JP2006328977A - Turbine system and its construction method - Google Patents

Turbine system and its construction method Download PDF

Info

Publication number
JP2006328977A
JP2006328977A JP2005149935A JP2005149935A JP2006328977A JP 2006328977 A JP2006328977 A JP 2006328977A JP 2005149935 A JP2005149935 A JP 2005149935A JP 2005149935 A JP2005149935 A JP 2005149935A JP 2006328977 A JP2006328977 A JP 2006328977A
Authority
JP
Japan
Prior art keywords
steam
facility
turbine
water
generation facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005149935A
Other languages
Japanese (ja)
Other versions
JP4694888B2 (en
Inventor
Shinichi Higuchi
眞一 樋口
Mutsumi Horitsugu
睦 堀次
Shinya Marushima
信也 圓島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005149935A priority Critical patent/JP4694888B2/en
Publication of JP2006328977A publication Critical patent/JP2006328977A/en
Application granted granted Critical
Publication of JP4694888B2 publication Critical patent/JP4694888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbine system and its construction method, capable of flexibly producing energy and water in response to respective demands. <P>SOLUTION: This turbine system has a gas turbine facility 10, a steam generating facility 20 for generating steam by using exhaust gas (e) from this gas turbine facility 10 as a heat source, a steam turbine facility 30 for providing rotational motive power by the steam (i) from this steam generating facility 20, and a water manufacturing facility 40 for providing pure water (n) by distilling raw water (m) by using the steam (i) from the steam generating facility 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タービン設備と水製造設備を備えたタービンシステム及びその構築方法に関する。   The present invention relates to a turbine system including a turbine facility and a water production facility, and a construction method thereof.

タービン設備と水製造設備を備えたタービンシステムとして、ガスタービン設備の排熱を利用してフラッシュ型純水製造設備で純水を製造し、再度排熱を利用して製造した水から過熱蒸気を生成し、この過熱蒸気をガスタービン設備の燃焼器に噴射してガスタービン出力を増加させるものがある(特許文献1等参照)。   As a turbine system equipped with a turbine facility and a water production facility, pure water is produced in the flash type pure water production facility using the exhaust heat of the gas turbine facility, and superheated steam is again produced from the water produced using the exhaust heat. There is one that generates and injects this superheated steam into a combustor of a gas turbine facility to increase the output of the gas turbine (see Patent Document 1, etc.).

特開2003−312588号公報JP 2003-312588 A

例えば離島や砂漠地帯等に設置して1つのプラントでエネルギ(ここでは電力や動力等)と水とを得ようとすると、水については貯留できるのでストックがある限りプラントの運転状況に関わらず供給可能なのに対し、エネルギは性質上保存することができない。エネルギと水の供給に上記従来技術を適用した場合、エネルギ需要が変動するとガスタービン設備を適宜部分負荷運転に切り換える必要があるので、ガスタービン設備の排熱量が変動しエネルギ需要に伴って製造水量が変動してしまう。水の需給の不均衡は貯水で対応できるが、それも貯水設備の容量に制約される。したがって、場合によっては水の消費状況にエネルギ供給量が制約されることもあり得る。   For example, if you install it on a remote island or desert area and try to obtain energy (here, electricity, power, etc.) and water in one plant, water can be stored, so as long as there is stock, it will be supplied regardless of the operation status of the plant. While possible, energy cannot be stored by nature. When the above-mentioned conventional technology is applied to the supply of energy and water, it is necessary to switch the gas turbine equipment to partial load operation as needed when the energy demand fluctuates. Will fluctuate. Water supply and demand imbalance can be dealt with by storing water, but it is also limited by the capacity of the water storage facility. Therefore, in some cases, the energy supply amount may be limited by the water consumption state.

本発明の目的は、エネルギと水をそれぞれの需要に柔軟に対応して生産することができるタービンシステム及びその構築方法を提供することにある。   An object of the present invention is to provide a turbine system that can flexibly produce energy and water in response to respective demands, and a construction method thereof.

上記目的を達成するために、本発明は、蒸気を生成する蒸気生成設備と、この蒸気生成設備からの蒸気により回転動力を得る蒸気タービン設備と、前記蒸気生成設備からの蒸気を利用して原水を蒸留して純水を得る水製造設備とを備える。   In order to achieve the above object, the present invention provides a steam generation facility for generating steam, a steam turbine facility for obtaining rotational power by the steam from the steam generation facility, and raw water using the steam from the steam generation facility. And a water production facility for obtaining pure water by distillation.

本発明によれば、エネルギと水をそれぞれの需要に柔軟に対応して生産することができる。   ADVANTAGE OF THE INVENTION According to this invention, energy and water can be produced corresponding to each demand flexibly.

以下に図面を用いて本発明の実施形態を説明する。
図1は本発明の第1実施形態に係るタービンシステムの全体構成を簡略的に表す回路図である。
図1に示すように、本システムは、ガスタービン設備10、ガスタービン設備10からの排気ガスを熱源として蒸気を生成する排熱回収型の蒸気生成設備20、この蒸気生成設備20からの蒸気により回転動力を得る蒸気タービン設備30、及び蒸気生成設備20からの蒸気を利用して原水(例えば海水や工業用水等)を蒸留して純水を得る水製造設備40を備えている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a circuit diagram schematically showing the overall configuration of the turbine system according to the first embodiment of the present invention.
As shown in FIG. 1, this system uses a gas turbine facility 10, an exhaust heat recovery type steam generation facility 20 that generates steam using exhaust gas from the gas turbine facility 10 as a heat source, and steam generated from the steam generation facility 20. A steam turbine facility 30 that obtains rotational power and a water production facility 40 that obtains pure water by distilling raw water (for example, seawater, industrial water, etc.) using steam from the steam generation facility 20 are provided.

ガスタービン設備10は排気ガス配管19を介して蒸気生成設備20に接続している。蒸気生成設備20からは分岐管路27が延びている。分岐管路27は、蒸気生成設備20の蒸気出口に接続した蒸気管26、蒸気タービン設備30の入口に接続した蒸気管34、及び水製造設備40の媒体入口に接続した蒸気管42からなる。これら蒸気管26,34,42は分岐部28で接続している。また蒸気タービン設備30は、復水管36,25を介して蒸気生成設備20の入口部に接続している。また、復水管25には水製造設備40からの復水管43が接続している。   The gas turbine facility 10 is connected to the steam generation facility 20 via an exhaust gas pipe 19. A branch pipe 27 extends from the steam generation facility 20. The branch line 27 includes a steam pipe 26 connected to the steam outlet of the steam generation facility 20, a steam pipe 34 connected to the inlet of the steam turbine facility 30, and a steam pipe 42 connected to the medium inlet of the water production facility 40. These steam pipes 26, 34, 42 are connected by a branch portion 28. The steam turbine facility 30 is connected to the inlet of the steam generation facility 20 via the condensate pipes 36 and 25. A condensate pipe 43 from the water production facility 40 is connected to the condensate pipe 25.

ガスタービン設備10は、圧縮機11、燃焼器12及びタービン13を備えている。圧縮機11は大気aを吸い込んで所定圧力まで圧縮する。例えば、圧縮機11の吸込空気流量は約88kg/s、圧力比は約15である。圧縮された空気bは燃焼器12に導かれ、燃料cを燃焼させるために使用される。これにより生成された高温高圧の燃焼ガスdは下流に配置されたタービン13に導かれ膨張仕事をする。燃焼ガスdの温度は例えば1300℃程度である。燃焼ガスdの膨張仕事の一部はタービン13の回転軸に接続された圧縮機11の圧縮動力として消費され、残りの仕事がタービン13の回転軸に接続された発電機14で電力に変換される。発電機14での発電量は例えば27000kW程度である。膨張仕事をした後、例えば560℃程度に温度及び圧力が低下した状態でガスタービン設備10から排出される排気ガスeは、加熱媒体として配管19を介して蒸気生成設備20に導かれる。   The gas turbine facility 10 includes a compressor 11, a combustor 12, and a turbine 13. The compressor 11 sucks the air a and compresses it to a predetermined pressure. For example, the suction air flow rate of the compressor 11 is about 88 kg / s, and the pressure ratio is about 15. The compressed air b is guided to the combustor 12 and used to burn the fuel c. The high-temperature and high-pressure combustion gas d thus generated is guided to the turbine 13 disposed downstream and performs expansion work. The temperature of the combustion gas d is, for example, about 1300 ° C. Part of the expansion work of the combustion gas d is consumed as the compression power of the compressor 11 connected to the rotating shaft of the turbine 13, and the remaining work is converted into electric power by the generator 14 connected to the rotating shaft of the turbine 13. The The amount of power generated by the generator 14 is about 27000 kW, for example. After the expansion work is performed, the exhaust gas e discharged from the gas turbine equipment 10 in a state where the temperature and pressure are reduced to about 560 ° C., for example, is guided to the steam generation equipment 20 via the pipe 19 as a heating medium.

なお、本実施形態では一軸式のタービン13を例示しているが、タービンは二軸式のものでも良い。またタービン13の負荷機器として発電機14を例示しているが、発電機14に代えてポンプ等を接続することも考えられる。   In the present embodiment, the single-shaft turbine 13 is illustrated, but the turbine may be a twin-shaft turbine. Moreover, although the generator 14 is illustrated as a load apparatus of the turbine 13, it replaces with the generator 14 and connecting a pump etc. is also considered.

蒸気生成設備20は、複数(本実施形態においては3つ)の熱交換器を排気ガス流路内に備えている。これら熱交換器を排気ガス流路内の排気ガスの流れに沿って上流から過熱器21、蒸発器22及び節炭器23とする。排気ガスeを熱源としてそれら熱交換器21〜23により復水管25からの給水fを加熱して過熱蒸気gを生成する。蒸気生成設備20内に供給される給水fは例えば60℃程度、過熱器21で過熱された過熱蒸気gは例えば約200℃で圧力比が8程度である。蒸気生成設備20で加熱媒体として使用された結果、熱エネルギを回収され温度が例えば140℃程度に低下した排気ガスhは排気管24を介して大気放出される。   The steam generation facility 20 includes a plurality (three in the present embodiment) of heat exchangers in the exhaust gas flow path. These heat exchangers are referred to as a superheater 21, an evaporator 22 and a economizer 23 from upstream along the flow of exhaust gas in the exhaust gas flow path. The exhaust gas e is used as a heat source to heat the feed water f from the condensate pipe 25 by the heat exchangers 21 to 23 to generate superheated steam g. The feed water f supplied into the steam generation facility 20 is about 60 ° C., for example, and the superheated steam g heated by the superheater 21 is about 200 ° C. and the pressure ratio is about 8. As a result of being used as a heating medium in the steam generation facility 20, the exhaust gas h whose thermal energy has been recovered and whose temperature has dropped to about 140 ° C. is released into the atmosphere via the exhaust pipe 24.

蒸気タービン設備30は、蒸気タービン31及び発電機33を備えている。蒸気管26,34を介して蒸気タービン設備30に供給された過熱蒸気iは蒸気タービン31で膨張仕事をする。過熱蒸気iの膨張仕事によって得られた蒸気タービン31の軸動力は蒸気タービン31に接続している発電機33にて電力に変換される。本実施形態において過熱蒸気iは蒸気タービン31での膨張仕事中に湿り蒸気となる。この膨張仕事後の湿り蒸気jは復水器32にて全量が水kにされたあと復水管36,25を介して蒸気生成設備20に戻される。   The steam turbine facility 30 includes a steam turbine 31 and a generator 33. The superheated steam i supplied to the steam turbine equipment 30 via the steam pipes 26 and 34 performs expansion work in the steam turbine 31. The shaft power of the steam turbine 31 obtained by the expansion work of the superheated steam i is converted into electric power by the generator 33 connected to the steam turbine 31. In the present embodiment, the superheated steam i becomes wet steam during expansion work in the steam turbine 31. The wet steam j after the expansion work is converted into water k by the condenser 32 and then returned to the steam generation facility 20 through the condenser pipes 36 and 25.

なお、本実施形態では蒸気タービン31が1つの場合を図示しているが、例えば高圧・中圧・低圧等の圧力の異なる複数の蒸気タービンが採用される場合もある。また蒸気タービン31の負荷機器として発電機33を例示しているが、場合によっては発電機33に代えてポンプ等を接続することも考えられる。   In the present embodiment, the case where there is one steam turbine 31 is illustrated, but a plurality of steam turbines having different pressures such as high pressure, medium pressure, and low pressure may be employed. Moreover, although the generator 33 is illustrated as a load apparatus of the steam turbine 31, it replaces with the generator 33 depending on the case, and connecting a pump etc. is also considered.

水製造設備40はリヒート型海水淡水化装置である。他にフラッシュ型海水淡水化装置等も利用可能である。この水製造設備40では、蒸気管42を介して導かれる過熱蒸気lを加熱媒体として原水(海水や工業用水等)mを蒸留し純水nを製造する。過熱蒸気lは純水nの製造に伴って水pとなり蒸気生成設備20に戻される。   The water production facility 40 is a reheat type seawater desalination apparatus. In addition, a flash-type seawater desalination apparatus can be used. In this water production facility 40, pure water n is produced by distilling raw water (seawater, industrial water, etc.) m using the superheated steam l guided through the steam pipe 42 as a heating medium. The superheated steam l becomes water p with the production of the pure water n and is returned to the steam generation facility 20.

以上のように、本実施形態においては、蒸気生成設備20からの蒸気が分岐部28で分流して蒸気タービン設備30と水製造設備40とにそれぞれ供給されるようになっている。そして本実施形態では、蒸気タービン設備30と水製造設備40とに供給される過熱蒸気gの供給割合を調整する供給割合調整装置50を備えている。供給割合調整装置50は、蒸気タービン設備30への蒸気管34と水製造設備40への蒸気管42にそれぞれ設けた流量調整弁51,52を備えており、これら流量調整弁51,52の開度調整により蒸気タービン設備30及び水製造設備40への蒸気供給割合を調整する(過熱蒸気i,lの流量を調節する)。これにより、水需要に対して電力需要の方が大きい場合は蒸気タービン設備30への蒸気供給割合を大きくして発電量を増大させ、逆に電力需要に対して水需要が大きい場合は水製造設備40への蒸気供給割合を大きくして水製造量を増大させることができる。   As described above, in the present embodiment, the steam from the steam generation facility 20 is diverted at the branch portion 28 and supplied to the steam turbine facility 30 and the water production facility 40, respectively. And in this embodiment, the supply ratio adjustment apparatus 50 which adjusts the supply ratio of the superheated steam g supplied to the steam turbine equipment 30 and the water production equipment 40 is provided. The supply ratio adjusting device 50 includes flow rate adjusting valves 51 and 52 provided respectively on the steam pipe 34 to the steam turbine facility 30 and the steam pipe 42 to the water production facility 40, and the flow rate adjusting valves 51 and 52 are opened. The steam supply ratio to the steam turbine facility 30 and the water production facility 40 is adjusted by adjusting the degree (the flow rate of the superheated steam i, l is adjusted). As a result, when the power demand is greater than the water demand, the steam supply ratio to the steam turbine facility 30 is increased to increase the amount of power generation. Conversely, when the water demand is large relative to the power demand, The amount of water production can be increased by increasing the steam supply rate to the facility 40.

なお、供給割合調整装置50の流量調整弁51,52は全閉時にはそれぞれ蒸気管34,42の流路を遮断することができ、蒸気タービン設備30への蒸気供給割合(過熱蒸気iの流量)と水製造設備40への蒸気供給割合(過熱蒸気lの流量)を0(ゼロ)にすることも可能である。流量調整弁52を全閉にして過熱蒸気gの全量を蒸気タービン設備30に供給した場合の発電量は例えば8000kW程度であり、流量調整弁51を全閉にして過熱蒸気gの全量を水製造設備40に供給した場合の水製造量がは120kg/s程度である。   The flow rate adjusting valves 51 and 52 of the supply rate adjusting device 50 can block the flow paths of the steam pipes 34 and 42 when fully closed, respectively, and the steam supply rate to the steam turbine equipment 30 (flow rate of superheated steam i). It is also possible to set the steam supply ratio (flow rate of superheated steam l) to the water production facility 40 to 0 (zero). When the flow control valve 52 is fully closed and the total amount of superheated steam g is supplied to the steam turbine equipment 30, the power generation amount is, for example, about 8000 kW. The flow control valve 51 is fully closed and the entire amount of superheated steam g is produced in water. The amount of water produced when supplied to the facility 40 is about 120 kg / s.

このように本実施形態によれば、蒸気生成設備20からの過熱蒸気gを蒸気タービン設備30と水製造設備40とに供給可能としたので、供給割合調整装置50で過熱蒸気gの供給割合を調整することにより、ガスタービン設備10によるエネルギに加え、排気ガスeを有効利用して得られるエネルギと水の生産割合を任意に調整することができる。よって本実施形態によれば、エネルギと水をそれぞれの需要に柔軟に対応して生産することができる。   As described above, according to the present embodiment, since the superheated steam g from the steam generation facility 20 can be supplied to the steam turbine facility 30 and the water production facility 40, the supply rate adjusting device 50 determines the supply rate of the superheated steam g. By adjusting, in addition to the energy by the gas turbine equipment 10, the production ratio of energy and water obtained by effectively using the exhaust gas e can be arbitrarily adjusted. Therefore, according to this embodiment, energy and water can be produced flexibly corresponding to each demand.

ここで、本発明に対する比較例として従来のタービンシステムの全体構成を簡略的に表す回路図を図2に示す。なお、図1に示した各部と同じ役割を果たす部分には図1と同符号を付して説明を省略する。
本比較例は、ガスタービン設備10、蒸気生成設備20及び水製造設備40を備えている。ガスタービン設備10は発電機14を駆動し発電する。ガスタービン設備10からの排気ガスeは下流に配置された蒸気生成設備20に導かれる。この蒸気生成設備20では排気ガスeを熱源として過熱蒸気gが生成される。生成された過熱蒸気gは水製造設備40に導かれる。水製造設備40では過熱蒸気gを熱源として原水mから純水nが製造される。水製造設備40で利用された過熱蒸気gは水oとなって蒸気生成設備20に回収される。この比較例ではガスタービン設備10の排熱を全て水製造に利用するために電力需要及び水需要の双方を考慮して運用する必要がある。
Here, as a comparative example for the present invention, FIG. 2 shows a circuit diagram schematically representing the entire configuration of a conventional turbine system. Note that parts having the same functions as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG.
This comparative example includes a gas turbine facility 10, a steam generation facility 20, and a water production facility 40. The gas turbine facility 10 drives a generator 14 to generate power. Exhaust gas e from the gas turbine facility 10 is guided to a steam generation facility 20 disposed downstream. The steam generation facility 20 generates superheated steam g using the exhaust gas e as a heat source. The generated superheated steam g is guided to the water production facility 40. In the water production facility 40, pure water n is produced from the raw water m using the superheated steam g as a heat source. The superheated steam g used in the water production facility 40 becomes water o and is recovered by the steam generation facility 20. In this comparative example, in order to use all the exhaust heat of the gas turbine equipment 10 for water production, it is necessary to operate in consideration of both power demand and water demand.

終日定格運転する場合の比較例の電力及び水の生産能力が図3に示した程度である場合、1日当たりの水需要が水製造設備40の能力の半分程度のとき、水の需要を考慮すると、半日程度定格運転する(図4参照)か終日に亘って50%程度の部分負荷運転をする(図5参照)必要がある。しかし一般にガスタービン設備の起動・停止時には作動媒体の温度及び圧力が大きく変化するため、構成部品に差圧変化による応力や温度変化に伴う熱応力あるいは熱変形に伴う応力が生じてしまう。そのため、図4のように起動・停止を繰り返す運転は信頼性の観点から好ましくなく、さらに起動・停止過程の燃料が無駄に消費されるので運転効率の観点からも好ましくない。一方、図5のような部分負荷運転は定格運転に比して効率が低く効率面で好ましくなく、また作動媒体の温度及び圧力が変動するのでやはり信頼性及び性能の観点から好ましくない。   When the power and water production capacities of the comparative example in the case of rated operation all day are as shown in FIG. 3, when the water demand per day is about half of the capacity of the water production facility 40, It is necessary to perform a rated operation for about half a day (see FIG. 4) or a partial load operation of about 50% over the entire day (see FIG. 5). In general, however, the temperature and pressure of the working medium change greatly when the gas turbine equipment is started and stopped. Therefore, stress due to differential pressure change, thermal stress accompanying temperature change, or stress accompanying thermal deformation occurs in the component parts. Therefore, the operation of repeatedly starting and stopping as shown in FIG. 4 is not preferable from the viewpoint of reliability, and further, the fuel in the starting and stopping process is wasted, and is not preferable from the viewpoint of operation efficiency. On the other hand, the partial load operation as shown in FIG. 5 is less efficient than the rated operation and is not preferable in terms of efficiency, and is also not preferable from the viewpoint of reliability and performance because the temperature and pressure of the working medium fluctuate.

それに対し、本実施形態は蒸気生成設備20の発生蒸気の供給割合を蒸気タービン設備30と水製造設備40とで任意に調整することができるので、ガスタービン設備10の運転を終日定格運転としても、エネルギや水の需要の変化には蒸気タービン設備30と水製造設備40への蒸気供給割合を調整することにより対応することができる。例えば、1日当たりの水需要が本実施形態のタービンシステムの能力の半分程度である場合に、例えばガスタービン設備10を終日定格運転しつつ、昼間は蒸気タービン設備30のみを運転して発電量を増大させ夜間は水製造設備40のみを運転して水製造するといった運用が可能である(図6参照)。一般に電力需要は夜間よりも昼間の方が大きいが、本実施形態によればそれに対応して図6のような運用が容易な点は大きなメリットである。また、蒸気タービン設備30のみの運転と水製造設備40のみの運転とを切り換える際、図7に示したように需要に応じて一定時間両方を所定割合で並行して運転することも可能である。   On the other hand, in this embodiment, since the supply ratio of the generated steam of the steam generation facility 20 can be arbitrarily adjusted between the steam turbine facility 30 and the water production facility 40, the operation of the gas turbine facility 10 can be set as the all-day rated operation. Changes in energy and water demand can be accommodated by adjusting the steam supply ratio to the steam turbine facility 30 and the water production facility 40. For example, when the daily water demand is about half of the capacity of the turbine system of the present embodiment, for example, the gas turbine equipment 10 is operated at rated operation all day, while only the steam turbine equipment 30 is operated during the daytime to generate power. It is possible to operate such that the water production is performed by operating only the water production facility 40 at night (see FIG. 6). In general, power demand is greater during the day than at night, but according to the present embodiment, the point of easy operation as shown in FIG. 6 is a great merit. Further, when switching between the operation of only the steam turbine facility 30 and the operation of only the water production facility 40, it is also possible to operate both at a predetermined rate in parallel for a certain period of time according to demand as shown in FIG. .

以上のように本実施形態によればエネルギと水のそれぞれの需要に柔軟に対応することができる。しかも、一旦起動すれば運転途中で起動・停止あるいは部分負荷運転することなく広範囲な水需要量に対応できエネルギ生産効率も高い。例えば需要に対して水が余剰になった場合、ガスタービン設備10を停止したり部分負荷運転にしたりすることなく、水製造設備40のみを休止したり部分負荷運転したりすることもできる。この場合、水製造設備の休止あるいは部分負荷運転により余剰となったエネルギ(余剰蒸気や高温化した排気ガス)は、蒸気タービン設備30で利用されるためプラント全体の効率はほとんど低下しない。このようにプラント全体の効率を高く保ったまま発電と水製造の割合を調整できるため、より多様な電力需要と水需要の組み合わせに対応することができる。また、ガスタービン設備10を終日定格運転することができるので、作動流体の圧力や温度の変化も最小限に抑えることができ信頼性も高い。   As described above, according to the present embodiment, it is possible to flexibly cope with demands for energy and water. Moreover, once activated, it can respond to a wide range of water demand without starting / stopping or partially loading during the operation, and energy production efficiency is high. For example, when water becomes surplus with respect to demand, it is possible to suspend only the water production facility 40 or perform partial load operation without stopping the gas turbine facility 10 or performing partial load operation. In this case, the surplus energy (surplus steam or high-temperature exhaust gas) due to the suspension or partial load operation of the water production facility is used in the steam turbine facility 30, so that the efficiency of the entire plant is hardly lowered. Thus, since the ratio of power generation and water production can be adjusted while keeping the efficiency of the whole plant high, it is possible to cope with various combinations of electric power demand and water demand. Moreover, since the gas turbine equipment 10 can be rated at all day, changes in the pressure and temperature of the working fluid can be minimized, and the reliability is high.

図8は本発明の第2実施形態に係るタービンシステムの全体構成を簡略的に表す回路図である。図8において図1と同様又は同様の役割を果たす部分には同符号を付し説明を省略する。
図8に示すように、本実施形態に係るタービンシステムは、ガスタービン設備10、第1及び第2蒸気生成設備60,20、蒸気タービン設備30、及び水製造設備40を備えている。ガスタービン設備10、第2蒸気生成設備20、蒸気タービン設備30、及び水製造設備40は、第1実施形態のガスタービン設備10、蒸気生成設備20、蒸気タービン設備30、及び水製造設備40とそれぞれ同様の構成である。本実施の形態において、第1蒸気生成設備60は水製造設備40用の蒸気を生成し、第2蒸気生成設備20は蒸気タービン設備30への蒸気を生成する。また第1蒸気生成設備60は空焚き可能な蒸気設備である。
FIG. 8 is a circuit diagram schematically showing the overall configuration of the turbine system according to the second embodiment of the present invention. 8, parts having the same or similar functions as those in FIG.
As shown in FIG. 8, the turbine system according to this embodiment includes a gas turbine facility 10, first and second steam generation facilities 60 and 20, a steam turbine facility 30, and a water production facility 40. The gas turbine facility 10, the second steam generation facility 20, the steam turbine facility 30, and the water production facility 40 are the same as the gas turbine facility 10, the steam generation facility 20, the steam turbine facility 30, and the water production facility 40 of the first embodiment. Each has the same configuration. In the present embodiment, the first steam generation facility 60 generates steam for the water production facility 40, and the second steam generation facility 20 generates steam to the steam turbine facility 30. The first steam generation facility 60 is a steam facility that can be blown.

ガスタービン設備10は排気ガス配管19を介して第1蒸気生成設備60に接続している。第1及び第2蒸気生成設備60,20の間は排気ガス配管61により接続されている。第1蒸気生成設備60からの蒸気管42は水製造設備40に接続し、水製造設備40からの戻り管路43は第1蒸気生成設備60に接続している。戻り管路43には流量調整弁52が設けられている。一方、第2蒸気生成設備20は蒸気管34を介して蒸気タービン設備30に接続し、蒸気タービン設備30は復水管36,25を介して第2蒸気生成設備20に接続している。また蒸気管34と復水管36は開閉弁38及び冷却器39を有するバイパス管路35を介して接続されている。また、蒸気管34のバイパス管路35との接続部分よりも下流側の位置には開閉弁37が設けられている。そして復水管36には、バイパス管路35との接続部分を境に上流側に流量調整弁51が、下流側に復水器32がそれぞれ設けられている。   The gas turbine facility 10 is connected to the first steam generation facility 60 via the exhaust gas pipe 19. The first and second steam generation facilities 60 and 20 are connected by an exhaust gas pipe 61. The steam pipe 42 from the first steam generation facility 60 is connected to the water production facility 40, and the return pipeline 43 from the water production facility 40 is connected to the first steam generation facility 60. A flow rate adjustment valve 52 is provided in the return line 43. On the other hand, the second steam generation facility 20 is connected to the steam turbine facility 30 via the steam pipe 34, and the steam turbine facility 30 is connected to the second steam generation facility 20 via the condensate pipes 36 and 25. The steam pipe 34 and the condensate pipe 36 are connected via a bypass pipe 35 having an on-off valve 38 and a cooler 39. Further, an on-off valve 37 is provided at a position downstream of the connection portion of the steam pipe 34 with the bypass pipe 35. The condensate pipe 36 is provided with a flow rate adjustment valve 51 on the upstream side and a condenser 32 on the downstream side with respect to the connection portion with the bypass pipe line 35.

第1実施形態では、蒸気タービン設備30と水製造設備40とに共用の蒸気生成設備20が接続していたが、本実施形態では水製造設備40と蒸気タービン設備30にそれぞれ専用の蒸気生成設備60,20が設けられている。その他の構成に関しては、本実施形態のタービンシステムは第1実施形態と同様の構成である。   In the first embodiment, the common steam generation facility 20 is connected to the steam turbine facility 30 and the water production facility 40. However, in this embodiment, the steam generation facility dedicated to the water production facility 40 and the steam turbine facility 30, respectively. 60, 20 are provided. Regarding other configurations, the turbine system of the present embodiment has the same configuration as that of the first embodiment.

上記構成の本実施形態におけるタービンシステムでは、まずガスタービン設備10にて圧縮機11は大気aを吸い込み所定の圧力まで圧縮する。吸込空気流量は例えば88kg/s程度、圧力比は15程度である。圧縮された空気bは燃焼器12で燃料cとともに燃焼さられ、生成した例えば1300℃程度の高温・高圧の燃焼ガスdはタービン13に導かれ膨張仕事をする。この膨張仕事の一部は圧縮機11の圧縮動力として消費され、残りは発電機14で電力に変換される。本実施例では、約27000kW程度の発電量が想定される。   In the turbine system according to the present embodiment having the above-described configuration, first, the compressor 11 sucks the atmosphere a in the gas turbine equipment 10 and compresses it to a predetermined pressure. The intake air flow rate is, for example, about 88 kg / s, and the pressure ratio is about 15. The compressed air b is combusted together with the fuel c in the combustor 12, and the generated high-temperature and high-pressure combustion gas d of, for example, about 1300 ° C. is guided to the turbine 13 to perform expansion work. Part of this expansion work is consumed as the compression power of the compressor 11, and the rest is converted into electric power by the generator 14. In the present embodiment, a power generation amount of about 27000 kW is assumed.

ガスタービン設備10からの例えば560℃程度の排気ガスeは排気ガス配管19を介して第1蒸気生成設備60に導かれる。第1蒸気生成設備60では排気ガスeを熱源として給水pから過熱蒸気lを生成する。この過熱蒸気lは水製造設備40に導かれ、原水mから純水nを製造するのに利用される。過熱蒸気lの最大流量を水製造設備40に供給した場合、水nの製造量は例えば120kg/s程度である。水製造に利用された過熱蒸気lは、水oとなって戻り管路43を介して第1蒸気生成設備60に戻される。   Exhaust gas e of, for example, about 560 ° C. from the gas turbine facility 10 is led to the first steam generation facility 60 via the exhaust gas pipe 19. The first steam generation facility 60 generates superheated steam l from the feed water p using the exhaust gas e as a heat source. This superheated steam l is guided to the water production facility 40 and used to produce pure water n from raw water m. When the maximum flow rate of the superheated steam l is supplied to the water production facility 40, the production amount of the water n is, for example, about 120 kg / s. The superheated steam l used for water production becomes water o and is returned to the first steam generation facility 60 via the return line 43.

第1蒸気生成設備60を出た排気ガスqは排気ガス配管61を介して第2蒸気生成設備20に導かれる。第1蒸気生成設備20では、過熱器21・蒸発器22・節炭器23で排気ガスqの熱を利用して給水fから過熱蒸気gが生成され、熱エネルギを回収された排気ガスhは大気放出される。生成された過熱蒸気gは蒸気タービン設備30へ導かれ蒸気タービン31に軸動力を与えることで発電機33を駆動する。過熱蒸気gの最大流量を蒸気タービン設備30に供給した場合、発電量は例えば8000kW程度である。蒸気タービン31で仕事をして排出された湿り蒸気jは復水器32にて水kにされて第2蒸気生成設備20に戻される。   The exhaust gas q leaving the first steam generation facility 60 is guided to the second steam generation facility 20 via the exhaust gas pipe 61. In the first steam generation facility 20, the superheater 21, the evaporator 22, and the economizer 23 use the heat of the exhaust gas q to generate superheated steam g from the feed water f, and the exhaust gas h from which the heat energy is recovered is Released into the atmosphere. The generated superheated steam g is guided to the steam turbine facility 30 to drive the generator 33 by applying shaft power to the steam turbine 31. When the maximum flow rate of the superheated steam g is supplied to the steam turbine equipment 30, the power generation amount is about 8000 kW, for example. The wet steam j discharged from the work by the steam turbine 31 is converted into water k by the condenser 32 and returned to the second steam generation facility 20.

例えば1日当たりの水需要が能力の半分程度の場合を考える。この場合、例えば日中に発電し夜間に水製造をする運転スケジュールを想定すると、昼間は流量調整弁51を全開にして蒸気タービン設備30を運転し、流量調整弁52を全閉にして水製造設備40を休止する。このときの開閉弁37,38の開閉状態はそれぞれ開・閉である。逆に夜間は流量調整弁51を全閉にして蒸気タービン設備30を休止し、流量調整弁52を全開にして水製造設備40を運転する。このとき、開閉弁37を全閉、開閉弁38を全開にすることで、第2蒸気生成設備20で発生した過熱蒸気gは蒸気管34からバイパス管路35に流入して冷却器39で冷却され、復水器32で復水されて第2蒸気生成設備20に戻される。これにより第2蒸気生成設備20の過熱が防止される。   For example, consider a case where the daily water demand is about half of the capacity. In this case, for example, assuming an operation schedule in which power is generated during the day and water is produced at night, the steam turbine equipment 30 is operated with the flow rate adjustment valve 51 fully opened and the flow rate adjustment valve 52 is fully closed during the daytime to produce water. The facility 40 is stopped. The open / close state of the open / close valves 37 and 38 at this time is open and closed, respectively. Conversely, at night, the flow rate adjusting valve 51 is fully closed to stop the steam turbine facility 30, and the flow rate adjusting valve 52 is fully opened to operate the water production facility 40. At this time, the on-off valve 37 is fully closed and the on-off valve 38 is fully opened, so that the superheated steam g generated in the second steam generation facility 20 flows into the bypass line 35 from the steam pipe 34 and is cooled by the cooler 39. Then, the water is condensed by the condenser 32 and returned to the second steam generation facility 20. Thereby, overheating of the 2nd steam generation equipment 20 is prevented.

本実施形態においても、ガスタービン設備10の排熱により蒸気生成設備60,20により蒸気が生成され、流量調整弁52,51を開度調整すること等によって蒸気生成設備60,20で発生した蒸気を水製造設備40・蒸気タービン設備30で任意に利用することができる。したがって、先の第1実施形態と同様の効果を得ることができる。   Also in the present embodiment, steam is generated by the steam generation facilities 60 and 20 due to the exhaust heat of the gas turbine facility 10, and the steam generated in the steam generation facilities 60 and 20 by adjusting the opening of the flow rate adjustment valves 52 and 51, etc. Can be arbitrarily used in the water production facility 40 and the steam turbine facility 30. Therefore, the same effect as in the first embodiment can be obtained.

なお、本実施形態では、水製造設備40及び蒸気タービン設備30は、利用する過熱蒸気の状態量がそれぞれに適した蒸気条件となるように設計する必要がある。例えば蒸気タービン設備30で利用する過熱蒸気iの圧力と温度は、水製造設備40で利用する過熱蒸気lよりも高温・高圧となるようにすることが好ましい。また、図示してはいないが、圧力が異なる複数の蒸気を生成する複圧式の蒸気生成設備と作動蒸気の圧力が異なる複数の蒸気タービン群を使用することにより更に蒸気タービン設備の出力が増加する。   In the present embodiment, the water production facility 40 and the steam turbine facility 30 need to be designed so that the state quantity of the superheated steam to be used is a steam condition suitable for each. For example, it is preferable that the pressure and temperature of the superheated steam i used in the steam turbine facility 30 be higher than that of the superheated steam l used in the water production facility 40. Although not shown, the output of the steam turbine facility is further increased by using a multi-pressure steam generating facility for generating a plurality of steams having different pressures and a plurality of steam turbine groups having different working steam pressures. .

図9にそのような本発明の第3実施形態に係るタービンシステムの全体構成を簡略的に表す。説明の省略のために図9において先の各図と同様又は同様の役割を果たす部分には同符号を付してある。
図9に示すように、本実施の形態において、蒸気生成設備20は公知の構成の複圧式の蒸気生成設備であり、過熱器21Hと蒸発器22Hと節炭器23Hを有する高圧蒸気生成部、過熱器21Mと蒸発器22Mと節炭器23Mを有する中圧蒸気生成部、及び過熱器21Lと蒸発器22Lと節炭器23Lを有する低圧蒸気生成部を備えている。これら高圧蒸気生成部・中圧蒸気生成部・低圧蒸気生成部は、排気ガス流路内の排気ガスの流れに沿って上流からこの順で設けられており、それぞれに関しては第1実施形態の蒸気生成部20とほぼ同様である。また本実施形態における蒸気タービン設備30は、高圧蒸気タービン31H、中圧蒸気タービン31M、及び低圧蒸気タービン31Lを有しており、高圧蒸気タービン31Hは高圧蒸気生成部で生成した高圧の過熱蒸気により、中圧蒸気タービン31Mは主に中圧蒸気生成部で生成した中圧の過熱蒸気により、低圧蒸気タービン31Lは主に低圧蒸気生成部で生成した低圧の過熱蒸気により駆動される。
FIG. 9 simply shows the overall configuration of such a turbine system according to the third embodiment of the present invention. For the purpose of omitting the description, in FIG. 9, the same reference numerals are given to portions that play the same or similar functions as those in the previous drawings.
As shown in FIG. 9, in the present embodiment, the steam generation facility 20 is a multi-pressure steam generation facility having a known configuration, and a high-pressure steam generation unit having a superheater 21H, an evaporator 22H, and a economizer 23H, An intermediate pressure steam generator having a superheater 21M, an evaporator 22M and a economizer 23M, and a low pressure steam generator having a superheater 21L, an evaporator 22L and an economizer 23L are provided. These high-pressure steam generator, medium-pressure steam generator, and low-pressure steam generator are provided in this order from the upstream along the flow of exhaust gas in the exhaust gas flow path. This is almost the same as the generation unit 20. Moreover, the steam turbine equipment 30 in the present embodiment includes a high-pressure steam turbine 31H, an intermediate-pressure steam turbine 31M, and a low-pressure steam turbine 31L. The intermediate-pressure steam turbine 31M is driven mainly by medium-pressure superheated steam generated by the intermediate-pressure steam generator, and the low-pressure steam turbine 31L is driven mainly by low-pressure superheated steam generated by the low-pressure steam generator.

低圧蒸気生成部は分岐管路27を介して低圧蒸気タービン31Lと水製造設備40とに接続しており、低圧蒸気タービン31L及び水製造設備40への蒸気供給割合は流量調整弁51,52の開度調整により任意に調整可能である。低圧蒸気タービン31L及び水製造設備40で仕事をした蒸気はともに水になって低圧蒸気生成部に戻される。中圧蒸気生成部へは低圧蒸気生成部の節炭器23Lを通過して予熱された蒸気が供給され、この蒸気から生成された過熱蒸気が中圧蒸気タービン31Mに供給される。中圧蒸気タービン31Mで仕事をした蒸気は低圧蒸気生成部からの蒸気管26に合流させられて低圧蒸気タービン31L又は水製造設備40に供給される。高圧蒸気生成部へは中圧蒸気生成部の節炭器23Mを通過して予熱された蒸気が供給され、この蒸気から生成された過熱蒸気が高圧蒸気タービン31Hに供給される。そして高圧蒸気タービン31Hで仕事をした蒸気は蒸気生成部20の排気ガス流れ方向の最上流部に戻され再度過熱されて中圧蒸気タービン31Mに供給される。   The low-pressure steam generation unit is connected to the low-pressure steam turbine 31L and the water production facility 40 via the branch pipe 27, and the steam supply ratio to the low-pressure steam turbine 31L and the water production facility 40 is determined by the flow rate adjusting valves 51 and 52. It can be arbitrarily adjusted by adjusting the opening. The steam that has worked in the low-pressure steam turbine 31L and the water production facility 40 is both converted into water and returned to the low-pressure steam generator. Steam that has been preheated through the economizer 23L of the low-pressure steam generator is supplied to the intermediate-pressure steam generator, and superheated steam generated from this steam is supplied to the intermediate-pressure steam turbine 31M. The steam that has worked in the intermediate-pressure steam turbine 31M is joined to the steam pipe 26 from the low-pressure steam generator and supplied to the low-pressure steam turbine 31L or the water production facility 40. Steam that has been preheated through the economizer 23M of the medium pressure steam generator is supplied to the high pressure steam generator, and superheated steam generated from this steam is supplied to the high pressure steam turbine 31H. Then, the steam that has worked in the high-pressure steam turbine 31H is returned to the most upstream portion in the exhaust gas flow direction of the steam generation unit 20, is overheated again, and is supplied to the intermediate-pressure steam turbine 31M.

つまり、高圧蒸気生成部で生成した蒸気は高圧蒸気タービン31Hを駆動した後も中圧蒸気タービンM・低圧蒸気タービン31Lを順次駆動するのに利用される。中圧蒸気生成部で生成した蒸気は中圧蒸気タービン31Mを駆動してから低圧蒸気タービン31Lを駆動するのに利用される。その他の構成は第1実施形態と同様である。   That is, the steam generated in the high-pressure steam generator is used to sequentially drive the intermediate-pressure steam turbine M and the low-pressure steam turbine 31L even after driving the high-pressure steam turbine 31H. The steam generated in the intermediate pressure steam generator is used to drive the low pressure steam turbine 31L after driving the intermediate pressure steam turbine 31M. Other configurations are the same as those of the first embodiment.

本実施形態によれば、蒸気タービン及び蒸気生成設備を多段に構成したことにより、圧力の異なる蒸気が対応の蒸気タービンで使用され、最終的に低圧タービン31L又は水製造設備40で利用される。このように構成することにより、第1実施形態と同様の効果に加えて、エネルギ効率を高めることができる。   According to this embodiment, the steam turbine and the steam generation facility are configured in multiple stages, so that steam having different pressures is used in the corresponding steam turbine, and finally used in the low-pressure turbine 31L or the water production facility 40. By comprising in this way, in addition to the effect similar to 1st Embodiment, energy efficiency can be improved.

なお、以上の各実施形態では、ガスタービン設備の排熱を利用する場合を例に挙げて説明した。しかしながら、水製造設備及び蒸気タービン設備を駆動するための蒸気の生成方法はこの限りではなく熱源がガスタービン設備である必要はない。例えば、図10に示すようにボイラ12Bを熱源として用いても良い。ボイラ12Bは燃料c(石炭やその他の化石燃料)を燃焼して排気ガスeを生成させる極一般的なもので足り、生成した排気ガスeを蒸気生成設備20に供給する。その他の構成は第1実施形態と同様である。もちろん第2及び第3実施形態のガスタービン設備10をボイラ12Bに代えることもできる。またボイラに限らず、図11に示すように原子炉12Nを熱源として用いることも考えられる。図11の構成例は、原子炉12Nで発生した核反応熱を蒸気生成設備20(この場合熱交換器でなく貯水タンク等)に供給し、蒸気生成設備20内の水を過熱蒸気に変えて蒸気タービン設備や水製造設備に供給するものである。その他の構成は第1実施形態と同様である。もちろんこの例の原子炉12N及び蒸気生成設備20も第2及び第3実施形態のガスタービン設備10に代えることができる。これらの場合も同様の効果を得ることができる。   In addition, in each above embodiment, the case where the exhaust heat of gas turbine equipment was utilized was mentioned as an example, and was demonstrated. However, the steam generation method for driving the water production facility and the steam turbine facility is not limited to this, and the heat source need not be the gas turbine facility. For example, as shown in FIG. 10, a boiler 12B may be used as a heat source. The boiler 12 </ b> B may be an extremely general one that burns the fuel c (coal or other fossil fuel) to generate the exhaust gas e, and supplies the generated exhaust gas e to the steam generation facility 20. Other configurations are the same as those of the first embodiment. Of course, the gas turbine equipment 10 of the second and third embodiments can be replaced with a boiler 12B. In addition to the boiler, it is conceivable to use the nuclear reactor 12N as a heat source as shown in FIG. In the configuration example of FIG. 11, the nuclear reaction heat generated in the nuclear reactor 12N is supplied to the steam generation facility 20 (in this case, not a heat exchanger but a water storage tank), and the water in the steam generation facility 20 is changed to superheated steam. It is supplied to steam turbine equipment and water production equipment. Other configurations are the same as those of the first embodiment. Of course, the reactor 12N and the steam generation facility 20 in this example can also be replaced with the gas turbine facility 10 of the second and third embodiments. In these cases, similar effects can be obtained.

このように、水製造設備及び蒸気タービン設備を駆動するための蒸気の生成方法は特に限定されず、図10及び図11に示したものの他にもごみ等の可燃物を燃焼させることにより発生する熱エネルギを利用して蒸気を生成することが考えられる。   As described above, the method of generating steam for driving the water production facility and the steam turbine facility is not particularly limited, and is generated by burning combustible materials such as dust in addition to those shown in FIGS. 10 and 11. It is conceivable to generate steam using thermal energy.

さらに以上の各実施形態のタービンシステムは、蒸気生成設備と蒸気タービン設備と水製造設備とがあれば構築可能であるため、既存のプラントに対して不足する設備を追加することで容易に構築することができることも大きなメリットである。つまり、蒸気生成設備とこの蒸気生成設備からの蒸気を利用する水製造設備とを備えたプラントが既存する場合、これに蒸気生成設備からの蒸気により回転動力を得る蒸気タービン設備(必要であればこの蒸気タービン設備への蒸気を生成する他の蒸気生成設備)を追加することで本発明のタービンシステムを構築することができる。また、蒸気生成設備とこの蒸気生成設備からの蒸気を利用する蒸気タービン設備とを備えた既設プラントには、蒸気生成設備からの蒸気を利用する水製造設備(必要であればこの水製造設備への蒸気を生成する他の蒸気生成設備)を追加することで本発明のタービンシステムを構築することができる。   Furthermore, since the turbine system of each of the above embodiments can be constructed if there is a steam generation facility, a steam turbine facility, and a water production facility, it can be easily constructed by adding facilities that are insufficient to an existing plant. It is also a great merit to be able to. In other words, when there is an existing plant that includes a steam generation facility and a water production facility that uses steam from the steam generation facility, a steam turbine facility that obtains rotational power from the steam from the steam generation facility (if necessary) The turbine system of the present invention can be constructed by adding another steam generating facility that generates steam to the steam turbine facility. In addition, an existing plant equipped with a steam generation facility and a steam turbine facility that uses steam from this steam generation facility has a water production facility that uses steam from the steam generation facility (to this water production facility if necessary). It is possible to construct the turbine system of the present invention by adding another steam generating facility that generates the steam.

本発明の第1実施形態に係るタービンシステムの全体構成を簡略的に表す回路図である。1 is a circuit diagram schematically illustrating an overall configuration of a turbine system according to a first embodiment of the present invention. 本発明に対する比較例である従来のタービンシステムの全体構成を簡略的に表す回路図である。It is a circuit diagram which represents simply the whole structure of the conventional turbine system which is a comparative example with respect to this invention. 終日定格運転した場合の電力及び水の生産能力を表すグラフである。It is a graph showing the electric power and water production capacity at the time of carrying out rated operation all day. 1日当たりの水需要が水製造設備の能力の半分程度のとき、従来のタービンシステムを半日程度定格運転する場合の運転スケジュールを表すグラフである。It is a graph showing the operation schedule in the case of carrying out the rated operation of the conventional turbine system for about half a day when the daily water demand is about half of the capacity of the water production facility. 1日当たりの水需要が水製造設備の能力の半分程度のとき、従来のタービンシステムを終日に亘って50%程度の部分負荷運転をする場合の運転スケジュールを表すグラフである。It is a graph showing the operation schedule in the case of carrying out the partial load operation of about 50% of the conventional turbine system over the whole day when the water demand per day is about half of the capacity of the water production facility. 1日当たりの水需要が能力の半分程度である場合の本発明のタービンシステムの運転スケジュールの一例を表すグラフである。It is a graph showing an example of the driving | running schedule of the turbine system of this invention when the water demand per day is about a half of capacity. 1日当たりの水需要が能力の半分程度である場合の本発明のタービンシステムの運転スケジュールの他の例を表すグラフである。It is a graph showing the other example of the driving | running schedule of the turbine system of this invention when the water demand per day is about a half of capacity. 本発明の第2実施形態に係るタービンシステムの全体構成を簡略的に表す回路図である。It is a circuit diagram showing simply the whole composition of the turbine system concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係るタービンシステムの全体構成を簡略的に表す回路図である。It is a circuit diagram showing simply the whole composition of the turbine system concerning a 3rd embodiment of the present invention. 本発明のタービンシステムのさらに他の構成例の全体構成を簡略的に表す回路図である。It is a circuit diagram showing simply the whole composition of other examples of composition of the turbine system of the present invention. 本発明のタービンシステムのさらに他の構成例の全体構成を簡略的に表す回路図である。It is a circuit diagram showing simply the whole composition of other examples of composition of the turbine system of the present invention.

符号の説明Explanation of symbols

10 ガスタービン設備
12B ボイラ
12N 原子炉
20 蒸気生成設備(第2蒸気生成設備)
27 分岐管路
28 分岐部
30 蒸気タービン設備
40 水製造設備
50 供給割合調整装置
60 第1蒸気生成設備
10 Gas turbine equipment 12B Boiler 12N Reactor 20 Steam generation equipment (second steam generation equipment)
27 Branch Pipe 28 Branch 30 Steam Turbine Equipment 40 Water Production Equipment 50 Supply Ratio Adjuster 60 First Steam Generation Equipment

Claims (13)

蒸気を生成する蒸気生成設備と、
この蒸気生成設備からの蒸気により回転動力を得る蒸気タービン設備と、
前記蒸気生成設備からの蒸気を利用して原水を蒸留して純水を得る水製造設備と
を備えたことを特徴とするタービンシステム。
A steam generating facility for generating steam;
A steam turbine facility that obtains rotational power by steam from the steam generation facility;
A turbine system comprising: a water production facility that obtains pure water by distilling raw water using steam from the steam generation facility.
蒸気を生成する蒸気生成設備と、
この蒸気生成設備からの蒸気により回転動力を得る蒸気タービン設備と、
前記蒸気生成設備からの蒸気を利用して原水を蒸留して純水を得る水製造設備と、
前記蒸気タービン設備と前記水製造設備とに供給される蒸気の供給割合を調整する供給割合調整手段と
を備えたことを特徴とするタービンシステム。
A steam generating facility for generating steam;
A steam turbine facility that obtains rotational power by steam from the steam generation facility;
A water production facility that obtains pure water by distilling raw water using steam from the steam generation facility;
A turbine system comprising: a supply ratio adjusting means for adjusting a supply ratio of steam supplied to the steam turbine facility and the water production facility.
請求項2に記載されたタービンシステムにおいて、前記供給割合調整手段は、前記蒸気タービン設備への蒸気供給割合と前記水製造設備への蒸気供給割合をそれぞれ0に調整可能であることを特徴とするタービンシステム。   3. The turbine system according to claim 2, wherein the supply ratio adjusting means is capable of adjusting a steam supply ratio to the steam turbine equipment and a steam supply ratio to the water production equipment to 0 respectively. Turbine system. 請求項1に記載されたタービンシステムにおいて、前記蒸気生成設備からの蒸気を分岐部で分流させて前記蒸気タービン設備と前記水製造設備とにそれぞれ供給する分岐管路を備えたことを特徴とするタービンシステム。   2. The turbine system according to claim 1, further comprising a branch pipe that divides the steam from the steam generation facility at a branch portion and supplies the steam to the steam turbine facility and the water production facility, respectively. Turbine system. 請求項1に記載されたタービンシステムにおいて、前記蒸気タービン設備への蒸気を生成する前記蒸気生成設備と、水製造設備用の蒸気を生成する前記蒸気生成設備とを有することを特徴とするタービンシステム。   The turbine system according to claim 1, comprising: the steam generation facility that generates steam to the steam turbine facility; and the steam generation facility that generates steam for water production facilities. . 請求項1〜5のいずれかに記載されたタービンシステムにおいて、前記蒸気生成設備に排熱を供給するガスタービン設備を熱源として備えたことを特徴とするタービンシステム。   The turbine system according to claim 1, further comprising a gas turbine facility that supplies exhaust heat to the steam generation facility as a heat source. 請求項1〜5のいずれかに記載されたタービンシステムにおいて、燃料の燃焼熱を利用して蒸気を生成するボイラを熱源として備えたことを特徴とするタービンシステム。   The turbine system according to any one of claims 1 to 5, comprising a boiler that generates steam by using combustion heat of fuel as a heat source. 請求項1〜5のいずれかに記載されたタービンシステムにおいて、原子力により発生する熱を利用して蒸気を生成する原子炉を熱源として備えたことを特徴とするタービンシステム。   The turbine system according to any one of claims 1 to 5, further comprising, as a heat source, a nuclear reactor that generates steam using heat generated by nuclear power. 請求項1〜8のいずれかに記載されたタービンシステムにおいて、前記蒸気生成設備で生成された過熱蒸気又は飽和蒸気を膨張仕事中に湿り蒸気にする前記蒸気タービン設備を備えたことを特徴とするタービンシステム。   The turbine system according to any one of claims 1 to 8, further comprising the steam turbine facility that converts superheated steam or saturated steam generated by the steam generating facility into wet steam during expansion work. Turbine system. 蒸気を生成する蒸気生成設備とこの蒸気生成設備からの蒸気を利用して原水を蒸留して純水を得る水製造設備とを備えたプラントに、
前記蒸気生成設備からの蒸気により回転動力を得る蒸気タービン設備
を追加することを特徴とするタービンシステムの構築方法。
In a plant equipped with a steam generation facility that generates steam and a water production facility that obtains pure water by distilling raw water using the steam from this steam generation facility,
A method for constructing a turbine system, comprising: adding a steam turbine facility for obtaining rotational power by steam from the steam generation facility.
蒸気を生成する蒸気生成設備とこの蒸気生成設備からの蒸気を利用して原水を蒸留して純水を得る水製造設備とを備えたプラントに、
前記蒸気生成設備からの蒸気により回転動力を得る蒸気タービン設備と、
この蒸気タービン設備への蒸気を生成する他の蒸気生成設備と
を追加することを特徴とするタービンシステムの構築方法。
In a plant equipped with a steam generation facility that generates steam and a water production facility that obtains pure water by distilling raw water using the steam from this steam generation facility,
A steam turbine facility for obtaining rotational power by steam from the steam generating facility;
A method for constructing a turbine system, comprising adding another steam generation facility for generating steam to the steam turbine facility.
蒸気を生成する蒸気生成設備とこの蒸気生成設備からの蒸気により回転動力を得る蒸気タービン設備とを備えたプラントに、
前記蒸気生成設備からの蒸気を利用して原水を蒸留して純水を得る水製造設備
を追加することを特徴とするタービンシステムの構築方法。
In a plant equipped with a steam generation facility for generating steam and a steam turbine facility for obtaining rotational power by the steam from the steam generation facility,
A method for constructing a turbine system, comprising adding a water production facility for obtaining pure water by distilling raw water using steam from the steam generation facility.
蒸気を生成する蒸気生成設備とこの蒸気生成設備からの蒸気により回転動力を得る蒸気タービン設備とを備えたプラントに、
前記蒸気生成設備からの蒸気を利用して原水を蒸留して純水を得る水製造設備と、
この水製造設備への蒸気を生成する他の蒸気生成設備と
を追加することを特徴とするタービンシステムの構築方法。
In a plant equipped with a steam generation facility for generating steam and a steam turbine facility for obtaining rotational power by the steam from the steam generation facility,
A water production facility that obtains pure water by distilling raw water using steam from the steam generation facility;
A turbine system construction method comprising: adding another steam generation facility for generating steam to the water production facility.
JP2005149935A 2005-05-23 2005-05-23 Turbine system construction method Active JP4694888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005149935A JP4694888B2 (en) 2005-05-23 2005-05-23 Turbine system construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005149935A JP4694888B2 (en) 2005-05-23 2005-05-23 Turbine system construction method

Publications (2)

Publication Number Publication Date
JP2006328977A true JP2006328977A (en) 2006-12-07
JP4694888B2 JP4694888B2 (en) 2011-06-08

Family

ID=37550932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149935A Active JP4694888B2 (en) 2005-05-23 2005-05-23 Turbine system construction method

Country Status (1)

Country Link
JP (1) JP4694888B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136117A1 (en) * 2007-04-26 2008-11-13 Hitachi, Ltd. Complex plant having electric power equipment including combination of lng production equipment and water production equipment, and operation method of the complex plant having electric power equipment including combination of lng production equipment and water production equipment
KR101297983B1 (en) * 2011-05-23 2013-08-23 (주)에프티이 Desalination System Based on Mechanical Vapor Recompression and Desalination Method
WO2014002272A1 (en) * 2012-06-29 2014-01-03 株式会社日立製作所 Gas turbine electricity generation system, eletricity generation/desalination system, and method for controlling gas turbine electricity generation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489145A (en) * 1977-12-27 1979-07-14 Toshiba Corp Steam turbine device combined with water manufacuring plant
JPS61187985A (en) * 1985-02-15 1986-08-21 Nitsuchitsu Kogyo Kk Production of clear water
JP2005248826A (en) * 2004-03-04 2005-09-15 Toshiba Corp Power generation/distillation compound plant and method for operating same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489145A (en) * 1977-12-27 1979-07-14 Toshiba Corp Steam turbine device combined with water manufacuring plant
JPS61187985A (en) * 1985-02-15 1986-08-21 Nitsuchitsu Kogyo Kk Production of clear water
JP2005248826A (en) * 2004-03-04 2005-09-15 Toshiba Corp Power generation/distillation compound plant and method for operating same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136117A1 (en) * 2007-04-26 2008-11-13 Hitachi, Ltd. Complex plant having electric power equipment including combination of lng production equipment and water production equipment, and operation method of the complex plant having electric power equipment including combination of lng production equipment and water production equipment
JPWO2008136117A1 (en) * 2007-04-26 2010-07-29 株式会社日立製作所 An operation method of a complex plant having a power generation facility that combines an LNG production facility and a water production facility and a complex plant having a power generation facility that combines an LNG production facility and a water production facility.
KR101297983B1 (en) * 2011-05-23 2013-08-23 (주)에프티이 Desalination System Based on Mechanical Vapor Recompression and Desalination Method
WO2014002272A1 (en) * 2012-06-29 2014-01-03 株式会社日立製作所 Gas turbine electricity generation system, eletricity generation/desalination system, and method for controlling gas turbine electricity generation system

Also Published As

Publication number Publication date
JP4694888B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
Poullikkas An overview of current and future sustainable gas turbine technologies
EP2482958B1 (en) Power plant for co2 capture
RU2380548C2 (en) Boiler plant and method of operation and equipping of boiler plant
US6604354B2 (en) Combined cycle power plant
KR101594323B1 (en) Power plant with integrated fuel gas preheating
US20100170218A1 (en) Method for expanding compressor discharge bleed air
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
US20110113786A1 (en) Combined cycle power plant with integrated organic rankine cycle device
US8387356B2 (en) Method of increasing power output of a combined cycle power plant during select operating periods
AU2003231676A1 (en) Combined cycle plant
SE437541B (en) COMBINED GAS TURBIN ANGTURBIN INSTALLATION WITH INTEGRATED PART COMBUSTION OF FUEL
US20120317973A1 (en) Asymmetrical Combined Cycle Power Plant
US10900418B2 (en) Fuel preheating system for a combustion turbine engine
EP2132415A2 (en) Arrangement with a steam turbine and a condenser for feedwater preheating
EP2604821B1 (en) System and method for thermal control in a gas turbine engine
JP2019173711A (en) Boiler plant and its operational method
US9074491B2 (en) Steam cycle system with thermoelectric generator
JP4694888B2 (en) Turbine system construction method
JPH07502322A (en) Steam system in a multi-boiler plant
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
CN115023537A (en) Installation with heat accumulator, method for operation and method for improvement
US20190390573A1 (en) Hydro-turbine drive methods and systems for application for various rotary machineries
US20140069078A1 (en) Combined Cycle System with a Water Turbine
JP4418894B2 (en) Dual pass steam system
JP2019173696A (en) Combined cycle power generation plant, and operation method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250