JP2013257081A - Gas/liquid separating heat exchanger and air conditioner - Google Patents

Gas/liquid separating heat exchanger and air conditioner Download PDF

Info

Publication number
JP2013257081A
JP2013257081A JP2012133626A JP2012133626A JP2013257081A JP 2013257081 A JP2013257081 A JP 2013257081A JP 2012133626 A JP2012133626 A JP 2012133626A JP 2012133626 A JP2012133626 A JP 2012133626A JP 2013257081 A JP2013257081 A JP 2013257081A
Authority
JP
Japan
Prior art keywords
gas
heat exchanger
refrigerant
tank
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012133626A
Other languages
Japanese (ja)
Inventor
Inkan Ri
允煥 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2012133626A priority Critical patent/JP2013257081A/en
Publication of JP2013257081A publication Critical patent/JP2013257081A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas/liquid separating heat exchanger or the like that can separate wet refrigerant vapor into gas and liquid, while facilitating heat exchange between the wet refrigerant vapor and a gas-phase refrigerant, even when the gas-phase refrigerant in a tank is sucked too much.SOLUTION: A gas/liquid separating heat exchanger 5 includes a tank 10 to house a refrigerant, and a tubular member 11 which is installed in the tank 10 and in which a gas-phase refrigerant flows. The tubular member 11 has a flow-out port 12 to discharge the gas-phase refrigerant into the tank 10. The tank 10 has an inlet 13 to spray the wet refrigerant vapor and an outlet 14 of the gas-phase refrigerant in the tank 10, above the tubular member 11.

Description

本発明は、湿り蒸気冷媒と気相冷媒の熱交換と、湿り蒸気冷媒の気液分離とを行う気液分離熱交換器、及び、これを用いた空気調和装置に関する。   The present invention relates to a gas-liquid separation heat exchanger that performs heat exchange between a wet vapor refrigerant and a gas-phase refrigerant and gas-liquid separation of the wet vapor refrigerant, and an air conditioner using the same.

高い暖房性能や冷房性能を確保するために、冷媒を2段圧縮する空気調和装置が提案されている。このような2段圧縮の空気調和装置では、気液分離熱交換器(中間冷却器)が使用されている。   In order to ensure high heating performance and cooling performance, an air conditioner that compresses refrigerant in two stages has been proposed. In such a two-stage compression air conditioner, a gas-liquid separation heat exchanger (intercooler) is used.

従来の気液分離熱交換器として、特許文献1に開示されたものがある。図6に示すように、この気液分離熱交換器50のタンク51には、低圧側圧縮機(図示せず)から吐出された気相冷媒をタンク51の壁面の接線に沿って流入させる第1入口部52と、コンデンサから送り込まれる湿り蒸気冷媒をタンク51の壁面の接線に沿って流入させる第2入口部53と、タンク51内の気相冷媒がタンク51外に流出する第1出口部54と、タンク51内の液相冷媒がタンク51外に流出する第2出口部55とが形成されている。   A conventional gas-liquid separation heat exchanger is disclosed in Patent Document 1. As shown in FIG. 6, the gas-phase refrigerant discharged from the low-pressure compressor (not shown) flows into the tank 51 of the gas-liquid separation heat exchanger 50 along the tangent line of the wall surface of the tank 51. A first inlet 52, a second inlet 53 through which the wet vapor refrigerant fed from the condenser flows along the tangent to the wall surface of the tank 51, and a first outlet through which the gas-phase refrigerant in the tank 51 flows out of the tank 51. 54 and a second outlet 55 through which the liquid-phase refrigerant in the tank 51 flows out of the tank 51 is formed.

上記の気液分離熱交換器50では、タンク51内において、第1入口部52から流入させた気相冷媒と、第2入口部53から流入させた湿り蒸気冷媒とを旋回流で流れさせ、互いを熱交換させつつ、湿り蒸気冷媒の気液分離を図っている。   In the gas-liquid separation heat exchanger 50 described above, in the tank 51, the gas-phase refrigerant introduced from the first inlet 52 and the wet vapor refrigerant introduced from the second inlet 53 are caused to flow in a swirling flow. Gas-liquid separation of the wet vapor refrigerant is achieved while exchanging heat with each other.

特開平7−301467号公報JP-A-7-301467

しかしながら、前記従来の気液分離熱交換器50にあって、高圧側圧縮機がタンク51内の気相冷媒を吸引すると、低圧側圧縮機からの気相冷媒が、旋回流を形成することなくショートカットして第1出口部54から流出する恐れがある。その結果、気相冷媒がタンク51内に滞留する時間が短くなり、湿り蒸気冷媒と気相冷媒間で熱交換を促進させることができなくなる恐れがある。   However, in the conventional gas-liquid separation heat exchanger 50, when the high-pressure compressor sucks the gas-phase refrigerant in the tank 51, the gas-phase refrigerant from the low-pressure compressor does not form a swirling flow. There is a risk that the first outlet 54 may flow out as a shortcut. As a result, the time during which the gas-phase refrigerant stays in the tank 51 is shortened, and there is a possibility that heat exchange cannot be promoted between the wet vapor refrigerant and the gas-phase refrigerant.

そこで、本発明は、前記した課題を解決すべくなされたものであり、タンク内の気相冷媒を吸引しても、湿り蒸気冷媒と気相冷媒間の熱交換を促進させつつ、湿り蒸気冷媒を気液分離することが可能な気液分離熱交換器、及び、これを用いた空気調和装置を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problem, and even if the vapor phase refrigerant in the tank is sucked, the wet vapor refrigerant is promoted while promoting heat exchange between the wet vapor refrigerant and the vapor phase refrigerant. An object of the present invention is to provide a gas-liquid separation heat exchanger capable of gas-liquid separation, and an air conditioner using the same.

本発明は、冷媒を収容可能なタンクと、前記タンク内に配置され、気相冷媒が流通可能な管状部材と、を備え、前記管状部材には、前記気相冷媒を前記タンク内に流出させる流出部が設けられ、前記タンクは、前記管状部材の上部に、湿り蒸気冷媒を吹き掛ける入口部と、前記タンク内の前記気相冷媒の出口部と、を有することを特徴とする気液分離熱交換器である。   The present invention includes a tank capable of storing a refrigerant, and a tubular member disposed in the tank and capable of circulating a gas phase refrigerant, and the tubular member causes the gas phase refrigerant to flow out into the tank. An outflow part is provided, and the tank has an inlet part for spraying wet vapor refrigerant on an upper part of the tubular member, and an outlet part for the gas-phase refrigerant in the tank. It is a heat exchanger.

前記入口部は、前記湿り蒸気冷媒を噴霧状態にして吹き掛けるものであっても良い。前記タンク内には、前記湿り蒸気冷媒から気液分離した液相冷媒が貯留され、前記管状部材は、液相冷媒の液面から少なくとも一部が露出しているものであっても良い。前記管状部材は、螺旋状に形成されているものであっても良い。前記管状部材は、螺旋錐状に形成されているものであっても良い。前記管状部材は、前記タンク内に直線状に突出しているものであっても良い。   The inlet portion may be sprayed with the wet vapor refrigerant sprayed. A liquid phase refrigerant separated from the wet vapor refrigerant may be stored in the tank, and the tubular member may be at least partially exposed from the liquid surface of the liquid phase refrigerant. The tubular member may be formed in a spiral shape. The tubular member may be formed in a spiral cone shape. The tubular member may protrude linearly into the tank.

他の発明は、第1の熱交換器と、前記第1の熱交換器を通過した冷媒を減圧する高圧側減圧手段と、第2の熱交換器と、前記第2の熱交換器に送る冷媒を減圧する低圧側減圧手段と、前記高圧側減圧手段と前記低圧側減圧手段との間の冷媒流路に設けられた請求項1〜請求項6のいずれかに記載の気液分離熱交換器と、前記第2の熱交換器を通過した気相冷媒を圧縮し、当該気相冷媒を前記気液分離熱交換器に送る第1の圧縮機と、前記気液熱交換器から前記冷媒を吸引し、当該冷媒を圧縮して前記第1の熱交換器に送る第2の圧縮機とを備えたことを特徴とする空気調和装置である。   In another aspect of the invention, the first heat exchanger, the high pressure side pressure reducing means for reducing the pressure of the refrigerant that has passed through the first heat exchanger, the second heat exchanger, and the second heat exchanger are sent. The gas-liquid separation heat exchange according to any one of claims 1 to 6, provided in a refrigerant flow path between the low-pressure side decompression means for decompressing the refrigerant, and the high-pressure side decompression means and the low-pressure side decompression means. And a first compressor that compresses the gas-phase refrigerant that has passed through the second heat exchanger and sends the gas-phase refrigerant to the gas-liquid separation heat exchanger, and the refrigerant from the gas-liquid heat exchanger And a second compressor that compresses the refrigerant and sends it to the first heat exchanger.

本発明によれば、気相冷媒はタンク内に配置された管状部材内を通ってタンク内に流入するため、管状部材内を通過する時間をタンク内の滞留時間として確保され、気相冷媒と湿り蒸気冷媒間の熱交換が促進される。従って、湿り蒸気冷媒と気相冷媒間の熱交換を促進させつつ、湿り蒸気冷媒を気液分離することが可能である。   According to the present invention, since the gas-phase refrigerant flows into the tank through the tubular member disposed in the tank, the time for passing through the tubular member is secured as the residence time in the tank, Heat exchange between the wet steam refrigerant is promoted. Accordingly, it is possible to gas-liquid separate the wet vapor refrigerant while promoting heat exchange between the wet vapor refrigerant and the gas phase refrigerant.

本発明の一実施形態を示し、空気調和装置の冷凍サイクル装置の構成図である。1 shows an embodiment of the present invention and is a configuration diagram of a refrigeration cycle apparatus of an air conditioner. FIG. 本発明の一実施形態を示し、気液分離熱交換器の概略断面図である。1 is a schematic cross-sectional view of a gas-liquid separation heat exchanger according to an embodiment of the present invention. 本発明の一施形態を示し、冷凍サイクル装置のp−h線図である。1 shows an embodiment of the present invention and is a ph diagram of a refrigeration cycle apparatus. FIG. 気液分離熱交換器の第1変形例の概略断面図である。It is a schematic sectional drawing of the 1st modification of a gas-liquid separation heat exchanger. (a)は気液分離熱交換器の第2変形例の概略断面図、(b)は気液分離熱交換器の第2変形例の概略側面図である。(A) is a schematic sectional drawing of the 2nd modification of a gas-liquid separation heat exchanger, (b) is a schematic side view of the 2nd modification of a gas-liquid separation heat exchanger. 従来例の気液分離熱交換器の概略正面図である。It is a schematic front view of the gas-liquid separation heat exchanger of a prior art example.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(一実施形態)
図1及び図2は本発明の一実施形態を示す。図1において、空気調和装置である車両用空気調和装置は、蒸気圧縮式の冷凍サイクル装置1を備えている。この冷凍サイクル装置1は、圧縮機2と、第1の熱交換器である室内熱交換器3と、高圧側減圧手段である高圧側膨張弁4と、気液分離熱交換器5と、低圧側減圧手段である低圧側膨張弁6と、第2の熱交換器である室外熱交換器7と、これらの間を接続する複数の冷媒配管8a〜8fとを備えている。
(One embodiment)
1 and 2 show an embodiment of the present invention. In FIG. 1, a vehicle air conditioner that is an air conditioner includes a vapor compression refrigeration cycle apparatus 1. The refrigeration cycle apparatus 1 includes a compressor 2, an indoor heat exchanger 3 that is a first heat exchanger, a high-pressure side expansion valve 4 that is a high-pressure side decompression unit, a gas-liquid separation heat exchanger 5, and a low-pressure A low-pressure side expansion valve 6 that is a side pressure reducing means, an outdoor heat exchanger 7 that is a second heat exchanger, and a plurality of refrigerant pipes 8a to 8f that connect them.

圧縮機2は、第1の圧縮機である低圧側圧縮機2aと第2の圧縮機である高圧側圧縮機2bを備えている。各圧縮機2a,2bは、冷媒をそれぞれ圧縮する。   The compressor 2 includes a low-pressure compressor 2a that is a first compressor and a high-pressure compressor 2b that is a second compressor. Each compressor 2a, 2b compresses a refrigerant, respectively.

室内熱交換器3は、高圧側圧縮機2bで圧縮された高温高圧の冷媒と車室内に供給する空気との間で熱交換する。室内熱交換器3は、冷媒の放熱作用によって室内に供給する空気を加熱する。これにより、室内熱交換器3からは、冷媒配管8bに高圧の液相冷媒が送出される。   The indoor heat exchanger 3 exchanges heat between the high-temperature and high-pressure refrigerant compressed by the high-pressure compressor 2b and the air supplied to the vehicle interior. The indoor heat exchanger 3 heats the air supplied to the room by the heat dissipation action of the refrigerant. Thereby, a high-pressure liquid phase refrigerant is sent from the indoor heat exchanger 3 to the refrigerant pipe 8b.

高圧側膨張弁4は、室内熱交換器3を通過した高圧の液相冷媒を中間圧に減圧する。これにより、高圧側膨張弁4からは、冷媒配管8cに液相冷媒及び気相冷媒を含む湿り蒸気冷媒が送出される。   The high-pressure side expansion valve 4 reduces the high-pressure liquid-phase refrigerant that has passed through the indoor heat exchanger 3 to an intermediate pressure. Thereby, from the high pressure side expansion valve 4, the wet vapor refrigerant | coolant containing a liquid phase refrigerant | coolant and a gaseous-phase refrigerant | coolant is sent to the refrigerant | coolant piping 8c.

気液分離熱交換器5の構成は、下記に詳述する。   The configuration of the gas-liquid separation heat exchanger 5 will be described in detail below.

低圧側膨張弁6は、気液分離熱交換器5より送出される液相冷媒を低圧に減圧する。   The low pressure side expansion valve 6 depressurizes the liquid refrigerant sent from the gas-liquid separation heat exchanger 5 to a low pressure.

室外熱交換器7は、低圧側膨張弁6から送出された冷媒と車室外の空気との間で熱交換する。室外熱交換器7は、車室外の空気より冷媒が吸熱する。室外熱交換器7からは、冷媒配管8fに低圧の気相冷媒が送出される。   The outdoor heat exchanger 7 exchanges heat between the refrigerant sent from the low pressure side expansion valve 6 and the air outside the vehicle compartment. In the outdoor heat exchanger 7, the refrigerant absorbs heat from the air outside the passenger compartment. From the outdoor heat exchanger 7, a low-pressure gas-phase refrigerant is sent to the refrigerant pipe 8f.

次に、気液分離熱交換器5の構成を説明する。図2に示すように、気液分離熱交換器5は、冷媒を収容可能なタンク10を有する。タンク10内には、気相冷媒が流通可能な管状部材11が配置されている。管状部材11は、実質的に同一半径で巻回された螺旋状に形成されている。管状部材11は、タンク10内に貯留された液相冷媒の液面から少なくとも一部が露出するよう配置されている。管状部材11の一方端の開口が気相冷媒の流出部12として形成されている。管状部材11の他端側は、低圧側圧縮機2aの冷媒吐口に冷媒配管9aによって接続されている。低圧側圧縮機2aで圧縮された中間圧の気相冷媒は、管状部材11の内部を通って流出部12よりタンク10内に流出する。   Next, the configuration of the gas-liquid separation heat exchanger 5 will be described. As shown in FIG. 2, the gas-liquid separation heat exchanger 5 includes a tank 10 that can store a refrigerant. A tubular member 11 through which a gas-phase refrigerant can flow is disposed in the tank 10. The tubular member 11 is formed in a spiral shape wound with substantially the same radius. The tubular member 11 is arranged so that at least a part thereof is exposed from the liquid level of the liquid-phase refrigerant stored in the tank 10. An opening at one end of the tubular member 11 is formed as a gas-phase refrigerant outflow portion 12. The other end of the tubular member 11 is connected to a refrigerant outlet of the low-pressure compressor 2a by a refrigerant pipe 9a. The intermediate-pressure gas-phase refrigerant compressed by the low-pressure compressor 2 a passes through the inside of the tubular member 11 and flows out from the outflow portion 12 into the tank 10.

タンク10には、入口部13、第1出口部14及び第2出口部15がそれぞれ設けられている。入口部13は、管状部材11の上端より更に上方位置に設けられている。入口部13は、管状部材11に向かって開口している。入口部13には、高圧側膨張弁4の出口側の冷媒配管8cが接続されている。入口部13は、管状部材11の上部に、湿り蒸気冷媒を噴霧状態にして吹き掛ける。   The tank 10 is provided with an inlet portion 13, a first outlet portion 14, and a second outlet portion 15. The inlet portion 13 is provided at a position higher than the upper end of the tubular member 11. The inlet 13 is open toward the tubular member 11. A refrigerant pipe 8 c on the outlet side of the high pressure side expansion valve 4 is connected to the inlet portion 13. The inlet portion 13 sprays wet vapor refrigerant in an atomized state on the upper portion of the tubular member 11.

第1出口部14は、タンク10内の最上方位置に設けられている。つまり、第1出口部14は、タンク10内に貯留された液相冷媒の液面より所定距離を置いた高い位置に設けられている。第1出口部14は、高圧側圧縮機2bの冷媒吸入口に冷媒配管9bによって接続されている。タンク10内の中間圧の気相冷媒は、高圧側圧縮機2bに送出される。   The first outlet portion 14 is provided at the uppermost position in the tank 10. That is, the first outlet portion 14 is provided at a high position at a predetermined distance from the liquid level of the liquid-phase refrigerant stored in the tank 10. The first outlet portion 14 is connected to the refrigerant suction port of the high-pressure compressor 2b by a refrigerant pipe 9b. The intermediate-pressure gas-phase refrigerant in the tank 10 is sent to the high-pressure compressor 2b.

第2出口部15は、タンク10内の最下方位置、つまり、タンク10内に貯留された液相冷媒の液面より低い位置に設けられている。第2出口部15は、低圧側膨張弁6の冷媒入口に冷媒配管8dによって接続されている。タンク10内の液相冷媒は、低圧側膨張弁6に送出される。   The second outlet portion 15 is provided at the lowest position in the tank 10, that is, at a position lower than the liquid level of the liquid-phase refrigerant stored in the tank 10. The second outlet portion 15 is connected to the refrigerant inlet of the low pressure side expansion valve 6 by a refrigerant pipe 8d. The liquid phase refrigerant in the tank 10 is sent to the low pressure side expansion valve 6.

次に、上記構成の作用を気液分離熱交換器5の作用を中心に説明する。タンク10内には、低圧側圧縮機2aで圧縮された気相冷媒が管状部材11の内部を通って流出部12からタンク10内に流出すると共に、高圧側膨張弁4で減圧された液相冷媒を含む湿り蒸気冷媒が入口部13から噴霧される。噴霧状の湿り蒸気冷媒は、タンク10内にまんべんなく飛散し、管状部材11の外面に膜状に付着する。管状部材11に付着した湿り蒸気冷媒は、その自重によって管状部材11の下方に向かって滴り落ちる。従って、気相冷媒と湿り蒸気冷媒とは、タンク10内の空間内で熱交換する共に、気相冷媒が管状部材11内を通過する過程でも熱交換する。   Next, the operation of the above configuration will be described focusing on the operation of the gas-liquid separation heat exchanger 5. In the tank 10, the gas-phase refrigerant compressed by the low-pressure side compressor 2 a passes through the tubular member 11 and flows out from the outflow portion 12 into the tank 10, and the liquid phase decompressed by the high-pressure side expansion valve 4. Wet vapor refrigerant containing refrigerant is sprayed from the inlet portion 13. The sprayed wet vapor refrigerant is scattered evenly in the tank 10 and adheres to the outer surface of the tubular member 11 in a film form. The wet steam refrigerant adhering to the tubular member 11 drops down below the tubular member 11 due to its own weight. Therefore, the vapor phase refrigerant and the wet vapor refrigerant exchange heat in the space in the tank 10 and also exchange heat in the process of passing the vapor phase refrigerant through the tubular member 11.

このように気相冷媒と湿り蒸気冷媒が熱交換しつつ、湿り蒸気冷媒は比重の大きい液相冷媒がタンク10内の下方に、比重の小さいガス冷媒(気相冷媒)がタンク10内の上方に分離される。そして、タンク10内の下方に開口する第2出口部15より液相冷媒が低圧側膨張弁6に供給される。タンク10内の上方に開口する第1出口部14より中間圧の気相冷媒が高圧側圧縮機2bに供給される。高圧側圧縮機2bには、湿り蒸気冷媒との間で十分に熱交換された気相冷媒が供給される。   As described above, while the gas-phase refrigerant and the wet vapor refrigerant exchange heat, the wet vapor refrigerant has a liquid phase refrigerant having a large specific gravity below the tank 10 and a gas refrigerant having a small specific gravity (gas phase refrigerant) is above the tank 10. Separated. Then, the liquid-phase refrigerant is supplied to the low-pressure side expansion valve 6 from the second outlet portion 15 that opens downward in the tank 10. An intermediate-pressure gas-phase refrigerant is supplied to the high-pressure compressor 2b from the first outlet portion 14 that opens upward in the tank 10. The high-pressure compressor 2b is supplied with a gas-phase refrigerant that has been sufficiently heat-exchanged with the wet vapor refrigerant.

図3は、冷凍サイクル装置1のp−h特性線である。仮に、タンク10内に管状部材11を配置せずに気相冷媒をタンク10内に流入させた場合には、高圧側圧縮機2bの冷媒圧縮に対応する箇所の特性線(Bの特性)が図3にて破線で示すものとなる。本実施形態のように、管状部材11をタンク10内に配置した場合には、気相冷媒と湿り蒸気冷媒とが、上記したように、タンク10内の空間内で熱交換すると共に、気相冷媒が管状部材11内を通過する過程でも熱交換するため、高圧側圧縮機2bには過熱度が低い(飽和蒸気に近い)気相冷媒が供給される。これにより、高圧側圧縮機から吐出される冷媒は、吐出温度が低下する。従って、高圧側圧縮機2bの冷媒圧縮に対応する箇所の特性線(Aの特性)が図3にて実線で示すものとなる。これにより、高圧側圧縮機2bから吐出される冷媒の圧縮効率の向上を図ることができる。   FIG. 3 is a ph characteristic line of the refrigeration cycle apparatus 1. If the gas-phase refrigerant is allowed to flow into the tank 10 without arranging the tubular member 11 in the tank 10, the characteristic line (characteristic B) corresponding to the refrigerant compression of the high-pressure compressor 2b is This is indicated by a broken line in FIG. When the tubular member 11 is disposed in the tank 10 as in the present embodiment, the gas-phase refrigerant and the wet vapor refrigerant exchange heat in the space in the tank 10 as described above, and the gas-phase refrigerant Since the heat exchange is performed even in the process in which the refrigerant passes through the tubular member 11, the high-pressure compressor 2b is supplied with a gas-phase refrigerant having a low degree of superheat (close to saturated vapor). Thereby, the discharge temperature of the refrigerant discharged from the high-pressure compressor is lowered. Therefore, the characteristic line (characteristic A) corresponding to the refrigerant compression of the high-pressure compressor 2b is shown by a solid line in FIG. Thereby, the improvement of the compression efficiency of the refrigerant | coolant discharged from the high pressure side compressor 2b can be aimed at.

上記した気液分離熱交換器5の作用過程において、仮に、高圧側圧縮機2bによってタンク10内の気相冷媒が強く吸引されても、気相冷媒はタンク10内に配置された管状部材11内を通ってタンク10内に流入するため、管状部材11内を通過する時間をタンク10内の滞留時間として確保され、気相冷媒と湿り蒸気冷媒間の熱交換が促進される。従って、高圧側圧縮機2bによってタンク10内の気相冷媒が強く吸引されても、湿り蒸気冷媒と気相冷媒間の熱交換を促進させつつ、湿り蒸気冷媒を気液分離することが可能である。   In the operation process of the gas-liquid separation heat exchanger 5 described above, even if the gas-phase refrigerant in the tank 10 is strongly sucked by the high-pressure compressor 2b, the gas-phase refrigerant is disposed in the tubular member 11 in the tank 10. Since it flows into the tank 10 through the inside, the time for passing through the tubular member 11 is ensured as the residence time in the tank 10, and the heat exchange between the gas-phase refrigerant and the wet vapor refrigerant is promoted. Therefore, even if the gas-phase refrigerant in the tank 10 is strongly sucked by the high-pressure compressor 2b, it is possible to gas-liquid-separate the wet-vapor refrigerant while promoting heat exchange between the wet-vapor refrigerant and the gas-phase refrigerant. is there.

また、管状部材11の上部に付着した湿り蒸気冷媒中の液相冷媒が管状部材11の下部に向かって滴り落ちる過程で、液相冷媒と管状部材11内の気相冷媒とが熱交換するため、これによっても熱交換が促進される。   Further, in the process in which the liquid phase refrigerant in the wet vapor refrigerant adhering to the upper part of the tubular member 11 drops toward the lower part of the tubular member 11, the liquid phase refrigerant and the gas phase refrigerant in the tubular member 11 exchange heat. This also promotes heat exchange.

入口部13は、管状部材(11),(11A),(11B)の上部に、タンク10内に湿り蒸気冷媒を噴霧状態にして吹き掛ける。従って、液相冷媒を管状部材11の外面に膜状に付着させることができるため、液相冷媒と気相冷媒の熱交換がこの点でも促進される。   The inlet 13 sprays the wet vapor refrigerant in the tank 10 on the upper portions of the tubular members (11), (11A), (11B). Accordingly, since the liquid phase refrigerant can be attached to the outer surface of the tubular member 11 in a film shape, heat exchange between the liquid phase refrigerant and the gas phase refrigerant is also promoted in this respect.

管状部材11は、タンク10内に貯留された液相冷媒の液面から少なくとも一部が露出している。これにより、タンク10の大型化を抑制しつつ、湿り蒸気冷媒と気相冷媒の熱交換を促進させることができる。つまり、管状部材11を液相冷媒に完全に漬かるようにすると、熱交換性が向上するが、第1出口部14から液相冷媒を吸い込まない程度に液相冷媒の液面と第1出口部14の間の距離を取る必要があり、このように構成するとタンク10が大型化する。そのため、管状部材11の一部を液相冷媒に漬かるようにして熱交換を促進させ、管状部材11の他の部分を液相冷媒の液面より露出させることで、液相冷媒の液面と第1出口部14との間の所定距離を確保でき、これによりタンク10の大型化を抑制できる。   The tubular member 11 is at least partially exposed from the liquid level of the liquid-phase refrigerant stored in the tank 10. Thereby, heat exchange between the wet vapor refrigerant and the gas phase refrigerant can be promoted while suppressing an increase in size of the tank 10. That is, if the tubular member 11 is completely immersed in the liquid phase refrigerant, the heat exchange performance is improved, but the liquid level of the liquid phase refrigerant and the first outlet portion to the extent that the liquid phase refrigerant is not sucked from the first outlet portion 14. It is necessary to take a distance between 14, and the tank 10 is increased in size when configured in this way. Therefore, heat exchange is promoted by immersing a part of the tubular member 11 in the liquid phase refrigerant, and the other part of the tubular member 11 is exposed from the liquid level of the liquid phase refrigerant. A predetermined distance from the first outlet portion 14 can be ensured, thereby suppressing an increase in size of the tank 10.

管状部材11は、螺旋状に形成されている。従って、管状部材11の収容スペースを小さくしつつ管状部材11の経路を長くできるため、タンク10の小型化を図りつつ熱交換の促進を図ることができる。   The tubular member 11 is formed in a spiral shape. Therefore, since the path of the tubular member 11 can be lengthened while reducing the accommodation space for the tubular member 11, heat exchange can be promoted while reducing the size of the tank 10.

(気液分離熱交換器の第1変形例)
図4は気液分離熱交換器5Aの第1変形例を示す。図4において、この第1変形例の気液分離熱交換器5Aは、前記実施形態のものと比較するに、管状部材11Aの形態のみが相違する。つまり、管状部材11Aは、徐々に異なる半径(円錐面上)で巻回された螺旋錐状に形成されている。
(First modification of gas-liquid separation heat exchanger)
FIG. 4 shows a first modification of the gas-liquid separation heat exchanger 5A. In FIG. 4, the gas-liquid separation heat exchanger 5 </ b> A of the first modification is different only in the form of the tubular member 11 </ b> A as compared with that of the above embodiment. That is, the tubular member 11A is formed in a spiral cone shape wound with gradually different radii (on the conical surface).

他の構成は、前記実施形態のものと同一であるため、同一箇所に同一符号を付してその説明を省略する。   Since other configurations are the same as those of the above-described embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.

この第1変形例の気液分離熱交換器5Aでも、前記実施形態のものと同様の作用・効果が得られる。   Even in the gas-liquid separation heat exchanger 5A of the first modification, the same operations and effects as those of the above-described embodiment can be obtained.

管状部材11Aは、螺旋錐状に形成されている。従って、管状部材11Aの収容スペースを小さくしつつ管状部材11Aの経路を長くできるため、タンク10の小型を図りつつ熱交換の促進を図ることができる。その上、螺旋錐状であるので、管状部材11Aの上段箇所が下段箇所の真下位置に位置せずにシフトした位置に位置するため、噴霧状の湿り蒸気冷媒が管状部材11Aの各段の表面に付着し易く、この点からも熱交換の促進を図ることができる。   The tubular member 11A is formed in a spiral cone shape. Therefore, since the path of the tubular member 11A can be lengthened while reducing the accommodation space for the tubular member 11A, heat exchange can be promoted while reducing the size of the tank 10. In addition, since the upper portion of the tubular member 11A is located at a shifted position without being located directly below the lower portion, the sprayed wet vapor refrigerant is on the surface of each step of the tubular member 11A. From this point, heat exchange can be promoted.

(気液分離熱交換器の第2変形例)
図5(a)、(b)は気液分離熱交換器5Bの第2変形例を示す。図5(a)、(b)において、この第2変形例の気液分離熱交換器5Bは、前記実施形態のものと比較するに、管状部材11Bの形態のみが相違する。つまり、タンク10の外部には、冷媒配管9aからの気相冷媒を分岐する分配ヘッダ20が設けられている。そして、この分配ヘッダ20に複数の管状部材11Bが接続されている。複数の管状部材11Bは、間隔を置いてタンク10内に水平方向に沿って直線状に突出している。各管状部材11Bの先端が流出部12として形成されている。
(Second modification of gas-liquid separation heat exchanger)
5A and 5B show a second modification of the gas-liquid separation heat exchanger 5B. 5 (a) and 5 (b), the gas-liquid separation heat exchanger 5B of the second modified example is different from that of the embodiment only in the form of the tubular member 11B. That is, the distribution header 20 that branches the gas-phase refrigerant from the refrigerant pipe 9 a is provided outside the tank 10. A plurality of tubular members 11B are connected to the distribution header 20. The plurality of tubular members 11B project linearly into the tank 10 along the horizontal direction at intervals. The tip of each tubular member 11B is formed as the outflow portion 12.

他の構成は、前記実施形態のものと同一であるため、同一箇所に同一符号を付してその説明を省略する。   Since other configurations are the same as those of the above-described embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.

この第2変形例の気液分離熱交換器でも、前記実施形態のものと同様の作用・効果が得られる。   In the gas-liquid separation heat exchanger of the second modification, the same operation and effect as those of the above embodiment can be obtained.

2a 低圧側圧縮機(第1の圧縮機)
2b 高圧側圧縮機(第2の圧縮機)
3 室内熱交換器(第1の熱交換器)
4 高圧側膨張弁(高圧側減圧手段)
5,5A,5B 気液分離熱交換器
6 低圧側膨張弁(低圧側減圧手段)
7 室外熱交換器(第2の熱交換器)
10 タンク
11 管状部材
12 流出部
13 入口部
14 第1出口部(出口部)
2a Low pressure side compressor (first compressor)
2b High-pressure side compressor (second compressor)
3 Indoor heat exchanger (first heat exchanger)
4 High pressure side expansion valve (High pressure side pressure reducing means)
5, 5A, 5B Gas-liquid separation heat exchanger 6 Low pressure side expansion valve (low pressure side pressure reducing means)
7 Outdoor heat exchanger (second heat exchanger)
DESCRIPTION OF SYMBOLS 10 Tank 11 Tubular member 12 Outflow part 13 Inlet part 14 1st exit part (outlet part)

Claims (7)

冷媒を収容可能なタンク(10)と、
前記タンク(10)内に配置され、気相冷媒が流通可能な管状部材(11),(11A),(11B)と、を備え、
前記管状部材(11),(11A),(11B)には、前記気相冷媒を前記タンク(10)内に流出させる流出部(12)が設けられ、
前記タンク(10)は、
前記管状部材(11),(11A),(11B)の上部に、湿り蒸気冷媒を吹き掛ける入口部(13)と、
前記タンク(10)内の前記気相冷媒の出口部(14)と、を有することを特徴とする気液分離熱交換器(5),(5A),(5B)。
A tank (10) capable of containing a refrigerant;
Tubular members (11), (11A), (11B) disposed in the tank (10) and capable of circulating a gas-phase refrigerant,
The tubular members (11), (11A), (11B) are provided with an outflow part (12) for allowing the gas-phase refrigerant to flow out into the tank (10),
The tank (10)
An inlet (13) for spraying wet vapor refrigerant on top of the tubular members (11), (11A), (11B);
And a gas-liquid separation heat exchanger (5), (5A), (5B), comprising an outlet (14) for the gas-phase refrigerant in the tank (10).
請求項1記載の気液分離熱交換器(5),(5A),(5B)であって、
前記入口部(13)は、前記湿り蒸気冷媒を噴霧状態にして吹き掛けることを特徴とする気液分離熱交換器(5),(5A),(5B)。
The gas-liquid separation heat exchanger (5), (5A), (5B) according to claim 1,
Gas-liquid separation heat exchangers (5), (5A), (5B), wherein the inlet (13) sprays the wet vapor refrigerant in a sprayed state.
請求項1又は請求項2記載の気液分離熱交換器(5),(5A)であって、
前記タンク(10)内には、前記湿り蒸気冷媒から気液分離した液相冷媒が貯留され、
前記管状部材(11),(11A)は、前記タンク(10)内に貯留された液相冷媒の液面から少なくとも一部が露出していることを特徴とする気液分離熱交換器(5),(5A)。
The gas-liquid separation heat exchanger (5), (5A) according to claim 1 or 2,
In the tank (10), liquid phase refrigerant separated from the wet vapor refrigerant is stored,
The tubular members (11) and (11A) are at least partially exposed from the liquid level of the liquid-phase refrigerant stored in the tank (10). ), (5A).
請求項1〜請求項3のいずれかに記載の気液分離熱交換器(5)であって、
前記管状部材(11)は、螺旋状に形成されていることを特徴とする気液分離熱交換器(5)。
A gas-liquid separation heat exchanger (5) according to any one of claims 1 to 3,
The gas-liquid separation heat exchanger (5), wherein the tubular member (11) is formed in a spiral shape.
請求項1〜請求項3のいずれかに記載の気液分離熱交換器(5A)であって、
前記管状部材(11A)は、螺旋錐状に形成されていることを特徴とする気液分離熱交換器(5A)。
It is a gas-liquid separation heat exchanger (5A) in any one of Claims 1-3,
The said tubular member (11A) is formed in the shape of a spiral cone, The gas-liquid separation heat exchanger (5A) characterized by the above-mentioned.
請求項1〜請求項3のいずれかに記載の気液分離熱交換器(5B)であって、
前記管状部材(11B)は、前記タンク(10)内に直線状に突出していることを特徴とする気液分離熱交換器(5B)。
It is a gas-liquid separation heat exchanger (5B) in any one of Claims 1-3, Comprising:
The gas-liquid separation heat exchanger (5B), wherein the tubular member (11B) projects linearly into the tank (10).
第1の熱交換器(3)と、
前記第1の熱交換器(3)を通過した冷媒を減圧する高圧側減圧手段(4)と、
第2の熱交換器(7)と、
前記第2の熱交換器(7)に送る冷媒を減圧する低圧側減圧手段(6)と、
前記高圧側減圧手段(4)と前記低圧側減圧手段(6)との間の冷媒流路に設けられた請求項1〜請求項6のいずれかに記載の気液分離熱交換器(5),(5A),(5B)と、
前記第2の熱交換器(7)を通過した気相冷媒を圧縮し、当該気相冷媒を前記気液分離熱交換器(5),(5A),(5B)に送る第1の圧縮機(2a)と、
前記気液熱交換器(5),(5A),(5B)から前記冷媒を吸引し、当該冷媒を圧縮して前記第1の熱交換器(3)に送る第2の圧縮機(2b)とを備えたことを特徴とする空気調和装置。
A first heat exchanger (3);
High pressure side decompression means (4) for decompressing the refrigerant that has passed through the first heat exchanger (3);
A second heat exchanger (7);
Low pressure side decompression means (6) for decompressing the refrigerant sent to the second heat exchanger (7);
The gas-liquid separation heat exchanger (5) according to any one of claims 1 to 6, provided in a refrigerant flow path between the high-pressure side pressure reducing means (4) and the low-pressure side pressure reducing means (6). , (5A), (5B),
A first compressor that compresses the gas-phase refrigerant that has passed through the second heat exchanger (7) and sends the gas-phase refrigerant to the gas-liquid separation heat exchangers (5), (5A), and (5B). (2a) and
A second compressor (2b) that sucks the refrigerant from the gas-liquid heat exchangers (5), (5A), (5B), compresses the refrigerant, and sends it to the first heat exchanger (3). And an air conditioner.
JP2012133626A 2012-06-13 2012-06-13 Gas/liquid separating heat exchanger and air conditioner Withdrawn JP2013257081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133626A JP2013257081A (en) 2012-06-13 2012-06-13 Gas/liquid separating heat exchanger and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133626A JP2013257081A (en) 2012-06-13 2012-06-13 Gas/liquid separating heat exchanger and air conditioner

Publications (1)

Publication Number Publication Date
JP2013257081A true JP2013257081A (en) 2013-12-26

Family

ID=49953664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133626A Withdrawn JP2013257081A (en) 2012-06-13 2012-06-13 Gas/liquid separating heat exchanger and air conditioner

Country Status (1)

Country Link
JP (1) JP2013257081A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200243A (en) * 2014-04-09 2015-11-12 三井精機工業株式会社 compressor
US20170276416A1 (en) * 2016-03-25 2017-09-28 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
KR101809169B1 (en) 2016-02-22 2017-12-14 드라이스팀 주식회사 Apparatus for Heating Fluid
CN108139127A (en) * 2015-10-15 2018-06-08 开利公司 Multi-grade oil Boiling System in batches
CN115127264A (en) * 2022-07-04 2022-09-30 小米汽车科技有限公司 Gas-liquid separator, thermal management system and vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200243A (en) * 2014-04-09 2015-11-12 三井精機工業株式会社 compressor
CN108139127A (en) * 2015-10-15 2018-06-08 开利公司 Multi-grade oil Boiling System in batches
US11029065B2 (en) 2015-10-15 2021-06-08 Carrier Corporation Multi-stage oil batch boiling system
KR101809169B1 (en) 2016-02-22 2017-12-14 드라이스팀 주식회사 Apparatus for Heating Fluid
US20170276416A1 (en) * 2016-03-25 2017-09-28 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
CN107228520A (en) * 2016-03-25 2017-10-03 松下知识产权经营株式会社 Refrigerating plant
CN115127264A (en) * 2022-07-04 2022-09-30 小米汽车科技有限公司 Gas-liquid separator, thermal management system and vehicle
CN115127264B (en) * 2022-07-04 2023-11-07 小米汽车科技有限公司 Gas-liquid separator, thermal management system and vehicle

Similar Documents

Publication Publication Date Title
JP6403703B2 (en) Method and apparatus for cooling and drying compressed air
JP4404148B2 (en) Economizer
US20150159920A1 (en) Dehumidifier
JP2007046806A (en) Ejector type cycle
JP2013257081A (en) Gas/liquid separating heat exchanger and air conditioner
US10222104B2 (en) Distributor and turbo refrigerating machine and evaporator having the same
JP2020521103A (en) Heat exchanger
CN104567135A (en) Air conditioning device
KR20130059450A (en) Refrigeration circuit
JP5452367B2 (en) Gas-liquid separator and refrigeration cycle apparatus
JP2010181090A (en) Gas liquid separator and refrigerating cycle device mounted with the same
WO2014103436A1 (en) Refrigeration cycle device
JP6098951B2 (en) Heat exchanger and air conditioner
JP2010096483A (en) Gas-liquid separating device and refrigerating device including the same
EP2787314B1 (en) Double-pipe heat exchanger and air conditioner using same
JP6313090B2 (en) Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator
CN204154039U (en) Aircondition
EP4105576B1 (en) Economizer for refrigeration system and refrigeration system
CN104848615B (en) Oil eliminator
JP2010139196A (en) Heat exchanger
JP6273838B2 (en) Heat exchanger
KR20150126480A (en) Dehumidifier
JP5262916B2 (en) Heat exchanger
CN206504453U (en) Air conditioner condensation Water Sproading component
JP6601022B2 (en) Gas-liquid separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715