JP2006329949A - Testing device for cold thermal shock - Google Patents

Testing device for cold thermal shock Download PDF

Info

Publication number
JP2006329949A
JP2006329949A JP2005157740A JP2005157740A JP2006329949A JP 2006329949 A JP2006329949 A JP 2006329949A JP 2005157740 A JP2005157740 A JP 2005157740A JP 2005157740 A JP2005157740 A JP 2005157740A JP 2006329949 A JP2006329949 A JP 2006329949A
Authority
JP
Japan
Prior art keywords
temperature
sample
test
thermal shock
test chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005157740A
Other languages
Japanese (ja)
Other versions
JP4673669B2 (en
Inventor
Muneaki Sonobe
宗昭 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2005157740A priority Critical patent/JP4673669B2/en
Publication of JP2006329949A publication Critical patent/JP2006329949A/en
Application granted granted Critical
Publication of JP4673669B2 publication Critical patent/JP4673669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain variation in sample temperature due to changes in the testing environment, in which a sample is exposed in a cold thermal shock test and variations in heat stress applied to the sample to a minimum. <P>SOLUTION: This cold thermal shock testing device 1 has a high-temperature testing laboratory 2 and a low temperature testing laboratory 3 The device can change the test environment in the cold thermal shock test by moving a rack 4, on which a sample is placed between both the laboratories. The cold thermal shock testing device 1 stops fans 11, 16 at the time of a change in test environment and stops air circulation inside the high-temperature testing laboratory 2 and inside the low-temperature testing laboratory 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷熱衝撃試験装置に関するものである。   The present invention relates to a thermal shock test apparatus.

近年、電子部品や電子機器は、小型化・高機能化によってその構成が複雑になっている。また、携帯電話や車載機器のように小型化された機器は、様々な環境で使用されるようになっている。機器の使用環境や動作・停止の繰り返しによる熱ストレスは、機器の信頼性に大きな影響を及ぼす可能性がある。そのため、熱ストレスによる影響が懸念される機器類やこれに使用される部品の製造や開発では、熱ストレスに対する信頼性評価試験が実施されることが多い。   In recent years, the configuration of electronic parts and electronic devices has become complicated due to downsizing and high functionality. In addition, miniaturized devices such as mobile phones and in-vehicle devices are used in various environments. Thermal stress due to the usage environment of the equipment and repeated operation / stopping may greatly affect the reliability of the equipment. Therefore, reliability evaluation tests against thermal stress are often performed in the manufacture and development of devices that are concerned about the effects of thermal stress and components used in the equipment.

そこで、かかる信頼性評価試験を実施すべく、従来より下記特許文献1に開示されているような冷熱衝撃試験装置が提供されている。特許文献1に開示されている冷熱衝撃試験装置は、雰囲気温度が高温に設定された高温試験室と雰囲気温度が低温に設定された低温試験室と、試料を載置するためのラック等の試料配置手段を有し、試験室内に所定温度に調整された空気の循環流を発生させ、この循環流に試料をさらす構成とされている。上記した冷熱衝撃試験装置は、高温試験室あるいは低温試験室のいずれか一方に試料を配した試料配置手段を収容してその雰囲気温度下に所定のさらし時間だけ試料をさらした後、試料配置手段を他方の試験室に移動させ、この試験室内において発生している循環流に試料をさらす冷熱サイクルを繰り返し実施可能な構成とされている。   In order to carry out such a reliability evaluation test, a thermal shock test apparatus as disclosed in the following Patent Document 1 has been provided. The thermal shock test apparatus disclosed in Patent Document 1 includes a high-temperature test chamber in which the ambient temperature is set to a high temperature, a low-temperature test chamber in which the ambient temperature is set to a low temperature, and a sample such as a rack for mounting the sample. Arrangement means is provided, and a circulation flow of air adjusted to a predetermined temperature is generated in the test chamber, and the sample is exposed to the circulation flow. The above-described thermal shock test apparatus accommodates a sample placement means in which a sample is placed in either the high temperature test chamber or the low temperature test chamber, and after exposing the sample for a predetermined exposure time at the ambient temperature, the sample placement means Is moved to the other test chamber, and a cooling cycle in which the sample is exposed to the circulating flow generated in this test chamber can be repeatedly performed.

特開2002−323423号公報JP 2002-323423 A

上記した特許文献1に開示されている冷熱衝撃試験装置では、試験環境を切り替えるべく高温試験室および低温試験室のうち一方側の試験室から他方側の試験室へ試料配置手段を移動させると、試料配置手段に配された試料が徐々に他方側の試験環境内を循環する循環流にさらされることとなる。そのため、従来技術の冷熱衝撃試験装置では、試料配置手段に配された試料の数が多い場合や試料の大きさが大きい場合に、試験環境の切り替え時に試料の一部が高温試験室および低温試験室のうち一方側の試験室内を循環する循環流にさらされ、試料の残部が他方側の試験室内を循環する循環流にさらされることとなる。そのため、従来技術の冷熱衝撃試験装置では、試験環境の切り替え時に試料配置手段に配されている試料に温度分布が発生し、試料に付与される熱ストレスのバラツキが発生する可能性がある。   In the thermal shock test apparatus disclosed in Patent Document 1 described above, when the sample placement means is moved from one of the high temperature test chamber and the low temperature test chamber to the other test chamber in order to switch the test environment, The sample placed on the sample placement means is gradually exposed to the circulating flow circulating in the test environment on the other side. For this reason, in the conventional thermal shock test apparatus, when the number of samples arranged in the sample placement means is large or the sample size is large, a part of the sample is switched between the high temperature test chamber and the low temperature test when the test environment is switched. One of the chambers is exposed to the circulating flow circulating in the test chamber on one side, and the remaining part of the sample is exposed to the circulating flow circulating in the test chamber on the other side. Therefore, in the conventional thermal shock test apparatus, there is a possibility that the temperature distribution is generated in the sample arranged in the sample arrangement means when the test environment is switched, and that the thermal stress applied to the sample varies.

また、冷熱衝撃試験装置は、一般的に300〜2000サイクルといったような多数のサイクル数を重ねて実施されることが多い。そのため、冷熱衝撃試験装置は、例え一回の試験環境の切り替えに伴って発生する熱ストレスのバラツキが小さいとしても、多数のサイクル数を重ねることにより熱ストレスのバラツキが増大される。そのため、従来技術の冷熱衝撃試験装置では、試料が配されている位置によって冷熱衝撃試験の開始から完了までに付与される熱ストレスの総量のバラツキが大きくなってしまうという問題がある。   Further, the thermal shock test apparatus is often carried out by repeating a large number of cycles such as 300 to 2000 cycles. Therefore, in the thermal shock test apparatus, even if the variation of the thermal stress generated by switching the test environment once is small, the variation of the thermal stress is increased by repeating a large number of cycles. Therefore, in the conventional thermal shock test apparatus, there is a problem that the total amount of thermal stress applied from the start to the completion of the thermal shock test becomes large depending on the position where the sample is arranged.

かかる知見に基づき、本発明は冷熱衝撃試験において試料がさらされる試験環境の切り替えに伴う試料温度や試料に付与される熱ストレスのバラツキを最小限に抑制可能な冷熱衝撃試験装置の提供を目的とする。   Based on such knowledge, an object of the present invention is to provide a thermal shock test apparatus capable of minimizing variations in sample temperature and thermal stress applied to the sample accompanying switching of the test environment to which the sample is exposed in the thermal shock test. To do.

