating pressure chamber.
前記定圧室は、その内圧により弁体を閉方向に作動させ、これに抗して前記主弁作動用圧力室は、その内圧により弁体を開方向に作動させることを特徴とする請求項1記載の減圧弁。   2. The constant pressure chamber operates the valve body in a closing direction by its internal pressure, and the main valve operating pressure chamber operates the valve body in an opening direction by its internal pressure. The pressure reducing valve as described. 前記弁体は、当該弁体の開の移動方向側に位置するように主弁に設けられたシリンダ内を弁体移動方向に沿って摺動可能なピストンと連結部材を介して接続され、さらに、前記定圧室及び主弁作動用圧力室は、当該弁体の閉の移動方向における前方側に主弁作動用圧力室が位置され、後方側に定圧室が位置されるようにシリンダ内部領域を前記ピストンで仕切って形成されていることを特徴とする請求項1記載の減圧弁。   The valve body is connected via a coupling member and a piston that is slidable along the valve body movement direction in a cylinder provided in the main valve so as to be positioned on the opening movement direction side of the valve body. The constant pressure chamber and the main valve operating pressure chamber have a cylinder internal region so that the main valve operating pressure chamber is located on the front side in the closing movement direction of the valve body, and the constant pressure chamber is located on the rear side. The pressure reducing valve according to claim 1, wherein the pressure reducing valve is formed by partitioning with the piston. 前記パイロット弁は、
前記主弁開閉作動用流体の供給口及び排出口が形成されたパイロット弁ケースと、このパイロット弁ケース内を一次側流路及び二次側流路に区画する弁孔と、この弁孔を開閉するパイロット弁体と、を有するパイロット弁ケースと、
前記主弁の二次側流路からのパイロット弁作動用流体により加圧されるパイロット弁作動用圧力室と、
前記パイロット弁作動用圧力室の内圧上昇に従って前記パイロット弁体を閉方向に作動させ、当該パイロット弁作動用圧力室の内圧低下に従って前記パイロット弁を開方向に作動させるパイロット弁開閉制御手段と、を備えることを特徴とする請求項1ないし3のいずれか一つに記載の減圧弁。
The pilot valve is
A pilot valve case having a supply port and a discharge port for the fluid for opening and closing the main valve, a valve hole that divides the pilot valve case into a primary flow path and a secondary flow path, and opens and closes the valve hole. A pilot valve body having a pilot valve case,
A pilot valve operating pressure chamber pressurized by a pilot valve operating fluid from the secondary side flow path of the main valve;
Pilot valve opening / closing control means for operating the pilot valve body in a closing direction in accordance with an increase in the internal pressure of the pilot valve operating pressure chamber and operating the pilot valve in an opening direction in accordance with a decrease in the internal pressure of the pilot valve operating pressure chamber; The pressure reducing valve according to any one of claims 1 to 3, further comprising:
前記本弁の一次側流路と前記定圧室とは圧力導入路を介して接続されており、この圧力導入路の途中に流量規制手段を設けたことを特徴とする請求項1ないし4のいずれか一つに記載の減圧弁。   The primary side flow path of the main valve and the constant pressure chamber are connected via a pressure introduction path, and a flow rate regulating means is provided in the middle of the pressure introduction path. The pressure reducing valve according to any one of the above.
JP2005150756A 2005-05-24 2005-05-24 Pressure reducing valve Withdrawn JP2006330890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150756A JP2006330890A (en) 2005-05-24 2005-05-24 Pressure reducing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150756A JP2006330890A (en) 2005-05-24 2005-05-24 Pressure reducing valve

Publications (1)

Publication Number Publication Date
JP2006330890A true JP2006330890A (en) 2006-12-07

Family

ID=37552544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150756A Withdrawn JP2006330890A (en) 2005-05-24 2005-05-24 Pressure reducing valve

Country Status (1)

Country Link
JP (1) JP2006330890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141558A (en) * 2014-01-29 2015-08-03 株式会社ダンレイ Decompression valve
JP2017503539A (en) * 2013-12-17 2017-02-02 錦昌超商股▲分▼有限公司 Negative pressure defecation assistance toilet chair

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017503539A (en) * 2013-12-17 2017-02-02 錦昌超商股▲分▼有限公司 Negative pressure defecation assistance toilet chair
JP2015141558A (en) * 2014-01-29 2015-08-03 株式会社ダンレイ Decompression valve

Similar Documents

Publication Publication Date Title
CN106414895B (en) Assembly and system including surge relief valve
CN102257449A (en) Internal relief valve apparatus for use with loading regulators
US10288182B2 (en) Low leakage relief valve
US6209561B1 (en) Emergency pressure relief valve
US20130186080A1 (en) Actuator
JPH0231085A (en) Safety valve for hydraulic vessel and hydraulic circuit with said safety valve
JP4968862B2 (en) Fluid pressure on-off valve
JP6688591B2 (en) Self-powered regulating valve
JP2006330890A (en) Pressure reducing valve
EP2742394B1 (en) Regulators having an isolated loading chamber and blowout prevention aparatus
JP5301805B2 (en) Suckback valve system and valve closing operation control method thereof
WO2008151727A3 (en) Control arrangement with pipe burst safety function
JP5914489B2 (en) Volume booster with varying asymmetry
JPH08270806A (en) Automatic pressure regulating valve
JP5022354B2 (en) Valve structure and pressure regulating equipment for pressure regulating valve
JP5326197B2 (en) Hydraulic elevator control device
JP4787129B2 (en) Automatic valve device
KR20130046052A (en) Pilot valve equipped with a pressure reducing valve for fire fighting
JP5698545B2 (en) Gas governor
JP2017044327A (en) Sequence valve
US2608214A (en) Relief valve
US3929313A (en) Anti-bottoming fluid control system
JP5120918B2 (en) Control valve
JP2018018374A (en) Decompressor
JPH06272785A (en) Opening/closing device of automatic valve

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805