JP5120918B2 - Control valve - Google Patents

Control valve Download PDF

Info

Publication number
JP5120918B2
JP5120918B2 JP2006337797A JP2006337797A JP5120918B2 JP 5120918 B2 JP5120918 B2 JP 5120918B2 JP 2006337797 A JP2006337797 A JP 2006337797A JP 2006337797 A JP2006337797 A JP 2006337797A JP 5120918 B2 JP5120918 B2 JP 5120918B2
Authority
JP
Japan
Prior art keywords
valve
flow path
pressure
side flow
main valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006337797A
Other languages
Japanese (ja)
Other versions
JP2008151193A (en
Inventor
浩史 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2006337797A priority Critical patent/JP5120918B2/en
Publication of JP2008151193A publication Critical patent/JP2008151193A/en
Application granted granted Critical
Publication of JP5120918B2 publication Critical patent/JP5120918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fluid-Driven Valves (AREA)

Description

本発明は、プラント防災設備等の消防用設備の制御弁に関するもので、特に、長管路や大口径の水幕設備や放水砲等に設備される制御弁に関するである。   The present invention relates to a control valve for a fire-fighting facility such as a plant disaster prevention facility, and more particularly to a control valve installed in a long pipeline, a large-diameter water curtain facility, a water cannon, or the like.

従来のプラント防災設備の制御弁は、一次側流路の配管と二次側流路の配管とを接続する弁本体と、この弁本体の連通口の開閉を制御する主弁と、この主弁の下方であって二次側流路を介して対向するピストン室と、このピストン室内に配設され、上記主弁より受圧面積の大きい制御ピストンと、この制御ピストンと上記主弁とを連結するステムと、制御ピストンの下方に位置し加圧されることによって主弁を開弁方向に動かすピストン室の加圧室と、この加圧室と上記一次側流路の配管とを連通せしめる起動弁付導圧管と、から構成されている。   A conventional control valve for plant disaster prevention equipment includes a valve body that connects the piping of the primary side passage and the piping of the secondary side passage, a main valve that controls the opening and closing of the communication port of the valve body, and the main valve. A piston chamber that is opposed to each other via a secondary-side flow path, is disposed in the piston chamber, has a larger pressure receiving area than the main valve, and connects the control piston and the main valve. Stem, a pressurizing chamber located below the control piston and moving the main valve in the valve opening direction by being pressurized, and an activation valve for communicating the pressurizing chamber and the piping of the primary side flow path And an attached pressure tube.

そして、火災発生時において、起動弁を開いて一次側流路の配管内の消火用水を加圧室に供給すると、制御ピストンが加圧室内の水圧により上方すなわち主弁の方向に移動するので、ステムおよび主弁も上方に移動し、主弁が開弁する。主弁の連通口が開くので、一次側流路の消火用水が二次側流路へと流れ込み、管路を経て、消火設備として例えば放水砲から放出される。   And, in the event of a fire, when opening the start valve and supplying the fire extinguishing water in the piping of the primary side flow path to the pressurizing chamber, the control piston moves upward, that is, in the direction of the main valve by the water pressure in the pressurizing chamber, The stem and the main valve also move upward, and the main valve opens. Since the communication port of the main valve opens, the fire-extinguishing water in the primary channel flows into the secondary channel, and is discharged from, for example, a water cannon as a fire-extinguishing facility via a pipeline.

従来の技術では、起動弁を開いて加圧室に消火用水を供給すると、主弁が急激に弁座から離れて一気に全開にまで至ってしまうので、一次側流路の配管内の高圧消火用水が、充水されていない二次側流路の配管内を高速で圧送されることになる。そしてこの過流の消火用水は管路を経て、高圧消火用水は流速も急に落とされるので、極めて大きな衝撃がノズルや配管設備にかかる、いわゆるウォーターハンマ現象が発生する。   In the conventional technology, when the start valve is opened and fire extinguishing water is supplied to the pressurizing chamber, the main valve suddenly leaves the valve seat and reaches full open at once. Then, it is pumped at high speed in the piping of the secondary flow path that is not filled with water. And since this overflow fire-extinguishing water passes through a pipe line and the high-pressure fire-extinguishing water is suddenly dropped in flow rate, a so-called water hammer phenomenon occurs in which a very large impact is applied to the nozzle and piping equipment.

この問題を解決するため、従来の技術では二次側流路の配管を上記加圧室と連通させ、これによって二次側流路の圧力を感知しながら主弁の開放を制御していた(例えば、特許文献1)。
特開平4−90221号公報
In order to solve this problem, in the conventional technique, the piping of the secondary side channel is communicated with the pressurizing chamber, thereby controlling the opening of the main valve while sensing the pressure of the secondary side channel ( For example, Patent Document 1).
Japanese Patent Laid-Open No. 4-90221

ところで、従来の技術では、感圧管が二次側流路の圧力を感知することができるが、制御弁本体の構造が複雑で製作コストは割高であった。   By the way, in the conventional technology, the pressure sensing tube can sense the pressure in the secondary side flow path, but the structure of the control valve main body is complicated and the manufacturing cost is expensive.

この発明は、上記事情に鑑み、過剰なウォーターハンマ現象の発生を防止しながら、製作コストの少ない消防用設備の制御弁を得ることを目的とする。   In view of the above circumstances, an object of the present invention is to obtain a control valve for a fire-fighting facility with low production costs while preventing the occurrence of an excessive water hammer phenomenon.

この発明は、上記課題を解決するためになされたもので、一次側流路と二次側流路とを仕切る弁座に対して接離可能に配設された加圧流体が供給されると開放される主弁を有し、該主弁の開度を変化させて、該一次側流路から該二次側流路に流れる流体の流量を調整する制御弁において、上記主弁に上記加圧流体として一次側流路の消火用水を供給して上記主弁を起動するモーターバルブと、上記二次側流路に絞り口としてのオリフィスを設け、該オリフィスの上流側の圧力が該オリフィスの下流側の圧力に対して所定値だけ大きい圧力になるように上記主弁の初期開放から全開まで上記加圧流体の供給を調整して上記主弁の開度を制御する調圧パイロット弁を備え、上記オリフィスの下流側が充水完了するまで主弁を全開させないことを特徴とする。
The present invention has been made to solve the above-described problems, and when a pressurized fluid arranged so as to be able to come into contact with and separate from a valve seat that partitions the primary side flow path and the secondary side flow path is supplied. A control valve having a main valve to be opened and adjusting the flow rate of the fluid flowing from the primary side flow path to the secondary side flow path by changing the opening degree of the main valve. A motor valve for starting the main valve by supplying water for extinguishing the primary side flow path as a pressurized fluid, and an orifice as a throttle port in the secondary side flow path are provided, and the pressure upstream of the orifice is A pressure-regulating pilot valve for controlling the opening of the main valve by adjusting the supply of the pressurized fluid from the initial opening to the full opening of the main valve so that the pressure is larger than the downstream pressure by a predetermined value; , especially that downstream of the orifice does not fully open the main valve until the filling of water complete To.

この発明によれば、二次側流路に設置された絞り口は、二次側流路に圧力差、つまり絞り口の上流側と下流側に差圧を発生させ、この差圧を制御手段で調節し、過流状態に至らないように制御弁の主弁の開度をコントロールする。これにより、絞り口の下流側が充水完了するまでは制御弁の主弁が全開しないので、一次側流路の配管内の高圧消火用水が、二次側流路の配管内を高速で圧送されることはない。そして、絞り口の下流側が充水完了し、放水が開始された段階では、絞り口の圧力差が制御手段により小さく保持されているため、制御弁の主弁がスムーズに全開となり、消火設備のノズルや配管等内に過流による水撃は発生しない。   According to this invention, the throttle port installed in the secondary side flow path generates a pressure difference in the secondary side flow path, that is, a differential pressure between the upstream side and the downstream side of the throttle port, and this differential pressure is controlled by the control means. To adjust the opening of the main valve of the control valve so as not to reach an overflow state. As a result, the main valve of the control valve does not fully open until filling of the downstream side of the throttle port is completed, so that the high-pressure fire-fighting water in the primary side passage pipe is pumped at high speed through the secondary side passage pipe. Never happen. Then, at the stage where the downstream side of the throttle port is fully filled and water discharge is started, the pressure difference at the throttle port is kept small by the control means, so the main valve of the control valve opens smoothly and the fire extinguishing equipment Water hammer due to overflow does not occur in nozzles and piping.

図1はこの発明の実施の形態1に係わる制御弁に示す構成図、図2は制御弁の閉弁状態を示す断面図、図3は制御弁の開弁状態を示す断面図、図4はこの発明の実施の形態1に係る調圧パイロット弁の構造を説明する断面図であり、図4の(b)は図4の(a)に対して直交する平面における断面図を示している。   1 is a block diagram showing a control valve according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view showing a closed state of the control valve, FIG. 3 is a cross-sectional view showing a valve open state of the control valve, and FIG. It is sectional drawing explaining the structure of the pressure regulation pilot valve which concerns on Embodiment 1 of this invention, (b) of FIG. 4 has shown sectional drawing in the plane orthogonal to (a) of FIG.

図1において、制御弁100は、一次側流路の配管8と二次側流路の配管9との間に介装され、主弁27の開度を変化させて、一次側流路の配管8から二次側流路の配管9に流れる消火用水の流量を調整する弁本体20と、弁本体20に一次側流路の消火用水を供給して弁本体20を起動するモータバルブ11と、二次側流路の配管9に設けられた絞り口としてのオリフィスSと、このオリフィスSの上流側K1と下流側K2との差圧が一定となるように主弁27の開度を設定開度に制御する制御手段としての調圧パイロット弁40と、を備えている。   In FIG. 1, the control valve 100 is interposed between a primary side flow path pipe 8 and a secondary side flow path pipe 9, and changes the opening of the main valve 27 to change the primary side flow path piping. A valve body 20 for adjusting the flow rate of the fire-extinguishing water flowing from the pipe 8 to the secondary-side flow path 9, the motor valve 11 for starting the valve main body 20 by supplying the valve body 20 with the primary-side flow path fire-extinguishing water, The opening of the main valve 27 is set and opened so that the differential pressure between the orifice S as the throttle port provided in the pipe 9 of the secondary side flow path and the upstream side K1 and the downstream side K2 of the orifice S is constant. And a pressure regulating pilot valve 40 as a control means for controlling each time.

上記オリフィスSの穴径は、任意の消火設備の必要流量に応じて計算して求められ、例えば流量3000L/minに対してオリフィスでの差圧ΔP=0.05MPaとなるように穴径を設定する。   The hole diameter of the orifice S is obtained by calculation according to the required flow rate of any fire extinguishing equipment. For example, the hole diameter is set so that the differential pressure ΔP at the orifice is 0.05 MPa with respect to a flow rate of 3000 L / min. To do.

つぎに、弁本体20の構造について図2および図3を参照しつつ説明する。なお、図2および図3中矢印は消火用水の流れを示している。   Next, the structure of the valve body 20 will be described with reference to FIGS. In addition, the arrow in FIG. 2 and FIG. 3 has shown the flow of the water for fire extinguishing.

弁本体20は、一次側流路の配管8が接続される一次側流路22と、二次側流路の配管9が接続される二次側流路23と、一次側流路22と二次側流路23とを連通する連通孔24と、軸心を連通孔24の孔中心に一致させて、かつ、二次側流路23を挟んで連通孔24と相対して形成されたシリンダ室25と、を備えている。   The valve body 20 includes a primary side flow path 22 to which the primary side flow path pipe 8 is connected, a secondary side flow path 23 to which the secondary side flow path pipe 9 is connected, and the primary side flow path 22 and the secondary side flow path 22. A communication hole 24 that communicates with the secondary flow path 23, and a cylinder that is formed opposite to the communication hole 24 with the axis aligned with the hole center of the communication hole 24 and with the secondary flow path 23 interposed therebetween. Chamber 25.

主弁27は、ディスク部28と、ディスク部28の一側の縁部近傍から周方向に等角ピッチで主弁27の軸心方向に延設された複数本のガイド部29と、ディスク部28の一側外周縁部に配設されたOリング30と、を備えている。そして、主弁27は、一次側流路22側からガイド部29を連通孔24に挿入して、摺動自在に装着されている。   The main valve 27 includes a disk portion 28, a plurality of guide portions 29 extending in the axial direction of the main valve 27 at an equiangular pitch in the circumferential direction from the vicinity of an edge on one side of the disk portion 28, and the disk portion 28, an O-ring 30 disposed on one outer peripheral edge portion. The main valve 27 is slidably mounted by inserting the guide portion 29 into the communication hole 24 from the primary channel 22 side.

弁棒31は、その一端を弁体27のディスク部28の他側中央部に固着され、他側を蓋体32に装着された受け部材33に摺動可能に嵌挿されている。また、受け部材33は、蓋体32に流体の漏れを防止するように貫装され、弁棒31は、受け部材33に流体の漏れを防止するように挿通されている。そして、スプリング34が蓋体32と主弁27のディスク部28との間に縮設され、ディスク部28を二次側流路23側に押圧している。これにより、Oリング30が弁座26に密接している。   One end of the valve rod 31 is fixed to the center of the other side of the disk portion 28 of the valve body 27, and the other side is slidably inserted into a receiving member 33 mounted on the lid body 32. The receiving member 33 is inserted into the lid 32 so as to prevent fluid leakage, and the valve stem 31 is inserted through the receiving member 33 so as to prevent fluid leakage. A spring 34 is contracted between the lid 32 and the disk portion 28 of the main valve 27 to press the disk portion 28 toward the secondary channel 23. As a result, the O-ring 30 is in close contact with the valve seat 26.

ピストン35は、シリンダ室25内を二次側流路側のピストン室25aと反二次側流路側の作動室25bとに画成するようにシリンダ室25内に摺動自在に装着されている。そして、連結棒36が、その一端をピストン35の中心位置に固着され、二次側流路23とシリンダ室25との間の隔壁に装着された受け部材37を摺動自在に挿通し、その他端を弁体27のディスク部28の一側中央部に固着されている。また、連通孔38が、ピストン室25aと外部とを連通するようにシリンダ室25の隔壁に穿設され、流入出口39が作動室25bと外部とを連通している。なお、受け部材37は、隔壁に流体の漏れを防止するように貫装され、連結棒36は、受け部材37に流体の漏れを防止するように挿通されている。   The piston 35 is slidably mounted in the cylinder chamber 25 so as to define the inside of the cylinder chamber 25 into a piston chamber 25a on the secondary flow path side and a working chamber 25b on the anti-secondary flow path side. Then, one end of the connecting rod 36 is fixed to the center position of the piston 35, and a receiving member 37 attached to a partition wall between the secondary side flow path 23 and the cylinder chamber 25 is slidably inserted. The end is fixed to a central portion on one side of the disk portion 28 of the valve body 27. A communication hole 38 is formed in the partition wall of the cylinder chamber 25 so as to communicate the piston chamber 25a with the outside, and an inflow / outlet port 39 communicates the working chamber 25b with the outside. The receiving member 37 is inserted through the partition wall so as to prevent fluid leakage, and the connecting rod 36 is inserted through the receiving member 37 so as to prevent fluid leakage.

このように構成された弁本体20では、流入出口39から作動室25bに加圧流体(消火用水)が供給されていないと、主弁27がスプリング34の付勢力により図2中下方に移動されている。そして、主弁27のOリング30が連通孔24の弁座26に押圧され、一次側流路22と二次側流路23との間の流路が遮断される。   In the valve body 20 configured in this way, the main valve 27 is moved downward in FIG. 2 by the urging force of the spring 34 unless pressurized fluid (fire-extinguishing water) is supplied from the inlet / outlet 39 to the working chamber 25b. ing. Then, the O-ring 30 of the main valve 27 is pressed against the valve seat 26 of the communication hole 24, and the flow path between the primary side flow path 22 and the secondary side flow path 23 is blocked.

また、加圧流体が流入出口39から作動室25bに供給されると、ピストン35がスプリング34の付勢力に抗して、図2中上方に移動される。そして、主弁27のOリング30が連通孔24の弁座26から離反され、図3に示されるように、一次側流路22と二次側流路23との間の流路が開放される。   When the pressurized fluid is supplied from the inlet / outlet 39 to the working chamber 25 b, the piston 35 is moved upward in FIG. 2 against the urging force of the spring 34. Then, the O-ring 30 of the main valve 27 is separated from the valve seat 26 of the communication hole 24, and the flow path between the primary flow path 22 and the secondary flow path 23 is opened as shown in FIG. The

つぎに、調圧パイロット弁40の構造について図4を参照しつつ説明する。   Next, the structure of the pressure regulating pilot valve 40 will be described with reference to FIG.

本体41は、第1分割体42と、第2分割体43とに分割構成されている。そして、フラム押さえ44に保持されたフラム45が、第1分割体42と第2分割体43とに挟持され、第1操作室46と第2操作室47とを画成するように本体41内に取り付けられている。   The main body 41 is divided into a first divided body 42 and a second divided body 43. Then, the flam 45 held by the flam presser 44 is sandwiched between the first divided body 42 and the second divided body 43, so that the first operation chamber 46 and the second operation chamber 47 are defined. Is attached.

第1操作室46はフラム45により第1分割体42内に画成されている。また、配管18を介してオリフィスSの下流側K2に接続される下流側接続口48が第1分割体42に形成されている。そして、通孔49が第1操作室46と下流側接続口48とを連通するように第1分割体42に形成されている。   The first operation chamber 46 is defined in the first divided body 42 by the flam 45. A downstream connection port 48 connected to the downstream side K2 of the orifice S via the pipe 18 is formed in the first divided body 42. And the through-hole 49 is formed in the 1st division body 42 so that the 1st operation chamber 46 and the downstream connection port 48 may be connected.

第2操作室47は、フラム45により第2分割体43内に画成されている。また、第2分割体43には、4方向に接続口、即ち配管15を介して一次側流路の配管8に接続される一次側接続口50と、配管16を介してオリフィスSの上流側K1に接続される上流側接続口51と、配管17を介して弁本体20の流入出口39に接続されるシリンダ接続口52と、プラグ54により封鎖されている閉鎖接続口53と、を有している。そして、通孔55が第2操作室47と上流側接続口51とを連通するように第2分割体43に形成されている。また、通孔56がシリンダ接続口52と閉鎖接続口53とを連通するように第2分割体43に形成されている。   The second operation chamber 47 is defined in the second divided body 43 by the flam 45. Further, the second divided body 43 has a connection port in four directions, that is, a primary side connection port 50 connected to the pipe 8 of the primary flow path via the pipe 15, and an upstream side of the orifice S via the pipe 16. An upstream connection port 51 connected to K1, a cylinder connection port 52 connected to the inlet / outlet port 39 of the valve body 20 via the pipe 17, and a closed connection port 53 sealed by a plug 54. ing. And the through-hole 55 is formed in the 2nd division body 43 so that the 2nd operation chamber 47 and the upstream connection port 51 may be connected. A through hole 56 is formed in the second divided body 43 so as to communicate the cylinder connection port 52 and the closed connection port 53.

第2分割体43の内部には、弁室57が形成されている。そして、この弁室57は、通孔58を介して一次側接続口50に連通し、通孔59を介してシリンダ接続口52と閉鎖接続口53とを連通する通孔56に連通している。弁室57には、ばね60の付勢力により通孔59の開口縁部の弁座61に着座する弁体62が設けられている。   A valve chamber 57 is formed inside the second divided body 43. The valve chamber 57 communicates with the primary side connection port 50 through the through hole 58, and communicates with the through hole 56 that communicates the cylinder connection port 52 and the closed connection port 53 through the through hole 59. . The valve chamber 57 is provided with a valve body 62 that is seated on the valve seat 61 at the opening edge of the through hole 59 by the biasing force of the spring 60.

