JP2006329209A - Variable valve timing device - Google Patents

Variable valve timing device Download PDF

Info

Publication number
JP2006329209A
JP2006329209A JP2006252268A JP2006252268A JP2006329209A JP 2006329209 A JP2006329209 A JP 2006329209A JP 2006252268 A JP2006252268 A JP 2006252268A JP 2006252268 A JP2006252268 A JP 2006252268A JP 2006329209 A JP2006329209 A JP 2006329209A
Authority
JP
Japan
Prior art keywords
overlap
intake
exhaust
valve
valve timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006252268A
Other languages
Japanese (ja)
Other versions
JP4386199B2 (en
Inventor
Shinichi Murata
真一 村田
Fumiaki Hiraishi
文昭 平石
Kazuhiro Okuno
和広 奥野
Hideo Nakai
英夫 中井
Osamu Nakayama
修 中山
Takashi Dougahara
隆 堂ヶ原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2006252268A priority Critical patent/JP4386199B2/en
Publication of JP2006329209A publication Critical patent/JP2006329209A/en
Application granted granted Critical
Publication of JP4386199B2 publication Critical patent/JP4386199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/18

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable valve timing device capable of appropriately controlling an opening overlap of intake/exhaust valves and thereby positively suppressing discharge of unburned HC at a cold start. <P>SOLUTION: At the cold start of an engine, an overlap of the intake/exhaust valves is formed to be larger than at a warm start and to include a wide range of an intake stroke (see (2) in the figure), the overlap of an exhaust stroke range is increased, and without discharging liquid fuel accumulated inside the intake port as it is to the exhaust side, the liquid fuel is made to flow into a cylinder accompanying falling of a piston in the intake stroke to positively combust the fuel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関(以下、エンジンという)の吸気バルブや排気バルブの開閉タイミングを調整する可変バルブタイミング装置に関するものである。   The present invention relates to a variable valve timing device that adjusts the opening and closing timing of an intake valve and an exhaust valve of an internal combustion engine (hereinafter referred to as an engine).

冷態始動時に排気バルブと吸気バルブの開弁オーバラップ期間を増大させて、未燃HCの排出を低減させる技術がある。例えば特開平11−336574号公報(特許文献1)には、通常排気バルブは吸気上死点TDCで閉弁し、冷態始動時には後燃え効果を向上させるために進角させ、又、吸気バルブは最進角させてオーバラップ期間を増大させ、内部EGRを増加させる技術が開示されている。
特開平11−336574号公報
There is a technique for reducing the discharge of unburned HC by increasing the valve opening overlap period of the exhaust valve and the intake valve during cold start. For example, in Japanese Patent Laid-Open No. 11-336574 (Patent Document 1), the normal exhaust valve is closed at the intake top dead center TDC, advanced at the time of cold start to improve the afterburning effect, and the intake valve Discloses a technique for increasing the internal EGR by increasing the maximum advance angle to increase the overlap period.
JP 11-336574 A

しかしながら、上記公報に記載の技術では、オーバラップ期間を上死点TDCより前側、つまり排気行程に形成しているため、液状燃料が存在した場合、その一部が燃焼行程を経ずに排出されてしまうという不具合がある。
吸気管噴射式エンジンを例に挙げると、吸気ポートに噴射された燃料は冷態始動直後には吸気バルブの裏側や吸気ポートに付着し、開弁期間中に自重により下方のバルブシート付近に液状となって溜まる。排気行程のとき吸気バルブが開く(オーバラップが排気行程にある)と、各気筒の初爆の行程ではそのまま筒内に流入する。又、初爆以降でも筒内の排気が吸気管に逆流するが、燃料は液状となっているため自重により一部は筒内に流入する。
However, in the technique described in the above publication, since the overlap period is formed before the top dead center TDC, that is, in the exhaust stroke, when liquid fuel is present, a part of the fuel is discharged without going through the combustion stroke. There is a problem that it ends up.
Taking an intake pipe injection type engine as an example, the fuel injected into the intake port adheres to the back side of the intake valve and the intake port immediately after the cold start, and liquids near the lower valve seat due to its own weight during the valve opening period. It becomes and accumulates. If the intake valve opens during the exhaust stroke (the overlap is in the exhaust stroke), it flows directly into the cylinder during the initial explosion stroke of each cylinder. In addition, the exhaust in the cylinder flows backward to the intake pipe after the first explosion, but part of the exhaust flows into the cylinder by its own weight because the fuel is in a liquid state.

そして、ピストンの押出しによりそのまま、又は筒内で気化して一部が未燃状態で排気側に排出されてしまう。この後、上死点前で排気バルブが閉じてしまうので通り抜けた未燃燃料は筒内に戻ることなく、又は未燃燃料は温度が低いため後燃えも進み難く、そのまま大気へ排出されてしまう。その後燃焼を重ねてエンジン温度が上昇すると、排気行程中のオーバラップ増大による燃料蒸化の効果が現れて、液状燃料の筒内流入が抑えられて排気通路に通り抜けることが少なくなる。   And it will vaporize in the cylinder as it is by pushing out the piston, and a part will be discharged to the exhaust side in an unburned state. After this, the exhaust valve closes before the top dead center, so the unburned fuel that has passed through does not return to the cylinder, or the unburned fuel is low in temperature, so it is difficult for the afterburning to proceed and is discharged to the atmosphere as it is. . When the engine temperature rises after repeated combustion, the effect of fuel vaporization due to increased overlap during the exhaust stroke appears, and the inflow of liquid fuel into the cylinder is suppressed and the passage through the exhaust passage is reduced.

従って、冷態始動時の未燃HC排出低減を行うには、内部EGRを増加させて燃料の蒸化を促進させる以前に、始動直後の蒸化しきれない液状燃料を排出させないようにする必要がある。
本発明の目的は、吸排気バルブの開弁オーバラップを適切に制御し、もって、冷態始動時の未燃HCの排出を確実に抑制することができる可変バルブタイミング装置を提供することにある。
Therefore, in order to reduce the unburned HC emission at the cold start, it is necessary to prevent the liquid fuel that cannot be evaporated immediately after the start from being discharged before increasing the internal EGR and promoting the vaporization of the fuel. is there.
An object of the present invention is to provide a variable valve timing device that can appropriately control the opening overlap of intake and exhaust valves and thereby reliably suppress the discharge of unburned HC during cold start. .

上記目的を達成するため、請求項1の発明は、吸気管噴射型内燃機関の吸気バルブと排気バルブとの開弁期間のオーバラップを冷態始動時に増大させる可変バルブタイミング装置において、冷態始動時には、温態始動時よりも増大されたオーバラップで且つ上死点の前側となる排気行程範囲より上死点の後側となる吸気行程範囲を多く含むオーバラップを形成させてから排気行程範囲のオーバラップを増大させるバルブタイミング制御手段を備えたことを特徴とする。   In order to achieve the above object, a first aspect of the present invention provides a variable valve timing device for increasing an overlap of an opening period of an intake valve and an exhaust valve of an intake pipe injection type internal combustion engine at the time of cold start. Occasionally, the exhaust stroke range is increased after an overlap is formed that includes a larger overlap than the exhaust stroke range that is on the front side of the top dead center and the intake stroke range that is on the rear side of the top dead center. It is characterized by comprising valve timing control means for increasing the overlap.

また、請求項2の発明では、請求項1の発明において、バルブタイミング制御手段は、増大されたオーバラップで且つ吸気行程範囲を多く含むオーバラップを形成する状態を所定時間継続させることを特徴とする。
また、請求項3の発明では、請求項1の発明において、バルブタイミング制御手段は、冷態始動時には、クランキング開始から初爆直後までオーバラップをほぼ0とし、初爆直後から増大されたオーバラップで且つ吸気行程範囲を多く含むオーバラップを形成させることを特徴とする。
The invention of claim 2 is characterized in that, in the invention of claim 1, the valve timing control means continues a state in which an overlap with an increased overlap and a large intake stroke range is formed for a predetermined time. To do.
According to a third aspect of the present invention, in the first aspect of the invention, the valve timing control means sets the overlap to almost zero from the start of cranking to immediately after the first explosion at the time of cold start, and increases the increase immediately after the first explosion. The present invention is characterized in that an overlap including a large range of intake strokes is formed.

また、請求項4の発明では、請求項1の発明において、バルブタイミング制御手段は、排気行程範囲のオーバラップを増大させるに際して吸気行程範囲のオーバラップを減少させることを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the invention, the valve timing control means reduces the overlap of the intake stroke range when increasing the overlap of the exhaust stroke range.

本発明の請求項1の可変バルブタイミング装置によれば、冷態始動時において、吸排気バルブのオーバラップは温態始動時よりも増大されたオーバラップで且つ上死点の前側となる排気行程範囲より上死点の後側となる吸気行程範囲を多く含むオーバラップを形成させるようにまず制御される。燃料の蒸化が促進されない冷態始動時には、吸気ポート内に噴射された燃料が閉弁期間中にバルブシート付近に液状となって溜まるが、この液状燃料はそのまま排出されることなく、始動直後の吸気行程範囲のオーバラップ中にピストンの下降に伴って筒内に流入して確実に燃焼される。又、その後に排気行程範囲のオーバラップが増加されると、例えば、一旦排気側に排出された排ガスが吸気ポート内に逆流して、液状燃料の排出防止作用が奏され、もって、冷態始動時の未燃HCの排出を抑制することができる。   According to the variable valve timing apparatus of the first aspect of the present invention, at the time of the cold start, the overlap of the intake and exhaust valves is an overlap that is increased more than that at the time of the warm start and is an exhaust stroke that is in front of the top dead center. First, control is performed so as to form an overlap including a large intake stroke range on the rear side of the top dead center. During a cold start when fuel vaporization is not promoted, the fuel injected into the intake port remains in liquid form near the valve seat during the valve closing period. During the overlap of the intake stroke range, as the piston descends, it flows into the cylinder and burns reliably. If the overlap of the exhaust stroke range is increased thereafter, for example, the exhaust gas once exhausted to the exhaust side flows back into the intake port, thereby preventing liquid fuel from being discharged. The emission of unburned HC at the time can be suppressed.

本発明の請求項2の可変バルブタイミング装置によれば、冷態始動時に、温態始動時よりも増大されたオーバラップで且つ吸気行程範囲を多く含むオーバラップを形成する状態が所定時間継続されるので、この所定時間を適宜確保することによって、バルブシート付近に溜まった燃料を始動直後の吸気行程範囲のオーバラップ中に筒内に確実に流入させて燃焼させることができる。   According to the variable valve timing apparatus of the second aspect of the present invention, at the time of cold start, the state of forming an overlap that is larger than that at the time of warm start and that includes a large intake stroke range is continued for a predetermined time. Therefore, by appropriately securing this predetermined time, the fuel accumulated in the vicinity of the valve seat can surely flow into the cylinder and burn during the overlap of the intake stroke range immediately after starting.

本発明の請求項3の可変バルブタイミング装置によれば、クランキング時にはオーバラップがほぼ0とされるので、噴射された燃料が排気側に通り抜けることなく燃焼されると共に、エンジンが容易に初爆に至ることができる。
本発明の請求項4の可変バルブタイミング装置によれば、排気行程範囲のオーバラップを増大させるときに吸気行程範囲のオーバラップを減少させるので、オーバラップのほとんどが排気行程範囲に位置することになり、排気バルブの早期開弁により筒内温度のピーク付近の排ガスが排出される。これにより、例えば排気通路に触媒を設けた場合において、後燃え効果により触媒の早期活性化を実現することができる。
According to the variable valve timing device of claim 3 of the present invention, the overlap is almost zero at the time of cranking, so that the injected fuel is burned without passing through to the exhaust side, and the engine is easily subjected to the initial explosion. Can be reached.
According to the variable valve timing device of claim 4 of the present invention, when the overlap of the exhaust stroke range is increased, the overlap of the intake stroke range is decreased, so that most of the overlap is located in the exhaust stroke range. Thus, exhaust gas near the peak of the in-cylinder temperature is discharged by the early opening of the exhaust valve. Thereby, for example, when a catalyst is provided in the exhaust passage, early activation of the catalyst can be realized by the afterburning effect.

[第1実施形態]
以下、本発明を吸気バルブの開閉タイミングを可変する可変バルブタイミング装置に具体化した第1実施形態を説明する。
図1は第1実施形態の可変バルブタイミング装置を示す全体構成図である。この図に示すように、エンジン1は吸気管噴射型エンジンとして構成されており、その動弁機構としてはDOHC4弁式が採用されている。シリンダヘッド2上の吸気カム軸3a及び排気カム軸3bの前端にはタイミングプーリ4a,4bが接続され、これらのタイミングプーリ4a,4bはタイミングベルト5を介してクランク軸6に連結されている。クランク軸6の回転に伴ってタイミングプーリ4a,4bと共にカム軸3a,3bが回転駆動され、これらのカム軸3,3bにより吸気バルブ7a及び排気バルブ7bが開閉駆動される。
[First Embodiment]
A first embodiment in which the present invention is embodied in a variable valve timing device that varies the opening / closing timing of an intake valve will be described below.
FIG. 1 is an overall configuration diagram showing the variable valve timing device of the first embodiment. As shown in this figure, the engine 1 is configured as an intake pipe injection type engine, and a DOHC 4-valve type is adopted as the valve operating mechanism. Timing pulleys 4 a and 4 b are connected to the front ends of the intake cam shaft 3 a and the exhaust cam shaft 3 b on the cylinder head 2, and these timing pulleys 4 a and 4 b are connected to the crankshaft 6 via a timing belt 5. As the crankshaft 6 rotates, the camshafts 3a and 3b are rotationally driven together with the timing pulleys 4a and 4b, and the intake and exhaust valves 7a and 7b are driven to open and close by the camshafts 3 and 3b.

吸気カム軸3aと吸気側のタイミングプーリ4aとの間には、ベーン式のタイミング可変機構8が設けられている。タイミング可変機構8の構成は、例えば特開2000−27609号公報等で公知のため詳細は説明しないが、タイミングプーリ4aに設けたハウジング内にベーンロータを回動可能に設け、そのベーンロータに吸気カム軸3aを連結して構成されている。タイミング可変機構8にはオイルコントロールバルブ(以下、OCVという)9が接続され、エンジン1のオイルポンプ10から供給される作動油を利用して、OCV9の切換に応じてベーンロータに油圧を作用させ、その結果、タイミングプーリ4aに対するカム軸3aの位相、即ち、吸気バルブ7aの開閉タイミングを調整するようになっている。   A vane type variable timing mechanism 8 is provided between the intake camshaft 3a and the intake side timing pulley 4a. The configuration of the timing variable mechanism 8 is well known in, for example, Japanese Patent Application Laid-Open No. 2000-27609, and will not be described in detail. 3a is connected. An oil control valve (hereinafter referred to as OCV) 9 is connected to the timing variable mechanism 8, and hydraulic pressure is applied to the vane rotor in accordance with switching of the OCV 9 using hydraulic oil supplied from the oil pump 10 of the engine 1. As a result, the phase of the cam shaft 3a with respect to the timing pulley 4a, that is, the opening / closing timing of the intake valve 7a is adjusted.

一方、シリンダヘッド2の吸気ポート11には吸気通路12が接続され、ピストン16の下降に伴ってエアクリーナ13から吸気通路12内に導入された吸入空気は、スロットルバルブ14の開度に応じて流量調整された後に燃料噴射弁15からの噴射燃料と混合され、吸気ポート11を経て吸気バルブ7aの開弁時に筒内に流入する。
又、シリンダヘッド2の排気ポート17には排気通路18が接続され、点火プラグ19により点火されて燃焼後の排ガスは、排気バルブ7bの開弁時にピストン16の上昇に伴って排気ポート17から排気通路18に案内され、触媒20及び図示しない消音器を経て外部に排出される。
On the other hand, an intake passage 12 is connected to the intake port 11 of the cylinder head 2, and intake air introduced into the intake passage 12 from the air cleaner 13 as the piston 16 descends flows in accordance with the opening of the throttle valve 14. After the adjustment, the fuel is mixed with the fuel injected from the fuel injection valve 15 and flows into the cylinder through the intake port 11 when the intake valve 7a is opened.
Further, an exhaust passage 18 is connected to the exhaust port 17 of the cylinder head 2, and the exhaust gas after being ignited by the spark plug 19 and exhausted is exhausted from the exhaust port 17 as the piston 16 rises when the exhaust valve 7 b is opened. It is guided to the passage 18 and discharged to the outside through the catalyst 20 and a silencer (not shown).

車室内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM,BURAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたECU(エンジン制御ユニット)31が設置されており、エンジン1の総合的な制御を行う。ECU31の入力側には、エンジン回転速度Neを検出する回転速度センサ32、スロットルバルブ14の開度TPSを検出するスロットルセンサ33、冷却水温Twを検出する水温センサ34等の各種センサが接続されている。又、ECU31の出力側には、前記OCV9、燃料噴射弁15、点火プラグ19等が接続されている。   In the vehicle compartment, an input / output device (not shown), a storage device (ROM, RAM, BURAM, etc.) used for storing control programs and control maps, an ECU (engine) equipped with a central processing unit (CPU), a timer counter, etc. A control unit 31 is installed and performs overall control of the engine 1. Various sensors such as a rotational speed sensor 32 for detecting the engine rotational speed Ne, a throttle sensor 33 for detecting the opening degree TPS of the throttle valve 14, and a water temperature sensor 34 for detecting the cooling water temperature Tw are connected to the input side of the ECU 31. Yes. Further, the OCV 9, the fuel injection valve 15, the spark plug 19 and the like are connected to the output side of the ECU 31.

ECU31は、各センサからの検出情報に基づいて点火時期及び燃料噴射量等を決定し、点火プラグ19や燃料噴射弁15を駆動制御する。又、予め設定されたマップに従って、エンジン回転速度Ne及びスロットル開度TPSからタイミング可変機構8の目標位相角を算出し、OCV9を駆動して実際の位相角を目標位相角に制御する。更に、エンジン1の冷態始動時には、未燃HCの排出を抑制するために、温態始動時の場合と異なる専用の位相角制御を実行する。   The ECU 31 determines an ignition timing, a fuel injection amount, and the like based on detection information from each sensor, and drives and controls the ignition plug 19 and the fuel injection valve 15. Further, the target phase angle of the timing variable mechanism 8 is calculated from the engine speed Ne and the throttle opening TPS according to a preset map, and the OCV 9 is driven to control the actual phase angle to the target phase angle. Further, when the engine 1 is cold-started, in order to suppress the discharge of unburned HC, dedicated phase angle control different from that at the time of warm-start is executed.

そこで、この冷態始動時にECU31により実行される位相角制御を図2のタイムチャートに基づいて説明する。
吸気バルブ7aの開閉タイミングは、タイミング可変機構8により図中の(1)〜(3)の範囲内で調整され、一方、排気バルブ7bの開閉タイミングは図に示す位置に固定されている。まず、エンジン停止時において、吸気バルブ7aの開閉タイミングは、図中の(1)に示す最も遅角した最遅角位置に保持され、吸気上死点TDC以降に吸気バルブ7aが開弁し始めるようになっている。この開弁のタイミングは、排気バルブ7bが閉弁されるタイミングとほぼ一致しているため、吸気バルブ7aと排気バルブ7bとの開弁オーバラップはほぼ0である。
Therefore, the phase angle control executed by the ECU 31 at the cold start will be described based on the time chart of FIG.
The opening / closing timing of the intake valve 7a is adjusted by the timing variable mechanism 8 within the range of (1) to (3) in the figure, while the opening / closing timing of the exhaust valve 7b is fixed at the position shown in the figure. First, when the engine is stopped, the opening / closing timing of the intake valve 7a is held at the most retarded position shown in (1) in the figure, and the intake valve 7a starts to open after the intake top dead center TDC. It is like that. Since the timing of opening the valve is almost the same as the timing of closing the exhaust valve 7b, the valve opening overlap between the intake valve 7a and the exhaust valve 7b is almost zero.

運転者にてイグニションスイッチがスタート操作されると、この位相位置でエンジン1のクランキングが開始されると共に、ECU31により点火時期制御や燃料噴射制御が実行される。このようにクランキング時に吸排気の開弁オーバラップを0としているため、噴射された燃料は排気側に通り抜けることなく燃焼されると共に、エンジン1が容易にクランキングされて初爆に至る。   When the ignition switch is started by the driver, cranking of the engine 1 is started at this phase position, and ignition timing control and fuel injection control are executed by the ECU 31. Thus, since the valve opening overlap of intake and exhaust is set to 0 at the time of cranking, the injected fuel is burned without passing through to the exhaust side, and the engine 1 is easily cranked to reach the first explosion.

ここまでの位相角制御は温態始動と冷態始動で共通のものである。そして、ECU31により冷却水温Tw等に基づいて温態始動と判定されたときには、始動完了後もアイドル運転が継続されている限り、吸気バルブ7aの開閉タイミングは最遅角位置に保持され続け、車両の発進等によりエンジン回転速度Neやスロットル開度TPSが増加すると、それに応じて進角側に制御される。   The phase angle control up to this point is common to the warm start and the cold start. When the ECU 31 determines that the temperature is started based on the coolant temperature Tw or the like, the opening / closing timing of the intake valve 7a is kept at the most retarded position as long as the idling operation is continued even after the completion of the start. When the engine speed Ne and the throttle opening TPS increase due to the starting of the engine, etc., it is controlled to the advance side accordingly.

一方、冷態始動時には、初爆から2secほど待機した後に吸気バルブ7aの開閉タイミングが進角側に制御されて、図中の(2)の位置に移行される。進角側への制御により、吸気バルブ7aは上死点TDCより僅かに先行して開弁し始めるようになる。よって、排気バルブ7bとの間に開弁オーバラップが形成され、このオーバラップ期間のほとんどは、上死点TDCの後側(以下、吸気行程範囲という)に位置することになる。   On the other hand, at the time of cold start, after waiting for about 2 seconds from the first explosion, the opening / closing timing of the intake valve 7a is controlled to the advance side, and is shifted to the position (2) in the figure. By the control to the advance side, the intake valve 7a starts to open slightly ahead of the top dead center TDC. Therefore, a valve opening overlap is formed with the exhaust valve 7b, and most of this overlap period is located behind the top dead center TDC (hereinafter referred to as an intake stroke range).

この冷態始動時においては、吸気ポート11に噴射された燃料の蒸化が促進されないことから、燃料は吸気バルブ7aの裏側や吸気ポート11の内壁に付着し、閉弁期間中に自重により下方のバルブシート付近に液状となって溜まっている。この傾向は、点火を確実にするための燃料増量により一層顕著なものとなっている。そして、上記のように吸気行程範囲で吸気バルブ7aが開くと、燃料は液状のままピストン16の下降に伴って筒内に流入し、圧縮行程を経て燃焼行程で燃焼した後に、排気行程で排気側に排出されることになる。つまり、オーバラップ期間を排気行程に形成する特開平11−336574号公報に記載の従来技術のように、筒内に流入した液状燃料がそのまま排気側に排出される事態が未然に防止される。   At the time of this cold start, vaporization of the fuel injected into the intake port 11 is not promoted, so that the fuel adheres to the back side of the intake valve 7a and the inner wall of the intake port 11 and is lowered by its own weight during the valve closing period. The liquid is collected near the valve seat. This trend is even more pronounced with increased fuel to ensure ignition. As described above, when the intake valve 7a is opened in the intake stroke range, the fuel flows into the cylinder as the piston 16 descends in the liquid state, burns in the combustion stroke through the compression stroke, and then exhausts in the exhaust stroke. Will be discharged to the side. That is, it is possible to prevent a situation in which the liquid fuel flowing into the cylinder is discharged to the exhaust side as it is, as in the prior art described in Japanese Patent Laid-Open No. 11-336574 that forms the overlap period in the exhaust stroke.

又、上記のように吸気バルブ7aの開弁が上死点TDCより僅かに先行するため、上死点TDCの前側(以下、排気行程範囲という)にもごく短時間のオーバラップ期間が存在するが、この期間中に液状燃料が排気側に通り抜けたとしても、続く吸気行程範囲で筒内に引き戻されて、確実に蒸化・燃焼される。更に、この時点では未だエンジン温度が低くて燃焼が安定しないが、オーバラップが比較的小さくて内部EGRが発生し難いことから、一旦排気側に排出された後に筒内に逆流する排ガス量が少なく、始動後の回転の維持・上昇が容易となる。   In addition, since the opening of the intake valve 7a slightly precedes the top dead center TDC as described above, there is a very short overlap period on the front side of the top dead center TDC (hereinafter referred to as the exhaust stroke range). However, even if the liquid fuel passes through the exhaust side during this period, it is drawn back into the cylinder in the subsequent intake stroke range, and is reliably vaporized and burned. Furthermore, at this point, the engine temperature is still low and combustion is not stable, but the overlap is relatively small and internal EGR is difficult to occur. Therefore, the amount of exhaust gas that flows back into the cylinder after being discharged to the exhaust side is small. This makes it easy to maintain and raise the rotation after starting.

上記した位相は初爆から所定時間継続され、その後、吸気バルブ7aの開閉タイミングは更に進角側に制御されて、図中の(3)の最進角位置に保持される。よって、吸排気バルブ7a,7bの開弁オーバラップは進角側に大幅に増大されて、排気行程範囲まで完全に含むことになる。
このときの排気バルブ7bが閉弁するタイミングは上死点TDC以降であり、且つ、初爆から数行程を経たこの時点では、エンジン回転速度Neの上昇に伴って吸気ポート11側に十分な負圧が発生することから、内部EGRが増大して、一旦排気側に排出された排ガス(排気行程の終期に排出された未燃HCを多く含む排ガス)が吸気ポート11内に逆流する。逆流した排ガスは次回の燃焼行程で燃焼されると共に、排ガスからの受熱により吸気ポート11が昇温されて次回の噴射燃料の蒸化を促進することから、液状燃料の排気側への排出が確実に防止される。
The above-described phase is continued for a predetermined time from the first explosion, and thereafter, the opening / closing timing of the intake valve 7a is further controlled to the advance side, and is held at the most advanced position (3) in the figure. Therefore, the valve opening overlap of the intake / exhaust valves 7a and 7b is greatly increased to the advance side, and completely includes the exhaust stroke range.
At this time, the timing at which the exhaust valve 7b closes is after the top dead center TDC, and at this point after several strokes from the initial explosion, a sufficient negative pressure is applied to the intake port 11 side as the engine rotational speed Ne increases. Since the pressure is generated, the internal EGR increases, and the exhaust gas once exhausted to the exhaust side (exhaust gas containing a large amount of unburned HC discharged at the end of the exhaust stroke) flows back into the intake port 11. The exhaust gas that has flowed back is burned in the next combustion stroke, and the intake port 11 is heated by receiving heat from the exhaust gas to promote the vaporization of the next injected fuel, so that the liquid fuel is surely discharged to the exhaust side. To be prevented.

その後、所定時間が経過すると、吸気バルブ7aの開閉タイミングは遅角されて、図中の(1)に示す始動開始時の状態に戻される。その結果、吸排気バルブ7a,7bの開弁オーバラップが縮小されて、内部EGRの減少により燃焼が安定化され、円滑なアイドル運転が実現される。
このように本実施形態の可変バルブタイミング装置では、冷態始動の開始直後において、吸排気バルブ7a,7bの開弁オーバラップを吸気行程範囲に形成することにより(図2中の(2))、吸気ポート7a内の液状燃料をピストン16の下降に伴って筒内に流入させて確実に燃焼させ、液状燃料がそのまま排出される事態を防止している。従って、オーバラップ期間を排気行程に形成する従来技術のように、筒内に流入した液状燃料がそのまま排出される事態を未然に防止でき、もって、冷態始動時の未燃HCの排出を確実に抑制することができる。
Thereafter, when a predetermined time elapses, the opening / closing timing of the intake valve 7a is retarded and returned to the start-up start state shown in (1) in the figure. As a result, the valve opening overlap of the intake / exhaust valves 7a and 7b is reduced, the internal EGR is reduced, the combustion is stabilized, and a smooth idle operation is realized.
As described above, in the variable valve timing apparatus according to the present embodiment, immediately after the start of the cold start, the valve opening overlap of the intake and exhaust valves 7a and 7b is formed in the intake stroke range ((2) in FIG. 2). The liquid fuel in the intake port 7a is caused to flow into the cylinder as the piston 16 descends to be surely burned, thereby preventing the liquid fuel from being discharged as it is. Therefore, unlike the prior art in which the overlap period is formed in the exhaust stroke, it is possible to prevent the liquid fuel that has flowed into the cylinder from being discharged as it is, thereby reliably discharging unburned HC at the cold start. Can be suppressed.

尚、本実施形態では、吸気バルブ7aの開閉タイミングを図2中の(1),(2),(3)の順に変化させたが、始動当初から(2)の位置に保持して、(2),(2),(3)の順に変化させるようにしてもよい。この場合でも、上記と同じく吸気ポート7a内の液状燃料を確実に燃焼させて、未燃HCの排出を抑制することができる。
[第2実施形態]
次に、本発明を別の可変バルブタイミング装置に具体化した第2実施形態を説明する。本実施形態の可変バルブタイミング装置は、吸気バルブ7aに加えて排気バルブ7bの開閉タイミングも可変可能としたものであり、その他の構成は第1実施形態と同一である。従って、共通の構成部分の説明は省略し、相違点を重点的に説明する。
In this embodiment, the opening / closing timing of the intake valve 7a is changed in the order of (1), (2), (3) in FIG. You may make it change in order of 2), (2), (3). Even in this case, similarly to the above, the liquid fuel in the intake port 7a can be reliably burned, and the discharge of unburned HC can be suppressed.
[Second Embodiment]
Next, a second embodiment in which the present invention is embodied in another variable valve timing device will be described. The variable valve timing device of the present embodiment can change the opening / closing timing of the exhaust valve 7b in addition to the intake valve 7a, and other configurations are the same as those of the first embodiment. Therefore, description of common components will be omitted, and differences will be described mainly.

図1に示すように、排気カム軸3bと排気側のタイミングプーリ4bとの間には、吸気側と同様のタイミング可変機構41が設けられ、このタイミング可変機構41はOCV42を介してECU31に接続されている。冷態始動時において、タイミング可変機構41は吸気側のタイミング可変機構8と共にECU31により位相角を制御され、以下、その制御状況を図3のタイムチャートに基づいて説明する。   As shown in FIG. 1, a timing variable mechanism 41 similar to that on the intake side is provided between the exhaust camshaft 3b and the exhaust timing pulley 4b. The timing variable mechanism 41 is connected to the ECU 31 via the OCV 42. Has been. At the time of cold start, the timing variable mechanism 41 is controlled by the ECU 31 together with the intake-side timing variable mechanism 8, and the control state will be described below based on the time chart of FIG.

まず、エンジン停止時においては、吸気バルブ7aの開閉タイミングが図中の(4)に示す最遅角位置に保持される一方、排気バルブ7bの開閉タイミングが図中の(7)に示す最進角位置に保持され、両者の開弁オーバラップは完全に0となっている。
この位相位置でエンジン1のクランキングが開始され、2secほど経過後に、吸気バルブ7aの開閉タイミングが図中の(5)に示すように進角側に制御されると共に、排気バルブ7bの開閉タイミングが図中の(8)に示すように遅角側に制御される。結果として両者の間にはオーバラップが形成され、第1実施形態の場合(図2中の(2))と同じく、オーバラップ期間のほとんどは吸気行程範囲に位置する。よって、吸気ポート11内に溜まった液状の燃料は、ピストン16の下降に伴って筒内に流入して確実に燃焼され、液状のまま排出される事態が防止される。
First, when the engine is stopped, the opening / closing timing of the intake valve 7a is held at the most retarded position shown in (4) in the figure, while the opening / closing timing of the exhaust valve 7b is the most advanced as shown in (7) in the figure. It is held in the angular position, and the valve opening overlap between them is completely zero.
The cranking of the engine 1 is started at this phase position, and after about 2 seconds, the opening / closing timing of the intake valve 7a is controlled to the advance side as indicated by (5) in the figure, and the opening / closing timing of the exhaust valve 7b. Is controlled to the retard side as indicated by (8) in the figure. As a result, an overlap is formed between the two, and most of the overlap period is located in the intake stroke range as in the case of the first embodiment ((2) in FIG. 2). Therefore, the liquid fuel accumulated in the intake port 11 flows into the cylinder as the piston 16 descends, and is reliably combusted and is prevented from being discharged in the liquid state.

その後、初爆から所定時間が経過すると、吸気バルブ7aの開閉タイミングが図中の(6)に示すように更に進角側に制御されると共に、排気バルブ7bの開閉タイミングが進角側に制御されて図中の(7)の位置に戻る。よって、吸排気バルブ7a,7bの開弁オーバラップのほとんどが排気行程範囲に位置することになり、排気バルブ7bの早期開弁により筒内温度のピーク付近の排ガスが排出され、後燃え効果により触媒20の早期活性化が実現される。   Thereafter, when a predetermined time has elapsed from the initial explosion, the opening / closing timing of the intake valve 7a is further controlled to the advance side as indicated by (6) in the figure, and the opening / closing timing of the exhaust valve 7b is controlled to the advance side. This returns to the position (7) in the figure. Therefore, most of the valve opening overlaps of the intake / exhaust valves 7a and 7b are located in the exhaust stroke range, and exhaust gas near the peak of the in-cylinder temperature is discharged by the early opening of the exhaust valve 7b, and the afterburning effect causes Early activation of the catalyst 20 is realized.

このように本実施形態の可変バルブタイミング装置は第1実施形態と同じく、冷態始動の開始直後に吸排気バルブ7a,7bの開弁オーバラップを吸気行程範囲に形成するため(図3中の(5)と(8))、吸気ポート11内の液状燃料を確実に燃焼させて、未燃HCの排出を確実に抑制することができる。
又、吸気バルブ7aに加えて排気バルブ7bの開閉タイミングを可変可能としたため、オーバラップ期間の長さや位置を自由に設定できる。その結果、例えば、第1実施形態では吸気バルブ7aの進角に伴って必然的にオーバラップが増大したが(図2中の(2)から(3))、本実施形態ではオーバラップを増大することなく吸気行程範囲から排気行程範囲に移動可能となり(図3中の(5),(8)から(6),(7))、結果として、その時々の運転状態に最適なオーバラップ量、即ち内部EGR量を達成して、安定した燃焼を実現できるという効果もある。
As described above, the variable valve timing device of the present embodiment forms the valve opening overlap of the intake / exhaust valves 7a and 7b in the intake stroke range immediately after the start of the cold start, as in the first embodiment (see FIG. 3). (5) and (8)), the liquid fuel in the intake port 11 can be reliably burned, and the discharge of unburned HC can be reliably suppressed.
Further, since the opening / closing timing of the exhaust valve 7b can be changed in addition to the intake valve 7a, the length and position of the overlap period can be freely set. As a result, for example, in the first embodiment, the overlap inevitably increases with the advance angle of the intake valve 7a (from (2) to (3) in FIG. 2), but in this embodiment, the overlap is increased. It is possible to move from the intake stroke range to the exhaust stroke range without performing ((5), (8) to (6), (7) in FIG. 3), and as a result, the optimum overlap amount for the current operating state That is, there is also an effect that the internal EGR amount can be achieved and stable combustion can be realized.

尚、本実施形態では、始動の過程に応じて吸気バルブ7aの開閉タイミングを図3中の(4),(5),(6)の順に変化させ、排気バルブ7bの開閉タイミングを(7),(8),(7)の順に変化させたが、その他の制御順序も考えられる。例えば、吸気バルブ7aについては、上記第1実施形態の別例と同様に(5),(5),(6)の順に変化させてもよく、排気バルブ7bについては、(8),(8),(7)の順に変化させたり、(7),(8),(8)の順に変化させたりしてもよい。   In this embodiment, the opening / closing timing of the intake valve 7a is changed in the order of (4), (5), (6) in FIG. 3 in accordance with the starting process, and the opening / closing timing of the exhaust valve 7b is changed to (7). , (8), (7), but other control orders are also conceivable. For example, the intake valve 7a may be changed in the order of (5), (5), (6) as in the other example of the first embodiment, and the exhaust valve 7b may be changed to (8), (8 ), (7), or (7), (8), (8).

以上で実施形態の説明を終えるが、本発明の態様は上記第1及び第2実施形態に限定されるものではない。例えば上記各実施形態では、ベーン式のタイミング可変機構8を備えたが、タイミング可変機構の構成はこれに限らず、例えば、ヘリカル式のタイミング可変機構に代えてもよいし、カム軸に対するカムの偏心量を変更する偏心式のタイミング可変機構、或いは、異なる特性のカムを選択的に作動させる切換式のタイミング可変機構、電磁式アクチュエータによりバルブを直接的に開閉する電磁式のタイミング可変機構等に代えてもよい。   Although the description of the embodiment is finished as described above, the aspect of the present invention is not limited to the first and second embodiments. For example, in each of the above embodiments, the vane type timing variable mechanism 8 is provided. However, the configuration of the timing variable mechanism is not limited to this, and for example, a helical type timing variable mechanism may be used. An eccentric timing variable mechanism that changes the amount of eccentricity, a switching timing variable mechanism that selectively operates cams of different characteristics, an electromagnetic timing variable mechanism that directly opens and closes a valve by an electromagnetic actuator, etc. It may be replaced.

又、上記各実施形態では吸気管噴射型のエンジン1に適用したが、例えば、筒内に直接燃料を噴射する筒内噴射型エンジンにも適用できる。この場合でも吸気行程範囲にオーバラップを形成することにより、上死点TDC近傍で噴射された燃料をそのまま排出することなく確実に燃焼させることができ、結果として上記各実施形態と同様に未燃HCの排出を抑制することができる。   In each of the above embodiments, the present invention is applied to the intake pipe injection type engine 1. However, the present invention can also be applied to, for example, a cylinder injection type engine in which fuel is directly injected into a cylinder. Even in this case, by forming an overlap in the intake stroke range, the fuel injected in the vicinity of the top dead center TDC can be surely burned without being discharged as a result, and as a result, unburned as in the above embodiments. HC emission can be suppressed.

第1実施形態の可変バルブタイミング装置を示す全体構成図である。It is a whole lineblock diagram showing the variable valve timing device of a 1st embodiment. 第1実施形態の可変バルブタイミング装置による位相角制御の実行状況を示すタイムチャートである。It is a time chart which shows the execution situation of phase angle control by the variable valve timing device of a 1st embodiment. 第2実施形態の可変バルブタイミング装置による位相角制御の実行状況を示すタイムチャートである。It is a time chart which shows the execution situation of phase angle control by the variable valve timing device of a 2nd embodiment.

符号の説明Explanation of symbols

7a 吸気バルブ
7b 排気バルブ
31 ECU(バルブタイミング制御手段)
7a Intake valve 7b Exhaust valve 31 ECU (valve timing control means)

Claims (4)

吸気管噴射型内燃機関の吸気バルブと排気バルブとの開弁期間のオーバラップを冷態始動時に増大させる可変バルブタイミング装置において、
上記冷態始動時には、温態始動時よりも増大されたオーバラップで且つ上死点の前側となる排気行程範囲より上死点の後側となる吸気行程範囲を多く含むオーバラップを形成させてから上記排気行程範囲のオーバラップを増大させるバルブタイミング制御手段を備えたことを特徴とする可変バルブタイミング装置。
In the variable valve timing device for increasing the overlap of the valve opening period of the intake valve and the exhaust valve of the intake pipe injection type internal combustion engine at the time of cold start,
At the time of the cold start, an overlap that is larger than that at the time of the warm start and includes an intake stroke range that is behind the top dead center than the exhaust stroke range that is before the top dead center is formed. A variable valve timing device comprising valve timing control means for increasing the overlap of the exhaust stroke range.
上記バルブタイミング制御手段は、上記増大されたオーバラップで且つ吸気行程範囲を多く含むオーバラップを形成する状態を所定時間継続させることを特徴とする請求項1記載の可変バルブタイミング装置。   2. The variable valve timing device according to claim 1, wherein the valve timing control means continues a state in which the increased overlap and an overlap including a large intake stroke range are continued for a predetermined time. 上記バルブタイミング制御手段は、上記冷態始動時には、クランキング開始から初爆直後までオーバラップをほぼ0とし、上記初爆直後から上記増大されたオーバラップで且つ吸気行程範囲を多く含むオーバラップを形成させることを特徴とする請求項1記載の可変バルブタイミング装置。   At the time of the cold start, the valve timing control means sets the overlap to almost 0 from the start of cranking to immediately after the first explosion, and includes the increased overlap immediately after the first explosion and including a large intake stroke range. The variable valve timing device according to claim 1, wherein the variable valve timing device is formed. 上記バルブタイミング制御手段は、上記排気行程範囲のオーバラップを増大させるに際して吸気行程範囲のオーバラップを減少させることを特徴とする請求項1記載の可変バルブタイミング装置。   2. The variable valve timing device according to claim 1, wherein the valve timing control means reduces the overlap of the intake stroke range when increasing the overlap of the exhaust stroke range.
JP2006252268A 2006-09-19 2006-09-19 Variable valve timing device Expired - Fee Related JP4386199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252268A JP4386199B2 (en) 2006-09-19 2006-09-19 Variable valve timing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252268A JP4386199B2 (en) 2006-09-19 2006-09-19 Variable valve timing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000354116A Division JP3997384B2 (en) 2000-11-21 2000-11-21 Variable valve timing device

Publications (2)

Publication Number Publication Date
JP2006329209A true JP2006329209A (en) 2006-12-07
JP4386199B2 JP4386199B2 (en) 2009-12-16

Family

ID=37551116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252268A Expired - Fee Related JP4386199B2 (en) 2006-09-19 2006-09-19 Variable valve timing device

Country Status (1)

Country Link
JP (1) JP4386199B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116819A (en) * 2008-11-12 2010-05-27 Mitsubishi Motors Corp Variable valve gear for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116819A (en) * 2008-11-12 2010-05-27 Mitsubishi Motors Corp Variable valve gear for internal combustion engine

Also Published As

Publication number Publication date
JP4386199B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
KR100425543B1 (en) Variable valve timing apparatus
JP4701871B2 (en) Engine control device
US6761147B2 (en) Control apparatus and method for internal combustion engine
KR100863475B1 (en) Control apparatus and control method for internal combustion engine
JP3699654B2 (en) Valve timing control device for internal combustion engine
JP4850744B2 (en) Intake control device for internal combustion engine
JP4831373B2 (en) Engine with variable valve system
JP4172319B2 (en) Variable valve timing controller for engine
KR100575506B1 (en) Internal combustion engine
JP4677844B2 (en) Engine valve timing control device
JP2010065652A (en) Internal combustion engine
JP3699645B2 (en) Valve timing control device for internal combustion engine
JP2002332874A (en) Valve timing controller of internal combustion engine
JP4182888B2 (en) Engine control device
JP4591645B2 (en) Variable valve timing device
JP3997384B2 (en) Variable valve timing device
JP4386199B2 (en) Variable valve timing device
JP4577469B2 (en) Variable valve timing device
JP4483644B2 (en) Multi-cylinder engine controller
JP4069349B2 (en) Control device for internal combustion engine
JP2007092719A (en) Starter of multicylinder engine
JP2007127134A (en) Variable valve timing device
JP2005061279A (en) Variable valve control device of engine
JP5556387B2 (en) Control device for variable valve system
JP6355452B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090922

R151 Written notification of patent or utility model registration

Ref document number: 4386199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees