JP2006329501A - Condenser facility - Google Patents

Condenser facility Download PDF

Info

Publication number
JP2006329501A
JP2006329501A JP2005152389A JP2005152389A JP2006329501A JP 2006329501 A JP2006329501 A JP 2006329501A JP 2005152389 A JP2005152389 A JP 2005152389A JP 2005152389 A JP2005152389 A JP 2005152389A JP 2006329501 A JP2006329501 A JP 2006329501A
Authority
JP
Japan
Prior art keywords
condenser
steam flow
turbine bypass
bypass steam
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005152389A
Other languages
Japanese (ja)
Inventor
Yuji Inoue
裕司 井上
Akira Nemoto
晃 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005152389A priority Critical patent/JP2006329501A/en
Publication of JP2006329501A publication Critical patent/JP2006329501A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rationalize a pressure-temperature reducing device for turbine by-pass steam flow. <P>SOLUTION: This condenser facility comprises a perforated pipe type pressure-temperature reducing device for discharging the turbine by-pass steam flow from a plurality of through-holes provided in a pipe for leading the turbine by-pass steam flow which by-passed a turbine, into a condenser, to reduce the pressure and temperature of the turbine by-pass steam flow and to lead it into the condenser, and a cone type pressure-temperature reducing device for reducing the pressure and temperature of the turbine by-pass steam flow by a cone pipe part enlarged in the cross-sectional area of a joint part to a condenser shell toward the lower reaches of a passage, and further allowing the turbine by-pass steam flow to collide against a sacrifice material installed in the condenser to reduce the temperature and pressure of the turbine by-pass steam flow and to lead it into the condenser. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蒸気タービンをバイパスして復水器に直接的に蒸気流を導くための復水器設備に関する。   The present invention relates to a condenser installation for bypassing a steam turbine and directing a steam flow directly to the condenser.

一般に、発電プラントに使用される復水器においては、通常運転中にタービンから排出される蒸気の他に、タービンをバイパスした蒸気を直接導入して冷却凝縮させることがある。このようなタービンバイパス系統からのバイパス蒸気は、ボイラーの起動時や、発電プラント運転中に送電系統の事故により発電機の負荷遮断が発生した場合等に、復水器に余剰蒸気として導入される。   Generally, in a condenser used in a power plant, in addition to steam discharged from a turbine during normal operation, steam bypassing the turbine may be directly introduced to be cooled and condensed. Bypass steam from such a turbine bypass system is introduced into the condenser as surplus steam when the boiler is started up or when a load interruption of the generator occurs due to an accident in the power transmission system during operation of the power plant. .

発電プラントの起動時においては、タービンに通気可能な蒸気条件を得られるまで、タービンバイパス系統にてボイラーからの蒸気を直接復水器に導入し凝縮するようにしている。これはボイラーにおいて発生した蒸気を可能な限り系外に捨てることなく回収することが起動を早める上で有利であるからである。また、送電系統の事故により負荷遮断が行われタービントリップとなった場合にはボイラーで発生した蒸気を直接復水器に導きタービンが加速することを防止する。これらの場合、復水器は大容量のタービンバイパス蒸気を凝縮させる必要がある。   At the start of the power plant, steam from the boiler is directly introduced into the condenser and condensed in the turbine bypass system until steam conditions that allow ventilation to the turbine are obtained. This is because it is advantageous for quick start-up to recover the steam generated in the boiler without throwing it out of the system as much as possible. Also, when a load trip is performed due to an accident in the power transmission system and a turbine trip occurs, steam generated in the boiler is directly guided to the condenser to prevent the turbine from accelerating. In these cases, the condenser needs to condense large volumes of turbine bypass steam.

図7はタービンバイパス装置の概略系統を示す系統構成図である。蒸気発生器(ボイラ)1で発生した高圧高温の蒸気は、主蒸気管2を通り蒸気加減弁3を経てタービン4に供給される。タービン4に供給された蒸気はタービン4で仕事を行い発電機5を駆動し、仕事を行った蒸気は復水器6に排出され、そこで冷却管7の内面を通過する海水等と熱交換して凝縮され復水となる。この復水は復水ポンプ8で昇圧されて低圧給水加熱器9に送られ、さらに給水ポンプ駆動用タービン10で駆動される給水ポンプ11で昇圧された後、高圧給水加熱器12を経て蒸気発生器1に還流される。   FIG. 7 is a system configuration diagram showing a schematic system of the turbine bypass device. The high-pressure and high-temperature steam generated in the steam generator (boiler) 1 passes through the main steam pipe 2 and is supplied to the turbine 4 through the steam control valve 3. The steam supplied to the turbine 4 performs work in the turbine 4 and drives the generator 5. The steam that has performed the work is discharged to the condenser 6, where it exchanges heat with seawater or the like passing through the inner surface of the cooling pipe 7. It is condensed and becomes condensate. This condensate is boosted by a condensate pump 8 and sent to a low-pressure feed water heater 9, and further boosted by a feed water pump 11 driven by a feed pump driving turbine 10, and then steam is generated through a high-pressure feed water heater 12. Reflux to vessel 1.

また、主蒸気管2と復水器6との間はタービン4をバイパスするタービンバイパス蒸気管13が設けられ、タービンバイパス蒸気管13にはバイパス弁14および減圧減温装置15が設けられている。図7ではタービンバイパス蒸気管13は1系統しか示していないが、通常、複数のタービンバイパス蒸気管13が設けられる。減温減圧装置15は、タービンバイパス蒸気管13を流れるタービンバイパス蒸気流を減圧減温するものであり、多孔管式、コーン式、シャワー式の減温減圧装置15がある。   Further, a turbine bypass steam pipe 13 that bypasses the turbine 4 is provided between the main steam pipe 2 and the condenser 6, and the turbine bypass steam pipe 13 is provided with a bypass valve 14 and a pressure reduction and temperature reduction device 15. . Although only one system is shown in FIG. 7 for the turbine bypass steam pipe 13, a plurality of turbine bypass steam pipes 13 are usually provided. The temperature reducing and decompressing device 15 decompresses and reduces the temperature of the turbine bypass steam flowing through the turbine bypass steam pipe 13, and includes a porous tube type, cone type, and shower type temperature reducing and decompressing device 15.

図8は復水器6内に設置される多孔管式の減圧減温装置15aの構造図である。復水器6内へ導入する管17に0.5mm〜30mmの大きさを有する複数個の貫通孔18が設けられ、貫通孔18より管17内の蒸気流を管17外(復水器内部)へ放出することにより、タービンバイパス蒸気流を減圧減温する。多孔管式の減圧減温装置では、タービンバイパス蒸気流の復水器6への導入は多孔管のみを用いるためシンプルな構造となる。   FIG. 8 is a structural diagram of a perforated tube type pressure reducing and reducing device 15 a installed in the condenser 6. A plurality of through holes 18 having a size of 0.5 mm to 30 mm are provided in the pipe 17 introduced into the condenser 6, and the steam flow in the pipe 17 is passed from the through holes 18 to the outside of the pipe 17 (inside the condenser 17 ) To reduce the temperature of the turbine bypass steam flow under reduced pressure. In the perforated tube type pressure reducing and temperature reducing device, the introduction of the turbine bypass steam flow into the condenser 6 has a simple structure because only the perforated tube is used.

図9は復水器6内に設置されるコーン式の減圧減温装置15bの説明図であり、図9(a)は構造図、図9(b)は犠牲材の斜視図である。図9(a)に示すように、コーン式の減圧減温装置はタービンバイパス蒸気管13の復水器6内への接続部にコーン管部19を備えたものであり、コーン管部19は復水器シェル(復水器壁)との接合部の管の断面積が流路下流方向に向けて拡大するように形成されている。これによりタービンバイパス蒸気流を減圧減温する。さらに復水器6内に設置した犠牲材にタービンバイパス蒸気流を衝突させて減圧減温する。犠牲材としては、図9(b)に示すように、管状犠牲材20a、形鋼犠牲材20b(例えばH形綱)、板状犠牲材20c等が用いられる。なお、形綱犠牲材は図ではH形綱を示しているが、特にその形状は問わない。   FIG. 9 is an explanatory view of a cone-type decompression and temperature reduction device 15b installed in the condenser 6, FIG. 9 (a) is a structural view, and FIG. 9 (b) is a perspective view of a sacrificial material. As shown in FIG. 9 (a), the cone-type decompression and temperature reduction device is provided with a cone pipe part 19 at the connection part of the turbine bypass steam pipe 13 into the condenser 6, and the cone pipe part 19 is The cross-sectional area of the pipe at the junction with the condenser shell (condenser wall) is formed so as to expand toward the downstream of the flow path. This reduces the temperature of the turbine bypass steam flow under reduced pressure. Furthermore, the turbine bypass steam flow collides with the sacrificial material installed in the condenser 6 to reduce the temperature under reduced pressure. As the sacrificial material, as shown in FIG. 9B, a tubular sacrificial material 20a, a shaped steel sacrificial material 20b (for example, an H-shaped rope), a plate-shaped sacrificial material 20c, and the like are used. In addition, although the shape rope sacrificial material has shown the H shape rope in the figure, the shape in particular is not ask | required.

図10は復水器6内に設置されるシャワー式の減圧減温装置15cの構造図である。復水器6内に導入する管17に0.5mm〜30mmの大きさを有する複数個の貫通孔18が設けられ、その管17は復水器6内にて例えば鋼板を用いて区画した区画部21内に設置される。貫通孔18より管17内の蒸気流を管17外(復水器内部)へ放出し、区画部21内へ拡散させる。さらに区画部21の外面および内面の1面ないし2面以上に0.5mm〜30mmの大きさを有する複数個の貫通孔22が設けられており、その貫通孔22より区画部21内の蒸気流を復水器6内へ放出する。これにより、タービンバイパス蒸気流を減圧減温する。   FIG. 10 is a structural diagram of a shower-type decompression and temperature reduction device 15 c installed in the condenser 6. The pipe 17 introduced into the condenser 6 is provided with a plurality of through holes 18 having a size of 0.5 mm to 30 mm, and the pipe 17 is partitioned in the condenser 6 by using, for example, a steel plate. It is installed in the part 21. The steam flow in the pipe 17 is discharged from the through-hole 18 to the outside of the pipe 17 (inside the condenser) and diffused into the partition portion 21. Furthermore, a plurality of through holes 22 having a size of 0.5 mm to 30 mm are provided on one or more of the outer surface and the inner surface of the partition part 21, and the steam flow in the partition part 21 from the through hole 22. Is discharged into the condenser 6. This reduces the temperature of the turbine bypass steam flow under reduced pressure.

ところで、前述の多孔管式の減圧減温装置15aでも、タービンバイパス管13内のタービンバイパス蒸気流は貫通孔18から直接復水器内部に放出されるため、放出される際の蒸気流速は早くかつ蒸気圧力も高いため、これらの貫通孔18近傍には、コーン式のように犠牲材20a、20b、20cを設置するほどではないものの、復水器内部の構造部材を設置することは難しい。   By the way, also in the above-described perforated pipe type pressure reducing and reducing device 15a, the turbine bypass steam flow in the turbine bypass pipe 13 is discharged directly from the through hole 18 into the condenser, so that the steam flow rate when released is high. In addition, since the steam pressure is high, it is difficult to install structural members inside the condenser in the vicinity of these through-holes 18 although the sacrifice materials 20a, 20b, and 20c are not installed as in the cone type.

そこで、シャワー式の減圧減温装置15cでは、多孔管の貫通孔18から放出された蒸気を一旦区画部21内でその流速および圧力を低減させてから、再度貫通孔22から復水器内部に放出するようにしたものである。このようにすることにより、区画部21の貫通孔22から放出される蒸気流が直接復水器内部の構造部材に衝突しても、その構造物に損傷を与えないような流速および圧力に低減されるのである。   Therefore, in the shower-type decompression and temperature reduction device 15c, the vapor discharged from the through hole 18 of the perforated pipe is once reduced in the flow rate and pressure in the partition part 21, and then again from the through hole 22 into the condenser. It is intended to be released. By doing in this way, even if the vapor flow discharged from the through hole 22 of the partition part 21 directly collides with the structural member inside the condenser, the flow rate and pressure are reduced so as not to damage the structure. It is done.

ところが、図8に示す多孔管式の減圧減温装置15aでは、複数個の貫通孔18から排出されたタービンバイパス蒸気流を減速させるために十分に広い空間が復水器6内に必要となる。通常、管17から排出されたタービンバイパス蒸気流は復水器胴板に直接衝突する構造となっており、管17の周囲に主要な構造物を設置することができない。よって多孔管式の減圧減温装置は、多孔管そのものの構造は簡素で合理的であるが、復水器6の内部にタービンバイパス蒸気流の減速用のみに用いる無駄な空間が生じてしまう。   However, in the perforated tube pressure reducing and reducing apparatus 15a shown in FIG. 8, a sufficiently wide space is required in the condenser 6 to decelerate the turbine bypass steam flow discharged from the plurality of through holes 18. . Normally, the turbine bypass steam flow discharged from the pipe 17 has a structure that directly collides with the condenser body plate, and a main structure cannot be installed around the pipe 17. Therefore, although the structure of the perforated tube itself is simple and rational, the perforated tube type pressure reducing and temperature reducing device creates a useless space used only for decelerating the turbine bypass steam flow inside the condenser 6.

また、図9に示すコーン式の減圧減温装置15bでは、多孔管式と同様に構造そのものは簡素で合理的であるが、復水器6内へ導入したタービンバイパス蒸気流を十分に減速するために、復水器6内にタービンバイパス蒸気流を衝突させるための犠牲材20を設置する必要がある。犠牲材20は復水器6の補強材を兼ねている場合が多く、この場合、タービンバイパス蒸気流との衝突により犠牲材20に磨耗や減肉が生じるため、予めタービンバイパス蒸気流による減肉を見込んだ厚肉の部材を使用している。よって、コーン式では構造そのものは簡素で合理的であるが、タービンバイパス蒸気流が衝突する範囲の部材は、タービンバイパス蒸気流による減肉が生じるため、強度部材として必要以上に厚肉の構造とならざるを得ない。   Further, in the cone type decompression and temperature reduction device 15b shown in FIG. 9, the structure itself is simple and rational like the perforated pipe type, but the turbine bypass steam flow introduced into the condenser 6 is sufficiently decelerated. Therefore, it is necessary to install the sacrificial material 20 for making the turbine bypass steam flow collide with the condenser 6. In many cases, the sacrificial material 20 also serves as a reinforcing material for the condenser 6. In this case, the sacrificial material 20 is worn or thinned by collision with the turbine bypass steam flow. A thick-walled member is used. Therefore, in the cone type, the structure itself is simple and reasonable, but the members in the range where the turbine bypass steam flow collides are thinned by the turbine bypass steam flow. I have to be.

さらに、図10に示すシャワー式の減圧減温装置15cでは、多孔管から排出されたタービンバイパス蒸気流をさらに区画部21内で拡散させるため、減圧減温能力は十分であるが、復水器6の内部に区画部21を設置する分、多孔管式やコーン式と比較すると複雑な構造となる。   Furthermore, in the shower-type decompression and temperature reduction device 15c shown in FIG. 10, the turbine bypass steam flow discharged from the perforated pipe is further diffused in the partition portion 21, and therefore the decompression and temperature reduction capability is sufficient. As compared with the perforated tube type or the cone type, a complicated structure is obtained because the partition portion 21 is installed in the interior of the unit 6.

一方、タービンバイパス蒸気流を復水器6内へ導入する際には、複数のタービンバイパス蒸気管13及び減圧減温装置15を全部使用してタービンバイパス蒸気流を復水器6内へ導入することは少なく、プラントの負荷により適当な量のタービンバイパス蒸気流をバイパス弁14を開閉することにより調整し、復水器6へと導入している。従って、複数あるタービンバイパス蒸気管13及び減圧減温装置15はそれぞれ使用頻度が異なり、使用頻度の高いタービンバイパス蒸気管13及び減圧減温装置15は蒸気による劣化が多く、使用頻度の低いタービンバイパス蒸気管13及び減圧減温装置15は蒸気による劣化が少ないことになる。   On the other hand, when the turbine bypass steam flow is introduced into the condenser 6, the turbine bypass steam flow is introduced into the condenser 6 by using all of the plurality of turbine bypass steam pipes 13 and the pressure reduction and temperature reduction devices 15. However, an appropriate amount of turbine bypass steam flow is adjusted by opening and closing the bypass valve 14 according to the load of the plant and introduced into the condenser 6. Therefore, the plurality of turbine bypass steam pipes 13 and decompression / temperature reduction apparatuses 15 are used differently, and the turbine bypass steam pipe 13 and the decompression / temperature reduction apparatus 15 that are frequently used are frequently deteriorated by steam, and the turbine bypass that is less frequently used. The steam pipe 13 and the decompression and temperature reduction device 15 are less deteriorated by steam.

従来は、使用頻度の多寡に係わらず、複数ある減圧減温装置15全てを多孔管式、コーン式、シャワー式のいずれか一つを用いてタービンバイパス蒸気流を復水器6内へ導入していた。この方法では使用頻度の多寡に係わらず、全ての減圧減温装置15が同一構造のため、使用頻度の低い減圧減温装置15は仕様過剰な構造となってしまう。   Conventionally, the turbine bypass steam flow is introduced into the condenser 6 by using any one of a multi-pipe type, a cone type, and a shower type regardless of the frequency of use. It was. In this method, regardless of the frequency of use, since all the decompression and temperature reduction devices 15 have the same structure, the decompression and temperature reduction devices 15 that are less frequently used have an over-specification structure.

本発明の目的は、タービンバイパス蒸気流の減圧減温装置の合理化を図ることができる復水器設備を提供することである。   The objective of this invention is providing the condenser equipment which can aim at rationalization of the pressure reduction and temperature reduction apparatus of a turbine bypass steam flow.

本発明の復水器設備は、タービンをバイパスしたタービンバイパス蒸気流を復水器内へ導入するための管に設けられた複数個の貫通孔よりタービンバイパス蒸気流を放出しタービンバイパス蒸気流を減圧減温して復水器内へ導入する多孔管方式の減圧減温装置と、復水器シェルとの接合部の断面積が流路下流方向に向けて拡大したコーン管部によりタービンバイパス蒸気流を減圧減温しさらに復水器内に設置された犠牲材にタービンバイパス蒸気流を衝突させてタービンバイパス蒸気流を減温減圧して復水器内へ導入するコーン式の減圧減温装置と、復水器内に区画された区画部内へタービンバイパス蒸気流を導入するための管に設けられた複数個の貫通孔よりタービンバイパス蒸気流を放出して減圧減温しさらに区画部の面に設けられた複数個の貫通孔より区画部内のタービンバイパス蒸気流を復水器内へ放出しタービンバイパス蒸気流を減圧減温して復水器内へ導入するシャワー式の減圧減温装置とのうち、少なくともいずれか2個の減圧減温装置を用いたことを特徴とする。   The condenser equipment of the present invention discharges a turbine bypass steam flow from a plurality of through holes provided in a pipe for introducing the turbine bypass steam flow bypassing the turbine into the condenser. Turbine bypass steam is produced by a cone pipe part where the cross-sectional area of the joint between the condenser pipe shell and the perforated pipe type pressure reduction and temperature reduction device that reduces the temperature and introduces it into the condenser is expanded in the downstream direction of the flow path. Cone-type depressurization and temperature reduction device that reduces the temperature of the flow and lowers the pressure of the turbine bypass steam by causing it to collide with the sacrificial material installed in the condenser to reduce the temperature of the turbine bypass steam and introduce it into the condenser And the turbine bypass steam flow is discharged from a plurality of through holes provided in a pipe for introducing the turbine bypass steam flow into the partition section partitioned in the condenser, and the temperature of the partition section is reduced. The multiple At least one of the shower-type decompression and temperature reduction devices that discharge the turbine bypass steam flow in the partition into the condenser through the through holes and reduce the temperature of the turbine bypass steam flow into the condenser and introduce it into the condenser. Or two decompression / temperature reduction devices.

本発明によれば、タービンバイパス蒸気流の減圧減温装置として多孔管式、コーン式、シャワー式を組み合わせて、使用頻度に見合ったタービンバイパス蒸気流の減圧減温装置を設置し、タービンバイパス蒸気流を復水器内へ導入するので、減圧減温装置の合理化を図った復水器設備を提供できる。   According to the present invention, a turbine tube bypass steam flow decompression and temperature reduction device is combined with a perforated tube type, a cone type, and a shower type, and a turbine bypass steam flow decompression and temperature reduction device suitable for the frequency of use is installed. Since the flow is introduced into the condenser, it is possible to provide a condenser facility in which the decompression and temperature reduction device is rationalized.

以下、本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係わる復水器設備の構成図である。この第1の実施の形態は、多孔管式の減圧減温装置15aとコーン式の減圧減温装置15bとを組合せてタービンバイパス蒸気流を復水器6内へ導入するようにした復水器設備である。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a condenser facility according to the first embodiment of the present invention. This first embodiment is a condenser in which a turbine bypass steam flow is introduced into the condenser 6 by combining a perforated pipe type pressure reducing and reducing apparatus 15a and a cone type pressure reducing and reducing apparatus 15b. Equipment.

図1において、タービンバイパス蒸気流の減圧減温装置として、多孔管式の減圧減温装置15aとコーン式の減圧減温装置15bとを組合せて復水器6内にタービンバイパス蒸気流を導入している。多孔管式の減圧減温装置15aはタービンバイパス蒸気流を復水器6内へ導入する管17に0.5mm〜30mmの大きさを有する複数個の貫通孔18を設け、貫通孔18より管17内の蒸気流を管17外(復水器内部)へ放出する。これにより、タービンバイパス蒸気流を減圧減温する。   In FIG. 1, a turbine bypass steam flow is introduced into the condenser 6 by combining a perforated tube type pressure reduction and temperature reduction device 15a and a cone type pressure reduction and temperature reduction device 15b as a pressure reduction and temperature reduction device for the turbine bypass steam flow. ing. The perforated tube pressure reducing and reducing device 15 a is provided with a plurality of through holes 18 having a size of 0.5 mm to 30 mm in the pipe 17 for introducing the turbine bypass steam flow into the condenser 6. The steam flow in 17 is discharged out of the pipe 17 (inside the condenser). This reduces the temperature of the turbine bypass steam flow under reduced pressure.

一方、コーン式の減圧減温装置15bはタービンバイパス蒸気流を復水器6内へ導入するタービンバイパス蒸気管13にコーン管部19を備えたものであり、復水器シェルとの接合部の管の断面積が流路下流方向に向けて拡大するように形成されている。これによりタービンバイパス蒸気流を減圧減温して復水器6内へ導入し、さらに復水器6内に設置した図示省略の犠牲材20にタービンバイパス蒸気流を衝突させて減温減圧する。   On the other hand, the cone-type depressurization and temperature reduction device 15b is provided with a cone pipe portion 19 in a turbine bypass steam pipe 13 for introducing a turbine bypass steam flow into the condenser 6, and is connected to a condenser shell. The cross-sectional area of the tube is formed so as to expand toward the downstream side of the flow path. As a result, the turbine bypass steam flow is depressurized and reduced in temperature and introduced into the condenser 6, and the turbine bypass steam flow is collided with a sacrificial material 20 (not shown) installed in the condenser 6 to reduce and depressurize the temperature.

第1の実施の形態によれば、多孔管式の減圧減温装置とコーン式の減圧減温装置とを併用するので、タービンバイパス蒸気流の導入方法としては簡素な構造となるが、多孔管式の減圧減温装置に必要なタービンバイパス蒸気流の減速距離と、コーン式の減圧減温装置に必要な犠牲材20の設置スペースを考慮すると、内部に空間的な余裕のある構造を持ち、タービンバイパス蒸気流の導入頻度の低い復水器に適当である。   According to the first embodiment, since the porous tube type pressure reduction and temperature reduction device and the cone type pressure reduction and temperature reduction device are used in combination, the introduction method of the turbine bypass steam flow has a simple structure. In consideration of the deceleration distance of the turbine bypass steam flow required for the pressure reducing and reducing device of the type and the installation space for the sacrificial material 20 required for the cone type pressure reducing and reducing device, it has a structure with a space inside, Suitable for condensers with low introduction frequency of turbine bypass steam flow.

次に、本発明の第2の実施の形態を説明する。図2は本発明の第2の実施の形態に係わる復水器設備の構成図である。この第2の実施の形態は、多孔管式の減圧減温装置15aとシャワー式の減圧減温装置15cとを組合せてタービンバイパス蒸気流を復水器6内へ導入するようにした復水器設備である。   Next, a second embodiment of the present invention will be described. FIG. 2 is a configuration diagram of a condenser facility according to the second embodiment of the present invention. This second embodiment is a condenser in which a turbine bypass steam flow is introduced into a condenser 6 by combining a perforated pipe type pressure reducing and reducing apparatus 15a and a shower type pressure reducing and reducing apparatus 15c. Equipment.

図2において、タービンバイパス蒸気流の減圧減温装置として、多孔管式の減圧減温装置15aとシャワー式の減圧減温装置15cとを組合せて復水器6内にタービンバイパス蒸気流を導入している。   In FIG. 2, a turbine bypass steam flow is introduced into the condenser 6 by combining a perforated tube type pressure reduction and temperature reduction device 15a and a shower type pressure reduction and temperature reduction device 15c as a pressure reduction and temperature reduction device for the turbine bypass steam flow. ing.

多孔管式の減圧減温装置15aはタービンバイパス蒸気流を復水器6内へ導入する管17に0.5mm〜30mmの大きさを有する複数個の貫通孔18を設け、貫通孔18より管17内の蒸気流を管17外(復水器内部)へ放出する。これにより、タービンバイパス蒸気流を減圧減温する。   The perforated tube pressure reducing and reducing device 15 a is provided with a plurality of through holes 18 having a size of 0.5 mm to 30 mm in the pipe 17 for introducing the turbine bypass steam flow into the condenser 6. The steam flow in 17 is discharged out of the pipe 17 (inside the condenser). This reduces the temperature of the turbine bypass steam flow under reduced pressure.

一方、シャワー式の減圧減温装置15cはタービンバイパス蒸気流を復水器6内へ導入する管17において、管17を器内に導入し、管壁に0.5mm〜30mmの大きさを有する複数個の貫通孔18を設け、さらに管17を復水器6内にて例えば鋼板を用いて区画した区画部21内に設置して構成されている。貫通孔18より管17内の蒸気流を管17外(復水器内部)へ放出し、区画部21内へ拡散させる。さらに区画部21の外面および内面の1面もしくは2面以上に設けられた0.5mm〜30mmの大きさを有する複数個の貫通孔22より、区画部21内の蒸気流を復水器6内へ放出する。これにより、タービンバイパス蒸気流を減圧減温する。   On the other hand, the shower-type decompression and temperature reduction device 15c introduces the pipe 17 into the pipe 17 for introducing the turbine bypass steam flow into the condenser 6, and the pipe wall has a size of 0.5 mm to 30 mm. A plurality of through-holes 18 are provided, and the pipe 17 is installed in a partition section 21 partitioned in the condenser 6 using, for example, a steel plate. The steam flow in the pipe 17 is discharged from the through-hole 18 to the outside of the pipe 17 (inside the condenser) and diffused into the partition portion 21. Furthermore, the steam flow in the partition part 21 is transferred into the condenser 6 from a plurality of through holes 22 having a size of 0.5 mm to 30 mm provided on one or more of the outer surface and the inner surface of the partition part 21. To release. This reduces the temperature of the turbine bypass steam flow under reduced pressure.

すなわち、シャワー式の減圧減温装置15cでは、多孔管式の減圧減温装置15aのような多孔管の貫通孔18から放出された蒸気を、一旦区画部21内でその流速および圧力を低減させてから、再度貫通孔22から復水器内部に放出するようにしたもので、区画部21の貫通孔22から放出される蒸気流が直接復水器内部の構造部材に衝突しても、その構造物に損傷を与えないような流速および圧力に低減されるのである。   That is, in the shower-type decompression / temperature reduction device 15c, the flow rate and pressure of the vapor released from the through hole 18 of the porous tube such as the porous tube-type decompression / temperature reduction device 15a are once reduced in the partition portion 21. After that, the steam is discharged again from the through hole 22 into the condenser. Even if the steam flow discharged from the through hole 22 of the partition 21 directly collides with the structural member inside the condenser, The flow rate and pressure are reduced so as not to damage the structure.

第2の実施の形態によれば、多孔管式の減圧減温装置15aとシャワー式の減圧減温装置15cとを併用するので、多孔管式の減圧減温装置15aは構造は簡素であるがタービンバイパス蒸気流の減速に十分なスペースが必要となるという特質を有し、一方、シャワー式の減圧減温装置15cは構造は複雑となるがタービンバイパス蒸気流の減圧減温能力は十分であるという特質を有することから、使用頻度の異なる複数のタービンバイパス蒸気流を導入する復水器に適当である。   According to the second embodiment, since the porous tube type pressure reduction and temperature reduction device 15a and the shower type pressure reduction and temperature reduction device 15c are used in combination, the structure of the porous tube type pressure reduction and temperature reduction device 15a is simple. The shower bypass depressurization / temperature reduction device 15c has a characteristic that a sufficient space is required to decelerate the turbine bypass steam flow. On the other hand, the structure of the shower-type depressurization / temperature decrease device 15c is complicated, but the depressurization / temperature reduction capability of the turbine bypass steam flow is sufficient. Therefore, it is suitable for a condenser that introduces a plurality of turbine bypass steam flows having different usage frequencies.

次に、本発明の第3の実施の形態を説明する。図3は本発明の第3の実施の形態に係わる復水器設備の構成図である。この第3の実施の形態は、コーン式の減圧減温装置15bとシャワー式の減圧減温装置15cとを組合せてタービンバイパス蒸気流を復水器6内へ導入するようにした復水器設備である。   Next, a third embodiment of the present invention will be described. FIG. 3 is a configuration diagram of a condenser facility according to the third embodiment of the present invention. In the third embodiment, a condenser facility in which a corn-type decompression / temperature reduction device 15b and a shower-type decompression / temperature reduction device 15c are combined to introduce a turbine bypass steam flow into the condenser 6. It is.

図3において、タービンバイパス蒸気流の減圧減温装置として、コーン式の減圧減温装置15bとシャワー式の減圧減温装置15cとを組合せて復水器6内にタービンバイパス蒸気流を導入している。   In FIG. 3, a turbine bypass steam flow is introduced into the condenser 6 by combining a cone-type decompression / temperature reduction device 15b and a shower-type decompression / temperature reduction device 15c as a decompression / temperature reduction device for the turbine bypass steam flow. Yes.

コーン式の減圧減温装置15bはタービンバイパス蒸気流を復水器6内へ導入するタービンバイパス蒸気管13にコーン管部19を備えたものであり、復水器シェルとの接合部の管の断面積が流路下流方向に向けて拡大するように形成されている。これによりタービンバイパス蒸気流を減圧減温して復水器6内へ導入し、さらに復水器6内に設置した図示省略の犠牲材20にタービンバイパス蒸気流を衝突させて減温減圧する。   The cone-type depressurization / temperature reduction device 15b includes a turbine bypass steam pipe 13 for introducing a turbine bypass steam flow into the condenser 6 and a cone pipe section 19 and is connected to a condenser shell. The cross-sectional area is formed so as to expand toward the downstream side of the flow path. As a result, the turbine bypass steam flow is depressurized and reduced in temperature and introduced into the condenser 6, and the turbine bypass steam flow is collided with a sacrificial material 20 (not shown) installed in the condenser 6 to reduce and depressurize the temperature.

一方、シャワー式の減圧減温装置15cはタービンバイパス蒸気流を復水器6内へ導入する管17において、管17を器内に導入し、管壁に0.5mm〜30mmの大きさを有する複数個の貫通孔18を設け、さらに管17を復水器6内にて例えば鋼板を用いて区画した区画部21内に設置して構成されている。貫通孔18より管17内の蒸気流を管17外(復水器内部)へ放出し、区画部21内へ拡散させる。さらに区画部21の外面および内面の1面もしくは2面以上に設けられた0.5mm〜30mmの大きさを有する複数個の貫通孔22より、区画部21内の蒸気流を復水器6内へ放出する。これにより、タービンバイパス蒸気流を減圧減温する。   On the other hand, the shower-type decompression and temperature reduction device 15c introduces the pipe 17 into the pipe 17 for introducing the turbine bypass steam flow into the condenser 6, and the pipe wall has a size of 0.5 mm to 30 mm. A plurality of through-holes 18 are provided, and the pipe 17 is installed in a partition section 21 partitioned in the condenser 6 using, for example, a steel plate. The steam flow in the pipe 17 is discharged from the through-hole 18 to the outside of the pipe 17 (inside the condenser) and diffused into the partition portion 21. Furthermore, the steam flow in the partition part 21 is transferred into the condenser 6 from a plurality of through holes 22 having a size of 0.5 mm to 30 mm provided on one or more of the outer surface and the inner surface of the partition part 21. To release. This reduces the temperature of the turbine bypass steam flow under reduced pressure.

第3の実施の形態によれば、コーン式の減圧減温装置15bとシャワー式の減圧減温装置15cとを併用しており、コーン式の減圧減温装置15bは構造は簡素であるが犠牲材の設置に十分なスペースが必要となるという特質を有し、シャワー式の減圧減温装置15cは構造は複雑となるがタービンバイパス蒸気流の減圧減温能力は十分であるという特質を有することから、使用頻度の異なる複数のタービンバイパス蒸気流を導入する復水器に適当である。   According to the third embodiment, the cone-type decompression / temperature reduction device 15b and the shower-type decompression / temperature reduction device 15c are used in combination, and the cone-type decompression / temperature reduction device 15b has a simple structure but is sacrificed. The shower-type depressurization / temperature reduction device 15c has the characteristic that a sufficient space is required for the installation of the material, but the structure of the shower-type depressurization / temperature reduction apparatus 15c is complicated, but has the characteristic that the depressurization / temperature reduction capability of the turbine bypass steam flow is sufficient Therefore, it is suitable for a condenser that introduces a plurality of turbine bypass steam flows having different usage frequencies.

次に、本発明の第4の実施の形態を説明する。図4は本発明の第4の実施の形態に係わる復水器設備の構成図である。この第4の実施の形態は、多孔管式の減圧減温装置15aとコーン式の減圧減温装置15bとシャワー式の減圧減温装置15cとを組合せてタービンバイパス蒸気流を復水器6内へ導入するようにした復水器設備である。   Next, a fourth embodiment of the present invention will be described. FIG. 4 is a configuration diagram of a condenser facility according to the fourth embodiment of the present invention. In the fourth embodiment, the perforated tube type pressure reducing / temperature reducing device 15a, the cone type pressure reducing / temperature reducing device 15b, and the shower type pressure reducing / temperature reducing device 15c are combined to convert the turbine bypass steam flow into the condenser 6. It is a condenser facility to be introduced into.

図4において、タービンバイパス蒸気流の減圧減温装置として、多孔管式の減圧減温装置15aとコーン式の減圧減温装置15bとシャワー式の減圧減温装置15cとを組合せて復水器6内にタービンバイパス蒸気流を導入している。タービンバイパス蒸気流は、多孔管式の減圧減温装置15aとコーン式の減圧減温装置15bとシャワー式の減圧減温装置15cとから復水器6内へ導入される。   In FIG. 4, as a depressurization / temperature reduction device for the turbine bypass steam flow, a condenser 6 is formed by combining a perforated tube depressurization / temperature decrease device 15 a, a cone-type depressurization / temperature decrease device 15 b and a shower-type depressurization / temperature decrease device 15 c. Turbine bypass steam flow is introduced inside. The turbine bypass steam flow is introduced into the condenser 6 from a perforated tube type pressure reducing and reducing device 15a, a cone type pressure reducing and reducing device 15b, and a shower type pressure reducing and reducing device 15c.

第4の実施の形態によれば、多孔管式の減圧減温装置15aとコーン式の減圧減温装置15bとシャワー式の減圧減温装置15cとを併用しているので、大容量のタービンバイパス蒸気流を処理し、かつ復水器6内に比較的空間の余地がある復水器に適当である。   According to the fourth embodiment, since the perforated tube type pressure reducing and reducing device 15a, the cone type pressure reducing and reducing device 15b and the shower type pressure reducing and reducing device 15c are used in combination, a large-capacity turbine bypass is provided. It is suitable for a condenser that treats the steam flow and has a relatively large room in the condenser 6.

次に、本発明の第5の実施の形態を説明する。図5は本発明の第5の実施の形態に係わる復水器設備の構成図である。この第5の実施の形態は、シャワー式の減圧減温装置15cにより復水器6内へ導入したタービンバイパス蒸気流を、さらに復水器6内に設置した犠牲材20に衝突させて減温減圧するようにしたものである。   Next, a fifth embodiment of the present invention will be described. FIG. 5 is a block diagram of a condenser facility according to the fifth embodiment of the present invention. In the fifth embodiment, the turbine bypass steam flow introduced into the condenser 6 by the shower-type decompression and temperature reduction device 15 c is further collided with the sacrificial material 20 installed in the condenser 6 to reduce the temperature. The pressure is reduced.

図5において、タービンバイパス蒸気流を復水器6内へシャワー式の減圧減温装置15cを用いて導入し、さらに復水器6内に設置した犠牲材20にタービンバイパス蒸気流を衝突させて減圧減温している。犠牲材20としては、管状犠牲材20a、もしくは形鋼犠牲材20b、もしくは板状犠牲材20cを用いている。   In FIG. 5, the turbine bypass steam flow is introduced into the condenser 6 by using a shower-type decompression and temperature reduction device 15 c, and the turbine bypass steam flow is made to collide with the sacrificial material 20 installed in the condenser 6. The temperature is reduced under reduced pressure. As the sacrificial material 20, a tubular sacrificial material 20a, a shaped steel sacrificial material 20b, or a plate-shaped sacrificial material 20c is used.

復水器6内に導入されたタービンバイパス蒸気流はシャワー式の減圧減温装置15cにて減圧減温され区画部21の貫通孔22から排出され、さらに復水器6内に設置された管状犠牲材20a、もしくは形鋼犠牲材20b、もしくは板状犠牲材20c等の犠牲材20に衝突し減圧減温される。なお、図では形綱はH形綱を示しているが、特にその形状は問わない。   The turbine bypass steam flow introduced into the condenser 6 is depressurized and reduced by a shower-type depressurization / temperature reduction device 15 c, discharged from the through-hole 22 of the partition part 21, and further installed in the condenser 6. The sacrificial material 20a, the shaped steel sacrificial material 20b, or the sacrificial material 20 such as the plate-shaped sacrificial material 20c is collided to reduce the temperature. In addition, although the figure shows the H form rope in the figure, the shape in particular is not ask | required.

第5の実施の形態によれば、シャワー式の減圧減温装置15cと犠牲材20とを併用しているので、減圧減温能力が十分なシャワー式の減圧減温装置15cに、さらに犠牲材20をにてタービンバイパス蒸気流を減速できる。このため、非常に高エネルギーのタービンバイパス蒸気流を導入する復水器に適当である。   According to the fifth embodiment, since the shower-type decompression / temperature reduction device 15c and the sacrificial material 20 are used in combination, the shower-type decompression / temperature reduction device 15c having sufficient decompression / temperature reduction capability is further provided with a sacrificial material. The turbine bypass steam flow can be decelerated at 20. Therefore, it is suitable for a condenser that introduces a very high energy turbine bypass steam flow.

次に、本発明の第6の実施の形態を説明する。図6は本発明の第6の実施の形態に係わる復水器設備の構成図である。この第6の実施の形態は、タービンバイパス蒸気流を2箇所以上から対向させて復水器6内へ導入し、タービンバイパス蒸気流をお互いに衝突させて減温減圧し、タービンバイパス蒸気流を復水器6内へ導入するようにしたものである。   Next, a sixth embodiment of the present invention will be described. FIG. 6 is a configuration diagram of a condenser facility according to the sixth embodiment of the present invention. In the sixth embodiment, turbine bypass steam flows are introduced into the condenser 6 from two or more locations, and the turbine bypass steam flows collide with each other to reduce the temperature and reduce the pressure. It is designed to be introduced into the condenser 6.

図6において、タービンバイパス蒸気流を復水器6内にて2箇所以上から対向させて導入し、タービンバイパス蒸気流を互いに衝突させて減温減圧している。復水器内に対向して設置された減圧減温装置15より導入されたタービンバイパス蒸気流は、復水器6内で互いに衝突し減圧減温される。図6では、減圧減温装置15として、コーン式の減圧減温装置15bを用いた場合について説明したが、多孔管式の減圧減温装置15aやシャワー式の減圧減温装置15cを用いても良い。   In FIG. 6, the turbine bypass steam flow is introduced in two or more locations in the condenser 6 so as to face each other, and the turbine bypass steam flow collides with each other to reduce the temperature and pressure. Turbine bypass steam flows introduced from the decompression and temperature reduction device 15 installed facing the inside of the condenser collide with each other in the condenser 6 and are decompressed and reduced in temperature. In FIG. 6, the case where the corn type pressure reduction and temperature reduction device 15b is used as the pressure reduction and temperature reduction device 15 has been described, but the porous tube type pressure reduction and temperature reduction device 15a and the shower type pressure reduction and temperature reduction device 15c may be used. good.

第6の実施の形態によれば、タービンバイパス蒸気流を対向させて互いに衝突させることにより、タービンバイパス蒸気流を減圧減温するので、復水器6内部に比較的空間の余地がある復水器に適当である。   According to the sixth embodiment, the turbine bypass steam flows are caused to collide with each other by causing the turbine bypass steam flows to face each other, so that the turbine bypass steam flows are depressurized and reduced in temperature. Appropriate for the vessel.

本発明の第1の実施の形態に係わる復水器設備の構成図。The block diagram of the condenser equipment concerning the 1st Embodiment of this invention. 本発明の第2の実施の形態に係わる復水器設備の構成図。The block diagram of the condenser equipment concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係わる復水器設備の構成図。The block diagram of the condenser equipment concerning the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係わる復水器設備の構成図。The block diagram of the condenser equipment concerning the 4th Embodiment of this invention. 本発明の第5の実施の形態に係わる復水器設備の構成図。The block diagram of the condenser equipment concerning the 5th Embodiment of this invention. 本発明の第6の実施の形態に係わる復水器設備の構成図。The block diagram of the condenser equipment concerning the 6th Embodiment of this invention. タービンバイパス装置の概略系統を示す系統構成図。A system lineblock diagram showing a schematic system of a turbine bypass device. 復水器内に設置される多孔管式の減圧減温装置の構造図。FIG. 2 is a structural diagram of a perforated tube type pressure reducing and reducing apparatus installed in a condenser. 復水器内に設置されるコーン式の減圧減温装置の説明図。Explanatory drawing of the cone-type decompression and temperature reduction apparatus installed in a condenser. 復水器内に設置されるシャワー式の減圧減温装置の構造図。FIG. 3 is a structural diagram of a shower-type decompression and temperature reduction device installed in a condenser.

符号の説明Explanation of symbols

1…蒸気発生器(ボイラ)、2…主蒸気管、3…蒸気加減弁、4…タービン、5…発電機、6…復水器、7…冷却管、8…復水ポンプ、9…低圧給水加熱器、10…給水ポンプ駆動タービン、11…給水ポンプ、12…高圧給水加熱器、13…タービンバイパス蒸気管、14…バイパス弁、15…減圧減温装置、17…多孔管、18…貫通孔、19…コーン管部、20…犠牲材、21…区画部、22…貫通孔
DESCRIPTION OF SYMBOLS 1 ... Steam generator (boiler), 2 ... Main steam pipe, 3 ... Steam control valve, 4 ... Turbine, 5 ... Generator, 6 ... Condenser, 7 ... Cooling pipe, 8 ... Condensate pump, 9 ... Low pressure Feed water heater, 10 ... Feed water pump driven turbine, 11 ... Feed water pump, 12 ... High pressure feed water heater, 13 ... Turbine bypass steam pipe, 14 ... Bypass valve, 15 ... Depressurization and temperature reduction device, 17 ... Perforated pipe, 18 ... Through Hole 19: Cone tube part 20 ... Sacrificial material 21 ... Partition part 22 ... Through hole

Claims (6)

蒸気発生器から生じる蒸気流をタービンをバイパスして直接復水器へ導入する復水器設備において、前記タービンをバイパスしたタービンバイパス蒸気流を前記復水器内へ導入するための管に設けられた複数個の貫通孔より前記タービンバイパス蒸気流を放出し前記タービンバイパス蒸気流を減圧減温して復水器内へ導入する多孔管方式の減圧減温装置と、復水器シェルとの接合部の断面積が流路下流方向に向けて拡大したコーン管部によりタービンバイパス蒸気流を減圧減温しさらに前記復水器内に設置された犠牲材に前記タービンバイパス蒸気流を衝突させて前記タービンバイパス蒸気流を減温減圧して復水器内へ導入するコーン式の減圧減温装置とを備えたことを特徴とする復水器設備。 In a condenser facility that directly introduces a steam flow generated from a steam generator to a condenser bypassing the turbine, the steam bypass is provided in a pipe for introducing the turbine bypass steam flow bypassing the turbine into the condenser. Joining the condenser shell and a perforated pipe type decompression and temperature reduction device that discharges the turbine bypass steam flow from a plurality of through holes, reduces the temperature of the turbine bypass steam flow, and introduces the turbine bypass steam flow into the condenser The turbine bypass steam flow is depressurized and reduced by a cone tube portion whose cross-sectional area is expanded in the downstream direction of the flow path, and the turbine bypass steam flow is collided with a sacrificial material installed in the condenser. A condenser facility comprising a cone-type decompression and temperature reduction device for reducing and depressurizing a turbine bypass steam flow into a condenser. 蒸気発生器から生じる蒸気流をタービンをバイパスして直接復水器へ導入する復水器設備において、前記タービンをバイパスしたタービンバイパス蒸気流を前記復水器内へ導入するための管に設けられた複数個の貫通孔より前記タービンバイパス蒸気流を放出し前記タービンバイパス蒸気流を減圧減温して復水器内へ導入する多孔管方式の減圧減温装置と、前記復水器内に区画された区画部内へタービンバイパス蒸気流を導入するための管に設けられた複数個の貫通孔より前記タービンバイパス蒸気流を放出して減圧減温しさらに前記区画部の面に設けられた複数個の貫通孔より前記区画部内のタービンバイパス蒸気流を復水器内へ放出し前記タービンバイパス蒸気流を減圧減温して復水器内へ導入するシャワー式の減圧減温装置とを備えたことを特徴とする復水器設備。 In a condenser facility that directly introduces a steam flow generated from a steam generator to a condenser bypassing the turbine, the steam bypass is provided in a pipe for introducing the turbine bypass steam flow bypassing the turbine into the condenser. A multi-hole depressurization and temperature reduction device of a porous tube type that discharges the turbine bypass steam flow from a plurality of through holes, depressurizes and cools the turbine bypass steam flow, and introduces the turbine bypass steam flow into the condenser; The turbine bypass steam flow is discharged from a plurality of through holes provided in a pipe for introducing the turbine bypass steam flow into the partitioned section, the temperature is reduced under reduced pressure, and a plurality is provided on the surface of the partition section. And a shower-type depressurization and temperature reduction device that discharges the turbine bypass steam flow in the partition into the condenser through a through-hole of the gas, and depressurizes and reduces the temperature of the turbine bypass steam flow into the condenser. Condenser equipment characterized and. 蒸気発生器から生じる蒸気流をタービンをバイパスして直接復水器へ導入する復水器設備において、復水器シェルとの接合部の断面積が流路下流方向に向けて拡大したコーン管部によりタービンバイパス蒸気流を減圧減温しさらに前記復水器内に設置された犠牲材に前記タービンバイパス蒸気流を衝突させて前記タービンバイパス蒸気流を減温減圧して復水器内へ導入するコーン式の減圧減温装置と、前記復水器内に区画された区画部内へタービンバイパス蒸気流を導入するための管に設けられた複数個の貫通孔より前記タービンバイパス蒸気流を放出して減圧減温しさらに前記区画部の面に設けられた複数個の貫通孔より前記区画部内のタービンバイパス蒸気流を復水器内へ放出し前記タービンバイパス蒸気流を減圧減温して復水器内へ導入するシャワー式の減圧減温装置とを備えたことを特徴とする復水器設備。 In a condenser facility that bypasses the turbine and directly introduces the steam flow generated from the steam generator to the condenser, the cross-sectional area of the joint with the condenser shell expands in the downstream direction of the flow path The turbine bypass steam flow is depressurized and reduced in temperature, and the turbine bypass steam flow is collided with a sacrificial material installed in the condenser to reduce the temperature of the turbine bypass steam flow and introduce it into the condenser. The turbine bypass steam flow is discharged from a cone-type depressurization and temperature reduction device and a plurality of through holes provided in a pipe for introducing the turbine bypass steam flow into a partition section partitioned in the condenser. Further, the condenser bypass steam flow is discharged from the plurality of through holes provided on the surface of the partition portion into the condenser, and the turbine bypass steam flow is decompressed and reduced in temperature to reduce the temperature. Led in Condenser equipment is characterized in that a shower-type vacuum down temperature apparatus. 蒸気発生器から生じる蒸気流をタービンをバイパスして直接復水器へ導入する復水器設備において、前記タービンをバイパスしたタービンバイパス蒸気流を前記復水器内へ導入するための管に設けられた複数個の貫通孔より前記タービンバイパス蒸気流を放出し前記タービンバイパス蒸気流を減圧減温して復水器内へ導入する多孔管方式の減圧減温装置と、復水器シェルとの接合部の断面積が流路下流方向に向けて拡大したコーン管部によりタービンバイパス蒸気流を減圧減温しさらに前記復水器内に設置された犠牲材に前記タービンバイパス蒸気流を衝突させて前記タービンバイパス蒸気流を減温減圧して復水器内へ導入するコーン式の減圧減温装置と、前記復水器内に区画された区画部内へタービンバイパス蒸気流を導入するための管に設けられた複数個の貫通孔より前記タービンバイパス蒸気流を放出して減圧減温しさらに前記区画部の面に設けられた複数個の貫通孔より前記区画部内のタービンバイパス蒸気流を復水器内へ放出し前記タービンバイパス蒸気流を減圧減温して復水器内へ導入するシャワー式の減圧減温装置とを備えたことを特徴とする復水器設備。 In a condenser facility that directly introduces a steam flow generated from a steam generator to a condenser bypassing the turbine, the steam bypass is provided in a pipe for introducing the turbine bypass steam flow bypassing the turbine into the condenser. Joining the condenser shell and a perforated pipe type decompression and temperature reduction device that discharges the turbine bypass steam flow from a plurality of through holes, reduces the temperature of the turbine bypass steam flow, and introduces the turbine bypass steam flow into the condenser The turbine bypass steam flow is depressurized and reduced in temperature by a cone tube portion whose cross-sectional area expands in the downstream direction of the flow path, and the turbine bypass steam flow collides with the sacrificial material installed in the condenser. A cone-type depressurization and temperature reduction device for reducing the temperature of the turbine bypass steam flow and introducing it into the condenser, and a pipe for introducing the turbine bypass steam flow into the compartment partitioned in the condenser The turbine bypass steam flow is discharged from the plurality of through holes formed, and the temperature is reduced and reduced, and the turbine bypass steam flow in the partition section is recovered from the plurality of through holes provided on the surface of the partition section. A condenser facility comprising a shower-type decompression and temperature reduction device that discharges the turbine bypass steam flow into the condenser and introduces it into the condenser. 前記シャワー式の減圧減温装置は、前記区画部内から復水器内へ放出したタービンバイパス蒸気流を前記復水器内に設置された犠牲材に衝突させて減温減圧し前記タービンバイパス蒸気流を復水器内へ導入することを特徴とする請求項2ないし4のいずれか1項に記載の復水器設備。 The shower type depressurization and temperature reduction device reduces the temperature and depressurization by colliding a turbine bypass steam flow discharged from the partition into the condenser with a sacrificial material installed in the condenser, thereby reducing the turbine bypass steam flow. The condenser equipment according to any one of claims 2 to 4, wherein the condenser is introduced into the condenser. 蒸気発生器から生じる蒸気流をタービンをバイパスして直接復水器へ導入する復水器設備において、前記タービンバイパス蒸気流を減圧減温して復水器内へ導入する減圧減温装置からのタービンバイパス蒸気流を2箇所以上から対向させて復水器内へ導入し、タービンバイパス蒸気流をお互いに衝突させて減温減圧することを特徴とする復水器設備。
In a condenser facility that directly introduces a steam flow generated from a steam generator to a condenser bypassing the turbine, the turbine bypass steam flow is depressurized and depressurized from a depressurization and temperature reduction device that introduces the steam flow into the condenser. Condenser equipment characterized in that turbine bypass steam flows are introduced from two or more locations into a condenser, and the turbine bypass steam flows collide with each other to reduce the temperature and pressure.
JP2005152389A 2005-05-25 2005-05-25 Condenser facility Pending JP2006329501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152389A JP2006329501A (en) 2005-05-25 2005-05-25 Condenser facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152389A JP2006329501A (en) 2005-05-25 2005-05-25 Condenser facility

Publications (1)

Publication Number Publication Date
JP2006329501A true JP2006329501A (en) 2006-12-07

Family

ID=37551369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152389A Pending JP2006329501A (en) 2005-05-25 2005-05-25 Condenser facility

Country Status (1)

Country Link
JP (1) JP2006329501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156686A1 (en) * 2013-03-27 2014-10-02 三菱日立パワーシステムズ株式会社 Condenser and steam-turbine plant provided therewith

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677502A (en) * 1979-11-28 1981-06-25 Toshiba Corp Turbine by-pass system
JPS5749004A (en) * 1980-09-10 1982-03-20 Hitachi Ltd In-flowing device for bypassing steam to condenser of turbine
JPS5797003A (en) * 1980-12-08 1982-06-16 Toshiba Corp By-pass system for steam turbine
JPS58210486A (en) * 1982-05-31 1983-12-07 Toshiba Corp Condenser
JPH01145905U (en) * 1988-03-30 1989-10-06
JPH0252987A (en) * 1988-08-18 1990-02-22 Toshiba Corp Condenser protecting device
JPH0498089A (en) * 1990-08-17 1992-03-30 Toshiba Corp Condenser
JPH09229573A (en) * 1996-02-20 1997-09-05 Toshiba Corp Condenser

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677502A (en) * 1979-11-28 1981-06-25 Toshiba Corp Turbine by-pass system
JPS5749004A (en) * 1980-09-10 1982-03-20 Hitachi Ltd In-flowing device for bypassing steam to condenser of turbine
JPS5797003A (en) * 1980-12-08 1982-06-16 Toshiba Corp By-pass system for steam turbine
JPS58210486A (en) * 1982-05-31 1983-12-07 Toshiba Corp Condenser
JPH01145905U (en) * 1988-03-30 1989-10-06
JPH0252987A (en) * 1988-08-18 1990-02-22 Toshiba Corp Condenser protecting device
JPH0498089A (en) * 1990-08-17 1992-03-30 Toshiba Corp Condenser
JPH09229573A (en) * 1996-02-20 1997-09-05 Toshiba Corp Condenser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156686A1 (en) * 2013-03-27 2014-10-02 三菱日立パワーシステムズ株式会社 Condenser and steam-turbine plant provided therewith
JP2014190590A (en) * 2013-03-27 2014-10-06 Mitsubishi Heavy Ind Ltd Condenser, and steam turbine plant with the same
CN104937339A (en) * 2013-03-27 2015-09-23 三菱日立电力系统株式会社 Condenser and steam-turbine plant provided therewith
EP2980474A4 (en) * 2013-03-27 2016-11-30 Mitsubishi Hitachi Power Sys Condenser and steam-turbine plant provided therewith
CN104937339B (en) * 2013-03-27 2017-07-28 三菱日立电力系统株式会社 Condenser and the steam turbine plant for possessing condenser

Similar Documents

Publication Publication Date Title
US8336311B2 (en) Low-pressure-vapor-recovery turbine generator
JP2006275452A (en) Expansion valve
US7682415B2 (en) Device for the intermediate storage of condensation water
WO2015175610A1 (en) Steam conditioning system
WO2015063854A1 (en) Expansion valve
KR20190074299A (en) Systems and methods for multi-stage refrigeration
JP2007032979A (en) Refrigerating cycle device
JP2006329501A (en) Condenser facility
EP2156094B1 (en) Blow-off tank for heat recovery steam generators
JP7188563B2 (en) cooling system
KR101923482B1 (en) Exhaust casing for a low pressure steam turbine system
JP2013257081A (en) Gas/liquid separating heat exchanger and air conditioner
JP2022505564A (en) Bypass steam introduction
JP2019020063A (en) Ejector-type refrigeration cycle
JP2008128079A (en) Moisture separator and straightening mechanism of manifold
US7089727B2 (en) Gas turbine plant with an exhaust gas chimney
RU2702346C2 (en) Steam discharge device for nuclear power plant
JP2017180143A (en) Steam valve and power generating installation
JP2005113721A (en) Steam turbine
KR20140029860A (en) Multiple stage steam dump decompression
JPH0252987A (en) Condenser protecting device
JP5901405B2 (en) Low pressure steam turbine power generator and installation method of low pressure steam turbine power generator
JP2021152355A (en) Geothermal power generation system
JP2014181685A (en) Steam turbine plant
JPH07167571A (en) Condensor of electrical power generating plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Effective date: 20100420

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817