ケース63は、有底円筒状をなし、開口を第1分割体42に向けて、第1分割体42に締着固定されている。そして、ピストン64が第1分割体42のケース63側に凹設された凹部65に摺動自在に配設されている。また、ばね受け66がケース63内にピストン64に対向して配設され、ばね67がピストン64とばね受け66との間に縮設されている。そして、調整ネジ68がケース63の頭部に螺着され、調整ネジ68の先端がばね受け66を押圧してばね圧を調整する。この調整ネジ68はナット69により固定されている。   The case 63 has a bottomed cylindrical shape, and is fastened and fixed to the first divided body 42 with the opening facing the first divided body 42. The piston 64 is slidably disposed in a recess 65 that is recessed on the case 63 side of the first divided body 42. A spring receiver 66 is disposed in the case 63 so as to face the piston 64, and a spring 67 is provided between the piston 64 and the spring receiver 66. The adjustment screw 68 is screwed onto the head of the case 63, and the tip of the adjustment screw 68 presses the spring receiver 66 to adjust the spring pressure. The adjustment screw 68 is fixed by a nut 69.

第1シャフト70が、一端をフラム押さえ44に固着され、第1分割体42を挿通してその先端をピストン64に当接するように配設されている。また、第2シャフト71が、一端を弁体62に固着され、通孔59内を通り、第2分割体43を挿通してその先端をフラム押さえ44に当接するように配設されている。なお、第1シャフト70の第1分割体42の挿通部には、Oリングが介装され、流体の漏出が防止されているとともに、第1シャフト70が摺動自在となっている。また、第2シャフト71の第2分割体43の挿通部には、微小な隙間が形成され、第2シャフト71が軸方向に移動可能になっている。   The first shaft 70 is disposed so that one end thereof is fixed to the flam presser 44, the first divided body 42 is inserted, and the tip thereof is in contact with the piston 64. Further, the second shaft 71 is disposed so that one end is fixed to the valve body 62, passes through the through hole 59, passes through the second divided body 43, and a tip of the second shaft 71 contacts the frame presser 44. Note that an O-ring is interposed in the insertion portion of the first divided body 42 of the first shaft 70 to prevent fluid leakage, and the first shaft 70 is slidable. In addition, a minute gap is formed in the insertion portion of the second divided body 43 of the second shaft 71 so that the second shaft 71 can move in the axial direction.

このように構成された調圧パイロット弁40では、調整ネジ68により調整されたばね圧がピストン64および第1シャフト70を介してフラム45を図4中下方に押圧するように作用する。この調整ネジ68により圧力P2と圧力P3との差圧αが設定されることができる。また、第1操作室46内の圧力がフラム45を図4中下方に押圧するように作用する。一方、第2操作室47内の圧力がフラムを図4中上方に押圧するように作用する。   In the pressure regulating pilot valve 40 configured as described above, the spring pressure adjusted by the adjusting screw 68 acts to press the fram 45 downward in FIG. 4 via the piston 64 and the first shaft 70. The adjusting screw 68 can set a differential pressure α between the pressure P2 and the pressure P3. Further, the pressure in the first operation chamber 46 acts to press the flam 45 downward in FIG. On the other hand, the pressure in the second operation chamber 47 acts to press the flam upward in FIG.

そして、第1操作室46には、配管18を介して圧力P3のオリフィスSの下流側K2である消火用水が供給され、第2操作室47には、配管16を介して圧力P2のオリフィスSの上流側K1にある消火用水が供給される。   The first operation chamber 46 is supplied with water for extinguishing water K2 downstream of the orifice S having the pressure P3 through the pipe 18, and the second operation chamber 47 is supplied with the orifice S having the pressure P2 through the pipe 16. Water for fire extinguishing on the upstream side K1 is supplied.

そこで、P2−P3=αと設計されている。例えば、α=0.05MPaとしている。   Therefore, P2−P3 = α is designed. For example, α = 0.05 MPa.

つぎに、このように構成された制御弁100の動作について説明する。   Next, the operation of the control valve 100 configured as described above will be described.

まず、モータバルブ11が作動すると、一次側流路の配管8内の消火用水が、配管15を介して調圧パイロット弁40の一次側接続口50から弁室57内に流入する。このとき、弁本体20が閉弁されているので、消火用水が二次側流路の配管9内に流入していない。やがて弁室57内の圧力が高くなり、弁体62が押し下げれ、一次側接続口50とシリンダ接続口52とが連通される。これにより、消火用水は、配管17を介して弁本体20の流入出口39から作動室25b内に流入する。そして、消火用水が作動室25b内に充満されると、ピストン35が上昇され、主弁27が弁座26から離反され、一次側流路22と二次側流路23との間の流路が開放される。そこで、消火用水が一次側流路の配管8から弁本体20を通って二次側流路の配管9に流入し、二次側流路の配管9内の消火用水圧力が上昇する。この場合、オリフィスSの絞り効果で、オリフィスSの上流側K1の圧力P2は所定値(ここで0.05MPa)に達し、配管16を介して第2操作室47の圧力は一定となり、主弁27は初期開放となっている。このとき、オリフィスSでの差圧はΔP=0.05MPaと設定されていたため、P2−P3=0.05MPaになる。そして、オリフィスSの下流側K2に完全に充水されるまでは、圧力P3は流水による配管摩擦損失や静水頭程度の値を有するが、殆ど0に近いので、主弁27は全開となることなく、このままの開度を維持して、過流防止の状態になっている(図5)。   First, when the motor valve 11 is actuated, the water for fire extinguishing in the pipe 8 of the primary side flow channel flows into the valve chamber 57 from the primary side connection port 50 of the pressure regulating pilot valve 40 through the pipe 15. At this time, since the valve main body 20 is closed, the fire-extinguishing water does not flow into the pipe 9 of the secondary side flow path. Eventually, the pressure in the valve chamber 57 increases, the valve body 62 is pushed down, and the primary side connection port 50 and the cylinder connection port 52 communicate with each other. As a result, the fire extinguishing water flows into the working chamber 25b from the inlet / outlet port 39 of the valve body 20 via the pipe 17. When the fire-extinguishing water is filled in the working chamber 25 b, the piston 35 is raised, the main valve 27 is separated from the valve seat 26, and the flow path between the primary flow path 22 and the secondary flow path 23. Is released. Therefore, the fire-extinguishing water flows from the primary-side flow path pipe 8 through the valve body 20 into the secondary-side flow path pipe 9, and the fire-extinguishing water pressure in the secondary-side flow path pipe 9 rises. In this case, due to the restriction effect of the orifice S, the pressure P2 on the upstream side K1 of the orifice S reaches a predetermined value (here 0.05 MPa), the pressure in the second operation chamber 47 becomes constant via the pipe 16, and the main valve 27 is an initial opening. At this time, since the differential pressure at the orifice S was set to ΔP = 0.05 MPa, P2−P3 = 0.05 MPa. Until the downstream side K2 of the orifice S is completely filled, the pressure P3 has a value such as a pipe friction loss or a hydrostatic head due to flowing water, but is almost close to 0, so the main valve 27 is fully opened. However, the opening degree is maintained as it is to prevent overflow (FIG. 5).

次に、オリフィスSの下流側K2の充水が完了すると、圧力P3は急激に上昇し、この圧力上昇は配管18を介して第1操作室46に伝わり、第1操作室46の圧力も急増する。そうすると、弁体62が押し下げられ、一次側接続口50からシリンダ接続口52に流れる消火用水が増え、一次側流路の配管8から二次側流路の配管9に流れる消火用水も増える。ところでこのとき調圧パイロット弁40は圧力P2を圧力P3より0.05MPa高くするように維持調整するため、圧力P3の上昇につれ圧力P2も上昇する。圧力P2の上昇で第2操作室47の圧力が上昇し、弁体62が押上げられ、これにより一次側接続口50からシリンダ接続口52に流れる消火用水の増加量が抑えられ、一次側流路の配管8から二次側流路の配管9に流れる消火用水の増加量も抑えられる。上記の動作が繰り返され、圧力P2は、圧力P3に対してαだけ大きい圧力に調整され、消火用水が一次側流路の配管8から二次側流路の配管9にスムーズに流れる。(図6)。   Next, when the filling of the downstream side K2 of the orifice S is completed, the pressure P3 rapidly increases. This pressure increase is transmitted to the first operation chamber 46 via the pipe 18, and the pressure in the first operation chamber 46 also increases rapidly. To do. If it does so, the valve body 62 will be pushed down, the fire extinguishing water which flows from the primary side connection port 50 to the cylinder connection port 52 will increase, and the fire extinguishing water which will flow from the piping 8 of the primary side flow path to the piping 9 of the secondary side flow path will also increase. Incidentally, at this time, the pressure adjustment pilot valve 40 maintains and adjusts the pressure P2 to be 0.05 MPa higher than the pressure P3, so that the pressure P2 increases as the pressure P3 increases. As the pressure P2 rises, the pressure in the second operation chamber 47 rises, and the valve body 62 is pushed up, thereby suppressing an increase in the amount of fire-extinguishing water flowing from the primary side connection port 50 to the cylinder connection port 52. The amount of fire fighting water flowing from the pipe 8 of the road to the pipe 9 of the secondary flow path is also suppressed. The above operation is repeated, the pressure P2 is adjusted to a pressure that is larger by α than the pressure P3, and fire-extinguishing water flows smoothly from the primary-side flow path pipe 8 to the secondary-side flow path pipe 9. (FIG. 6).

やがて上流側K1の圧力P2は所定の最高圧力(ここで1.0MPa)に達して、それ以上は上昇しない。この間、主弁27が一定のスピードで全開まで開いて、二次側流路の配管9内に過流による水撃が発生しない(図7)。   Eventually, the pressure P2 on the upstream side K1 reaches a predetermined maximum pressure (here, 1.0 MPa) and does not increase any more. During this time, the main valve 27 opens at a constant speed until it is fully opened, and water hammer due to overflow does not occur in the pipe 9 of the secondary side flow path (FIG. 7).

このように、この実施の形態1によれば、二次側流路の配管9に設置された絞り口Sは、二次側流路に圧力差、つまり絞り口Sの上流側K1と下流側K2に差圧を発生させ、そしてこの差圧を制御手段で調節し、過流状態に至らないように制御弁100の主弁27の開度をコントロールする。これにより、絞り口Sの下流側K2が充水完了するまでは制御弁100の主弁27が全開しないので、一次側流路の配管8内の高圧消火用水が、二次側流路の配管9内を高速で圧送されることはない。そして、絞り口Sの下流側K2が充水完了し、放水が開始された段階では、絞り口Sの圧力差が制御手段により小さく保持されているため、制御弁100の主弁27がスムーズに全開となり、消火設備のノズルや配管等内に過流による水撃は発生しない、という効果が得られる。   As described above, according to the first embodiment, the throttle port S installed in the pipe 9 of the secondary side channel has a pressure difference between the secondary channel and the upstream side K1 and the downstream side of the throttle port S. A differential pressure is generated in K2, and this differential pressure is adjusted by the control means to control the opening of the main valve 27 of the control valve 100 so as not to reach an overflow state. Thereby, the main valve 27 of the control valve 100 is not fully opened until the downstream side K2 of the throttle port S is completely filled, so that the high-pressure fire-extinguishing water in the pipe 8 of the primary side flow path becomes the pipe of the secondary side flow path. The inside of 9 is not pumped at high speed. Then, at the stage where the downstream side K2 of the throttle port S is completely filled and water discharge is started, the pressure difference of the throttle port S is kept small by the control means, so that the main valve 27 of the control valve 100 is smooth. It is fully open, and there is an effect that water hammer due to overflow does not occur in the fire extinguishing equipment nozzle or piping.

また、上記制御手段は、調圧パイロット弁40のことで、具体的に、この調圧パイロット弁40は、一次側接続口50とシリンダ接続口52とを仕切り弁座61に対して接離可能に配設された弁体62と、軸方向を弁座61に対する上記弁体62の接離方向とする操作室と、上記操作室内に上記軸方向に変位可能に配設されるとともに、該操作室内を上記軸方向に圧力P3が導入される第1操作室46と圧力P2が導入される第2操作室47とに画成する仕切り部材としてのフラム45と、このフラム45に圧力を上記軸方向に付勢する付勢手段としてのばね67と、上記フラム45の上記軸方向の変位を上記弁体62に伝達して該弁体62を上記弁座61に対して接離させる動力伝達部材としての第1シャフト70および第2シャフト71と、を備えている。そして、この調圧パイロット弁40は、オリフィスSの下流側K2の圧力P3を感知し、上流側K1の圧力P2を、圧力P3より一定の差圧αで高くするように調圧している。そこで、圧力P3が変動しても、圧力P2が圧力P3の変動に追従して変動し、差圧が一定となるので、主弁27の全開までの動作はスムーズに行われ、消火設備のノズルや配管等内に過流による水撃は発生しない。   The control means is a pressure regulating pilot valve 40. Specifically, the pressure regulating pilot valve 40 can contact and separate the primary side connection port 50 and the cylinder connection port 52 with respect to the partition valve seat 61. A valve body 62 disposed in the operation chamber, an operation chamber in which the axial direction is a contact / separation direction of the valve body 62 with respect to the valve seat 61, and the operation chamber is disposed so as to be displaceable in the axial direction. A fram 45 serving as a partition member that defines a first operation chamber 46 into which the pressure P3 is introduced in the axial direction and a second operation chamber 47 into which the pressure P2 is introduced. A spring 67 as a biasing means for biasing in the direction, and a power transmission member for transmitting the axial displacement of the flam 45 to the valve body 62 so as to contact and separate the valve body 62 from the valve seat 61. As a first shaft 70 and a second shaft 71 , And a. The pressure regulating pilot valve 40 senses the pressure P3 on the downstream side K2 of the orifice S, and regulates the pressure P2 on the upstream side K1 to be higher than the pressure P3 by a constant differential pressure α. Therefore, even if the pressure P3 fluctuates, the pressure P2 fluctuates following the fluctuation of the pressure P3, and the differential pressure becomes constant. Therefore, the operation until the main valve 27 is fully opened is performed smoothly, and the nozzle of the fire extinguishing equipment Water hammer due to overflow does not occur in pipes and pipes.

また、絞り口は例えばオリフィスのような安価のものを使えばよく、制御弁の本体に複雑の構造は不要で、制御弁装置の設備コストは低減できる。   Further, the throttle port may be an inexpensive one such as an orifice, and the control valve body does not require a complicated structure, and the equipment cost of the control valve device can be reduced.

実施形態1に係わる制御弁100Control valve 100 according to Embodiment 1 実施形態1に係わる弁本体20の閉弁状態Closed state of the valve body 20 according to the first embodiment 実施形態1に係わる弁本体20の開弁状態Valve open state of valve body 20 according to the first embodiment 実施形態1に係わる調圧パイロット弁40の断面図Sectional drawing of the pressure regulation pilot valve 40 concerning Embodiment 1. FIG. 制御弁100が開放し始め状態Control valve 100 starts to open 制御弁100が半開状態Control valve 100 is half open 制御弁100が全開状態Control valve 100 is fully open

符号の説明Explanation of symbols

8 一次側流路の配管
9 二次側流路の配管
11 モータバルブ
15 配管
16 配管
17 配管
18 配管
20 弁本体
40 調圧パイロット弁
K1 上流側
K2 下流側
S オリフィス
100 制御弁




















8 Piping for primary side passage 9 Piping for secondary side passage 11 Motor valve 15 Piping 16 Piping 17 Piping 18 Piping
20 Valve body 40 Pressure regulating pilot valve K1 Upstream side K2 Downstream side S Orifice 100 Control valve




















Claims (1)

一次側流路と二次側流路とを仕切る弁座に対して接離可能に配設された加圧流体が供給されると開放される主弁を有し、該主弁の開度を変化させて、該一次側流路から該二次側流路に流れる流体の流量を調整する制御弁において、
上記主弁に上記加圧流体として一次側流路の消火用水を供給して上記主弁を起動するモーターバルブと、
上記二次側流路に絞り口としてのオリフィスを設け、
該オリフィスの上流側の圧力が該オリフィスの下流側の圧力に対して所定値だけ大きい圧力になるように上記主弁の初期開放から全開まで上記加圧流体の供給を調整して上記主弁の開度を制御する調圧パイロット弁を備え、上記オリフィスの下流側が充水完了するまで主弁を全開させないことを特徴とする制御弁。
It has a main valve that is opened when pressurized fluid arranged so as to be able to come into contact with and separate from the valve seat that divides the primary side flow path and the secondary side flow path is provided. In a control valve that adjusts the flow rate of the fluid flowing from the primary side flow path to the secondary side flow path,
A motor valve for starting the main valve by supplying the main valve with water for extinguishing the primary side flow path as the pressurized fluid;
An orifice as a throttle port is provided in the secondary side flow path,
The supply of the pressurized fluid is adjusted from the initial opening to the full opening of the main valve so that the pressure on the upstream side of the orifice is a pressure larger than the pressure on the downstream side of the orifice by a predetermined value. A control valve comprising a pressure-regulating pilot valve for controlling an opening degree, wherein the main valve is not fully opened until the downstream side of the orifice is completely filled .
JP2006337797A 2006-12-15 2006-12-15 Control valve Expired - Fee Related JP5120918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337797A JP5120918B2 (en) 2006-12-15 2006-12-15 Control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337797A JP5120918B2 (en) 2006-12-15 2006-12-15 Control valve

Publications (2)

Publication Number Publication Date
JP2008151193A JP2008151193A (en) 2008-07-03
JP5120918B2 true JP5120918B2 (en) 2013-01-16

Family

ID=39653577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337797A Expired - Fee Related JP5120918B2 (en) 2006-12-15 2006-12-15 Control valve

Country Status (1)

Country Link
JP (1) JP5120918B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5744476B2 (en) * 2010-11-04 2015-07-08 東京瓦斯株式会社 Decompressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107685A (en) * 1989-09-21 1991-05-08 Hidekuni Yokota Automatic regulating lift valve device
JPH086837B2 (en) * 1990-08-21 1996-01-29 秀邦 横田 Automatic adjustment lift valve device
US6135142A (en) * 1996-05-29 2000-10-24 Kabushiki Kaisha Yokota Seisakusho Control valve device
JP2000161529A (en) * 1998-11-30 2000-06-16 Yokota Seisakusho:Kk Automatic adjusting valve device

Also Published As

Publication number Publication date
JP2008151193A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
CA2683567C (en) System and method for hydraulically managing fluid pressure downstream from a main valve between set points
CN102160012B (en) Fluid regulator
JP5049296B2 (en) Dome load type pressure regulator
US8424836B2 (en) Bidirectional force feedback poppet valve
US20070290152A1 (en) Poppet valve
US20110297252A1 (en) Pressure reducing valve control
EP3762802B1 (en) Solenoid operated valve for reducing excessive piping pressure in a fluid distribution system
JP2006526741A (en) valve
EP3213165B1 (en) Flowrate control device for a fluid
EP2625579B1 (en) Flow rate controller for high flow rates and high pressure drops
US20120298222A1 (en) Flow control valve
JP5120918B2 (en) Control valve
JP4937670B2 (en) Equal differential pressure control pilot valve and foam mixing apparatus having the same
JP3066511B2 (en) On-off valve for fire equipment
EP3082009B1 (en) Pressure regulator
JP2007267775A (en) Foam mixing apparatus
JP4919896B2 (en) Pressure regulating valve
CA1171891A (en) Constant pressure nozzle with modulation effect
JP2006042958A (en) Stop valve equipment for fire extinguishment
JP2005121139A (en) Pressure regulating pilot valve and pressure regulating system using the same
JP2019002511A (en) Pressure regulating valve and automatic valve device employing the same
JP5956304B2 (en) Automatic valve device
JP2782010B2 (en) Pressure reducing valve
GB2535651A (en) Pressure regulator
JP2004162751A (en) Fluid feeding control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees