JP2006329157A - Oil injection type compressor - Google Patents

Oil injection type compressor Download PDF

Info

Publication number
JP2006329157A
JP2006329157A JP2005157546A JP2005157546A JP2006329157A JP 2006329157 A JP2006329157 A JP 2006329157A JP 2005157546 A JP2005157546 A JP 2005157546A JP 2005157546 A JP2005157546 A JP 2005157546A JP 2006329157 A JP2006329157 A JP 2006329157A
Authority
JP
Japan
Prior art keywords
oil
compressor
cooling
suction
cooling jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005157546A
Other languages
Japanese (ja)
Other versions
JP4634862B2 (en
Inventor
Kenji Kuroda
健志 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005157546A priority Critical patent/JP4634862B2/en
Publication of JP2006329157A publication Critical patent/JP2006329157A/en
Application granted granted Critical
Publication of JP4634862B2 publication Critical patent/JP4634862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil injection type compressor which can intend to make cooling efficient without requiring local cooling defect of a driving motor by disappearing air cavity in a cooling jacket of the driving motor. <P>SOLUTION: In the oil injection type compressor provided with an oil circulating flow passage 12 which comes into fluid communication with the compressor itself 20 from an oil separation collector 10 and in which an oil cooler 13 which cools oil separated with the oil separation collector 10 is intervened, it is configured so as to intervene the cooling jacket 2b of the driving motor intermediate on downstream side of the oil circulating flow passage 12 in fluid communication with the compressor itself 20 from the oil cooler 13 and at the same time to bring a gas venting hole 4 provided on an upper portion of the cooling jacket 2b into fluid communication with a gas suction port 30a provided on downstream side from a suction regulator 7 of a suction flow passage 8 by the gas venting flow passage 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧縮機本体に潤滑、軸封および冷却のために油を供給するように構成された油冷式圧縮機に関する。   The present invention relates to an oil-cooled compressor configured to supply oil to a compressor body for lubrication, shaft sealing, and cooling.

従来より、圧縮機のインペラやスクリューロータを駆動する駆動モータは、高速回転するため発熱量が大きく、これを冷却する冷却機構が必須である。このような冷却機構として、一般的にロータ軸に直結したファンによる強制冷却や、外部の冷却装置による冷却空気や冷媒の供給等が従来より用いられてきた。   Conventionally, a drive motor that drives an impeller and a screw rotor of a compressor rotates at a high speed and thus generates a large amount of heat, and a cooling mechanism that cools this is essential. As such a cooling mechanism, generally, forced cooling by a fan directly connected to a rotor shaft, supply of cooling air or a refrigerant by an external cooling device, and the like have been conventionally used.

しかしながら、ロータ軸にファンを直結する場合は、ロータ軸長が長くなるので高速回転するロータ軸の回転支持が困難になり、また、外部の冷却装置により冷却空気や冷媒を供給する場合には、別系統の動力源や冷却機を必要とし、装置が複雑となってコストアップの要因になるという問題点を有していた。   However, when the fan is directly connected to the rotor shaft, the rotor shaft length becomes long, so that it becomes difficult to support the rotation of the rotor shaft that rotates at high speed, and when cooling air or refrigerant is supplied by an external cooling device, A separate power source and a cooling machine are required, and the apparatus becomes complicated, resulting in a cost increase.

そこで、上記問題点を解決するため提案されている従来の圧縮機とその冷却システムにつき、図3および図4を用いて以下に説明する。
先ず、図3は、従来の発明に係る燃料電池用スクロール型空気圧縮機(特許文献1参照)を示す断面図である。
A conventional compressor and its cooling system that have been proposed to solve the above problems will be described below with reference to FIGS.
First, FIG. 3 is a sectional view showing a scroll-type air compressor for a fuel cell according to a conventional invention (see Patent Document 1).

図中の符号100はこのスクロール型圧縮機を示す。本圧縮機100の圧縮機構部は、固定スクロール110とこの固定スクロール110に対して旋回運動する旋回スクロール120とからなり、この旋回スクロール120の旋回とともに吸入された流体を圧縮して、吐出口111から吐出する。   Reference numeral 100 in the figure denotes this scroll compressor. The compression mechanism section of the compressor 100 includes a fixed scroll 110 and a turning scroll 120 that orbits with respect to the fixed scroll 110. The compressor 100 compresses the fluid sucked with the turning of the turning scroll 120 and discharges 111. Discharge from.

前記旋回スクロール120は、駆動モータ130によって駆動クランク軸131を介して回転され、固定スクロール110に対して、駆動クランク機構150を介して旋回運動する。駆動モータ部は、駆動モータ130とこの駆動モータ130を囲繞し収納する略有底円筒状のモータハウジング190とにより構成される。   The orbiting scroll 120 is rotated by a drive motor 130 via a drive crankshaft 131 and revolves with respect to the fixed scroll 110 via a drive crank mechanism 150. The drive motor unit includes a drive motor 130 and a substantially bottomed cylindrical motor housing 190 that surrounds and houses the drive motor 130.

このモータハウジング190の外周側には、冷却水路となる環状凹部191が形成されるとともに、円筒状の外筒200が環装されている。そして、モータハウジング190の環状凹部191とそれを覆うように閉塞する外筒200とによって、液密に密閉された冷却水路211を備えた冷却ジャケット210が形成される。   An annular recess 191 serving as a cooling water channel is formed on the outer peripheral side of the motor housing 190, and a cylindrical outer cylinder 200 is provided around the motor housing 190. A cooling jacket 210 including a cooling water channel 211 hermetically sealed is formed by the annular recess 191 of the motor housing 190 and the outer cylinder 200 closed so as to cover it.

前記冷却ジャケット210内の冷却水は、外筒200から突出した流入口202より流れ込み、冷却水路211のフィン192間を通過して図示しない流出口へと導かれる。こうして、この冷却ジャケット210により駆動モータ130が効率的に冷却される。   The cooling water in the cooling jacket 210 flows from the inlet 202 protruding from the outer cylinder 200, passes between the fins 192 of the cooling water channel 211, and is guided to an outlet (not shown). Thus, the drive motor 130 is efficiently cooled by the cooling jacket 210.

前記外筒200は、複数本のボルト220または圧入によりセンタハウジング170に一体的に固定されている。センタハウジング170とモータハウジング190とは一体的に固定されているので、間接的ではあるが、外筒200はモータハウジング190に一体的に固定されている。   The outer cylinder 200 is integrally fixed to the center housing 170 by a plurality of bolts 220 or press-fitting. Since the center housing 170 and the motor housing 190 are fixed integrally, the outer cylinder 200 is fixed to the motor housing 190 integrally, though indirectly.

次に、図4は、従来の他の発明に係るスクリュー冷凍機における圧縮機(特許文献2参照)を示す断面図である。スクリュー冷凍機における圧縮機11は、モータ21、第一段圧縮部22および第二段圧縮部23により形成され、これらは一体形のケーシング31を共有している。そして、モータ21のケーシング31の部分は水あるいは冷媒液により冷却される液冷構造となっていることが記載されている。   Next, FIG. 4 is a sectional view showing a compressor (see Patent Document 2) in a screw refrigerator according to another conventional invention. The compressor 11 in the screw refrigerator is formed by a motor 21, a first stage compression unit 22, and a second stage compression unit 23, which share an integral casing 31. It is described that the casing 31 of the motor 21 has a liquid cooling structure that is cooled by water or a refrigerant liquid.

なお、図3および図4を用いて説明した上記従来の発明に係る圧縮機は、本発明に係る油冷式圧縮機の冷却構造の従来例を示すため引用したものであって、この従来の発明に係る圧縮機の発明の目的とする所は、本発明とは異なるためこれ以上の説明は省略する。
特開2003−35261号公報 特開2002−266782号公報
The compressor according to the above-described conventional invention described with reference to FIGS. 3 and 4 is cited to show a conventional example of the cooling structure of the oil-cooled compressor according to the present invention. Since the object of the compressor according to the invention is different from the present invention, further explanation is omitted.
JP 2003-35261 A JP 2002-266782 A

上記従来例に係る圧縮機によれば、冷却ジャケットを有する駆動モータにより駆動される圧縮機において、冷凍機用圧縮機の場合は水または冷媒が用いられ、ガス圧縮機の場合は油を冷却液として用いるのが一般的である。従って、本発明に係る油冷式圧縮機においては、油を冷却液としても使用するものである。   According to the compressor according to the conventional example, in the compressor driven by the drive motor having the cooling jacket, water or refrigerant is used in the case of the compressor for the refrigerator, and oil is used as the coolant in the case of the gas compressor. It is common to use as Therefore, in the oil-cooled compressor according to the present invention, oil is also used as a coolant.

図5は、従来例に係る油冷式圧縮機の駆動モータ用冷却ジャケット(以下、冷却ジャケットと称す)を、図4のX−X矢視方向から見た横断面図で示したものである。図5において、冷却液は冷却ジャケット2b下方に設けられた冷却液入口18から注入され、冷却路2c内を循環してモータハウジング2a内部の図示しない駆動モータ本体を冷却する。その後、冷却ジャケット2b下方に設けられた冷却液出口19から排出される。   FIG. 5 shows a cooling jacket for a drive motor of an oil-cooled compressor according to the prior art (hereinafter referred to as a cooling jacket) in a cross-sectional view as seen from the direction of arrows XX in FIG. . In FIG. 5, the cooling liquid is injected from a cooling liquid inlet 18 provided below the cooling jacket 2b, and circulates in the cooling path 2c to cool a drive motor main body (not shown) inside the motor housing 2a. Thereafter, the coolant is discharged from the coolant outlet 19 provided below the cooling jacket 2b.

上記従来例に係る冷却ジャケットにおいては、冷却液を前記冷却ジャケット2bの下方に設けた冷却液入口18から注入して、同様に前記冷却ジャケット2b下方に設けた冷却液出口19から排出する例で示したが、その他の従来例として、図6の如く冷却液を冷却ジャケット2bの上方に設けた冷却液入口18および冷却液出口19から各々注入・排出する例がある。   In the cooling jacket according to the conventional example, the cooling liquid is injected from the cooling liquid inlet 18 provided below the cooling jacket 2b, and similarly discharged from the cooling liquid outlet 19 provided below the cooling jacket 2b. As shown in FIG. 6, there is an example in which the cooling liquid is injected and discharged from the cooling liquid inlet 18 and the cooling liquid outlet 19 provided above the cooling jacket 2b as shown in FIG.

また、図7に示すように、冷却液を冷却ジャケット2bの下方に設けた冷却水入口18から注入し、前記冷却ジャケット2b上方に設けた冷却水出口19から排出する例、あるいはまた、図8の如く冷却液を冷却ジャケット2bの上方に設けた冷却水入口18から注入し、前記冷却ジャケット2bの下方に設けた冷却液出口19から排出する例も見受けられる。   In addition, as shown in FIG. 7, the cooling liquid is injected from the cooling water inlet 18 provided below the cooling jacket 2b and discharged from the cooling water outlet 19 provided above the cooling jacket 2b, or alternatively, FIG. In some cases, the coolant is injected from the coolant inlet 18 provided above the cooling jacket 2b and discharged from the coolant outlet 19 provided below the cooling jacket 2b.

しかしながら、上記何れの従来例においても、前記冷却ジャケット2b内の局部的な箇所に空気溜まりが発生するため、結果として冷却液が循環し難いことによる局所的な冷却不良や冷却効率の低下が生じるという問題があった。   However, in any of the above conventional examples, an air pool is generated at a local location in the cooling jacket 2b, and as a result, local cooling failure and cooling efficiency decrease due to the difficulty of circulating the coolant. There was a problem.

従って、本発明の目的は、前記冷却ジャケット内の空気溜まりを解消することにより、駆動モータの局所的な冷却不良をなくし冷却の効率化を図ることができる油冷式圧縮機を提供することにある。   Accordingly, an object of the present invention is to provide an oil-cooled compressor capable of eliminating the local cooling failure of the drive motor and improving the efficiency of cooling by eliminating the air trap in the cooling jacket. is there.

前記目的を達成するために、本発明の請求項1に係る油冷式圧縮機が採用した手段は、冷却ジャケットを備えた駆動モータで駆動される圧縮機本体を備え、この圧縮機本体の吸込口に連通し、この吸込口に流入させる気体の流量を調整する吸込調整弁が設けられた吸込流路を備え、前記圧縮機本体の吐出口に一端側が接続され、吐出された圧縮気体に含まれている油分を回収する油分離回収器が介装された吐出流路を備え、前記油分離回収器から前記圧縮機本体に連通し、前記油分離回収器で分離された油を冷却するオイルクーラが介装された油循環流路を備えた油冷式圧縮機において、前記オイルクーラから前記圧縮機本体に連通する油循環流路の下流側を、第1下流側油流路と第2下流側油流路とに分割し、前記第1下流側油流路の分割端部を前記冷却ジャケットの冷却流体入口に連通させるとともに、前記第2下流側油流路の分割端部を前記冷却ジャケットの冷却流体出口に連通させ、前記冷却ジャケット上部に設けたガス抜穴と前記吸込流路の吸込調整弁より下流側に設けたガス吸込口とを、ガス抜流路により連通したことを特徴とするものである。   In order to achieve the above object, the means employed by the oil-cooled compressor according to claim 1 of the present invention includes a compressor body driven by a drive motor having a cooling jacket, and the suction of the compressor body. A suction flow path provided with a suction adjustment valve that adjusts the flow rate of the gas that flows into the suction port and is connected to the discharge port of the compressor body, and is included in the discharged compressed gas. An oil passage having an oil separation / recovery unit for collecting the oil component, and communicating with the compressor main body from the oil separation / recovery unit and cooling the oil separated by the oil separation / recovery unit In an oil-cooled compressor having an oil circulation channel in which a cooler is interposed, a downstream side of an oil circulation channel communicating from the oil cooler to the compressor body is defined as a first downstream oil channel and a second oil channel. Divided into a downstream oil flow path and divided into the first downstream oil flow path And a gas outlet hole provided in the upper portion of the cooling jacket, and a divided end portion of the second downstream oil passage is communicated with a cooling fluid outlet of the cooling jacket. The gas suction port provided on the downstream side of the suction adjustment valve of the suction channel is communicated with the gas vent channel.

本発明の請求項2に係る油冷式圧縮機が採用した手段は、請求項1項記載の油冷式圧縮機において、前記ガス吸込口は、前記圧縮機本体に設けられ、前記吸込口近傍であることを特徴とするものである。   The means employed by the oil-cooled compressor according to claim 2 of the present invention is the oil-cooled compressor according to claim 1, wherein the gas suction port is provided in the compressor body, and is in the vicinity of the suction port. It is characterized by being.

本発明の請求項3に係る油冷式圧縮機が採用した手段は、請求項1に記載の油冷式圧縮機において、前記ガス吸込口は、前記吸込流路に設けられ、前記吸込口近傍であることを特徴とするものである。   The means employed by the oil-cooled compressor according to claim 3 of the present invention is the oil-cooled compressor according to claim 1, wherein the gas suction port is provided in the suction flow path, and is in the vicinity of the suction port. It is characterized by being.

本発明の請求項4に係る油冷式圧縮機が採用した手段は、請求項1乃至3のうちの何れか一つの項に記載の油冷式圧縮機において、前記ガス抜流路に絞り機構を備えたことを特徴とするものである。   The means employed by the oil-cooled compressor according to claim 4 of the present invention is the oil-cooled compressor according to any one of claims 1 to 3, wherein the throttle mechanism is provided in the gas vent passage. It is characterized by comprising.

本発明の請求項5に係る油冷式圧縮機が採用した手段は、請求項1乃至3のうちの何れか一つの項に記載の油冷式圧縮機において、前記ガス抜流路に電磁弁を介装するとともに、予め設定された制御条件に基づきこの電磁弁を開閉制御する制御器を備えたことを特徴とするものである。   The means employed by the oil-cooled compressor according to claim 5 of the present invention is the oil-cooled compressor according to any one of claims 1 to 3, wherein an electromagnetic valve is provided in the gas vent passage. And a controller that controls opening and closing of the solenoid valve based on preset control conditions.

本発明の請求項6に係る油冷式圧縮機が採用した手段は、請求項5に記載の油冷式圧縮機において、前記制御器に予め設定された制御条件が、前記駆動モータの起動直後の所定時間だけ前記電磁弁を開弁し、所定時間経過後は前記電磁弁を閉弁することであることを特徴とするものである。   The means employed by the oil-cooled compressor according to claim 6 of the present invention is that, in the oil-cooled compressor according to claim 5, the control condition preset in the controller is immediately after the drive motor is started. The electromagnetic valve is opened only for a predetermined time, and the electromagnetic valve is closed after the predetermined time has elapsed.

本発明の請求項1に係る油冷式圧縮機は、オイルクーラから圧縮本体に連通する油循環流路の下流側を、第1下流側油流路と第2下流側油流路とに分割し、前記第1下流側油流路の分割端部を冷却ジャケットの冷却流体入口に連通させるとともに、前記第2下流側油流路の分割端部を前記冷却ジャケットの冷却流体出口に連通させた油冷式圧縮機の油冷構造に関する。   The oil-cooled compressor according to claim 1 of the present invention divides the downstream side of the oil circulation passage communicating from the oil cooler to the compression main body into a first downstream oil passage and a second downstream oil passage. The split end portion of the first downstream oil passage is communicated with the cooling fluid inlet of the cooling jacket, and the split end portion of the second downstream oil passage is communicated with the cooling fluid outlet of the cooling jacket. The present invention relates to an oil cooling structure of an oil cooling compressor.

そして、この油冷式圧縮機の油冷構造は、前記冷却ジャケット上部に設けたガス抜穴と前記吸込流路の吸込調整弁より下流側に設けたガス吸込口とをガス抜流路により連通して、前記冷却ジャケット内の滞留ガスを圧縮機本体側へ抜き取る構成としたことによって、前記冷却ジャケット内の空気溜まりが解消され、油の循環不良による局所的な冷却不良や冷却効率の低下を改善するものである。   The oil cooling structure of the oil cooling compressor communicates the gas vent hole provided in the upper part of the cooling jacket with the gas suction port provided on the downstream side of the suction adjustment valve of the suction flow path through the gas vent flow path. In addition, by adopting a configuration in which the accumulated gas in the cooling jacket is extracted to the compressor body side, air accumulation in the cooling jacket is eliminated, and local cooling failure and cooling efficiency decrease due to poor oil circulation. It is an improvement.

また、本発明の請求項2に係る油冷式圧縮機によれば、請求項1記載の油冷式圧縮機において、前記ガス吸込口は、圧縮機本体、しかもその吸込口近傍に設けられているので、その負圧力により前記冷却ジャケット内の滞留ガスを確実に抜き取る作用をなすものである。   Moreover, according to the oil-cooled compressor according to claim 2 of the present invention, in the oil-cooled compressor according to claim 1, the gas suction port is provided in the compressor body and in the vicinity of the suction port. Therefore, the negative pressure serves to reliably extract the staying gas in the cooling jacket.

更にまた、本発明の請求項3に係る油冷式圧縮機によれば、請求項1記載の油冷式圧縮機において、前記ガス吸込口は、前記吸込流路、しかも前記圧縮機本体の吸込口近傍に設けられているので、前項と同様、その負圧力により前記冷却ジャケット内の滞留ガスを確実に抜き取る作用をなすものである。   Furthermore, according to the oil-cooled compressor according to claim 3 of the present invention, in the oil-cooled compressor according to claim 1, the gas suction port is the suction flow path, and the suction of the compressor main body. Since it is provided in the vicinity of the mouth, as in the previous section, the negative pressure ensures the extraction of the staying gas in the cooling jacket.

また、本発明の請求項4に係る油冷式圧縮機によれば、請求項1乃至3のうちの何れか一つの項に記載の油冷式圧縮機において、前記ガス抜流路に絞り機構を備えたので、前記冷却ジャケット内の油の減少を抑制して、冷却効率の低下を抑えることができる。   According to an oil-cooled compressor according to a fourth aspect of the present invention, in the oil-cooled compressor according to any one of the first to third aspects, a throttle mechanism is provided in the gas vent passage. Therefore, it is possible to suppress a decrease in oil in the cooling jacket and suppress a decrease in cooling efficiency.

また一方、本発明の請求項5に係る油冷式圧縮機によれば、請求項1乃至3のうちの何れか一つの項に記載の油冷式圧縮機において、前記ガス抜流路に電磁弁を介装するとともに、予め設定された制御条件に基づきこの電磁弁を開閉制御する制御器を備えたので、前記圧縮機を起動後、必要に応じて前記電磁弁を開閉することによって、前記冷却ジャケット内の油の減少を生じることなく、冷却の効率化をなし得るものである。   On the other hand, according to the oil-cooled compressor according to claim 5 of the present invention, in the oil-cooled compressor according to any one of claims 1 to 3, the gas vent flow path is electromagnetically coupled. Since the controller is provided to control opening and closing of the electromagnetic valve based on a preset control condition while interposing a valve, by opening and closing the electromagnetic valve as necessary after starting the compressor, Cooling efficiency can be improved without causing a reduction in oil in the cooling jacket.

更にまた、本発明の請求項6に係る油冷式圧縮機によれば、請求項5に記載の油冷式圧縮機において、前記制御器に予め設定された制御条件が、前記駆動モータの起動直後の所定時間だけ前記電磁弁を開弁し、所定時間経過後は前記電磁弁を閉弁することであることによって、確実に前記冷却ジャケット内の油の減少を抑制して冷却の効率化を図ることができる。   Furthermore, according to the oil-cooled compressor according to claim 6 of the present invention, in the oil-cooled compressor according to claim 5, the control condition preset in the controller is that the drive motor is started. By opening the solenoid valve for a predetermined time immediately after that and closing the solenoid valve after a predetermined time has elapsed, it is possible to reliably suppress the decrease in oil in the cooling jacket and improve the efficiency of cooling. Can be planned.

先ず、本発明の形態1に係る油冷式圧縮機を、その冷却系統図である図1を用いて以下に説明する。   First, an oil-cooled compressor according to Embodiment 1 of the present invention will be described below with reference to FIG.

この圧縮機は、雌雄一対のスクリューロータ22(図示せず)が噛み合って、圧縮機本体ケーシング21内部に回転可能に収容されてなる構造を有する圧縮機本体20を備えている。圧縮機本体20の吸込口20aには、吸込流路8が接続され、その吐出口20bには吐出流路9の一端側が接続されている。   The compressor includes a compressor body 20 having a structure in which a pair of male and female screw rotors 22 (not shown) are meshed with each other and rotatably accommodated in the compressor body casing 21. A suction flow path 8 is connected to the suction port 20a of the compressor body 20, and one end side of the discharge flow path 9 is connected to the discharge port 20b.

そして、圧縮機本体20を構成する前記雌雄一対のスクリューロータ22のうちの一方、雄ロータ22aのみが、図示したように駆動モータ1の駆動軸11に接続されている。この駆動モータ1により、スクリューロータ22を回転させることによって、吸込流路8から供給される気体を、圧縮機本体20にて圧縮し高圧流体として吐出流路9に吐出される。   Only one of the male and female screw rotors 22 constituting the compressor main body 20 is connected to the drive shaft 11 of the drive motor 1 as shown. By rotating the screw rotor 22 by the drive motor 1, the gas supplied from the suction passage 8 is compressed by the compressor body 20 and discharged to the discharge passage 9 as a high-pressure fluid.

上記駆動モータ1は、モータケーシング2内部のモータハウジング(図5乃至図8の符号2aに該当)に収納され、このモータケーシング2は、圧縮機本体ケーシング21と一体的に結合されている。前記駆動モータ1は、前記モータケーシング2内面に固定された固定子26と、駆動軸11を中心に回転する回転子27からなり、制御器25により回転制御されている。そして、この駆動モータ1は、前記駆動軸11の回転力を軸受23aを介して圧縮機本体20のスクリューロータ22へ伝達しているのである。   The drive motor 1 is housed in a motor housing (corresponding to reference numeral 2 a in FIGS. 5 to 8) inside the motor casing 2, and the motor casing 2 is integrally coupled to the compressor body casing 21. The drive motor 1 includes a stator 26 fixed to the inner surface of the motor casing 2 and a rotor 27 that rotates about the drive shaft 11, and the rotation of the drive motor 1 is controlled by a controller 25. And this drive motor 1 is transmitting the rotational force of the said drive shaft 11 to the screw rotor 22 of the compressor main body 20 via the bearing 23a.

尚、前記モータケーシング2は、駆動モータの外殻となるモータハウジング2aと、このモータハウジング2aの外側に設けられ、後述する油(冷却液)の通じる冷却路2cを構成する冷却ジャケット2bとからなる。その点では、従来例に係る図5乃至図8と同一の構成である。   The motor casing 2 includes a motor housing 2a that is an outer shell of the drive motor, and a cooling jacket 2b that is provided outside the motor housing 2a and forms a cooling path 2c through which oil (coolant), which will be described later, communicates. Become. In that respect, the configuration is the same as that of FIGS.

前記吸込流路8には、その吸込流路8を通過する気体の流量を調整する吸込調整弁7が備えられており、制御器25によりその弁開度が制御される。また、吐出流路8には油分離回収器10が介装され、油分離回収器10内部には油分離エレメント10aが備えられている。   The suction flow path 8 is provided with a suction adjustment valve 7 for adjusting the flow rate of gas passing through the suction flow path 8, and the valve opening degree is controlled by the controller 25. An oil separation / recovery device 10 is interposed in the discharge flow path 8, and an oil separation element 10 a is provided in the oil separation / recovery device 10.

油分離回収器10に流入した高圧気体には僅かに油が混入しているので、この油を油分離回収器10の内部に備えられた油分離エレメント10aにて捕捉する。油分離エレメント10aにて捕捉された油は自重により滴下し、油分離回収器10内部の下方に油溜り10bが形成される。   Since the oil is slightly mixed in the high-pressure gas flowing into the oil separation / recovery device 10, the oil is captured by the oil separation element 10 a provided inside the oil separation / recovery device 10. The oil trapped by the oil separation element 10a is dropped by its own weight, and an oil reservoir 10b is formed below the oil separation / recovery device 10 inside.

このようにして油溜り10bに回収された油は、前記油分離回収器10から前記圧縮機本体20に連通する油循環流路12を通して、図示しないオイルポンプによって循環される。この油循環流路12にはオイルクーラ13が介装され、制御器25によって温度制御されることによって通過する油が冷却される。   The oil recovered in the oil reservoir 10b in this manner is circulated by an oil pump (not shown) through the oil circulation passage 12 communicating from the oil separator / collector 10 to the compressor body 20. An oil cooler 13 is interposed in the oil circulation passage 12, and the oil passing therethrough is cooled by temperature control by the controller 25.

そして、油循環流路12の内、前記オイルクーラ13から圧縮機本体20に連通する下流側の油循環流路12を、第1下流側油流路16と第2下流側油流路17とに分割し、前記第1下流側油流路16の分割端部を前記冷却ジャケット2bの冷却流体入口18に連通させる。同時に、前記第2下流側油流路17の分割端部を前記冷却ジャケット2bの冷却流体出口19に連通させている。   Of the oil circulation channels 12, the downstream oil circulation channels 12 communicating from the oil cooler 13 to the compressor body 20 are divided into a first downstream oil channel 16 and a second downstream oil channel 17. And the split end of the first downstream oil passage 16 is communicated with the cooling fluid inlet 18 of the cooling jacket 2b. At the same time, the divided end portion of the second downstream oil passage 17 is communicated with the cooling fluid outlet 19 of the cooling jacket 2b.

一方、オイルクーラ13によって冷却された油は、第1下流側油流路16を通じてモータケーシング2の冷却ジャケット2bに設けられた冷却流体入口18から、冷却路2c内に注入される。また、油循環流路12のうち、油分離回収器10からオイルクーラ13に至る上流側の油循環流路12には、三方弁14が介装されており、この三方弁14からオイルクーラ13に至らなかった残りの油は、三方弁14からバイパス流路15を通過した後、オイルクーラ13によって冷却された油と合流する。   On the other hand, the oil cooled by the oil cooler 13 is injected into the cooling passage 2 c from the cooling fluid inlet 18 provided in the cooling jacket 2 b of the motor casing 2 through the first downstream oil passage 16. In addition, a three-way valve 14 is interposed in the oil circulation flow path 12 on the upstream side from the oil separator / collector 10 to the oil cooler 13, and the oil cooler 13 extends from the three-way valve 14. The remaining oil that has not reached the flow passes through the bypass flow path 15 from the three-way valve 14 and then merges with the oil cooled by the oil cooler 13.

ここで、前記三方弁14は、駆動モータ1を適切な温度に冷却し予め設定された目標温度になるよう、前記油循環流路12に介装されたオイルクーラ13に供給する油量と、オイルクーラ13に供給せずそのままバイパス流路15に流す油量との配分比を、制御器25によって指令され、この指令信号に従って弁開閉を制御される。   Here, the three-way valve 14 is configured to cool the drive motor 1 to an appropriate temperature and supply an oil amount to an oil cooler 13 interposed in the oil circulation passage 12 so as to reach a preset target temperature; The controller 25 commands a distribution ratio with the amount of oil that flows through the bypass flow path 15 as it is without being supplied to the oil cooler 13, and the valve opening and closing is controlled according to the command signal.

そして、図5乃至図8を用いて説明した従来例と同様に、モータケーシング2の冷却ジャケット2bに設けられた冷却流体入口18を介して、冷却された油を冷却路2cに注入され、モータハウジング2aを通して内部の駆動モータ1を冷却するのである。駆動モータ1の冷却を終了した油は、前記モータケーシング2の冷却流体出口19から、油フィルター24が介装された第2下流側油流路17を通じて、圧縮機本体ケーシング21に設けられた油の供給の必要な油供給口28に供給される。   Then, similarly to the conventional example described with reference to FIGS. 5 to 8, the cooled oil is injected into the cooling passage 2c through the cooling fluid inlet 18 provided in the cooling jacket 2b of the motor casing 2, and the motor The internal drive motor 1 is cooled through the housing 2a. The oil that has finished cooling the drive motor 1 is supplied to the compressor body casing 21 from the cooling fluid outlet 19 of the motor casing 2 through the second downstream oil passage 17 in which the oil filter 24 is interposed. Is supplied to the oil supply port 28 that needs to be supplied.

このような油供給口28は、吸込側軸受・軸封部23aへの油供給口28a,吐出側軸受・軸封部23bへの油供給口28bおよびスクリューロータ22と圧縮機本体ケーシング21が形成する圧縮空間への油供給口28cから構成される。   Such an oil supply port 28 is formed by the oil supply port 28a to the suction side bearing / shaft seal 23a, the oil supply port 28b to the discharge side bearing / shaft seal 23b, the screw rotor 22 and the compressor body casing 21. It is comprised from the oil supply port 28c to the compression space which carries out.

更に、モータケーシング2の冷却ジャケット2b上部には、冷却流体入口18および冷却流体出口19とは別にガス抜穴4が設けられており、このガス抜穴4と前記吸込流路8の吸込調整弁7より下流側に設けたガス吸込口とがガス抜流路3により連通され、前記冷却ジャケット2b内の滞留ガスを圧縮機本体20側へ抜き取る構造をなしている。   Further, a gas vent hole 4 is provided in the upper portion of the cooling jacket 2b of the motor casing 2 in addition to the cooling fluid inlet 18 and the cooling fluid outlet 19, and the suction regulating valve of the gas vent hole 4 and the suction flow path 8 is provided. 7 is connected to the gas suction port provided on the downstream side by the gas vent passage 3 so as to extract the staying gas in the cooling jacket 2b to the compressor body 20 side.

そして、前記ガス吸込口は、図1の符号30aで示す通り、圧縮機本体20の吸込口20a近傍における圧縮機本体ケーシング21に設けるのが好ましい。このような構成とすることによって、圧縮機の運転中は、圧縮機本体20の前記吸込口20a近傍は、大気圧以下の負圧となっているため、前記冷却ジャケット2b内の滞留ガスを容易に抜き取ることが可能となって、前記冷却ジャケット2bの冷却効率を向上させるとともに局所的な冷却不良を解消し得るのである。   And it is preferable to provide the said gas inlet in the compressor main body casing 21 in the vicinity of the inlet 20a of the compressor main body 20, as shown by the code | symbol 30a of FIG. By adopting such a configuration, during the operation of the compressor, the vicinity of the suction port 20a of the compressor body 20 has a negative pressure equal to or lower than the atmospheric pressure, so that the stagnant gas in the cooling jacket 2b is easily generated. Thus, the cooling efficiency of the cooling jacket 2b can be improved and local cooling failure can be eliminated.

尚、前記吸込流路8においては、図1に示した吸込調整弁7の上流側と圧縮機本体20の吸込口20a近傍との間では、前記吸込調整弁7や吸込流路8による圧力損失により、圧縮機運転中には圧力差が生じる。例えば、定格出力15kWの圧縮機において、前記吸込口20aの圧力は、吸込調整弁7の上流側圧力(=大気圧)より、運転中には約2.27kPa低圧となっている。   In the suction flow path 8, the pressure loss due to the suction adjustment valve 7 and the suction flow path 8 is between the upstream side of the suction adjustment valve 7 shown in FIG. 1 and the vicinity of the suction port 20 a of the compressor body 20. As a result, a pressure difference occurs during compressor operation. For example, in a compressor with a rated output of 15 kW, the pressure at the suction port 20a is about 2.27 kPa lower than the upstream pressure (= atmospheric pressure) of the suction adjustment valve 7 during operation.

前記冷却ジャケット2b内の圧力は、油の蒸気圧により大気圧より多少高くなっているので、この圧力が前記負圧力と相まって、この冷却ジャケット2b内の滞留ガスを排気して、圧縮機本体20側に確実に抜き取る作用をなすのである。   Since the pressure in the cooling jacket 2b is slightly higher than the atmospheric pressure due to the vapor pressure of the oil, this pressure, combined with the negative pressure, exhausts the staying gas in the cooling jacket 2b, and the compressor body 20 The action is taken out reliably to the side.

また、モータケーシング2内部の冷却が確実になされるためには、冷却流体出口19から必要以上に油が、圧縮機本体20側に循環されないようにするのが望ましい。その一方で、前記ガス抜穴4からガス抜流路3を通じて、冷却ジャケット2b内に滞留したガス以外の油も、このガスの流れに同伴されて圧縮機本体20側に供給されることがある。このガス抜流路3を通じて、圧縮機本体20へ供給される油量が多量になってくると、駆動モータ1の適切な冷却が維持できなくなる恐れがある。   Further, in order to surely cool the inside of the motor casing 2, it is desirable that oil is not circulated from the cooling fluid outlet 19 to the compressor body 20 side more than necessary. On the other hand, oil other than the gas retained in the cooling jacket 2b from the gas vent hole 4 through the gas vent channel 3 may be supplied to the compressor body 20 side along with the gas flow. . If the amount of oil supplied to the compressor main body 20 through the gas vent flow path 3 becomes large, there is a possibility that proper cooling of the drive motor 1 cannot be maintained.

このため、図には示さないが、ガス抜流路3によるこのような油の多量な供給を防止するため、ガス抜流路3に絞り機構を介装するのが好ましい。ここでいう絞り機構とは、オリフィス、ベンチュリや流量調整弁のように前記ガス抜流路3を通過する流体流量を絞り込む機能を有するものを言う。   For this reason, although not shown in the drawing, in order to prevent such a large amount of oil from being supplied by the gas vent channel 3, it is preferable to provide a throttle mechanism in the gas vent channel 3. The term “throttle mechanism” as used herein refers to a mechanism having a function of narrowing the flow rate of fluid passing through the gas vent channel 3 such as an orifice, a venturi, or a flow rate adjusting valve.

あるいはまた、ガス抜流路3による油の多量な供給を防止するため、図1に示したように前記ガス抜流路3に電磁弁5を介装し、予め設定された制御条件に基づきこの電磁弁5を制御する制御器25を備えるのが好ましい。そして、この予め設定された制御条件が、駆動モータ1の起動直後の所定時間だけ前記電磁弁5を開弁し、所定時間経過後はこの電磁弁5を閉弁する条件であるのがより好ましい。上記のような構成とすることにより、ガス抜流路3による油の多量な供給を自動的に防止することができる。   Alternatively, in order to prevent a large amount of oil from being supplied through the gas vent channel 3, an electromagnetic valve 5 is provided in the gas vent channel 3 as shown in FIG. A controller 25 for controlling the electromagnetic valve 5 is preferably provided. The preset control condition is more preferably a condition in which the electromagnetic valve 5 is opened for a predetermined time immediately after the drive motor 1 is started and the electromagnetic valve 5 is closed after the predetermined time has elapsed. . With the above-described configuration, a large amount of oil can be automatically prevented from being supplied through the gas vent channel 3.

次に、本発明の形態2に係る油冷式圧縮機の油冷構造を、その冷却系統図である図2を用いて以下に説明する。尚、本発明の形態2が上記形態1と相違するところは、吸込流路8の吸込調整弁7より下流側に設けたガス吸込口の位置に相違があり、その他は全く同構成であるから、ガス抜流路3の構成についての説明に止めるものとする。   Next, the oil cooling structure of the oil cooling type compressor according to the second embodiment of the present invention will be described below with reference to FIG. 2 which is a cooling system diagram thereof. Note that the second embodiment of the present invention differs from the first embodiment in that the position of the gas suction port provided on the downstream side of the suction adjustment valve 7 of the suction flow path 8 is different, and the rest is completely the same configuration. The description of the configuration of the gas vent channel 3 will be stopped.

即ち、本発明の形態1においては、ガス抜流路3の圧縮機本体20側への取り付け位置は、図1に示した通り、圧縮機本体20の吸込口20a近傍における圧縮機本体ケーシング21に設けたガス吸込口30aに設ける構成としたが、本発明の形態2においては、図2に示すように、吸込流路8における吸込口20a近傍のガス吸込口30bに設ける構成とした。このような構成とすることにより、冷却ジャケット2b内の滞留ガスを効率的に抜き取って、前記形態1と同様な効果を得ることができるのである。   That is, in Embodiment 1 of the present invention, the attachment position of the gas vent channel 3 to the compressor body 20 side is as shown in FIG. 1 in the compressor body casing 21 in the vicinity of the suction port 20a of the compressor body 20. Although it was set as the structure provided in the provided gas suction port 30a, it was set as the structure provided in the gas suction port 30b of the suction flow path 8 vicinity of the suction port 20a as shown in FIG. By adopting such a configuration, it is possible to efficiently extract the staying gas in the cooling jacket 2b and obtain the same effect as in the first embodiment.

以上のように、本発明に係る油冷式圧縮機は、オイルクーラから圧縮本体に連通する油循環流路の下流側油流路を、第1下流側油流路と第2下流側油流路とに分割し、前記第1下流側油流路の分割端部を冷却ジャケットの冷却流体入口に連通させるとともに、前記第2下流側油流路の分割端部を前記冷却ジャケットの冷却流体出口に連通させた油冷式圧縮機の油冷構造に関する。   As described above, in the oil-cooled compressor according to the present invention, the downstream oil passage of the oil circulation passage communicating from the oil cooler to the compression body is divided into the first downstream oil passage and the second downstream oil flow. And the divided end of the first downstream oil passage is communicated with the cooling fluid inlet of the cooling jacket, and the divided end of the second downstream oil passage is connected to the cooling fluid outlet of the cooling jacket. The present invention relates to an oil cooling structure of an oil cooling type compressor communicated with the oil cooling type.

そして、この油冷式圧縮機の油冷構造は、前記冷却ジャケット上部に設けたガス抜穴と前記吸込流路の吸込調整弁より下流側に設けたガス吸込口とをガス抜流路により連通して、前記冷却ジャケット内の滞留ガスを圧縮機本体側へ抜き取る構成としたことによって、前記冷却ジャケット内の空気溜まりが解消され、油の循環不良による局所的な冷却不良や冷却効率の低下を改善するものである。   The oil cooling structure of the oil cooling compressor communicates the gas vent hole provided in the upper part of the cooling jacket with the gas suction port provided on the downstream side of the suction adjustment valve of the suction flow path through the gas vent flow path. In addition, by adopting a configuration in which the accumulated gas in the cooling jacket is extracted to the compressor body side, air accumulation in the cooling jacket is eliminated, and local cooling failure and cooling efficiency decrease due to poor oil circulation. It is an improvement.

更に、吸込流路の吸込調整弁より下流側に設けた前記ガス吸込口は、圧縮機本体における吸込口近傍または前記吸込流路における吸込口近傍に設ける構成としたので、冷却ジャケット内の滞留ガスを、圧縮機本体側へ抜き取るのに必要な負圧力の確保がより確実となる。   Further, since the gas suction port provided on the downstream side of the suction adjustment valve of the suction channel is configured to be provided in the vicinity of the suction port in the compressor body or in the vicinity of the suction port in the suction channel, the retained gas in the cooling jacket The negative pressure necessary for extracting the compressor to the compressor body side is more reliably secured.

尚、本発明に係る油冷式圧縮機は、上述の如くスクリュー圧縮機を例に説明したが、その他のターボ圧縮機やレシプロ圧縮機等にも、その主旨を適用可能なことは言うまでもない。また、本発明に係る形態は、電動モータの駆同軸が圧縮機本体のロータ軸と直結した図で説明したが、両者の軸間にカップリングや減速機を介して回転を伝達する場合も当然含まれる。   The oil-cooled compressor according to the present invention has been described by taking the screw compressor as an example as described above, but it goes without saying that the gist can be applied to other turbo compressors, reciprocating compressors, and the like. Moreover, although the form which concerns on this invention demonstrated by the figure which the drive coaxial of the electric motor was directly connected with the rotor shaft of the compressor main body, it is natural also when transmitting rotation via a coupling or a reduction gear between both shafts. included.

また、本発明の形態1および形態2においては、駆動モータ1、電磁弁5、吸込調整弁7、オイルクーラ13および三方弁14は、同一の制御機器である制御器25にて制御される例を示したが、本発明はそれに限らない。これらは、異なる制御機器にて制御されるものであっても良い。   In the first and second embodiments of the present invention, the drive motor 1, the solenoid valve 5, the suction regulating valve 7, the oil cooler 13, and the three-way valve 14 are controlled by the controller 25 that is the same control device. However, the present invention is not limited to this. These may be controlled by different control devices.

本発明の形態1に係る油冷式圧縮機の冷却系統図である。It is a cooling system figure of the oil cooling type compressor concerning form 1 of the present invention. 本発明の形態2に係る油冷式圧縮機の冷却系統図である。It is a cooling system figure of the oil cooling type compressor concerning form 2 of the present invention. 従来のスクロール型空気圧縮機の断面図である。It is sectional drawing of the conventional scroll type air compressor. 従来のスクリュー冷凍機における圧縮機の断面図である。It is sectional drawing of the compressor in the conventional screw refrigerator. 図4の矢視X−Xを示す断面図である。It is sectional drawing which shows arrow XX of FIG. 他の従来例に係る図5に該当する断面図である。It is sectional drawing applicable to FIG. 5 which concerns on another prior art example. 更なる他の従来例に係る図5に該当する断面図である。It is sectional drawing applicable to FIG. 5 which concerns on another another prior art example. 更なる他の従来例に係る図5に該当する断面図であるIt is sectional drawing applicable to FIG. 5 which concerns on another another prior art example.

符号の説明Explanation of symbols

1…駆動モータ,
2…モータケーシング,2a…モータハウジング,2b…冷却ジャケット,2c…冷却
路,
3…ガス抜流路,4…ガス抜穴,5…電磁弁,7…吸込調整弁,8…吸込流路,
9…吐出流路,
10…油分離回収器,10a…油分離エレメント,10b…油溜り,
11…駆動軸,12…油循環流路,13…オイルクーラ,14…三方弁,
15…バイパス流路,16…第1下流側油流路,17…第2下流側油流路,
18…冷却流体入口,19…冷却流体出口,
20…圧縮機本体,20a…吸込口,20b…吐出口,
21…圧縮機本体ケーシング,
22…スクリューロータ,22a…雄スクリューロータ,
23a…吸込側軸受・軸封部,23b…吐出側軸受・軸封部,
24…油フィルター,25…制御器,26…固定子,27…回転子,
28,28a,28b,28c…油供給口,
30a,30b…ガス吸込口
1 ... Drive motor,
2 ... Motor casing, 2a ... Motor housing, 2b ... Cooling jacket, 2c ... Cooling path,
3 ... Gas vent flow path, 4 ... Gas vent hole, 5 ... Solenoid valve, 7 ... Suction adjustment valve, 8 ... Suction flow path,
9: Discharge flow path,
10 ... Oil separator / collector, 10a ... Oil separator element, 10b ... Oil reservoir,
DESCRIPTION OF SYMBOLS 11 ... Drive shaft, 12 ... Oil circulation flow path, 13 ... Oil cooler, 14 ... Three-way valve,
15 ... Bypass channel, 16 ... First downstream oil channel, 17 ... Second downstream oil channel,
18 ... Cooling fluid inlet, 19 ... Cooling fluid outlet,
20 ... Compressor body, 20a ... Suction port, 20b ... Discharge port,
21 ... Compressor body casing,
22 ... Screw rotor, 22a ... Male screw rotor,
23a ... Suction side bearing / shaft seal, 23b ... Discharge side bearing / shaft seal,
24 ... Oil filter, 25 ... Controller, 26 ... Stator, 27 ... Rotor,
28, 28a, 28b, 28c ... oil supply port,
30a, 30b ... Gas inlet

Claims (6)

冷却ジャケットを備えた駆動モータで駆動される圧縮機本体を備え、この圧縮機本体の吸込口に連通し、この吸込口に流入させる気体の流量を調整する吸込調整弁が設けられた吸込流路を備え、前記圧縮機本体の吐出口に一端側が接続され、吐出された圧縮気体に含まれている油分を回収する油分離回収器が介装された吐出流路を備え、前記油分離回収器から前記圧縮機本体に連通し、前記油分離回収器で分離された油を冷却するオイルクーラが介装された油循環流路を備えた油冷式圧縮機において、前記オイルクーラから前記圧縮機本体に連通する油循環流路の下流側を、第1下流側油流路と第2下流側油流路とに分割し、前記第1下流側油流路の分割端部を前記冷却ジャケットの冷却流体入口に連通させるとともに、前記第2下流側油流路の分割端部を前記冷却ジャケットの冷却流体出口に連通させ、前記冷却ジャケット上部に設けたガス抜穴と前記吸込流路の吸込調整弁より下流側に設けたガス吸込口とを、ガス抜流路により連通したことを特徴とする油冷式圧縮機。   A suction flow path including a compressor body driven by a drive motor having a cooling jacket, and provided with a suction adjustment valve that communicates with the suction port of the compressor body and adjusts the flow rate of the gas flowing into the suction port. And having a discharge passage in which one end side is connected to a discharge port of the compressor main body, and an oil separation and recovery unit for recovering oil contained in the discharged compressed gas is provided, and the oil separation and recovery unit An oil-cooled compressor having an oil circulation passage that is connected to the compressor main body and in which an oil cooler that cools the oil separated by the oil separation and recovery unit is interposed, from the oil cooler to the compressor A downstream side of the oil circulation passage communicating with the main body is divided into a first downstream oil passage and a second downstream oil passage, and a divided end portion of the first downstream oil passage is formed on the cooling jacket. And communicating with the cooling fluid inlet and the second downstream oil flow The split end portion of the cooling jacket is communicated with a cooling fluid outlet of the cooling jacket, and a gas vent hole provided in the upper portion of the cooling jacket and a gas suction port provided on the downstream side of the suction adjustment valve of the suction passage An oil-cooled compressor characterized by being connected by a road. 前記ガス吸込口は、前記圧縮機本体に設けられ、前記吸込口近傍であることを特徴とする請求項1に記載の油冷式圧縮機。   The oil-cooled compressor according to claim 1, wherein the gas suction port is provided in the compressor body and is in the vicinity of the suction port. 前記ガス吸込口は、前記吸込流路に設けられ、前記吸込口近傍であることを特徴とする請求項1に記載の油冷式圧縮機。   The oil-cooled compressor according to claim 1, wherein the gas suction port is provided in the suction flow path and is in the vicinity of the suction port. 前記ガス抜流路に絞り機構を備えたことを特徴とする請求項1乃至3のうちの何れか一つの項に記載の油冷式圧縮機。   The oil-cooled compressor according to any one of claims 1 to 3, wherein the gas vent passage is provided with a throttle mechanism. 前記ガス抜流路に電磁弁を介装するとともに、予め設定された制御条件に基づきこの電磁弁を開閉制御する制御器を備えたことを特徴とする請求項1乃至3のうちの何れか一つの項に記載の油冷式圧縮機。   4. The controller according to claim 1, further comprising: a controller that interposes an electromagnetic valve in the gas vent passage and controls opening and closing of the electromagnetic valve based on a preset control condition. 5. The oil-cooled compressor as described in one term. 前記制御器に予め設定された制御条件が、前記駆動モータの起動直後の所定時間だけ前記電磁弁を開弁し、所定時間経過後は前記電磁弁を閉弁することであることを特徴とする請求項5に記載の油冷式圧縮機。   The control condition set in advance in the controller is to open the solenoid valve for a predetermined time immediately after starting the drive motor, and to close the solenoid valve after a predetermined time has elapsed. The oil-cooled compressor according to claim 5.
JP2005157546A 2005-05-30 2005-05-30 Oil-cooled compressor Active JP4634862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157546A JP4634862B2 (en) 2005-05-30 2005-05-30 Oil-cooled compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157546A JP4634862B2 (en) 2005-05-30 2005-05-30 Oil-cooled compressor

Publications (2)

Publication Number Publication Date
JP2006329157A true JP2006329157A (en) 2006-12-07
JP4634862B2 JP4634862B2 (en) 2011-02-16

Family

ID=37551091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157546A Active JP4634862B2 (en) 2005-05-30 2005-05-30 Oil-cooled compressor

Country Status (1)

Country Link
JP (1) JP4634862B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038509A (en) * 2008-08-08 2010-02-18 Kobe Steel Ltd Refrigerating device
JP2010255600A (en) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp Two-stage screw compressor
JP2012107623A (en) * 2010-11-18 2012-06-07 Hamilton Sundstrand Corp Heat exchanger system and operation method thereof
CN113333745A (en) * 2021-05-18 2021-09-03 中国工程物理研究院材料研究所 Powder compacting die with atmosphere protection function and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508526B1 (en) * 1970-08-25 1975-04-04
JPS5275812U (en) * 1975-11-29 1977-06-06
JPS5427605Y1 (en) * 1975-07-22 1979-09-07
JP2002266782A (en) * 2001-03-07 2002-09-18 Kobe Steel Ltd Screw refrigerating machine
JP2003035261A (en) * 2001-07-19 2003-02-07 Toyota Industries Corp Compressor
JP2005069062A (en) * 2003-08-21 2005-03-17 Kobe Steel Ltd Oil injection type screw compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508526B1 (en) * 1970-08-25 1975-04-04
JPS5427605Y1 (en) * 1975-07-22 1979-09-07
JPS5275812U (en) * 1975-11-29 1977-06-06
JP2002266782A (en) * 2001-03-07 2002-09-18 Kobe Steel Ltd Screw refrigerating machine
JP2003035261A (en) * 2001-07-19 2003-02-07 Toyota Industries Corp Compressor
JP2005069062A (en) * 2003-08-21 2005-03-17 Kobe Steel Ltd Oil injection type screw compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038509A (en) * 2008-08-08 2010-02-18 Kobe Steel Ltd Refrigerating device
JP2010255600A (en) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp Two-stage screw compressor
JP2012107623A (en) * 2010-11-18 2012-06-07 Hamilton Sundstrand Corp Heat exchanger system and operation method thereof
CN113333745A (en) * 2021-05-18 2021-09-03 中国工程物理研究院材料研究所 Powder compacting die with atmosphere protection function and method

Also Published As

Publication number Publication date
JP4634862B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
EP2960512B1 (en) Compressor device, as well as the use of such an assembly
US10197058B2 (en) Screw compressor
US20070241627A1 (en) Lubricant cooled integrated motor/compressor design
KR102052707B1 (en) Turbo Compressor Having a cooling channel
CN101176250A (en) Integrated electric motor driven compressor
JP4634862B2 (en) Oil-cooled compressor
JP4043433B2 (en) air compressor
KR100802465B1 (en) Rotary Compressor
JP6511321B2 (en) Refueling displacement compressor
JP2005171957A (en) Package type compressor
JP5844980B2 (en) Two-stage screw compression refrigeration system
KR20230173574A (en) Vacuum pump with separately controlled fan
JP2022160173A (en) scroll compressor
NZ627526B2 (en) Compressor device as well as the use of such a compressor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

R150 Certificate of patent or registration of utility model

Ref document number: 4634862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350