US20150159920A1 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
US20150159920A1
US20150159920A1 US14/565,296 US201414565296A US2015159920A1 US 20150159920 A1 US20150159920 A1 US 20150159920A1 US 201414565296 A US201414565296 A US 201414565296A US 2015159920 A1 US2015159920 A1 US 2015159920A1
Authority
US
United States
Prior art keywords
heat
exchange part
exchange
dehumidifier according
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/565,296
Inventor
Jongchul Ha
Jiwon Chang
Yeol Lee
Hyunjong KIM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, JIWON, Ha, Jongchul, KIM, Hyunjong, LEE, YEOL
Publication of US20150159920A1 publication Critical patent/US20150159920A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present disclosure relates to a dehumidifier.
  • a dehumidifier is a device in which humid air in an indoor space is suctioned into the dehumidifier to reduce humidity thereof while passing through a heat exchanger constituted by a condenser and evaporator through which a refrigerant flows, and then the dehumidified air is discharged again to the indoor space, thereby decreasing humidity in the indoor space.
  • air suctioned through a suction part is dehumidified by an evaporator and then heated while passing again through a condenser. Then, the heated air having low relative humidity is supplied into the indoor space through a discharge part.
  • the dehumidified air since the dehumidified air is discharged after passing through the condenser, the dehumidified air is heated while passing through the condenser, and thus the heated air is discharged, which may cause emotional dissatisfaction of a user.
  • Embodiments provide a dehumidifier in which dehumidified air is discharged in a cooled state to minimize emotional dissatisfaction of a user.
  • a dehumidifier includes: a main body having a suction part into which air is suctioned and a discharge part through which the air is discharged; a compressor disposed in the main body to compress a refrigerant; a second heat-exchange part that receives the compressed refrigerant from the compressor; and first and third heat-exchange parts disposed in the main body to receive the refrigerant condensed by the second heat-exchange part, wherein the air suctioned through the suction part successively passes through the first, second, and third heat-exchange parts.
  • a dehumidifier including: a suction part into which air is suctioned; a plurality of heat-exchange parts through which the air suctioned through the suction part passes; and a discharge part through which the air passing through the plurality of heat-exchange parts is discharged, wherein the plurality of heat-exchange parts include: a second heat-exchange part acting as a condenser; and first and third heat-exchange parts each of which acts as an evaporator, wherein the second heat-exchange part is disposed between the first heat-exchange part and the third heat-exchange part.
  • FIG. 1 is schematic view of an inner configuration of a dehumidifier according to a first embodiment.
  • FIG. 2 is a view of the dehumidifier according to the first embodiment.
  • FIG. 3 is a view illustrating a flow of a refrigerant when the dehumidifier is operated according to the first embodiment.
  • FIG. 4 is schematic view of an inner configuration of a dehumidifier according to a second embodiment.
  • FIG. 1 is schematic view of an inner configuration of a dehumidifier according to a first embodiment
  • FIG. 2 is a view of the dehumidifier according to the first embodiment.
  • a dehumidifier 1 may include a main body 10 defining an outer appearance thereof.
  • the main body 10 may include a suction part 102 as an inlet for suctioning air, a discharge part 104 for discharging the air, and a fan 60 for allowing the air to flow.
  • the main body 10 may further include a compressor 11 for compressing a refrigerant, a heat exchanger 20 for exchanging heat between the refrigerant flowing therethrough and the air, and an expansion device 30 for expanding the refrigerant.
  • a compressor 11 for compressing a refrigerant
  • a heat exchanger 20 for exchanging heat between the refrigerant flowing therethrough and the air
  • an expansion device 30 for expanding the refrigerant.
  • the heat exchanger 20 includes a plurality of heat-exchange parts.
  • a portion of the heat-exchange parts may act as a condenser, and the other portion of the heat-exchange parts may act as an evaporator.
  • the plurality of heat-exchange parts constituting the heat exchanger 20 may include a first heat-exchange part 21 , a second heat-exchange part 22 , and a third heat-exchange part 23 .
  • the plurality of heat-exchange parts 21 , 22 , and 23 are integrally formed to constitute one heat exchanger 20 .
  • the plurality of heat-exchange parts 21 , 22 , and 23 may be distinguished from each other according to a flow of the refrigerant.
  • the plurality of heat-exchange parts 21 , 22 , and 23 may be provided as separated modules and then be coupled to each other to constitute one heat exchanger 20 .
  • the plurality of heat-exchange parts 21 , 22 , and 23 may be provided as separated modules and then independently disposed in the main body 10 .
  • the main body 10 substantially includes three heat exchangers.
  • the plurality of heat-exchange parts 21 , 22 and 23 may be in contact with each other or spaced a predetermined distance apart from each other.
  • the second heat-exchange part 22 may be disposed between the first heat-exchange part 21 and the third heat-exchange part 23 .
  • the second heat-exchange part 22 is disposed at a downstream side of the first heat-exchange part 21 with respect to a flow of the air.
  • the third heat-exchange part 23 is disposed at a downstream side of the second heat-exchange part 22 .
  • the discharge part 104 is defined at a downstream side of the third heat-exchange part 23 .
  • the air since the first to third heat-exchange parts 21 , 22 , and 23 are disposed in series with respect to a flow direction of the air, the air successively flows through the first, second, and third heat-exchange parts 21 , 22 , and 23 and then is discharged outside the main body 10 through the discharge part 104 .
  • the fan 60 is disposed at an upstream side of the first heat-exchange part 21 in FIG. 2 , the present disclosure is not limited thereto.
  • the fan may be disposed at the downstream side of the third heat-exchange part 23 .
  • the compressor 11 may be connected to the second heat-exchange part 22 by a first tube 41 .
  • the second heat-exchange part 22 may be connected to a second tube 43 .
  • a valve 50 for controlling a flow direction of the refrigerant may be disposed in the second tube 43 .
  • the valve 50 may be a three-way valve, the present disclosure is not limited thereto.
  • a first connection tube 45 and a second connection tube 46 are connected to the valve 50 .
  • the first connection tube is connected to the first heat-exchange part 21
  • the second connection tube 46 is connected to the third heat-exchange part 23 .
  • the refrigerant may flow into one of the first heat-exchange part 21 and the third heat-exchange part 23 or may flow into each of the first heat-exchange part 21 and the third heat-exchange part 23 by the valve 50 .
  • a first expansion device 31 is disposed in the first connection tube 45
  • a second expansion device 32 is disposed in the second connection tube 45 .
  • Each of the expansion devices and 32 may be an electronic expansion valve (EEV) through which a flow rate and expansion degree of the refrigerant is controllable.
  • EEV electronic expansion valve
  • first and second connection tubes 45 and 46 are branched from the second tube 43 , and a valve may be disposed in each of the first and second connection tubes 45 and 46 .
  • the discharge tubes of the first heat-exchange part 21 and the third heat-exchange part 23 may be combined with each other and then connected to the compressor 11 .
  • the main body 10 may further include a water tank 70 for storing condensate water.
  • the water tank 70 may be separably coupled to the main body 10 .
  • the condensate water stored in the water tank 70 may be drained in a state where the water tank 70 is separated from the main body 10 .
  • FIG. 3 is a view illustrating a flow of a refrigerant when the dehumidifier is operated according to the first embodiment.
  • the refrigerant compressed in the compressor 11 is introduced into the second heat-exchange part 22 .
  • the refrigerant introduced into the second heat-exchange part 22 is condensed while flowing in the heat-exchange part 22 .
  • the second heat-exchange part 22 acts as a condenser.
  • the refrigerant discharged from the second heat-exchange part 22 may flow along the second tube 43 and divided into the first and second connection tubes 45 and 46 by the valve 50 .
  • the refrigerant flowing through the each of the connection tubes 45 and 46 is expanded by the each of the expansion devices 31 and 32 .
  • the refrigerant expanded by the each of the expansion devices 31 and 32 may be introduced into the compressor 11 after being evaporated while flowing in the first and third heat-exchange parts 21 and 23 .
  • the first and third heat-exchange parts 21 and 23 act as an evaporator in the cooling mode.
  • the expansion devices 31 and 32 may have opening degrees different from each other so that an evaporation temperature of the first heat-exchange part 21 is different from that of the third heat-exchange part 23 .
  • each of the first and third heat-exchange parts 21 and 23 may act as an evaporator.
  • each of the expansion devices 31 and 32 may be adjusted in opening degree so that the evaporation temperature of the first heat-exchange part 21 is less than that of the third heat-exchange part 23 . That is, the second expansion device 32 has an opening degree less than that of the first expansion device 31 .
  • the refrigerant expanded by the second expansion device 32 has a temperature less than that of the refrigerant expanded by the first expansion device 31
  • the refrigerant flowing into the third heat-exchange part 23 has a flow rate less than that of the refrigerant flowing into the first heat-exchange part 21 .
  • the evaporation temperature of the third heat-exchange part 23 is less than that of the first heat-exchange part 21 .
  • the air blown by the fan 60 is dehumidified while passing through the first heat-exchange part 21 , and then is heated while passing through the second heat-exchange part 22 . Then, the heated air is cooled while the passing through the third heat-exchange part 23 .
  • the dehumidified air is cooled and discharged from the main body 10 through the discharge part 104 , the user may feel less unpleasant to minimize emotional dissatisfaction.
  • the evaporation temperature of the third heat-exchange part may be below zero.
  • energy efficiency may be improved through ice storage effects, and also cooling effects may be obtained.
  • an operation mode of the dehumidifier includes a first mode in which air cooled by the third heat-exchange part is discharged and a second mode in which air that is not cooled by the third heat-exchange part is discharged.
  • the first or second mode may be selected by the user.
  • the valve may be controlled to allow the refrigerant to flow only into the first connection tube.
  • FIG. 4 is schematic view of an inner configuration of a dehumidifier according to a second embodiment.
  • the current embodiment is the same as the first embodiment except for the heat exchanger. Thus, only specific portions of the current embodiment will be described below.
  • a heat exchanger may include first, second, and third heat-exchange parts 21 , 22 , and 23 .
  • the first to third heat-exchange parts 21 , 22 , and 23 may have the same function as those of the first embodiment, except for positions thereof.
  • the second and third heat-exchange parts 22 and 23 may be disposed at a downstream side of the first heat-exchange part 21 . At least one portion of the third heat-exchange part 23 may be disposed above the second heat-exchange part 22 .
  • the at least one portion of the third heat-exchange part 23 may vertically overlap the second heat-exchange part 22 in FIG. 4 .
  • At least one other portion of the third heat-exchange part 23 may be disposed at a downstream side of the second heat-exchange part 22 . That is, the at least one other portion of the third heat-exchange part 23 may horizontally overlap the second heat-exchange part 22 in FIG. 4 .
  • the condensate water generated in the third heat-exchange part while the third heat-exchange part 23 acts as an evaporator flows down into the second heat-exchange part 22 , and thus the second heat-exchange part 22 acting as the condenser may be improved in condensation performance.
  • the valve controls the flow of the refrigerant in the above embodiments
  • the valve may be omitted.
  • the first and second expansion device may control the flow rate of the refrigerant. That is, in the first mode, each of the expansion devices may be controlled to have an opening degree of 0° or more, although it should be understood that both expansion devices would not have an opening degree of during normal operation of the dehumidifier. In the second mode, the second expansion device may be controlled to have an opening degree of 0°.

Abstract

A dehumidifier is provided. The dehumidifier includes a main body having a suction part into which air is suctioned, the main body having a discharge part through which the air is discharged, a compressor disposed in the main body to compress a refrigerant, a second heat-exchange part receiving the compressed refrigerant from the compressor, and first and third heat-exchange parts disposed in the main body to receive the refrigerant condensed by the second heat-exchange part. The air suctioned through the suction part successively passes through the first, second, and third heat-exchange parts.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority under 35 U.S.C. 119 to Korean Patent Application No. 10-2013-0153032, filed on Dec. 10, 2013, which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • The present disclosure relates to a dehumidifier.
  • In general, a dehumidifier is a device in which humid air in an indoor space is suctioned into the dehumidifier to reduce humidity thereof while passing through a heat exchanger constituted by a condenser and evaporator through which a refrigerant flows, and then the dehumidified air is discharged again to the indoor space, thereby decreasing humidity in the indoor space.
  • One such dehumidifier is disclosed in Korean Patent Publication No. 2008-0076658.
  • According to the dehumidifier, air suctioned through a suction part is dehumidified by an evaporator and then heated while passing again through a condenser. Then, the heated air having low relative humidity is supplied into the indoor space through a discharge part.
  • However, according to the dehumidifier disclosed in the above-mentioned document, since the dehumidified air is discharged after passing through the condenser, the dehumidified air is heated while passing through the condenser, and thus the heated air is discharged, which may cause emotional dissatisfaction of a user.
  • SUMMARY
  • Embodiments provide a dehumidifier in which dehumidified air is discharged in a cooled state to minimize emotional dissatisfaction of a user.
  • In one embodiment, a dehumidifier includes: a main body having a suction part into which air is suctioned and a discharge part through which the air is discharged; a compressor disposed in the main body to compress a refrigerant; a second heat-exchange part that receives the compressed refrigerant from the compressor; and first and third heat-exchange parts disposed in the main body to receive the refrigerant condensed by the second heat-exchange part, wherein the air suctioned through the suction part successively passes through the first, second, and third heat-exchange parts.
  • In another embodiment, a dehumidifier including: a suction part into which air is suctioned; a plurality of heat-exchange parts through which the air suctioned through the suction part passes; and a discharge part through which the air passing through the plurality of heat-exchange parts is discharged, wherein the plurality of heat-exchange parts include: a second heat-exchange part acting as a condenser; and first and third heat-exchange parts each of which acts as an evaporator, wherein the second heat-exchange part is disposed between the first heat-exchange part and the third heat-exchange part.
  • The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is schematic view of an inner configuration of a dehumidifier according to a first embodiment.
  • FIG. 2 is a view of the dehumidifier according to the first embodiment.
  • FIG. 3 is a view illustrating a flow of a refrigerant when the dehumidifier is operated according to the first embodiment.
  • FIG. 4 is schematic view of an inner configuration of a dehumidifier according to a second embodiment.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings.
  • In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense.
  • Also, in the description of embodiments, terms such as first, second, A, B, (a), (b) or the like may be used herein when describing components of the present invention. Each of these terminologies is not used to define an essence, order or sequence of a corresponding component but used merely to distinguish the corresponding component from other component(s). It should be noted that if it is described in the specification that one component is “connected,” “coupled” or “joined” to another component, the former may be directly “connected,” “coupled,” and “joined” to the latter or “connected”, “coupled”, and “joined” to the latter via another component.
  • FIG. 1 is schematic view of an inner configuration of a dehumidifier according to a first embodiment, and FIG. 2 is a view of the dehumidifier according to the first embodiment.
  • Referring to FIGS. 1 and 2, a dehumidifier 1 according to a first embodiment may include a main body 10 defining an outer appearance thereof.
  • The main body 10 may include a suction part 102 as an inlet for suctioning air, a discharge part 104 for discharging the air, and a fan 60 for allowing the air to flow.
  • Also, the main body 10 may further include a compressor 11 for compressing a refrigerant, a heat exchanger 20 for exchanging heat between the refrigerant flowing therethrough and the air, and an expansion device 30 for expanding the refrigerant.
  • In the present disclosure, the heat exchanger 20 includes a plurality of heat-exchange parts. Here, a portion of the heat-exchange parts may act as a condenser, and the other portion of the heat-exchange parts may act as an evaporator.
  • The plurality of heat-exchange parts constituting the heat exchanger 20 may include a first heat-exchange part 21, a second heat-exchange part 22, and a third heat-exchange part 23. In the current embodiment, the plurality of heat- exchange parts 21, 22, and 23 are integrally formed to constitute one heat exchanger 20. Here, the plurality of heat- exchange parts 21, 22, and 23 may be distinguished from each other according to a flow of the refrigerant.
  • Alternatively, the plurality of heat- exchange parts 21, 22, and 23 may be provided as separated modules and then be coupled to each other to constitute one heat exchanger 20. Alternatively, the plurality of heat- exchange parts 21, 22, and 23 may be provided as separated modules and then independently disposed in the main body 10. In this case, it may be understood that the main body 10 substantially includes three heat exchangers. Also, the plurality of heat- exchange parts 21, 22 and 23 may be in contact with each other or spaced a predetermined distance apart from each other.
  • The second heat-exchange part 22 may be disposed between the first heat-exchange part 21 and the third heat-exchange part 23. The second heat-exchange part 22 is disposed at a downstream side of the first heat-exchange part 21 with respect to a flow of the air. Also, the third heat-exchange part 23 is disposed at a downstream side of the second heat-exchange part 22. Also, the discharge part 104 is defined at a downstream side of the third heat-exchange part 23. That is, since the first to third heat- exchange parts 21, 22, and 23 are disposed in series with respect to a flow direction of the air, the air successively flows through the first, second, and third heat- exchange parts 21, 22, and 23 and then is discharged outside the main body 10 through the discharge part 104.
  • For example, although the fan 60 is disposed at an upstream side of the first heat-exchange part 21 in FIG. 2, the present disclosure is not limited thereto. For example, the fan may be disposed at the downstream side of the third heat-exchange part 23.
  • The compressor 11 may be connected to the second heat-exchange part 22 by a first tube 41. The second heat-exchange part 22 may be connected to a second tube 43. A valve 50 for controlling a flow direction of the refrigerant may be disposed in the second tube 43. Although the valve 50 may be a three-way valve, the present disclosure is not limited thereto.
  • A first connection tube 45 and a second connection tube 46 are connected to the valve 50. The first connection tube is connected to the first heat-exchange part 21, and the second connection tube 46 is connected to the third heat-exchange part 23. Thus, the refrigerant may flow into one of the first heat-exchange part 21 and the third heat-exchange part 23 or may flow into each of the first heat-exchange part 21 and the third heat-exchange part 23 by the valve 50.
  • A first expansion device 31 is disposed in the first connection tube 45, and a second expansion device 32 is disposed in the second connection tube 45. Each of the expansion devices and 32 may be an electronic expansion valve (EEV) through which a flow rate and expansion degree of the refrigerant is controllable.
  • Alternatively, the first and second connection tubes 45 and 46 are branched from the second tube 43, and a valve may be disposed in each of the first and second connection tubes 45 and 46.
  • The discharge tubes of the first heat-exchange part 21 and the third heat-exchange part 23 may be combined with each other and then connected to the compressor 11.
  • Also, the main body 10 may further include a water tank 70 for storing condensate water. The water tank 70 may be separably coupled to the main body 10. The condensate water stored in the water tank 70 may be drained in a state where the water tank 70 is separated from the main body 10.
  • Hereinafter, an operation of the dehumidifier according to the current embodiment will be described.
  • FIG. 3 is a view illustrating a flow of a refrigerant when the dehumidifier is operated according to the first embodiment.
  • Referring to FIG. 3, when the dehumidifier 1 operates, the refrigerant compressed in the compressor 11 is introduced into the second heat-exchange part 22. The refrigerant introduced into the second heat-exchange part 22 is condensed while flowing in the heat-exchange part 22. Thus, the second heat-exchange part 22 acts as a condenser. The refrigerant discharged from the second heat-exchange part 22 may flow along the second tube 43 and divided into the first and second connection tubes 45 and 46 by the valve 50.
  • Also, the refrigerant flowing through the each of the connection tubes 45 and 46 is expanded by the each of the expansion devices 31 and 32. Also, the refrigerant expanded by the each of the expansion devices 31 and 32 may be introduced into the compressor 11 after being evaporated while flowing in the first and third heat- exchange parts 21 and 23. Thus, the first and third heat- exchange parts 21 and 23 act as an evaporator in the cooling mode.
  • Here, the expansion devices 31 and 32 may have opening degrees different from each other so that an evaporation temperature of the first heat-exchange part 21 is different from that of the third heat-exchange part 23. Here, each of the first and third heat- exchange parts 21 and 23 may act as an evaporator.
  • In detail, each of the expansion devices 31 and 32 may be adjusted in opening degree so that the evaporation temperature of the first heat-exchange part 21 is less than that of the third heat-exchange part 23. That is, the second expansion device 32 has an opening degree less than that of the first expansion device 31. Thus, the refrigerant expanded by the second expansion device 32 has a temperature less than that of the refrigerant expanded by the first expansion device 31, and also the refrigerant flowing into the third heat-exchange part 23 has a flow rate less than that of the refrigerant flowing into the first heat-exchange part 21. Thus, the evaporation temperature of the third heat-exchange part 23 is less than that of the first heat-exchange part 21.
  • Therefore, the air blown by the fan 60 is dehumidified while passing through the first heat-exchange part 21, and then is heated while passing through the second heat-exchange part 22. Then, the heated air is cooled while the passing through the third heat-exchange part 23. Thus, since the dehumidified air is cooled and discharged from the main body 10 through the discharge part 104, the user may feel less unpleasant to minimize emotional dissatisfaction.
  • Here, the evaporation temperature of the third heat-exchange part may be below zero. In this case, energy efficiency may be improved through ice storage effects, and also cooling effects may be obtained.
  • In this specification, since it is desired by the user to discharge high-temperature air from the dehumidifier as necessary, the user may select a temperature of the air discharged from the dehumidifier. That is, an operation mode of the dehumidifier includes a first mode in which air cooled by the third heat-exchange part is discharged and a second mode in which air that is not cooled by the third heat-exchange part is discharged. The first or second mode may be selected by the user. Here, when the second mode is selected, the valve may be controlled to allow the refrigerant to flow only into the first connection tube.
  • FIG. 4 is schematic view of an inner configuration of a dehumidifier according to a second embodiment.
  • The current embodiment is the same as the first embodiment except for the heat exchanger. Thus, only specific portions of the current embodiment will be described below.
  • Referring to FIG. 4, a heat exchanger according to a second embodiment may include first, second, and third heat- exchange parts 21, 22, and 23.
  • In the current embodiment, the first to third heat- exchange parts 21, 22, and 23 may have the same function as those of the first embodiment, except for positions thereof.
  • In detail, the second and third heat- exchange parts 22 and 23 may be disposed at a downstream side of the first heat-exchange part 21. At least one portion of the third heat-exchange part 23 may be disposed above the second heat-exchange part 22.
  • Here, the at least one portion of the third heat-exchange part 23 may vertically overlap the second heat-exchange part 22 in FIG. 4.
  • Also, at least one other portion of the third heat-exchange part 23 may be disposed at a downstream side of the second heat-exchange part 22. That is, the at least one other portion of the third heat-exchange part 23 may horizontally overlap the second heat-exchange part 22 in FIG. 4.
  • Thus, according to the current embodiment, the condensate water generated in the third heat-exchange part while the third heat-exchange part 23 acts as an evaporator flows down into the second heat-exchange part 22, and thus the second heat-exchange part 22 acting as the condenser may be improved in condensation performance.
  • Although the valve controls the flow of the refrigerant in the above embodiments, the valve may be omitted. In this case, the first and second expansion device may control the flow rate of the refrigerant. That is, in the first mode, each of the expansion devices may be controlled to have an opening degree of 0° or more, although it should be understood that both expansion devices would not have an opening degree of during normal operation of the dehumidifier. In the second mode, the second expansion device may be controlled to have an opening degree of 0°.
  • Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims (20)

What is claimed is:
1. A dehumidifier comprising:
a main body having an inlet part through which air enters the main body, and a discharge part through which air is discharged out of the main body;
a compressor located in the main body to compress a refrigerant;
a second heat-exchange part located in the main body and configured to receive compressed refrigerant from the compressor; and
a first heat-exchange part and a third heat-exchange part located in the main body and configured to receive refrigerant condensed by the second heat-exchange part,
wherein air entering the main body through the inlet part successively passes in order through the first heat-exchange part, the second heat-exchange part, and the third heat-exchange part.
2. The dehumidifier according to claim 1, wherein the first heat-exchange part is connected to the third heat-exchange part in parallel.
3. The dehumidifier according to claim 2, further comprising:
a first expansion device to expand refrigerant to be supplied into the first heat-exchange part; and
a second expansion device to expand refrigerant to be supplied into the third heat-exchange part.
4. The dehumidifier according to claim 3, further comprising a valve to control a flow of refrigerant condensed in the second heat-exchange part,
wherein the valve is configured to selectively direct refrigerant discharged from the second heat-exchange part into both the first and second heat-exchange parts at the same time, or into only the first heat-exchange part.
5. The dehumidifier according to claim 3, wherein each of the first and second expansion devices is configured to control an opening degree thereof to selectively direct refrigerant condensed in the second heat-exchange part into both the first and third heat-exchange parts at the same time, or into only the first heat-exchange part.
6. The dehumidifier according to claim 3, wherein the first and second expansion devices are configured to be controlled independently in opening degree so that an evaporation temperature of the first heat-exchange part is different from an evaporation temperature of the third heat-exchange part.
7. The dehumidifier according to claim 6, wherein the second expansion device has an opening degree less than an opening degree of the first expansion device.
8. The dehumidifier according to claim 1, wherein at least one portion of the third heat-exchange part vertically overlaps the second heat-exchange part.
9. The dehumidifier according to claim 8, wherein the at least one portion of the third heat-exchange part is located above a top side of the second heat-exchange part.
10. The dehumidifier according to claim 9, wherein the at least one portion of the third heat-exchange part is located directly beside the first heat-exchange part.
11. A dehumidifier comprising:
an inlet part into which air is introduced;
a plurality of heat-exchange parts through which air introduced through the inlet part passes; and
a discharge part through which air passing through the plurality of heat-exchange parts is discharged,
wherein the plurality of heat-exchange parts comprise:
a first heat-exchange part acting as an evaporator;
a second heat-exchange part acting as a condenser; and
a third heat-exchange part acting as an evaporator,
wherein the second heat-exchange part is disposed between the first heat-exchange part and the third heat-exchange part.
12. The dehumidifier according to claim 11, wherein refrigerant discharged from the second heat-exchange part is divided to flow into the first heat-exchange part and the third heat-exchange part.
13. The dehumidifier according to claim 12, further comprising:
a first expansion device to expand refrigerant flowing into the first heat-exchange part; and
a second expansion device to expand refrigerant flowing into the third heat-exchange part.
14. The dehumidifier according to claim 13, wherein the third heat-exchange part is disposed at a downstream side of the first heat-exchange part.
15. The dehumidifier according to claim 14, wherein the first and second expansion devices are configured to be controlled independently in opening degree so that an evaporation temperature of the first heat-exchange part is different from an evaporation temperature of the third heat-exchange part.
16. The dehumidifier according to claim 15, wherein the second expansion device has an opening degree less than an opening degree of the first expansion device.
17. The dehumidifier according to claim 11, further comprising a compressor to compress a refrigerant for delivery to the second heat-exchange part.
18. The dehumidifier according to claim 11, further comprising a fan configured to produce a flow of air that successively passes in order through the inlet part, the first heat-exchange part, the second heat-exchange part, the third heat-exchange part, and the discharge part.
19. The dehumidifier according to claim 11, wherein at least one portion of the third heat-exchange part vertically overlaps the second heat-exchange part.
20. The dehumidifier according to claim 19, wherein the at least one portion of the third heat-exchange part is located directly beside the first heat-exchange part and above a top side of the second heat-exchange part.
US14/565,296 2013-12-10 2014-12-09 Dehumidifier Abandoned US20150159920A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0153032 2013-12-10
KR1020130153032A KR102194676B1 (en) 2013-12-10 2013-12-10 Dehumidifier

Publications (1)

Publication Number Publication Date
US20150159920A1 true US20150159920A1 (en) 2015-06-11

Family

ID=53270779

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/565,296 Abandoned US20150159920A1 (en) 2013-12-10 2014-12-09 Dehumidifier

Country Status (4)

Country Link
US (1) US20150159920A1 (en)
KR (1) KR102194676B1 (en)
CN (1) CN104697047A (en)
WO (1) WO2015088225A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169638A1 (en) * 2017-03-16 2018-09-20 Therma Stor Llc Dehumidifier
US10845069B2 (en) 2017-03-16 2020-11-24 Therma-Stor LLC Dehumidifier with multi-circuited evaporator and secondary condenser coils
US10921002B2 (en) 2017-03-16 2021-02-16 Therma-Stor LLC Dehumidifier with secondary evaporator and condenser coils in a single coil pack
US10955148B2 (en) 2017-03-16 2021-03-23 Therma-Stor, Llc Split dehumidification system with secondary evaporator and condenser coils
EP3879209A1 (en) * 2020-03-13 2021-09-15 Air Supplies Holland B.V. Climate control unit and system comprising the same
US11262112B2 (en) 2019-12-02 2022-03-01 Johnson Controls Technology Company Condenser coil arrangement
WO2022264375A1 (en) * 2021-06-17 2022-12-22 三菱電機株式会社 Dehumidifying device
US11573015B2 (en) 2017-03-16 2023-02-07 Therma-Stor LLC Split dehumidification system with secondary evaporator and condenser coils
US11573016B2 (en) 2017-03-16 2023-02-07 Therma-Stor LLC Water cooled dehumidification system
US11668476B2 (en) 2017-03-16 2023-06-06 Therma-Stor LLC Heat modulation dehumidification system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102436120B1 (en) * 2015-07-09 2022-08-26 코웨이 주식회사 Dehumidifier for lowering temperature of output air
CN106288474A (en) * 2016-10-21 2017-01-04 Tcl德龙家用电器(中山)有限公司 Mobile air-conditioner assembly, mobile air-conditioner and control method
WO2018154836A1 (en) * 2017-02-23 2018-08-30 三菱電機株式会社 Dehumidifier
CN110486860A (en) * 2019-08-20 2019-11-22 宁波瑞丰模具科技有限公司 A kind of pre-cooler dehumidifier

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607498A (en) * 1984-05-25 1986-08-26 Dinh Company, Inc. High efficiency air-conditioner/dehumidifier
US5400607A (en) * 1993-07-06 1995-03-28 Cayce; James L. System and method for high-efficiency air cooling and dehumidification
US6338254B1 (en) * 1999-12-01 2002-01-15 Altech Controls Corporation Refrigeration sub-cooler and air conditioning dehumidifier
US20020029583A1 (en) * 2000-09-08 2002-03-14 Chung Moon Kee Small air conditioner and dehumidifying device by using the same
US6427461B1 (en) * 2000-05-08 2002-08-06 Lennox Industries Inc. Space conditioning system with outdoor air and refrigerant heat control of dehumidification of an enclosed space
US6442951B1 (en) * 1998-06-30 2002-09-03 Ebara Corporation Heat exchanger, heat pump, dehumidifier, and dehumidifying method
US20030121276A1 (en) * 1999-08-31 2003-07-03 Kensaku Maeda Heat pump and dehumidifier
US6658874B1 (en) * 1999-04-12 2003-12-09 Richard W. Trent Advanced, energy efficient air conditioning, dehumidification and reheat method and apparatus
JP2004012071A (en) * 2002-06-10 2004-01-15 Ebara Corp Heat pump and dehumidifying air conditioner
US20050198976A1 (en) * 2004-03-15 2005-09-15 John J. Sheridan & Associates, Inc. System for the dehumification of air
US20060010908A1 (en) * 2004-07-15 2006-01-19 Taras Michael F Refrigerant systems with reheat and economizer
KR100572917B1 (en) * 2005-01-13 2006-04-24 한국공조기술개발(주) Dehumidification and freezing circuit saving power having double cooling construction
US20060196195A1 (en) * 2003-03-10 2006-09-07 Shuji Ikegami Humidity control device
US20070012060A1 (en) * 2005-07-13 2007-01-18 Everett Simons Refrigeration cycle dehumidifier
US7194870B1 (en) * 2005-11-16 2007-03-27 Bou-Matic Technologies Llc High performance dehumidifier
US7246503B1 (en) * 2005-11-16 2007-07-24 Bou-Matic Technologies Llc Enhanced drying dehumidifier
US7281389B1 (en) * 2005-11-16 2007-10-16 Bou-Matic Technologies Llc Enhanced performance dehumidifier
US20080083230A1 (en) * 2006-10-06 2008-04-10 Richard Giallombardo Apparatus and method for enhanced dehumidification
US20090205354A1 (en) * 2008-02-20 2009-08-20 Applied Comfort Products Inc. Frosting dehumidifier with enhanced defrost
US20100212334A1 (en) * 2005-11-16 2010-08-26 Technologies Holdings Corp. Enhanced Performance Dehumidification Apparatus, System and Method
US20100275630A1 (en) * 2005-11-16 2010-11-04 Technologies Holdings Corp. Defrost Bypass Dehumidifier
US7845185B2 (en) * 2004-12-29 2010-12-07 York International Corporation Method and apparatus for dehumidification
US20100326103A1 (en) * 2009-06-24 2010-12-30 Karcher North America, Inc. Dehumidifier for Use in Water Damage Restoration
US20130067939A1 (en) * 2011-09-15 2013-03-21 Khanh Dinh Dehumidifier dryer using ambient heat enhancement
US20150000322A1 (en) * 2012-03-22 2015-01-01 Parker Hannifin Manufacturing S.R.L. Apparatus for dehumidification of an air flow, preferably a compressed air flow

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233968A (en) * 1994-02-22 1995-09-05 Sony Corp Air conditioner system
KR20000073049A (en) * 1999-05-04 2000-12-05 구자홍 Dehumidifier
JP2001090990A (en) * 1999-09-20 2001-04-03 Chikayoshi Sato Dehumidifier
JP2004245537A (en) * 2003-02-17 2004-09-02 Hitachi Ltd Dehumidifying drying device
JP2005133976A (en) * 2003-10-28 2005-05-26 Hitachi Ltd Air-conditioner
KR100565510B1 (en) * 2003-11-24 2006-03-30 엘지전자 주식회사 A dehumidifier
JP5113664B2 (en) * 2008-08-04 2013-01-09 カルソニックカンセイ株式会社 Air conditioning system
JP2010243003A (en) * 2009-04-02 2010-10-28 Daikin Ind Ltd Dehumidification system
KR102139084B1 (en) * 2013-08-06 2020-07-29 엘지전자 주식회사 Air conditioner

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607498A (en) * 1984-05-25 1986-08-26 Dinh Company, Inc. High efficiency air-conditioner/dehumidifier
US5400607A (en) * 1993-07-06 1995-03-28 Cayce; James L. System and method for high-efficiency air cooling and dehumidification
US6442951B1 (en) * 1998-06-30 2002-09-03 Ebara Corporation Heat exchanger, heat pump, dehumidifier, and dehumidifying method
US6658874B1 (en) * 1999-04-12 2003-12-09 Richard W. Trent Advanced, energy efficient air conditioning, dehumidification and reheat method and apparatus
US20030121276A1 (en) * 1999-08-31 2003-07-03 Kensaku Maeda Heat pump and dehumidifier
US6338254B1 (en) * 1999-12-01 2002-01-15 Altech Controls Corporation Refrigeration sub-cooler and air conditioning dehumidifier
US6427461B1 (en) * 2000-05-08 2002-08-06 Lennox Industries Inc. Space conditioning system with outdoor air and refrigerant heat control of dehumidification of an enclosed space
US20020029583A1 (en) * 2000-09-08 2002-03-14 Chung Moon Kee Small air conditioner and dehumidifying device by using the same
JP2004012071A (en) * 2002-06-10 2004-01-15 Ebara Corp Heat pump and dehumidifying air conditioner
US20060196195A1 (en) * 2003-03-10 2006-09-07 Shuji Ikegami Humidity control device
US20050198976A1 (en) * 2004-03-15 2005-09-15 John J. Sheridan & Associates, Inc. System for the dehumification of air
US7059151B2 (en) * 2004-07-15 2006-06-13 Carrier Corporation Refrigerant systems with reheat and economizer
US20060010908A1 (en) * 2004-07-15 2006-01-19 Taras Michael F Refrigerant systems with reheat and economizer
US7845185B2 (en) * 2004-12-29 2010-12-07 York International Corporation Method and apparatus for dehumidification
KR100572917B1 (en) * 2005-01-13 2006-04-24 한국공조기술개발(주) Dehumidification and freezing circuit saving power having double cooling construction
US20070012060A1 (en) * 2005-07-13 2007-01-18 Everett Simons Refrigeration cycle dehumidifier
US20100275630A1 (en) * 2005-11-16 2010-11-04 Technologies Holdings Corp. Defrost Bypass Dehumidifier
US7281389B1 (en) * 2005-11-16 2007-10-16 Bou-Matic Technologies Llc Enhanced performance dehumidifier
US20100212334A1 (en) * 2005-11-16 2010-08-26 Technologies Holdings Corp. Enhanced Performance Dehumidification Apparatus, System and Method
US7246503B1 (en) * 2005-11-16 2007-07-24 Bou-Matic Technologies Llc Enhanced drying dehumidifier
US7194870B1 (en) * 2005-11-16 2007-03-27 Bou-Matic Technologies Llc High performance dehumidifier
US20080083230A1 (en) * 2006-10-06 2008-04-10 Richard Giallombardo Apparatus and method for enhanced dehumidification
US20090205354A1 (en) * 2008-02-20 2009-08-20 Applied Comfort Products Inc. Frosting dehumidifier with enhanced defrost
US20100326103A1 (en) * 2009-06-24 2010-12-30 Karcher North America, Inc. Dehumidifier for Use in Water Damage Restoration
US20130067939A1 (en) * 2011-09-15 2013-03-21 Khanh Dinh Dehumidifier dryer using ambient heat enhancement
US20150000322A1 (en) * 2012-03-22 2015-01-01 Parker Hannifin Manufacturing S.R.L. Apparatus for dehumidification of an air flow, preferably a compressed air flow

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11530823B2 (en) 2017-03-16 2022-12-20 Therma-Stor LLC Split dehumidification system with secondary evaporator and condenser coils
US11371725B2 (en) 2017-03-16 2022-06-28 Therma-Stor LLC Dehumidifier with multi-circuited evaporator and secondary condenser coils
US10845069B2 (en) 2017-03-16 2020-11-24 Therma-Stor LLC Dehumidifier with multi-circuited evaporator and secondary condenser coils
US10921002B2 (en) 2017-03-16 2021-02-16 Therma-Stor LLC Dehumidifier with secondary evaporator and condenser coils in a single coil pack
US10955148B2 (en) 2017-03-16 2021-03-23 Therma-Stor, Llc Split dehumidification system with secondary evaporator and condenser coils
US11668476B2 (en) 2017-03-16 2023-06-06 Therma-Stor LLC Heat modulation dehumidification system
US10168058B2 (en) 2017-03-16 2019-01-01 Therma-Stor LLC Dehumidifier with secondary evaporator and condenser coils
US11573016B2 (en) 2017-03-16 2023-02-07 Therma-Stor LLC Water cooled dehumidification system
US11573015B2 (en) 2017-03-16 2023-02-07 Therma-Stor LLC Split dehumidification system with secondary evaporator and condenser coils
WO2018169638A1 (en) * 2017-03-16 2018-09-20 Therma Stor Llc Dehumidifier
US11262112B2 (en) 2019-12-02 2022-03-01 Johnson Controls Technology Company Condenser coil arrangement
NL2025130B1 (en) * 2020-03-13 2021-10-19 Air Supplies Holland B V Climate control unit and system comprising the same
EP3879209A1 (en) * 2020-03-13 2021-09-15 Air Supplies Holland B.V. Climate control unit and system comprising the same
US11959680B2 (en) 2020-03-13 2024-04-16 Air Supplies Holland B.V. Climate control unit for controlling air temperature and humidity and system comprising the same
WO2022264375A1 (en) * 2021-06-17 2022-12-22 三菱電機株式会社 Dehumidifying device

Also Published As

Publication number Publication date
KR102194676B1 (en) 2020-12-24
WO2015088225A1 (en) 2015-06-18
KR20150067526A (en) 2015-06-18
CN104697047A (en) 2015-06-10

Similar Documents

Publication Publication Date Title
US20150159920A1 (en) Dehumidifier
CN104567135B (en) Air-conditioning device
JP4604909B2 (en) Ejector type cycle
US9599379B2 (en) Integral air conditioning system for heating and cooling
CN109328287B (en) Refrigeration cycle device
JP4864109B2 (en) Air conditioning apparatus and control method thereof
EP2835589B1 (en) Air conditioner
US20130219927A1 (en) Air conditioner and control method thereof
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
KR102200379B1 (en) Dehumidifier
US10920760B2 (en) Air compressor having an oil separator, an oil cooler, first and second evaporators, and wherein intake air and the oil are simultaneously cooled in the first and second evaporators
US9644881B2 (en) Refrigeration device for container
US10317113B2 (en) Air conditioner
US10465948B2 (en) Air conditioner
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
US20130105118A1 (en) Air conditioner
ES2763828T3 (en) Simultaneous heating and cooling type multiple air conditioner, and control procedure thereof
JP2009133613A (en) Air conditioner
US20150114023A1 (en) Heat pump system
KR20180005429A (en) Dehumidifier having evaporative cooling function
KR102136874B1 (en) Air conditioner
CN115989387A (en) Air conditioner
KR100710057B1 (en) Cooling system for air-conditioner
KR20190059565A (en) An air conditioner and a method for controlling the same
JP2015078799A (en) Air-conditioning system

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HA, JONGCHUL;CHANG, JIWON;LEE, YEOL;AND OTHERS;REEL/FRAME:034467/0685

Effective date: 20141202

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION