JP2006328335A - Rubber composition for directly vulcanizing and bonding rubber to metal - Google Patents
Rubber composition for directly vulcanizing and bonding rubber to metal Download PDFInfo
- Publication number
- JP2006328335A JP2006328335A JP2005181176A JP2005181176A JP2006328335A JP 2006328335 A JP2006328335 A JP 2006328335A JP 2005181176 A JP2005181176 A JP 2005181176A JP 2005181176 A JP2005181176 A JP 2005181176A JP 2006328335 A JP2006328335 A JP 2006328335A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- metal
- peroxide
- tsh
- bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
本発明は、ゴムと金属の接着に関する。更に詳しくは、ゴムと金属を接触させた状態で、ゴムの架橋反応を行うと同時にゴムと金属の接着を行う、直接加硫接着に関する。The present invention relates to adhesion between rubber and metal. More specifically, the present invention relates to direct vulcanization adhesion in which rubber is subjected to a crosslinking reaction while rubber and metal are brought into contact with each other, and at the same time, rubber and metal are bonded.
ゴムと金属の直接加硫接着は、硫黄加硫のできる不飽和ゴムにて実用化されており、例えばタイヤのスチールベルトの場合には、真鍮メッキしたスチールコードと硫黄を含むゴム組成物を接触させ、加硫を行うと同時に、金属面に硫化銅を形成させ、硫黄を介してゴムと金属を接着する方法を採っている(例えば非特許文献1参照。)。また、過酸化物架橋系における不飽和ゴムと金属の直接加硫接着は、ニトリルブタジエンゴムにて過酸化物とトリアジンチオールを内添することで、達成されている(例えば非特許文献2参照。)。過酸化物架橋系のゴムと金属の直接加硫接着は、加硫反応中もしくはその後に披着金属もしくは近接した他の金属を腐食させる可能性のある揮発性ガスを発生しない、もしくは少ないので、硫黄加硫系を用いた直接加硫接着よりも有利な面がある。
過酸化物架橋系における不飽和ゴムと金属の直接加硫接着は、トリアジンチオールを内添することで達成されるものの、不飽和度の比較的低いゴム、例えばエチレンプロピレン非共役ジエン三元重合体(EPDM)などでは、十分な接着力が得られない。また、過酸化物架橋系でゴムを架橋する場合、トリアジンチオールの如くチオール基を持った化合物は、過酸化物架橋を阻害し、架橋されたゴムの物理的特性を低下させる。Direct vulcanization adhesion between unsaturated rubber and metal in peroxide crosslinking system is achieved by adding triazine thiol internally, but rubber with relatively low unsaturation, for example ethylene propylene non-conjugated diene terpolymer With (EPDM) or the like, sufficient adhesive force cannot be obtained. In addition, when a rubber is crosslinked with a peroxide crosslinking system, a compound having a thiol group such as triazine thiol inhibits peroxide crosslinking and lowers the physical properties of the crosslinked rubber.
本発明者らは、上記課題を解決すべく鋭意検討した結果、本発明を完成するに至った。即ち、過酸化物で架橋可能なゴム100重量部に対し、過酸化物1〜30重量部、2,4,6−トリメルカプト−s−トリアジン0.3〜5.0重量部および1,3,5−トリアクリロイルヘキサヒドロ−s−トリアジン0.5〜20重量部を含有するゴム組成を用いて、金属との直接加硫接着を行うことによって、上記課題を解決し本発明を完成するに至った。As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, 1 to 30 parts by weight of peroxide, 0.3 to 5.0 parts by weight of 2,4,6-trimercapto-s-triazine and 1,3 parts per 100 parts by weight of rubber that can be crosslinked with peroxide. , 5-triacryloylhexahydro-s-triazine A rubber composition containing 0.5 to 20 parts by weight is used to solve the above problems and complete the present invention by performing direct vulcanization adhesion with a metal. It came.
1,3,5−トリアクリロイルヘキサヒドロ−s−トリアジン(以下TAFと記す)は、過酸化物によりゴムと結合し架橋されたゴムの物理的特性を向上させる、所謂、架橋助剤として機能する一方、2,4,6−トリメルカプト−s−トリアジン(以下TSHと記す)等、チオール基を持った化合物とも、容易に反応し、結合する。ゴム内で過酸化物,TAFおよびTSHからなる特定の三物質が存在する場合、不飽和度の比較的低いゴムでも加硫されたゴムの物性を損なわずに、ゴムの架橋とゴムと金属の接着を同時に行うことを可能とした。1,3,5-triacryloylhexahydro-s-triazine (hereinafter referred to as TAF) functions as a so-called crosslinking aid that improves the physical properties of the crosslinked rubber bonded to the rubber by peroxide. On the other hand, it easily reacts and binds to a compound having a thiol group such as 2,4,6-trimercapto-s-triazine (hereinafter referred to as TSH). When three specific substances consisting of peroxide, TAF and TSH are present in the rubber, the rubber cross-linking and the rubber and metal are not affected even if the rubber has a relatively low degree of unsaturation. It was possible to perform bonding at the same time.
以下、本発明を具体的な実施形態にてより詳しく説明する。本発明にて過酸化物で架橋可能なゴムとは、一般的なジエン成分を含むゴム、例えば天然イソプレンゴム(NR)、合成イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエン共重合ゴム(SBR)、アクリロニトリルブタジエン共重合ゴム(NBR)、エチレンプロピレン非共役ジエン三元重合体(EPDM)等が挙げられ、それらが単一であっても複数混合されても良い。本発明にて架橋に関与する過酸化物としては、一般的にゴムの架橋剤として用いられる過酸化物であれば、特に限定するものではなく、上記ゴムに最適な過酸化物を選択することができる。好ましくは、半減期が10時間となる温度が80℃以上となる過酸化物が、ゴムの架橋とゴムと金属の接着が同時に起こる上で理想であり、例えば1,1−ジ−t−ブチルペルオキシ−3,3,5−トリメチルシクロヘキサン、2,5−ジ−メチル−2,5−ジ−ベンゾイルペルオキシヘキサン、n−ブチル−4,4−ジ−t−ブチルペルオキシバレレート、ジ−クミルパーオキサイド、t−ブチルペルオキシベンゾエート、ジ−t−ブチルペルオキシ−ジ−イソプロプルベンゼン、t−ブチルクミルパーオキサイド、2,5−ジ−メチル−2,5−ジ−t−ブチルペルオキシヘキサン、ジ−t−ブチルパーオキサイド、2,5−ジ−メチル−2,5−ジ−t−ブチルペルオキシヘキシン−3等が挙げられる。過酸化物の添加量は、過酸化物で架橋可能なゴム100重量部に対し、1〜15重量部の範囲内、即ち、過酸化物の各ゴムに対する架橋効率から任意に選択して構わない。本目的では、チオール基を複数もつトリアジン化合物中、TSHに特定され、添加量は過酸化物で架橋可能なゴム100重量部に対し、0.3〜5.0重量部が良く、0.3重量部未満では接着力が不足し、5.0重量部を超えると架橋の阻害が著しくなる。また、TAFの添加量は、過酸化物で架橋可能なゴム100重量部に対し、0.5〜20重量部の範囲内が良く、好ましくはTSHの添加量の2倍量以上添加する。その他、TSHと反応し、金属塩を形成する、例えば酸化亜鉛などの金属酸化物はゴムと金属の接着を阻害する傾向にあるので、使用が限定される。また、TSH以外のチオール基を有する物質も、TAFと反応する可能性があり、ゴムと金属の接着を阻害する傾向にあるので、使用が限定される。 それら以外の配合剤に関しては、過酸化物架橋ゴムを得る上で一般的なものであれば、何ら制限を受けない。Hereinafter, the present invention will be described in more detail with specific embodiments. In the present invention, the peroxide-crosslinkable rubber is a rubber containing a general diene component, such as natural isoprene rubber (NR), synthetic isoprene rubber (IR), butadiene rubber (BR), and styrene-butadiene copolymer rubber. (SBR), acrylonitrile butadiene copolymer rubber (NBR), ethylene propylene non-conjugated diene terpolymer (EPDM), and the like may be mentioned, and these may be single or mixed. The peroxide involved in crosslinking in the present invention is not particularly limited as long as it is a peroxide that is generally used as a rubber crosslinking agent, and the optimum peroxide for the rubber should be selected. Can do. Preferably, a peroxide having a half-life of 10 hours and a temperature of 80 ° C. or higher is ideal for simultaneous rubber cross-linking and rubber-metal adhesion. For example, 1,1-di-t-butyl Peroxy-3,3,5-trimethylcyclohexane, 2,5-di-methyl-2,5-di-benzoylperoxyhexane, n-butyl-4,4-di-t-butylperoxyvalerate, dicumylper Oxide, t-butylperoxybenzoate, di-t-butylperoxy-diisopropylbenzene, t-butylcumyl peroxide, 2,5-di-methyl-2,5-di-t-butylperoxyhexane, di- Examples thereof include t-butyl peroxide and 2,5-di-methyl-2,5-di-t-butylperoxyhexyne-3. The amount of the peroxide added may be arbitrarily selected within the range of 1 to 15 parts by weight with respect to 100 parts by weight of the rubber crosslinkable with peroxide, that is, the crosslinking efficiency of the peroxide with respect to each rubber. . For this purpose, among the triazine compounds having a plurality of thiol groups, TSH is specified as TSH, and the addition amount is preferably 0.3 to 5.0 parts by weight with respect to 100 parts by weight of rubber that can be crosslinked with peroxide. If the amount is less than parts by weight, the adhesive strength is insufficient. If the amount exceeds 5.0 parts by weight, the crosslinking is significantly inhibited. The amount of TAF added is preferably in the range of 0.5 to 20 parts by weight with respect to 100 parts by weight of the rubber crosslinkable with peroxide, and is preferably added at least twice the amount of TSH. In addition, metal oxides that react with TSH to form metal salts, for example, metal oxides such as zinc oxide, tend to inhibit the adhesion between rubber and metal, and are therefore limited in use. In addition, substances having a thiol group other than TSH may react with TAF and tend to inhibit the adhesion between rubber and metal, so that its use is limited. With respect to the other compounding agents, there are no limitations as long as they are general in obtaining a peroxide-crosslinked rubber.
以下、実施例を挙げて更に具体的に説明するが、本発明が実施例によって何ら限定されないことは勿論である。表1に比較例1から7および実施例1の配合内容を示す。表1に示されるゴム配合物は、一般的にゴムの混練りにて用いられる加工機、例えばバンバリーミキサー、ニーダー、オープンロール等で加工することで得られる。
表1に比較例1から7および実施例1のレオメーター測定結果を示す。比較例−1に対し、TSHが添加された比較例−5の最大弾性トルク(MH)は低下しており、TSHが過酸化物架橋を阻害していることがわかる。また、比較例6および比較例7は、架橋助剤であるTACおよびTAICが添加され、TSHによる最大弾性トルク(MH)の低下を抑えているものの、十分とは言えない。一方、実施例1は比較例1と比較し、過酸化物架橋を阻害するTSHが添加されているにもかかわらず、最大弾性トルク(MH)が向上しており、TSH存在下におけるTAFの架橋助剤としての効果が見られる。
表1に比較例1から7および実施例1の一般加硫ゴム物性結果を示す。比較例−1に対し、TSHが添加された比較例−5のゴム硬度(Hs)および100%伸張時の応力(M100)は低下しており、TSHが過酸化物架橋を阻害していることがわかる。また、比較例−6および比較例−7は、架橋助剤であるTACおよびTAICが添加され、TSHによる100%伸張時の応力(M100)の低下を抑えているものの十分とは言えず、ゴム硬度(Hs)に至っては、殆ど改善が見られない。一方、実施例1は比較例1と比較し、過酸化物架橋を阻害するTSHが添加されているにもかかわらず、ゴム硬度(Hs)が向上しており、100%伸張時の応力(M100)の低下も少なく、TSH存在下におけるTAFの架橋助剤としての効果が見られる。更に、実施例1の耐熱老化性は、比較例1から6の何れよりも優れていることは好ましい結果である。
表1に比較例1から7および実施例1のゴムと金属の接着剥離試験結果を示す。ゴムと金属の直接加硫接着は、対象金属として黄銅板C2801(銅含有量:59〜62%)を用い、比較例1〜7および実施例1の各ゴム配合物と黄銅板を積層させ、所定の金型を用いて170℃×10分間プレス加硫を行い、剥離試験用の試料を作成した。剥離試験は、JISK6256の金属片とゴムの90度剥離試験に準拠した。比較例1〜4は、TSHが配合内に存在しないのでゴムと金属の接着が殆ど起こらない。一方、TSHが添加された比較例5は、ゴムと金属の接着が起こり、更に架橋助剤であるTACが併用された比較例6およびTAICが併用された比較例7は、ゴムと金属の接着性に向上が見られる。しかし、何れもゴムと金属の界面で剥離がおこり、接着強度が十分とは言えない。それに対し実施例1は、ゴムと金属の界面で剥離がおこらず、ゴム層の破壊が先におこった。よって、接着強度は少なくとも比較例5の17倍以上であることが確認された。Hereinafter, although an example is given and it explains still more concretely, of course, the present invention is not limited at all by the example. Table 1 shows the contents of Comparative Examples 1 to 7 and Example 1. The rubber compound shown in Table 1 is obtained by processing with a processing machine generally used for kneading rubber, such as a Banbury mixer, a kneader, an open roll, and the like.
Table 1 shows the rheometer measurement results of Comparative Examples 1 to 7 and Example 1. Compared to Comparative Example-1, the maximum elastic torque (MH) of Comparative Example-5 to which TSH was added was decreased, indicating that TSH inhibited peroxide crosslinking. In Comparative Examples 6 and 7, although TAC and TAIC, which are crosslinking aids, are added to suppress a decrease in maximum elastic torque (MH) due to TSH, it cannot be said to be sufficient. On the other hand, compared to Comparative Example 1, Example 1 has an improved maximum elastic torque (MH) despite the addition of TSH that inhibits peroxide crosslinking, and TAF crosslinking in the presence of TSH. The effect as an auxiliary agent is seen.
Table 1 shows the results of physical properties of general vulcanized rubbers of Comparative Examples 1 to 7 and Example 1. The rubber hardness (Hs) and stress at 100% elongation (M100) of Comparative Example-5 to which TSH is added are lower than those of Comparative Example-1, and TSH inhibits peroxide crosslinking. I understand. In Comparative Example-6 and Comparative Example-7, TAC and TAIC, which are crosslinking assistants, were added to suppress the decrease in stress (M100) at 100% elongation due to TSH, but it was not sufficient. Almost no improvement is seen in the hardness (Hs). On the other hand, compared with Comparative Example 1, Example 1 has improved rubber hardness (Hs) despite the addition of TSH that inhibits peroxide crosslinking, and stress at 100% elongation (M100). ) Is small, and the effect of TAF as a crosslinking aid in the presence of TSH is observed. Furthermore, it is a preferable result that the heat aging resistance of Example 1 is superior to any of Comparative Examples 1 to 6.
Table 1 shows the results of the adhesion / peeling test for rubber and metal of Comparative Examples 1 to 7 and Example 1. Direct vulcanization adhesion between rubber and metal uses brass plate C2801 (copper content: 59-62%) as a target metal, and laminates each rubber compound and brass plate of Comparative Examples 1-7 and Example 1, Using a predetermined mold, press vulcanization was performed at 170 ° C. for 10 minutes to prepare a sample for a peel test. The peel test was based on a 90 degree peel test for metal pieces and rubber according to JISK6256. In Comparative Examples 1 to 4, since TSH is not present in the compounding, adhesion between rubber and metal hardly occurs. On the other hand, in Comparative Example 5 in which TSH was added, adhesion between rubber and metal occurred, and Comparative Example 6 in which TAC as a crosslinking aid was used in combination and Comparative Example 7 in which TAIC was used together were in adhesion between rubber and metal. There is an improvement in sex. However, in any case, peeling occurs at the interface between the rubber and the metal, and it cannot be said that the adhesive strength is sufficient. On the other hand, in Example 1, peeling did not occur at the interface between the rubber and the metal, and the rubber layer was destroyed first. Therefore, it was confirmed that the adhesive strength is at least 17 times that of Comparative Example 5.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005181176A JP2006328335A (en) | 2005-05-26 | 2005-05-26 | Rubber composition for directly vulcanizing and bonding rubber to metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005181176A JP2006328335A (en) | 2005-05-26 | 2005-05-26 | Rubber composition for directly vulcanizing and bonding rubber to metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006328335A true JP2006328335A (en) | 2006-12-07 |
Family
ID=37550358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005181176A Pending JP2006328335A (en) | 2005-05-26 | 2005-05-26 | Rubber composition for directly vulcanizing and bonding rubber to metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006328335A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009097993A (en) * | 2007-10-17 | 2009-05-07 | Ntn Corp | Magnetic encoder and manufacturing method thereof, and rolling bearing |
KR20170082065A (en) * | 2016-01-05 | 2017-07-13 | 주식회사 엘지화학 | Modifying agent, preparation method of modified conjugated diene polymer using the modifying agent and modified conjugated diene polymer |
WO2019102747A1 (en) * | 2017-11-24 | 2019-05-31 | Nok株式会社 | Nbr composition for rubber laminated metal |
-
2005
- 2005-05-26 JP JP2005181176A patent/JP2006328335A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009097993A (en) * | 2007-10-17 | 2009-05-07 | Ntn Corp | Magnetic encoder and manufacturing method thereof, and rolling bearing |
KR20170082065A (en) * | 2016-01-05 | 2017-07-13 | 주식회사 엘지화학 | Modifying agent, preparation method of modified conjugated diene polymer using the modifying agent and modified conjugated diene polymer |
KR102024139B1 (en) * | 2016-01-05 | 2019-11-04 | 주식회사 엘지화학 | Modifying agent, preparation method of modified conjugated diene polymer using the modifying agent and modified conjugated diene polymer |
WO2019102747A1 (en) * | 2017-11-24 | 2019-05-31 | Nok株式会社 | Nbr composition for rubber laminated metal |
JPWO2019102747A1 (en) * | 2017-11-24 | 2020-12-17 | Nok株式会社 | NBR composition for rubber laminated metal |
JP6990253B2 (en) | 2017-11-24 | 2022-01-12 | Nok株式会社 | NBR composition for rubber laminated metal |
US11780993B2 (en) | 2017-11-24 | 2023-10-10 | Nok Corporation | NBR composition for rubber laminated metal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014118459A (en) | Rubber composition and conveyer belt | |
AU2014217187A1 (en) | Rubber composition for hoses, and hose | |
JP2011052200A (en) | Vibration-damping rubber composition | |
TW201127624A (en) | Bonded body of a carbon film covered article and a rubber | |
JP4449941B2 (en) | Method of bonding galvanized steel cord and rubber and conveyor belt using the bonding method | |
JP2006328335A (en) | Rubber composition for directly vulcanizing and bonding rubber to metal | |
JP2008280528A (en) | Rubber composition for liquid-sealed vibration isolating rubber | |
KR20180116926A (en) | rubber adhesive composition for outsole and midsole, shoes sole using the same and manufacturing method of shoes sole | |
AU2011311990A1 (en) | Accelerator composition for elastomers | |
JP2007224085A (en) | Cross-linking rubber composition | |
KR100701917B1 (en) | A composition of environmental-friendly high specific gravity rubber | |
JP2005350491A (en) | Method for bonding zinc-plated steel cord with rubber and conveyer belt | |
JP2001206987A (en) | Rubber composition, layered product and hose | |
JP2018203917A (en) | Acrylic rubber composition and crosslinked acrylic rubber member | |
JP5559021B2 (en) | Method for producing vulcanized rubber laminate and vulcanized rubber laminate | |
WO2016088844A1 (en) | Bonding method and conveyor belt | |
JP2008163067A (en) | Rubber composition | |
JP2000281839A (en) | Rubber composition | |
JP2008069199A (en) | Rubber composition for coating fixed cord and tire having carcass and/or belt using the same | |
WO2015170668A1 (en) | Ethylene acrylic rubber composition, ethylene acrylic rubber, rubber-metal composite, and bonded piston seal | |
JP2021059626A (en) | Rubber composition for steel cord adhesion and conveyor belt | |
JP2016128549A (en) | Coating rubber composition | |
TWI656023B (en) | Rubber support | |
JP2020011432A (en) | Composite component formed by bonding directly rubber to resin | |
JP2012092193A (en) | Rubber composition and vibration-proof rubber using the same |