上記した課題を解決すべく提供される請求項1に記載の発明は、雰囲気温度を調整可能な複数の試験室を有し、試験室内に存在する気体を循環させることにより、当該気体の循環流に試料をさらすことが可能であり、複数の試験室間において試料を移動させることにより試料がさらされる試験環境を切り替え可能であり、試験環境の切り替え中は、試料配置手段に配された試料が気体の循環流にさらされるのを防止可能であることを特徴とする冷熱衝撃試験装置である。   The invention according to claim 1, which is provided to solve the above-described problem, has a plurality of test chambers capable of adjusting the atmospheric temperature, and circulates the gas existing in the test chamber, thereby circulating the gas. It is possible to switch the test environment to which the sample is exposed by moving the sample between a plurality of test chambers. A thermal shock test apparatus characterized in that it can be prevented from being exposed to a circulating gas flow.

本発明の冷熱衝撃試験装置では、試験環境の切り替えのために試料を移動させる際に気体の循環流が停止する。そのため、本発明の冷熱衝撃試験装置では、複数設けられた試験室の一つから他の試験室に試料を移動させても、試料の一部だけが他の試験室内の循環流にさらされるといった事態が発生しない。よって、本発明の冷熱衝撃試験装置によれば、試料が配されている位置や、試料の部位、配置位置、数量等に依存した温度分布や、熱ストレスの分布が発生せず、試料全体を略均等に加熱冷却し、熱ストレスを付与することができる。従って、本発明によれば、試料の大きさ等によらず試料全体に均一な熱ストレスを付与して冷熱衝撃試験を実施可能な冷熱衝撃試験装置を提供できる。   In the thermal shock test apparatus of the present invention, the gas circulation flow stops when the sample is moved for switching the test environment. Therefore, in the thermal shock test apparatus of the present invention, even if a sample is moved from one of a plurality of test chambers to another test chamber, only a part of the sample is exposed to the circulating flow in the other test chamber. Things don't happen. Therefore, according to the thermal shock test apparatus of the present invention, the temperature distribution depending on the position where the sample is arranged, the part of the sample, the arrangement position, the quantity, etc., and the distribution of thermal stress are not generated, and the entire sample is Heating and cooling can be performed substantially evenly to apply thermal stress. Therefore, according to the present invention, it is possible to provide a thermal shock test apparatus capable of performing a thermal shock test by applying uniform thermal stress to the entire sample regardless of the size of the sample.

請求項2に記載の発明は、試験環境の切り替え中は、試験室内における気体の循環が実質的に停止されることを特徴とする請求項1に記載の冷熱衝撃試験装置である。   The invention according to claim 2 is the thermal shock test apparatus according to claim 1, wherein the circulation of the gas in the test chamber is substantially stopped while the test environment is switched.

かかる構成によれば、試験環境の切り替え時に試料が気体の循環流にさらされるのを確実に防止することができる。従って、本発明によれば、試験環境の切り替えに伴う試料温度のバラツキや、試料に付与される熱ストレスのバラツキを最小限に抑制することができる。   According to such a configuration, it is possible to reliably prevent the sample from being exposed to the gas circulation flow when the test environment is switched. Therefore, according to the present invention, it is possible to minimize the variation in the sample temperature accompanying the switching of the test environment and the variation in the thermal stress applied to the sample.

上記請求項1又は2に記載の冷熱衝撃試験装置は、試験環境の切り替えに伴って試料が移動する方向に対して交差する方向に気体を吹き出すことにより循環流を形成可能なものであってもよい。   The thermal shock test apparatus according to claim 1 or 2 is capable of forming a circulating flow by blowing gas in a direction intersecting with a direction in which the sample moves in accordance with switching of the test environment. Good.

また、上記した本発明の冷熱衝撃試験装置は、試料配置手段に配された試料の温度を検知する試料温度検知手段を有し、試験環境の切り替えが完了した後、当該試料温度検知手段によって検知される検知温度が所定の設定温度領域に到達した時点を基準として所定のさらし時間が経過するまでの期間にわたって試料が試験室内に形成される気体の循環流にさらされるものであってもよい。   Further, the above-described thermal shock test apparatus of the present invention has a sample temperature detecting means for detecting the temperature of the sample arranged in the sample arranging means, and is detected by the sample temperature detecting means after the switching of the test environment is completed. The sample may be exposed to a circulating gas flow formed in the test chamber over a period until a predetermined exposure time elapses with respect to a time point when the detected temperature reaches a predetermined set temperature range.

冷熱衝撃試験装置を上記したような構成とした場合、試験環境の切り替えを行っても、試料に温度分布が発生しにくい。そのため、冷熱衝撃試験装置を上記したような構成とした場合は、試験環境の切り替え後、試料温度検知手段によって検知される温度が所定の設定温度領域に到達した時点で試料全体の温度が当該設定温度領域に到達しているものと想定される。すなわち、上記したような構成を採用した場合は、試験環境の切り替え後、試料温度検知手段によって検知される温度が所定の設定温度領域に達しているにもかかわらず、試料温度検知手段が設置された部位を外れた位置の温度が設定温度領域に達していないといったような事態が発生しにくくい。換言すれば、試料温度検知手段によって検知される温度が所定の設定温度領域に達していれば、試料温度検知手段の取り付け位置によらず、試料全体の温度が当該設定温度領域に到達しているものと想定される。従って、冷熱衝撃試験装置を上記したような構成とすることにより、試料全体の温度が所定の設定温度領域に達してから所定のさらし時間にわたって試料を循環流にさらすことができ、試料温度検知手段の設置位置等によらず試料全体をほぼ同一の試験条件下で冷熱衝撃試験を実施できる。   When the thermal shock test apparatus is configured as described above, temperature distribution is unlikely to occur in the sample even if the test environment is switched. Therefore, when the thermal shock test apparatus is configured as described above, the temperature of the entire sample is set when the temperature detected by the sample temperature detection means reaches a predetermined set temperature range after switching the test environment. It is assumed that the temperature range has been reached. That is, when the configuration as described above is adopted, after the test environment is switched, the sample temperature detection means is installed even though the temperature detected by the sample temperature detection means has reached a predetermined set temperature range. It is difficult for such a situation that the temperature at the position outside the region does not reach the set temperature range. In other words, if the temperature detected by the sample temperature detection means has reached a predetermined set temperature range, the temperature of the entire sample has reached the set temperature range regardless of the mounting position of the sample temperature detection means. It is assumed. Therefore, by configuring the thermal shock test apparatus as described above, the sample can be exposed to the circulating flow for a predetermined exposure time after the temperature of the entire sample reaches the predetermined set temperature range, and the sample temperature detecting means The thermal shock test can be performed on the entire sample under almost the same test conditions regardless of the installation position of the.

以下、本発明の一実施形態である冷熱衝撃試験装置について図面を参照ながら説明する。図1において、1は本実施形態の冷熱衝撃試験装置である。冷熱衝撃試験装置1は、図1に示すように高温試験室2と、低温試験室3と、両試験室2,3の間を往復動可能なラック4(試料配置手段)とを備えている。   Hereinafter, a thermal shock test apparatus according to an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a thermal shock test apparatus of this embodiment. As shown in FIG. 1, the thermal shock test apparatus 1 includes a high temperature test chamber 2, a low temperature test chamber 3, and a rack 4 (sample placement means) capable of reciprocating between both test chambers 2 and 3. .

冷熱衝撃試験装置1は、ラック4を上下動させて試料Wを高温試験室2あるいは低温試験室3のいずれか一方に移動させることにより、試料Wがさらされる試験環境を切り替えることができる。すなわち、冷熱衝撃試験装置1は、異なる雰囲気温度に調整された温度環境間において試料Wを移動させる移動手段(図示せず)を備えている。冷熱衝撃試験装置1は、試料Wを高温の試験環境に所定時間にわたってさらす高温試験と、低温の試験環境に所定時間にわたってさらす低温試験を連続的に実施する冷熱サイクルを任意のサイクル数だけ繰り返す試験動作を行い、試料Wに熱ストレスを与えることができる。   The thermal shock test apparatus 1 can switch the test environment to which the sample W is exposed by moving the rack 4 up and down to move the sample W to either the high temperature test chamber 2 or the low temperature test chamber 3. That is, the thermal shock test apparatus 1 includes moving means (not shown) that moves the sample W between temperature environments adjusted to different atmospheric temperatures. The thermal shock test apparatus 1 is a test in which a high-temperature test in which a sample W is exposed to a high-temperature test environment for a predetermined time and a low-temperature test in which the sample W is exposed to a low-temperature test environment for a predetermined time are repeatedly performed for any number of cycles. The operation can be performed and a thermal stress can be applied to the sample W.

高温試験室2および低温試験室3は、それぞれ内部の雰囲気温度を所定の温度幅内の任意の温度に独立的に設定することができる構成とされている。高温試験室2は、内部の雰囲気温度を例えば60℃〜150℃のような高温の温度範囲内で任意の温度に調整することができる。また同様に、低温試験室3は、内部の雰囲気温度を例えば0℃〜−55℃のような低温の温度範囲内で任意の温度に調整することができる。   The high temperature test chamber 2 and the low temperature test chamber 3 are configured such that the internal atmosphere temperature can be independently set to an arbitrary temperature within a predetermined temperature range. The high temperature test chamber 2 can adjust the internal atmospheric temperature to an arbitrary temperature within a high temperature range such as 60 ° C. to 150 ° C., for example. Similarly, the low temperature test chamber 3 can adjust the internal atmospheric temperature to an arbitrary temperature within a low temperature range such as 0 ° C. to −55 ° C., for example.

高温試験室2および低温試験室3は、図1に示すように上下方向に積み重ねられたような状態とされている。さらに具体的には、高温試験室2は、低温試験室3に対して上方に積み重ねられた構成とされている。高温試験室2と低温試験室3との境界部分や、これらの試験室2,3の外周部分は、断熱性の高い断熱壁5と隔壁6で囲まれている。高温試験室2と低温試験室3の境界をなす隔壁6には連通孔7が設けられている。   The high temperature test chamber 2 and the low temperature test chamber 3 are in a state where they are stacked in the vertical direction as shown in FIG. More specifically, the high temperature test chamber 2 is configured to be stacked above the low temperature test chamber 3. A boundary portion between the high temperature test chamber 2 and the low temperature test chamber 3 and an outer peripheral portion of the test chambers 2 and 3 are surrounded by a heat insulating wall 5 and a partition wall 6 having high heat insulating properties. A communication hole 7 is provided in the partition wall 6 that forms the boundary between the high temperature test chamber 2 and the low temperature test chamber 3.

高温試験室2には、槽内の雰囲気温度を所定の設定温度となるように調整可能なヒータ等の高温側温調手段8が設けられている。また、高温試験室2には、モータ10によって駆動する送風機11と、送風ダクト12とが設けられている。高温試験室2の背面(図1において右側の壁面)には、外気導入口14aと、これを開閉するためのダンパ14bとが設けられている。また、高温試験室2の天面側には、排気口19が設けられている。   The high temperature test chamber 2 is provided with high temperature side temperature control means 8 such as a heater capable of adjusting the atmospheric temperature in the tank to a predetermined set temperature. The high temperature test chamber 2 is provided with a blower 11 driven by a motor 10 and a blower duct 12. On the back surface of the high-temperature test chamber 2 (the right wall surface in FIG. 1), an outside air introduction port 14a and a damper 14b for opening and closing the opening 14a are provided. An exhaust port 19 is provided on the top side of the high temperature test chamber 2.

低温試験室3には、低温側温調手段13と、モータ15によって駆動する送風機16と、送風ダクト17とが設けられている。低温側温調手段13は、雰囲気温度を低温に調整するための蓄冷器13aおよび蒸発器13bと、冷熱衝撃試験の進行に伴って低温試験室3の内壁面や低温側温調手段13等に付着する霜を融かす除霜動作を行うためのヒータ13cとを備えた構成とされている。   The low temperature test chamber 3 is provided with a low temperature side temperature adjusting means 13, a blower 16 driven by a motor 15, and a blower duct 17. The low temperature side temperature control means 13 includes a regenerator 13a and an evaporator 13b for adjusting the ambient temperature to a low temperature, an inner wall surface of the low temperature test chamber 3 and a low temperature side temperature control means 13 as the thermal shock test proceeds. It is set as the structure provided with the heater 13c for performing the defrosting operation | movement which melts the adhering frost.

高温試験室2および低温試験室3は、それぞれ各試験室2,3の背面側に設けられた送風部12a,17aから高温側温調手段8や低温側温調手段13において温度調整された空気を吹き出し、循環させる構成とされている。送風部12a,17aは、図1〜図3に示すように、風向きを調整するためのレジスタ部材26が配置された構成とされている。レジスタ部材26は、図4に示すように、複数の羽根板27を上下方向に並べ、羽根板27の側方から送風部12a,17aの幅方向に突出した軸28によって回動自在に軸支したものであり、いわゆるルーバーに相当するものである。送風部12a,17aは、図4に矢印で示すように、複数配された羽根板27の一部又は全部を回転させて向きを適宜調整することにより、空気の吹き出し方向を微調整できる構成とされている。   The high temperature test chamber 2 and the low temperature test chamber 3 are air whose temperature is adjusted in the high temperature side temperature adjusting means 8 and the low temperature side temperature adjusting means 13 from the air blowing portions 12a and 17a provided on the back side of the test chambers 2 and 3, respectively. Are configured to blow out and circulate. As shown in FIGS. 1 to 3, the air blowers 12 a and 17 a have a configuration in which a register member 26 for adjusting the wind direction is arranged. As shown in FIG. 4, the register member 26 has a plurality of blade plates 27 arranged in the vertical direction, and is pivotally supported by a shaft 28 protruding from the side of the blade plate 27 in the width direction of the air blowing portions 12a and 17a. It corresponds to a so-called louver. As shown by the arrows in FIG. 4, the air blowers 12 a and 17 a have a configuration in which the air blowing direction can be finely adjusted by rotating a part or all of the plurality of blade plates 27 and appropriately adjusting the direction. Has been.

高温試験室2および低温試験室3の内部には、各試験室2,3内の雰囲気温度を検知可能なように雰囲気温度センサ18,20が設けられている。冷熱衝撃試験装置1の制御装置(図示せず)は、雰囲気温度センサ18,20の検知温度に基づいて、高温試験室2や低温試験室3内の雰囲気温度を調整する。   Atmospheric temperature sensors 18 and 20 are provided inside the high temperature test chamber 2 and the low temperature test chamber 3 so that the atmospheric temperature in each of the test chambers 2 and 3 can be detected. A control device (not shown) of the thermal shock test apparatus 1 adjusts the ambient temperature in the high temperature test chamber 2 and the low temperature test chamber 3 based on the detected temperature of the ambient temperature sensors 18 and 20.

ラック4は、図示しない昇降機構により、連通孔7を介して高温試験室2と低温試験室3との間を上下方向に往復動可能な構成とされている。ラック4は、試料Wの形状や大きさ、伝熱効率等を勘案し、試料Wを載置するための本体部4aをかご状や棚状等の適宜の形状としたり、適宜の大きさとすることができる。ラック4の本体部4aは、高温試験室2と低温試験室3とを隔てる隔壁6に設けられた連通孔7を通過可能な大きさとされている。連通孔7のうち、高温試験室2側の開口部分および低温試験室3側の開口部分の外周には、断熱パッキン21,22が取り付けられている。   The rack 4 is configured to reciprocate in the vertical direction between the high temperature test chamber 2 and the low temperature test chamber 3 through the communication hole 7 by an elevating mechanism (not shown). In consideration of the shape and size of the sample W, the heat transfer efficiency, etc., the rack 4 has an appropriate shape such as a basket shape or a shelf shape for the body portion 4a on which the sample W is placed, or an appropriate size. Can do. The main body 4 a of the rack 4 has a size that can pass through a communication hole 7 provided in the partition wall 6 that separates the high temperature test chamber 2 and the low temperature test chamber 3. Heat insulation packings 21 and 22 are attached to the outer periphery of the opening portion on the high temperature test chamber 2 side and the opening portion on the low temperature test chamber 3 side in the communication hole 7.

本体部4aには、環境温度検知センサ9が取り付けられている。環境温度検知センサ9は、ラック4に載置されている試料Wがさらされる試験環境の温度を検知するためのものである。   An environmental temperature detection sensor 9 is attached to the main body 4a. The environmental temperature detection sensor 9 is for detecting the temperature of the test environment to which the sample W placed on the rack 4 is exposed.

ラック4の本体部4aの天面側および底面側には、遮熱部4b,4cが設けられている。遮熱部4b,4cは、隔壁6とほぼ同一の高さを有し、断熱壁5や隔壁6と同様に断熱特性が優れている。遮熱部4bの上方には、天板部4dが設けられている。また遮熱部4cの下方には底板部4eが設けられている。天板部4dや底板部4eは、それぞれ図1に示すようにそれぞれ本体部4aや遮熱部4b,4cよりも外側に張り出しており、ラック4を昇降させる際に連通孔7を通過できない大きさとされている。そのため、ラック4を天板部4dや底板部4eが隔壁6に突き当たるまで昇降させることにより、連通孔7を天板部4dや底板部4eによって塞ぎ、高温試験室2と低温試験室3とを熱的に遮断することができる。   On the top surface side and the bottom surface side of the main body portion 4a of the rack 4, heat shield portions 4b and 4c are provided. The heat shield portions 4 b and 4 c have almost the same height as the partition wall 6 and have excellent heat insulating properties like the heat insulating wall 5 and the partition wall 6. A top plate portion 4d is provided above the heat shield portion 4b. A bottom plate portion 4e is provided below the heat shield portion 4c. As shown in FIG. 1, the top plate portion 4 d and the bottom plate portion 4 e protrude outward from the main body portion 4 a and the heat shield portions 4 b and 4 c, respectively, so that they cannot pass through the communication holes 7 when the rack 4 is raised and lowered. It is said. Therefore, by raising and lowering the rack 4 until the top plate portion 4d and the bottom plate portion 4e hit the partition wall 6, the communication hole 7 is closed by the top plate portion 4d and the bottom plate portion 4e, and the high temperature test chamber 2 and the low temperature test chamber 3 are closed. It can be thermally shut off.

冷熱衝撃試験装置1には、試料Wに取り付け可能であり、試料W自体の温度を検知するための試料温度センサ25(試料温度検知手段)が設けられている。冷熱衝撃試験装置1は、試料温度センサ25によって検知される試料Wの温度に基づいて冷熱衝撃試験を実施する試料温度制御モードと、環境温度検知センサ9によって検知される試験環境の雰囲気温度に基づいて冷熱衝撃試験を実施する雰囲気温度制御モードとから任意の試験モードを選択して冷熱衝撃試験を実施可能な構成とされている。   The thermal shock test apparatus 1 is provided with a sample temperature sensor 25 (sample temperature detection means) that can be attached to the sample W and detects the temperature of the sample W itself. The thermal shock test apparatus 1 is based on the sample temperature control mode in which the thermal shock test is performed based on the temperature of the sample W detected by the sample temperature sensor 25 and the ambient temperature of the test environment detected by the environmental temperature detection sensor 9. Thus, an arbitrary test mode is selected from the ambient temperature control mode in which the thermal shock test is performed, and the thermal shock test can be performed.

続いて、本実施形態の冷熱衝撃試験装置1の動作について説明する。冷熱衝撃試験装置1は、上記したようにラック4を上下動させて、試料Wがさらされる試験環境を所定の時間毎に順次切り替える冷熱サイクルを、操作者によって設定された任意のサイクル数だけ繰り返すことができる。   Then, operation | movement of the thermal shock test apparatus 1 of this embodiment is demonstrated. The thermal shock test apparatus 1 repeats the thermal cycle in which the rack 4 is moved up and down as described above and the test environment to which the sample W is exposed is sequentially switched every predetermined time by an arbitrary number of cycles set by the operator. be able to.

さらに具体的に説明すると、冷熱衝撃試験装置1は、冷熱衝撃試験が開始されると、送風機11,16を作動させ、図1や図2に矢印で示すように高温試験室2や低温試験室3内に空気の循環流を発生させると共に、高温試験室2や低温試験室3内の雰囲気温度が操作者によって設定された設定温度に対して所定の誤差範囲(以下、必要に応じて高温設定温度範囲、低温設定温度範囲と称す)の温度となるように高温側温調手段8や低温側温調手段13を作動させる。ラック4に配された試料Wは、図1や図2に示すように高温試験室2あるいは低温試験室3内を流れる所定温度に調整された空気の循環流にさらされる。   More specifically, when the thermal shock test is started, the thermal shock test apparatus 1 operates the blowers 11 and 16, and as shown by arrows in FIGS. 1 and 2, the high temperature test chamber 2 and the low temperature test chamber. 3 generates a circulating air flow, and the ambient temperature in the high temperature test chamber 2 and the low temperature test chamber 3 is within a predetermined error range (hereinafter referred to as “high temperature setting” if necessary) with respect to the set temperature set by the operator. The high temperature side temperature adjusting means 8 and the low temperature side temperature adjusting means 13 are operated so that the temperature is within a temperature range and a low temperature setting temperature range. The sample W arranged in the rack 4 is exposed to a circulating air flow adjusted to a predetermined temperature flowing in the high temperature test chamber 2 or the low temperature test chamber 3 as shown in FIGS.

試料Wは、ラック4が高温試験室2あるいは低温試験室3に収容された後、各試験室2,3内の雰囲気温度、あるいは、試料W自身の温度が所定の設定温度に対して高温設定温度範囲内あるいは低温設定温度範囲内の温度に到達した時点を基準として、操作者によって設定された所定のさらし時間が経過するまで試料Wが各試験室2,3内を循環する循環流にさらされる。   After the rack 4 is accommodated in the high-temperature test chamber 2 or the low-temperature test chamber 3, the sample W is set to a high temperature with respect to a predetermined set temperature in the atmosphere temperature in each of the test chambers 2 and 3 or the temperature of the sample W itself. The sample W is exposed to a circulating flow that circulates in the test chambers 2 and 3 until a predetermined exposure time set by the operator elapses with reference to a point in time within a temperature range or a low temperature set temperature range. It is.

さらに具体的には、上記したように、本実施形態の冷熱衝撃試験装置1は、試験モードとして試料温度制御モードと、雰囲気温度制御モードとを含む試験モード群から任意の試験モードを選択して動作させることができるものである。そのため、操作者により設定された試験モードが試料温度制御モードである場合は、試料温度センサ25によって検知される試料W自身の温度が高温設定温度範囲内あるいは低温設定温度範囲内の温度に到達した時点を基準として、予め設定された所定のさらし時間が経過するまで試料Wが所定温度に調整された空気の循環流にさらされる。   More specifically, as described above, the thermal shock test apparatus 1 of the present embodiment selects an arbitrary test mode from the test mode group including the sample temperature control mode and the ambient temperature control mode as the test mode. It can be operated. Therefore, when the test mode set by the operator is the sample temperature control mode, the temperature of the sample W itself detected by the sample temperature sensor 25 has reached a temperature within the high temperature set temperature range or the low temperature set temperature range. Using the time point as a reference, the sample W is exposed to a circulating flow of air adjusted to a predetermined temperature until a predetermined exposure time set in advance elapses.

一方、操作者により設定された試験モードが雰囲気温度制御モードである場合は、環境温度検知センサ9によって検知される温度が高温設定温度範囲内あるいは低温設定温度範囲内の温度に到達した時点を基準として、予め設定された所定のさらし時間が経過するまで試料Wが所定温度に調整された空気の循環流にさらされる。   On the other hand, when the test mode set by the operator is the ambient temperature control mode, the time point when the temperature detected by the environmental temperature detection sensor 9 reaches the temperature within the high temperature setting temperature range or the low temperature setting temperature range is used as a reference. As described above, the sample W is exposed to a circulating air flow adjusted to a predetermined temperature until a predetermined exposure time set in advance elapses.

冷熱衝撃試験装置1は、上記したようにして所定のさらし時間が経過するまで試料Wを循環流にさらした後、図3に矢印で示すようにラック4を下方あるいは上方に移動させ、試料Wがさらされる試験環境の切り替えを行う。この際、高温試験室2および低温試験室3に設けられた送風機11,16は動作を実質的に停止した状態とされる。すなわち、試験環境の切り替え時は、モータ10,15が作動停止状態とされたり、空気の循環流が起こらない程度までモータ10,15の回転量が低減される。そのため、冷熱衝撃試験装置1は、試験環境の切り替え時に空気の循環流が停止し、高温試験室2および低温試験室3内がほぼ無風状態となる。従って、試験環境の切り替えのためにラック4を移動させても、ラック4に配されている試料Wは、空気の循環流にさらされない。   The thermal shock test apparatus 1 exposes the sample W to the circulating flow until a predetermined exposure time elapses as described above, and then moves the rack 4 downward or upward as indicated by an arrow in FIG. Change the test environment to which At this time, the fans 11 and 16 provided in the high temperature test chamber 2 and the low temperature test chamber 3 are substantially stopped in operation. That is, when the test environment is switched, the rotation amounts of the motors 10 and 15 are reduced to such an extent that the motors 10 and 15 are not in operation and no air circulation occurs. Therefore, in the thermal shock test apparatus 1, the circulation of air is stopped when the test environment is switched, and the inside of the high temperature test chamber 2 and the low temperature test chamber 3 is almost free of wind. Therefore, even if the rack 4 is moved to switch the test environment, the sample W arranged in the rack 4 is not exposed to the circulating air flow.

上記したようにして高温試験室2および低温試験室3内を無風状態にした状態でラック4を移動させ、図1や図2に示すようにラック4が低温試験室3側あるいは高温試験室2側に移動した状態になると、送風機11,16のモータ10,15が再度所定の回転数で回転するように調整され、高温試験室2内および低温試験室3内に空気の循環流が発生する。このようにして、試料Wがさらされる試験環境の切り替えが完了すると、上記したのと同様に、冷熱衝撃試験の試験モードにあわせて環境温度検知センサ9あるいは試料温度センサ25の検知温度が監視され、この検知温度が所定の温度範囲内に到達するように試験環境が調整される。そして、環境温度検知センサ9あるいは試料温度センサ25の検知温度が所定の温度範囲内に到達すると、その時点を基準として所定のさらし時間が経過するまで試料Wが空気の循環流にさらされる。試験環境の切り替え後、所定のさらし時間が経過すると、1サイクル分の冷熱サイクルが完了する。   As described above, the rack 4 is moved in a state where the high-temperature test chamber 2 and the low-temperature test chamber 3 are not in a windless state, and the rack 4 is moved to the low-temperature test chamber 3 side or the high-temperature test chamber 2 as shown in FIGS. When moved to the side, the motors 10 and 15 of the blowers 11 and 16 are adjusted so as to rotate again at a predetermined rotational speed, and a circulating air flow is generated in the high temperature test chamber 2 and the low temperature test chamber 3. . In this way, when the switching of the test environment to which the sample W is exposed is completed, the detected temperature of the environmental temperature detection sensor 9 or the sample temperature sensor 25 is monitored in accordance with the test mode of the thermal shock test, as described above. The test environment is adjusted so that the detected temperature reaches a predetermined temperature range. When the temperature detected by the environmental temperature detection sensor 9 or the sample temperature sensor 25 reaches a predetermined temperature range, the sample W is exposed to the circulating air until a predetermined exposure time elapses with reference to that point. When the predetermined exposure time has elapsed after switching the test environment, one cycle of the cooling / heating cycle is completed.

1サイクル分の冷熱サイクルが完了すると、送風機11,16が実質的に送風を停止した状態とされ、高温試験室2および低温試験室3内がほぼ無風状態にされた状態でラック4が移動し、次の冷熱サイクルが開始される。冷熱衝撃試験装置1は、このようにして操作者によって設定されたサイクル数にわたって冷熱サイクルを繰り返す。   When the cooling cycle for one cycle is completed, the blowers 11 and 16 are substantially stopped from blowing, and the rack 4 moves while the high temperature test chamber 2 and the low temperature test chamber 3 are in a substantially no-air state. The next cooling cycle is started. The thermal shock test apparatus 1 repeats the thermal cycle over the number of cycles set by the operator in this way.

上記したように、本実施形態の冷熱衝撃試験装置1は、試料Wを高温試験室2と低温試験室3との間で移動させる際の移動方向(高さ方向)に対して交差する方向(水平方向)に空気を吹き出して発生する循環流に試料Wをさらす構成とされている。そのため、冷熱衝撃試験装置1は、仮に試験環境の切り替え中も高温試験室2および低温試験室3において循環流を停止させない構成とした場合に、試料Wの移動に伴って試料Wの一部が高温試験室2あるいは低温試験室3のうち一方を流れる循環流にさらされ、試料Wの残部が他方を流れる循環流にさらされた状態になる。そのため、冷熱衝撃試験装置1のように、ラック4の移動方向と、空気の吹き出し方向とが交差する場合は、試験環境の切り替え時に試料Wに温度分布が発生する可能性が高いと想定される。   As described above, the thermal shock test apparatus 1 of the present embodiment intersects the moving direction (height direction) when moving the sample W between the high temperature test chamber 2 and the low temperature test chamber 3 (the height direction) ( The sample W is exposed to a circulating flow generated by blowing air in the horizontal direction. Therefore, if the thermal shock test apparatus 1 is configured so that the circulating flow is not stopped in the high temperature test chamber 2 and the low temperature test chamber 3 even during switching of the test environment, a part of the sample W is moved along with the movement of the sample W. One of the high-temperature test chamber 2 and the low-temperature test chamber 3 is exposed to the circulating flow, and the remaining portion of the sample W is exposed to the circulating flow flowing through the other. Therefore, when the moving direction of the rack 4 and the air blowing direction intersect as in the thermal shock test apparatus 1, it is assumed that there is a high possibility that a temperature distribution is generated in the sample W when the test environment is switched. .

しかし、上記したように、本実施形態の冷熱衝撃試験装置1は、試験環境の切り替え中に送風機11,16を実質的に停止状態にして高温試験室2および低温試験室3の内部をほぼ無風状態とし、試料Wが空気の循環流にさらされるのを防止する構成とされている。そのため、冷熱衝撃試験装置1は、高温試験室2あるいは低温試験室3のいずれか一方から他方に試料Wを移動させても、試料Wの一部が高温の空気にさらされ、残りが低温の空気にさらされるといったような現象が起こらない。従って、冷熱衝撃試験装置1は、試験環境の切り替えを行っても、試料Wの配置や、試料Wの部位、試料Wの数量等によらず温度分布が発生したり、付与される熱ストレスの分布が発生するといったような不具合が発生しない。   However, as described above, the thermal shock test apparatus 1 according to the present embodiment is configured so that the fans 11 and 16 are substantially stopped during the switching of the test environment, and the inside of the high-temperature test chamber 2 and the low-temperature test chamber 3 is substantially free of wind. The sample W is configured to prevent the sample W from being exposed to the circulating air flow. Therefore, even if the thermal shock test apparatus 1 moves the sample W from one of the high temperature test chamber 2 and the low temperature test chamber 3 to the other, a part of the sample W is exposed to high temperature air and the rest is a low temperature. There is no such phenomenon as exposure to air. Therefore, the thermal shock test apparatus 1 generates a temperature distribution regardless of the arrangement of the sample W, the portion of the sample W, the number of the sample W, and the like, even if the test environment is switched. Problems such as distribution will not occur.

本実施形態の冷熱衝撃試験装置1は、試験環境の切り替えを行っても、これに伴う温度分布が発生しないため、多数回にわたって冷熱サイクルを繰り返しても試料Wの配置や、試料Wの部位等による冷熱衝撃試験の試験誤差が発生しにくい。   Since the thermal shock test apparatus 1 of the present embodiment does not generate a temperature distribution associated with the switching of the test environment, the arrangement of the sample W, the site of the sample W, etc. even if the thermal cycle is repeated many times. Test error in the thermal shock test due to is less likely to occur.

また、本実施形態の冷熱衝撃試験装置1は、試験環境の切り替え時に試料Wに温度分布が発生しないため、試料温度センサ25の検知温度に試料W全体の温度が到達しているものと想定される。そのため、冷熱衝撃試験装置1は、冷熱衝撃試験の試験モードとして試料温度制御モードを選択することにより、試料W全体の温度が所定の設定温度に達してから所定のさらし時間にわたって試料Wを空気の循環流にさらすことができる。従って、冷熱衝撃試験装置1によれば、試験モードとして試料温度制御モードを選択することにより、試料温度検知手段の設置位置等によらず試料W全体をほぼ同一の試験条件下で冷熱衝撃試験を実施でき、正確な試験データを得ることができる。   Further, in the thermal shock test apparatus 1 of the present embodiment, since the temperature distribution does not occur in the sample W when the test environment is switched, it is assumed that the temperature of the entire sample W has reached the detected temperature of the sample temperature sensor 25. The Therefore, the thermal shock test apparatus 1 selects the sample temperature control mode as the test mode of the thermal shock test, so that the temperature of the entire sample W reaches the predetermined set temperature and the sample W is removed from the air for a predetermined exposure time. Can be exposed to circulating flow. Therefore, according to the thermal shock test apparatus 1, by selecting the sample temperature control mode as the test mode, the entire sample W can be subjected to the thermal shock test under substantially the same test conditions regardless of the installation position of the sample temperature detection means. It can be performed and accurate test data can be obtained.

また、冷熱衝撃試験装置1は、試験環境の切り替え時に送風機11,16は動作を停止した状態にするため、連通孔7を介して高温試験槽2と低温試験槽3とが連通しても、各試験槽2,3における空気の出入りが起こりにくい。そのため、冷熱衝撃試験装置1は、試験環境の切り替え後、各試験槽2,3内の雰囲気温度が安定するまでに要する期間が短い。   The thermal shock test apparatus 1 is in a state in which the blowers 11 and 16 stop operating when the test environment is switched. Therefore, even if the high temperature test tank 2 and the low temperature test tank 3 communicate with each other through the communication hole 7, Air in and out of the test tanks 2 and 3 hardly occurs. For this reason, the thermal shock test apparatus 1 has a short period of time until the ambient temperature in each of the test tanks 2 and 3 is stabilized after the test environment is switched.

上記実施形態では、送風部12a,17aにレジスタ部材26を配した構成を例示したが、この構成は本発明の一例を示したものに過ぎず、例えばレジスタ部材26に加えて、これよりも空気の流れ方向上流側あるいは下流側に、図5に示すような空気の吹き出し用の開口23を多数有する板体24を配した構成とすることができる。また、冷熱衝撃試験装置1は、レジスタ部材26に代わって板体24を配した構成としたり、送風部12a,17aにレジスタ部材26や板体24を配さない構成としてもよい。すなわち、冷熱衝撃試験装置1は、送風部12a,17aにレジスタ部材26や板体24のいずれか一方又は双方を設けた構成としても、レジスタ部材26や板体24を設けない構成としてもよい。   In the above-described embodiment, the configuration in which the register member 26 is disposed in the air blowing portions 12a and 17a is illustrated. However, this configuration is merely an example of the present invention. A plate body 24 having a large number of air blowing openings 23 as shown in FIG. 5 may be arranged on the upstream side or the downstream side in the flow direction. Further, the thermal shock test apparatus 1 may have a configuration in which the plate body 24 is arranged instead of the register member 26, or may have a configuration in which the register member 26 and the plate body 24 are not arranged in the blower portions 12a and 17a. That is, the thermal shock test apparatus 1 may have a configuration in which either or both of the register member 26 and the plate body 24 are provided in the air blowing portions 12a and 17a, or a configuration in which the register member 26 and the plate body 24 are not provided.

送風部12a,17aに板体24を配する場合、開口23の大きさや位置は、高温試験室2や低温試験室3内の温度分布を考慮して調整されることが望ましい。さらに具体的には、開口23は、ラック4の本体部4aに配された試料Wが送風部12a,17aから吹き出される空気に直接的にさらされる位置に形成されていることが望ましい。換言すれば、開口23は、ラック4の移動方向に対して交差(本実施形態では略直交)する方向に所定温度に温度調整された空気を吹き出すことが可能なように形成されることが望ましい。   In the case where the plate body 24 is disposed in the blower units 12a and 17a, it is desirable that the size and position of the opening 23 be adjusted in consideration of the temperature distribution in the high temperature test chamber 2 and the low temperature test chamber 3. More specifically, it is desirable that the opening 23 be formed at a position where the sample W disposed in the main body 4a of the rack 4 is directly exposed to the air blown out from the air blowing units 12a and 17a. In other words, it is desirable that the opening 23 be formed so as to be able to blow out air whose temperature has been adjusted to a predetermined temperature in a direction intersecting (substantially orthogonal in the present embodiment) with the moving direction of the rack 4. .

また、板体24に形成される開口23の形状は適宜のものとすることが可能であるが、例えば図5に示すようにラック4の移動方向、すなわち上下方向に長い縦長でスリット状の形状とすることができる。このような構成とした場合、送風部12a,17aは、正面視した際に前記した縦長の開口23が上下左右に多数並ぶように形成され、格子状となる。そのため、送風部12a,17aに板体24を配した構成とした場合、空気はラック4の幅方向(図5において左右方向)全域において高温試験室2や低温試験室3の背面側(図1,図2において右側)から正面側(図1,2において左側)に向かって勢いよく噴出することとなる。従って、送風部12a,17aに板体24を配することにより、試料Wが晒される高温試験室2や低温試験室3内を、背面側と正面側とでムラ無く略均一な温度雰囲気に調整することができる。   Further, the shape of the opening 23 formed in the plate body 24 can be set as appropriate. For example, as shown in FIG. 5, the vertically long and slit-like shape in the moving direction of the rack 4, that is, the vertical direction It can be. In the case of such a configuration, the air blowing portions 12a and 17a are formed so that a large number of the above-described vertically long openings 23 are arranged in the vertical and horizontal directions when viewed from the front, and have a lattice shape. Therefore, when it is set as the structure which has arrange | positioned the plate 24 to the ventilation parts 12a and 17a, air is the back side (FIG. 1) of the high temperature test chamber 2 and the low temperature test chamber 3 in the width direction (left-right direction in FIG. 5) of the rack 4. , From the right side in FIG. 2 to the front side (left side in FIGS. 1 and 2). Therefore, by arranging the plate body 24 in the air blowing parts 12a and 17a, the inside of the high-temperature test chamber 2 and the low-temperature test chamber 3 to which the sample W is exposed is adjusted to a substantially uniform temperature atmosphere between the back side and the front side. can do.

本実施形態の冷熱衝撃試験装置1は、試験環境の切り替え中に送風機11,16の動力源であるモータ10,15の回転を停止させたり、回転数を低下させることにより、空気の循環流を実質的に停止させ、ほぼ無風状態にするものであったが、本発明はこれに限定されない。さらに具体的には、冷熱衝撃試験装置1は、モーターやシリンダー等のアクチュエータの動力を利用してレジスタ部材26の羽根板27の向きを調整可能な構成としておき、試験環境の切り替え時に前記したアクチュエータを作動させ、空気の循環流が高温試験槽2や低温試験槽3内に発生しないように羽根板27の向きを調整したり、ラック4やこれに配されている試料Wに循環流が直接的に吹き付けられないように羽根板27の向きを調整する構成としてもよい。かかる構成とした場合についても、送風機11,16による送風を停止する場合と同様に、試験環境の切り替え時に試料Wが空気の循環流にさらされるのを防止でき、試料Wの温度のバラツキ等を最小限に抑制することができる。   The thermal shock test apparatus 1 of the present embodiment stops the rotation of the motors 10 and 15 that are the power sources of the blowers 11 and 16 during the switching of the test environment, or reduces the number of rotations to thereby circulate the air flow. Although it was made to stop substantially and to be almost a windless state, this invention is not limited to this. More specifically, the thermal shock test apparatus 1 has a configuration in which the direction of the blade plate 27 of the register member 26 can be adjusted using the power of an actuator such as a motor or a cylinder, and the actuator described above is switched when the test environment is switched. And the direction of the blade plate 27 is adjusted so that no circulating air flow is generated in the high-temperature test tank 2 or the low-temperature test tank 3, or the circulating flow is directly applied to the rack 4 or the sample W arranged on the rack 4. It is good also as a structure which adjusts the direction of the blade board 27 so that it may not spray. Even in the case of such a configuration, similarly to the case of stopping the blowing by the blowers 11 and 16, the sample W can be prevented from being exposed to the circulating air flow when the test environment is switched, and the temperature variation of the sample W can be prevented. It can be minimized.

また、上記したようにレジスタ部材26を設けず、板体24を設けた構成とする場合についても、図6に示すように、高温試験室2および低温試験室3の背面側に設けられた開口23を開閉可能なシャッターやダンパ等の開閉機構30のような気流遮断手段を設けた構成とし、試験環境の切り替え時に図6(b)のように開閉機構30を閉じる構成としてもよい。かかる構成とした場合についても、送風機11,16による送風を停止する場合と同様に、試験環境の切り替え時に試料Wが空気の循環流にさらされるのを防止することができ試料Wの温度のバラツキ等を最小限に抑制することができる。   In addition, as described above, when the plate member 24 is provided without providing the register member 26, the openings provided on the back side of the high temperature test chamber 2 and the low temperature test chamber 3, as shown in FIG. 23 may be configured to be provided with an air flow blocking means such as an open / close mechanism 30 such as a shutter or a damper that can be opened / closed, and the open / close mechanism 30 may be closed as shown in FIG. 6B when the test environment is switched. Also in the case of such a configuration, as in the case of stopping the blowing by the blowers 11 and 16, the sample W can be prevented from being exposed to the circulating air flow when the test environment is switched, and the temperature variation of the sample W can be prevented. Etc. can be minimized.

上記した冷熱衝撃試験装置1において、レジスタ部材26は、羽根板27の向きを手動で調整可能なものであっても、上記したように何らかのアクチュエータの動力を利用して向きを調整可能なものであってもよい。さらに、レジスタ部材26は、羽根板27を送風部12a,17aに対して上下方向(高さ方向)に傾斜させることができるものであったが、本発明はこれに限定されず、例えば左右方向(幅方向)に調整可能なものであってもよい。   In the thermal shock test apparatus 1 described above, the register member 26 can adjust the direction using the power of some actuator as described above, even if the direction of the blade plate 27 can be adjusted manually. There may be. Furthermore, the register member 26 can incline the slats 27 in the vertical direction (height direction) with respect to the air blowing parts 12a and 17a. However, the present invention is not limited to this, for example, the horizontal direction. It may be adjustable in the (width direction).

なお、本発明は上記実施形態に限定されるものではなく、高温試験室2と低温試験室3との上下関係が入れ替わったものや、これらがほぼ同一平面上に並んだ構成であってもよい。   In addition, this invention is not limited to the said embodiment, The structure in which the up-and-down relationship of the high temperature test chamber 2 and the low temperature test chamber 3 was replaced, and these were arranged in the substantially same plane may be sufficient. .

また、上記した冷熱衝撃試験装置1は、雰囲気温度や空気の循環流の温度を高温に調整可能な高温試験室と、これよりも雰囲気温度や空気の循環流の温度を低温に調整可能な低温試験室とを備え、1サイクルの冷熱サイクルにおいて試験環境を2段階に切り替え可能なものであったが、本発明はこれに限定されるものではなく、さらに多数の試験室を設けるなどして試験環境を多段階に切り替え可能な構成としてもよい。   The above-described thermal shock test apparatus 1 includes a high temperature test chamber capable of adjusting the ambient temperature and the temperature of the circulating air flow to a high temperature, and a low temperature capable of adjusting the ambient temperature and the temperature of the circulating air flow to a lower temperature. The test environment can be switched to two stages in one cycle of the thermal cycle, but the present invention is not limited to this, and a test can be performed by providing more test rooms. It is good also as a structure which can switch an environment in multistep.

本発明の一実施形態である冷熱衝撃試験装置の第一の動作状態を概念的に示す断面図である。It is sectional drawing which shows notionally the 1st operation state of the thermal shock test apparatus which is one Embodiment of this invention. 本発明の一実施形態である冷熱衝撃試験装置の第二の動作状態を概念的に示す断面図である。It is sectional drawing which shows notionally the 2nd operation state of the thermal shock test apparatus which is one Embodiment of this invention. 本発明の一実施形態である冷熱衝撃試験装置の第三の動作状態を概念的に示す断面図である。It is sectional drawing which shows notionally the 3rd operation state of the thermal shock test apparatus which is one Embodiment of this invention. 本発明の一実施形態である冷熱衝撃試験装置において採用されているレジスタ部材の構成を示す斜視図である。It is a perspective view which shows the structure of the register member employ | adopted in the thermal shock test apparatus which is one Embodiment of this invention. 送風部の変形例を示す断面図である。It is sectional drawing which shows the modification of a ventilation part. (a),(b)は、それぞれ本発明の別の実施形態である冷熱衝撃試験装置の第一および第二の動作状態を概念的に示す断面図である。(A), (b) is sectional drawing which shows notionally the 1st and 2nd operation state of the thermal shock test apparatus which is another embodiment of this invention, respectively.

符号の説明Explanation of symbols

1 冷熱衝撃試験装置
2 高温試験室
3 低温試験室
4 ラック(試料配置手段)
10,15 モータ
11,16 送風機
23 開口
25 試料温度センサ(試料温度検知手段)
30 開閉機構(気流遮断手段)
DESCRIPTION OF SYMBOLS 1 Thermal shock test apparatus 2 High temperature test room 3 Low temperature test room 4 Rack (sample arrangement means)
10, 15 Motor 11, 16 Blower 23 Opening 25 Sample temperature sensor (sample temperature detection means)
30 Opening and closing mechanism (air flow blocking means)

Claims (2)

雰囲気温度を調整可能な複数の試験室を有し、試験室内に存在する気体を循環させることにより、当該気体の循環流に試料をさらすことが可能であり、複数の試験室間において試料を移動させることにより試料がさらされる試験環境を切り替え可能であり、
試験環境の切り替え中は、試料配置手段に配された試料が気体の循環流にさらされるのを防止可能であることを特徴とする冷熱衝撃試験装置。
It has multiple test chambers that can adjust the ambient temperature, and by circulating the gas existing in the test chamber, the sample can be exposed to the circulating flow of the gas, and the sample can be moved between multiple test chambers. By switching the test environment to which the sample is exposed,
A thermal shock test apparatus characterized in that it is possible to prevent the sample placed in the sample placement means from being exposed to a circulating gas flow during switching of the test environment.
試験環境の切り替え中は、試験室内における気体の循環が実質的に停止されることを特徴とする請求項1に記載の冷熱衝撃試験装置。   2. The thermal shock test apparatus according to claim 1, wherein the circulation of the gas in the test chamber is substantially stopped during the switching of the test environment.
JP2005157740A 2005-05-30 2005-05-30 Thermal shock test equipment Active JP4673669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157740A JP4673669B2 (en) 2005-05-30 2005-05-30 Thermal shock test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157740A JP4673669B2 (en) 2005-05-30 2005-05-30 Thermal shock test equipment

Publications (2)

Publication Number Publication Date
JP2006329949A true JP2006329949A (en) 2006-12-07
JP4673669B2 JP4673669B2 (en) 2011-04-20

Family

ID=37551767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157740A Active JP4673669B2 (en) 2005-05-30 2005-05-30 Thermal shock test equipment

Country Status (1)

Country Link
JP (1) JP4673669B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042169A (en) * 2007-08-10 2009-02-26 Shindengen Electric Mfg Co Ltd Thermal shock test device
JP2011243739A (en) * 2010-05-18 2011-12-01 Tazmo Co Ltd Stress application device and manufacturing method for mounted substrate using the same
CN102288507A (en) * 2011-05-16 2011-12-21 武汉科技大学 Device for testing high-temperature thermal shock resistance of refractory material and use method thereof
CN110530741A (en) * 2019-09-25 2019-12-03 辽宁工业大学 It is a kind of can mass simultaneous test full-automatic drop hammer impact testing machine
CN111337374A (en) * 2020-03-30 2020-06-26 深圳市德洋实验设备有限公司 Energy-saving cold and hot impact test box
CN113176136A (en) * 2021-04-25 2021-07-27 宁波市信测检测技术有限公司 Test device for simulating temperature shock environment
CN113376048A (en) * 2020-02-25 2021-09-10 芯恩(青岛)集成电路有限公司 Cold and hot impact testing device and testing method
CN117388615A (en) * 2023-10-20 2024-01-12 无锡冠亚智能装备有限公司 Cold and hot impact testing device for automobile electronic component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249541A (en) * 1990-02-28 1991-11-07 Mitsubishi Electric Corp Thermal shock testing device
JPH05157676A (en) * 1991-12-10 1993-06-25 Thermo Electron Kk Cold and hot humidity shock testing machine
JPH0628710U (en) * 1992-09-07 1994-04-15 タバイエスペック株式会社 Device for obtaining the desired temperature and / or humidity environment
JPH06229897A (en) * 1993-01-29 1994-08-19 Daikin Ind Ltd Air tank type thermal shock testing device
JP2001305033A (en) * 2000-04-21 2001-10-31 Tabai Espec Corp Liquid tank type thermal shock device
JP2002318184A (en) * 2001-04-23 2002-10-31 Espec Corp Elevation device of test subject of thermal impact test device
JP2002323423A (en) * 2001-04-25 2002-11-08 Espec Corp Sample container for thermal shock testing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249541A (en) * 1990-02-28 1991-11-07 Mitsubishi Electric Corp Thermal shock testing device
JPH05157676A (en) * 1991-12-10 1993-06-25 Thermo Electron Kk Cold and hot humidity shock testing machine
JPH0628710U (en) * 1992-09-07 1994-04-15 タバイエスペック株式会社 Device for obtaining the desired temperature and / or humidity environment
JPH06229897A (en) * 1993-01-29 1994-08-19 Daikin Ind Ltd Air tank type thermal shock testing device
JP2001305033A (en) * 2000-04-21 2001-10-31 Tabai Espec Corp Liquid tank type thermal shock device
JP2002318184A (en) * 2001-04-23 2002-10-31 Espec Corp Elevation device of test subject of thermal impact test device
JP2002323423A (en) * 2001-04-25 2002-11-08 Espec Corp Sample container for thermal shock testing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042169A (en) * 2007-08-10 2009-02-26 Shindengen Electric Mfg Co Ltd Thermal shock test device
JP2011243739A (en) * 2010-05-18 2011-12-01 Tazmo Co Ltd Stress application device and manufacturing method for mounted substrate using the same
CN102288507A (en) * 2011-05-16 2011-12-21 武汉科技大学 Device for testing high-temperature thermal shock resistance of refractory material and use method thereof
CN110530741A (en) * 2019-09-25 2019-12-03 辽宁工业大学 It is a kind of can mass simultaneous test full-automatic drop hammer impact testing machine
CN113376048A (en) * 2020-02-25 2021-09-10 芯恩(青岛)集成电路有限公司 Cold and hot impact testing device and testing method
CN111337374A (en) * 2020-03-30 2020-06-26 深圳市德洋实验设备有限公司 Energy-saving cold and hot impact test box
CN113176136A (en) * 2021-04-25 2021-07-27 宁波市信测检测技术有限公司 Test device for simulating temperature shock environment
CN117388615A (en) * 2023-10-20 2024-01-12 无锡冠亚智能装备有限公司 Cold and hot impact testing device for automobile electronic component
CN117388615B (en) * 2023-10-20 2024-05-07 无锡冠亚智能装备有限公司 Cold and hot impact testing device for automobile electronic component

Also Published As

Publication number Publication date
JP4673669B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4673669B2 (en) Thermal shock test equipment
JP6173792B2 (en) Thermostatic bath, linear expansion coefficient measuring device, and thermostatic bath control method
FI108962B (en) Cabinet cooling system
JP5279763B2 (en) ENVIRONMENTAL TEST DEVICE AND METHOD FOR CONTROLLING ENVIRONMENTAL TEST DEVICE
JP4594266B2 (en) Environmental test equipment
JP2016110273A (en) Rack and electronic unit cooling method
JP5969968B2 (en) Environmental test equipment
JP5761452B2 (en) Modular data center and its control method
KR101207891B1 (en) Burn in test chamber for semiconductor component
JP5978951B2 (en) Semiconductor device test apparatus and test method
JP2013221657A (en) Heat exchange type ventilating device
JP2007333559A (en) Cold impact test device
JP4815466B2 (en) Environmental test equipment
KR100852620B1 (en) Apparatus for temperature reliability test of electronic devices
JP2008267818A (en) Burn-in test device
JP2006308368A (en) Test chamber for electronic device and testing method
EP3722692A1 (en) Indoor unit for air conditioner
KR20060008379A (en) Burn-in tester for testing semiconductor
JP2008267945A (en) Temperature testing device for electronic component
JP5047384B2 (en) Environmental test equipment
JPH0322579B2 (en)
JP4554437B2 (en) Thermal shock test equipment
CN105259087A (en) Air detection device and method
KR101123026B1 (en) Environment test device
JP6729959B1 (en) Semiconductor device testing apparatus and semiconductor device testing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent or registration of utility model

Ref document number: 4673669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250