JP2006325240A - Crystal resonator, crystal unit, crystal oscillator and information communication apparatus - Google Patents
Crystal resonator, crystal unit, crystal oscillator and information communication apparatus Download PDFInfo
- Publication number
- JP2006325240A JP2006325240A JP2006189802A JP2006189802A JP2006325240A JP 2006325240 A JP2006325240 A JP 2006325240A JP 2006189802 A JP2006189802 A JP 2006189802A JP 2006189802 A JP2006189802 A JP 2006189802A JP 2006325240 A JP2006325240 A JP 2006325240A
- Authority
- JP
- Japan
- Prior art keywords
- tuning fork
- fork arm
- electrode
- arm
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 237
- 238000004891 communication Methods 0.000 title claims abstract description 11
- 230000010355 oscillation Effects 0.000 claims abstract description 56
- 230000003321 amplification Effects 0.000 claims abstract description 15
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 15
- 239000010453 quartz Substances 0.000 claims description 73
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 73
- 238000005452 bending Methods 0.000 claims description 48
- 239000003990 capacitor Substances 0.000 claims description 13
- 230000007935 neutral effect Effects 0.000 description 28
- 230000005684 electric field Effects 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 241001089723 Metaphycus omega Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
本発明は屈曲モードで振動する振動腕と基部から成る水晶振動子とその振動子とケースと蓋から構成される水晶ユニットと増幅回路と帰還回路から成る水晶発振器に関する。特に、小型化、高精度化、耐衝撃性、低廉化の要求の強い情報通信機器用の基準信号源として最適な水晶振動子と水晶ユニットと水晶発振器で、新形状、新電極構成及び最適寸法を有する超小型の屈曲水晶振動子から構成される水晶ユニットと、基本波モード振動の発振周波数が出力信号である水晶発振器に関する。 The present invention relates to a crystal resonator including a vibrating arm and a base that vibrate in a bending mode, a crystal unit including the resonator, a case, and a lid, an amplifier circuit, and a feedback circuit. In particular, crystal units, crystal units, and crystal oscillators that are ideal as reference signal sources for information and communication equipment that are highly demanded for miniaturization, high accuracy, impact resistance, and low cost. New shapes, new electrode configurations, and optimal dimensions. The present invention relates to a crystal unit composed of an ultra-compact bent crystal resonator having a crystal oscillator and a crystal oscillator whose oscillation frequency of fundamental mode vibration is an output signal.
従来の屈曲水晶振動子は音叉腕と音叉基部から構成され、音叉腕の上下面と側面に電極が配置されている。また、従来の水晶ユニットはケースと蓋と一体に形成された音叉腕と音叉基部から成る音叉型屈曲水晶振動子から構成され、更に、水晶発振器は増幅器とコンデンサと抵抗と音叉腕の上下面と側面に電極が配置された従来の音叉型屈曲水晶振動子から成る水晶発振器がよく知られている。多用されている従来の音叉型屈曲水晶振動子は2本の音叉腕と音叉基部から構成され、前記振動子の共振周波数は音叉の腕幅Wに比例し、音叉の腕の長さの二乗に反比例する。それ故、小型化を図るためには、腕幅Wを小さくする必要がある。しかしながら、腕幅Wを小さくすると、等価直列抵抗R1が大きくなるという課題が残されていた。また、前記音叉型屈曲水晶振動子から成る従来例の水晶ユニットと水晶発振器の小型化も同時に課題として残されていた。A conventional bent crystal resonator includes a tuning fork arm and a tuning fork base, and electrodes are disposed on the upper and lower surfaces and side surfaces of the tuning fork arm. In addition, the conventional crystal unit is composed of a tuning fork-type bending crystal unit composed of a tuning fork arm and a tuning fork base formed integrally with a case and a lid. Further, the crystal oscillator includes an amplifier, a capacitor, a resistor, and upper and lower surfaces of the tuning fork arm. A crystal oscillator composed of a conventional tuning-fork type bent crystal resonator having electrodes arranged on the side surfaces is well known. A conventional tuning fork-type bending crystal resonator that is frequently used is composed of two tuning fork arms and a tuning fork base, and the resonance frequency of the transducer is proportional to the arm width W of the tuning fork and is the square of the length of the tuning fork arm. Inversely proportional. Therefore, it is necessary to reduce the arm width W in order to reduce the size. However, reducing the arm width W, a problem that the equivalent series resistance R 1 becomes larger it had been left. Further, downsizing of the crystal unit and the crystal oscillator of the conventional example including the tuning-fork type bent crystal resonator has been left as a problem at the same time.
このR1が大きくなる理由は、音叉腕に配置された電極の、水晶の電気軸(x軸)方向の電界成分Exが大きいほど等価直列抵抗R1が小さくなり、品質係数Q値が大きくなる。しかしながら、従来から使用されている音叉型屈曲水晶振動子は、各音叉腕の上下面と側面の4面に電極を配置している。そのために電界が直線的に働かず、かかる音叉型屈曲水晶振動子を小型化させると、電界成分Exが小さくなってしまい、等価直列抵抗R1が大きくなり、品質係数Q値が小さくなる。同時に、時間基準として高精度な、即ち、高い周波数安定性を有し、2次高調波モード振動を抑えた屈曲水晶振動子を得ることが課題として残されていた。また、前記課題を解決する方法として、例えば、特開昭56−65517では音叉腕に溝を設け、且つ、溝の構成と電極構成について開示している。しかしながら、溝の構成、寸法と振動モード並びに基本波モード振動での等価直列抵抗R1と2次高調波モード振動での等価直列抵抗R2との関係及び周波数安定性に関係するフイガーオブメリットMについては全く開示されていない。と同時に、前記溝を設けた振動子を従来の回路に接続し、水晶発振回路を構成すると、基本波モード振動の出力信号が衝撃や振動などの影響で出力信号が2次高調波モード振動の周波数に変化、検出される等の問題が発生していた。さらに、水晶発振器の消費電流を低減するために、負荷容量CLを小さくすると、2次高調波モードの振動がし易くなり、基本波モード振動の出力周波数が得られない等の課題が残されていた。更に、音叉基部で振動子が容器の固定部に固定されるので、音叉基部の長さ寸法を小さくできず、全長の短い小型の音叉型屈曲水晶振動子が得られないという課題があった。
このようなことから、水晶振動子が衝撃や振動を受けても、それらの影響を受けない2次高調波モード振動を抑えた基本波モードで振動する屈曲水晶振動子とそれを具えた水晶ユニットと水晶発振器が所望されていた。さらに、基本波モードで振動する水晶振動子の長さ寸法の短い、即ち、全長の短い超小型で、等価直列抵抗R1の小さい、品質係数Q値が高くなるような新形状で、電気機械変換効率の良い溝の構成と電極構成を有する超小型の屈曲水晶振動子とそれを具えた水晶ユニットと、その水晶ユニットを具えた、出力信号が基本波モード振動の発振周波数で、高い周波数安定性(高い時間精度)を有する超小型の水晶発振器が所望されていた。同時に、消費電流の少ない、立ち上がり時間の短い水晶発振器が所望されていた。Because of this, even if the crystal unit is subjected to shock or vibration, a bent crystal unit that vibrates in the fundamental wave mode that suppresses second harmonic mode vibrations that are not affected by the impact and vibration, and a crystal unit including the same And a crystal oscillator was desired. Furthermore, short length of the crystal resonator to vibrate in the fundamental mode, i.e., a short ultra-small overall length, a small equivalent series resistance R 1, the new shape, such as the quality factor Q value increases, the electric machine Ultra-compact bent crystal unit with groove structure and electrode configuration with good conversion efficiency, crystal unit equipped with it, and output signal with oscillation frequency of fundamental mode vibration with the crystal unit and high frequency stability An ultra-small crystal oscillator having high performance (high time accuracy) has been desired. At the same time, a crystal oscillator with low current consumption and short rise time has been desired.
本発明は、以下の方法で従来の課題を有利に解決した屈曲モードで振動する屈曲水晶振動子とそれを具えた水晶ユニットと水晶発振器を提供することを目的とするものである。 An object of the present invention is to provide a bent crystal resonator that vibrates in a bending mode that advantageously solves the conventional problems by the following method, a crystal unit including the same, and a crystal oscillator.
即ち、本発明の水晶振動子の第1の態様は、音叉基部とその音叉基部に接続された一端固定、他端自由の音叉腕を備えて構成され、かつ、音叉腕に溝が設けられ、屈曲モードで振動する音叉型屈曲水晶振動子において、前記音叉基部は第1側面とその第1側面に対抗する第2側面と、第1側面と第2側面と異なる第3側面とその第3側面に対抗する第4側面とを少なくとも有し、前記音叉腕は少なくとも第1音叉腕と第2音叉腕からなり、第1音叉腕と第2音叉腕は前記音叉基部の第1側面に接続されていて、第1音叉腕と第2音叉腕の各々は上面とそれに対抗する下面と対抗する側面とを有し、第1音叉腕と第2音叉腕の上面と下面の各々に溝が設けられ、前記溝に第1電極が、対抗する前記側面に第2電極が配置され、第1音叉腕の第1電極は第2音叉腕の第2電極に電気的に接続され、第1音叉腕の第2電極は第2音叉腕の第1電極に電気的に接続されると共に、第1電極と第2電極は、第1音叉腕と第2音叉腕に溝を有する音叉型屈曲水晶振動子の基本波モード振動のフイガーオブメリットM1が、2次高調波モード振動のフイガーオブメリットM2より大きくなるように配置されていて、前記音叉基部の第3側面と第4側面の少なくとも一つの側面に接続部分を介してフレームが接続されている水晶振動子である。
本発明の水晶振動子の第2の態様は、第1の態様において、前記音叉基部の第3側面と第4側面の少なくとも一つの側面に接続部分を介して接続されたフレームは、前記音叉基部に接続された第1音叉腕と第2音叉腕と共通の方向に延在している水晶振動子である。
本発明の水晶ユニットの第1の態様は、音叉基部とその音叉基部に接続された一端固定、他端自由の音叉腕を備えて構成され、かつ、音叉腕に溝が設けられ、屈曲モードで振動する音叉型屈曲水晶振動子と、ケースと、蓋とを備えて構成される水晶ユニットであって、前記音叉基部は第1側面とその第1側面に対抗する第2側面と、第1側面と第2側面と異なる第3側面とその第3側面に対抗する第4側面とを少なくとも有し、前記音叉腕は少なくとも第1音叉腕と第2音叉腕からなり、第1音叉腕と第2音叉腕は前記音叉基部の第1側面に接続されていて、第1音叉腕と第2音叉腕の各々は上面とそれに対抗する下面と対抗する側面とを有し、第1音叉腕と第2音叉腕の上面と下面の各々に溝が設けられ、前記溝に第1電極が、対抗する前記側面に第2電極が配置され、第1音叉腕の第1電極は第2音叉腕の第2電極に電気的に接続され、第1音叉腕の第2電極は第2音叉腕の第1電極に電気的に接続されると共に、第1電極と第2電極は、第1音叉腕と第2音叉腕に溝を有する音叉型屈曲水晶振動子の基本波モード振動のフイガーオブメリットM1が、2次高調波モード振動のフイガーオブメリットM2より大きくなるように配置されていて、前記音叉基部の第3側面と第4側面の少なくとも一つの側面に接続部分を介してフレームが接続されている水晶ユニットである。
本発明の水晶ユニットの第2の態様は、第1の態様において、前記音叉基部の第3側面と第4側面の少なくとも一つの側面に接続部分を介して接続されたフレームは、前記音叉基部に接続された第1音叉腕と第2音叉腕と共通の方向に延在していて、前記フレームはケースの固定部に固定されている水晶ユニットである。
本発明の水晶発振器の第1の態様は、少なくとも増幅器を備えて構成される増幅回路と、音叉基部とその音叉基部に接続された一端固定、他端自由の音叉腕を備えて構成され、かつ、音叉腕に溝が設けられ、屈曲モードで振動する音叉型屈曲水晶振動子と、コンデンサとを少なくとも備えて構成される帰還回路からなる水晶発振回路を備えた水晶発振器で、増幅回路と帰還回路からなる前記水晶発振回路の増幅回路の基本波モード振動の負性抵抗の絶対値|−RL1|と基本波モード振動の等価直列抵抗R1との比が増幅回路の2次高調波モード振動の負性抵抗の絶対値|−RL2|と2次高調波モード振動の等価直列抵抗R2との比より大きくなるように前記水晶発振回路は構成されていて、前記音叉型屈曲水晶振動子を備えて構成された前記水晶発振回路の出力信号が基本波モード振動の発振周波数であって、前記音叉基部は第1側面とその第1側面に対抗する第2側面と、第1側面と第2側面と異なる第3側面とその第3側面に対抗する第4側面とを少なくとも有し、前記音叉腕は少なくとも第1音叉腕と第2音叉腕からなり、第1音叉腕と第2音叉腕は前記音叉基部の第1側面に接続されていて、第1音叉腕と第2音叉腕の各々は上面とそれに対抗する下面と対抗する側面とを有し、第1音叉腕と第2音叉腕の上面と下面の各々に溝が設けられ、前記溝に第1電極が、対抗する前記側面に第2電極が配置され、第1音叉腕の第1電極は第2音叉腕の第2電極に電気的に接続され、第1音叉腕の第2電極は第2音叉腕の第1電極に電気的に接続されると共に、第1電極と第2電極は、第1音叉腕と第2音叉腕に溝を有する音叉型屈曲水晶振動子の基本波モード振動のフイガーオブメリットM1が、2次高調波モード振動のフイガーオブメリットM2より大きくなるように配置されていて、前記音叉基部の第3側面と第4側面の少なくとも一つの側面に接続部分を介してフレームが接続されている水晶発振器である。
本発明の情報通信機器の第1の態様は、少なくとも増幅器を備えて構成される増幅回路と、音叉基部とその音叉基部に接続された一端固定、他端自由の音叉腕を備えて構成され、かつ、音叉腕に溝が設けられ、屈曲モードで振動する音叉型屈曲水晶振動子と、コンデンサとを少なくとも備えて構成される帰還回路からなる水晶発振回路を備えた水晶発振器を備えて構成される情報通信機器で、増幅回路と帰還回路からなる前記水晶発振回路の増幅回路の基本波モード振動の負性抵抗の絶対値|−RL1|と基本波モード振動の等価直列抵抗R1との比が増幅回路の2次高調波モード振動の負性抵抗の絶対値|−RL2|と2次高調波モード振動の等価直列抵抗R2との比より大きくなるように前記水晶発振回路は構成されていて、前記音叉型屈曲水晶振動子を備えて構成された前記水晶発振回路の出力信号が基本波モード振動の発振周波数で、前記出力信号は情報通信機器用の規準信号源であって、前記音叉基部は第1側面とその第1側面に対抗する第2側面と、第1側面と第2側面と異なる第3側面とその第3側面に対抗する第4側面とを少なくとも有し、前記音叉腕は少なくとも第1音叉腕と第2音叉腕からなり、第1音叉腕と第2音叉腕は前記音叉基部の第1側面に接続されていて、第1音叉腕と第2音叉腕の各々は上面とそれに対抗する下面と対抗する側面とを有し、第1音叉腕と第2音叉腕の上面と下面の各々に溝が設けられ、前記溝に第1電極が、対抗する前記側面に第2電極が配置され、第1音叉腕の第1電極は第2音叉腕の第2電極に電気的に接続され、第1音叉腕の第2電極は第2音叉腕の第1電極に電気的に接続されると共に、第1電極と第2電極は、第1音叉腕と第2音叉腕に溝を有する音叉型屈曲水晶振動子の基本波モード振動のフイガーオブメリットM1が、2次高調波モード振動のフイガーオブメリットM2より大きくなるように配置されていて、前記音叉基部の第3側面と第4側面の少なくとも一つの側面に接続部分を介してフレームが接続されている情報通信機器である。That is, the first aspect of the crystal resonator according to the present invention is configured to include a tuning fork base and a tuning fork arm connected to the tuning fork base, and a free tuning fork arm at the other end, and a groove is provided in the tuning fork arm. In the tuning fork-type bending quartz crystal vibrator that vibrates in a bending mode, the tuning fork base includes a first side surface, a second side surface that opposes the first side surface, a third side surface different from the first side surface and the second side surface, and a third side surface thereof. And the tuning fork arm comprises at least a first tuning fork arm and a second tuning fork arm, and the first tuning fork arm and the second tuning fork arm are connected to the first side of the tuning fork base. Each of the first tuning fork arm and the second tuning fork arm has an upper surface, a lower surface that opposes the upper surface, and a side surface that opposes the upper surface, and a groove is provided on each of the upper and lower surfaces of the first tuning fork arm and the second tuning fork arm. A first electrode is disposed in the groove, and a second electrode is disposed on the opposing side surface. The pole is electrically connected to the second electrode of the second tuning fork arm, the second electrode of the first tuning fork arm is electrically connected to the first electrode of the second tuning fork arm, and the first electrode and the second electrode the first tuning fork arms and off Iga of merit M 1 of the fundamental wave mode vibration of the tuning fork type flexural quartz crystal resonator having a groove in the second tuning fork arms is greater than the second harmonic mode vibration of full Iga of merit M 2 The quartz resonator is arranged in such a manner that a frame is connected to at least one of the third side surface and the fourth side surface of the tuning fork base via a connection portion.
According to a second aspect of the crystal resonator of the present invention, in the first aspect, the frame connected to at least one of the third side surface and the fourth side surface of the tuning fork base portion via a connection portion is the tuning fork base portion. A quartz resonator extending in the same direction as the first tuning fork arm and the second tuning fork arm connected to the.
The first aspect of the crystal unit of the present invention comprises a tuning fork base and a tuning fork arm connected to the tuning fork base and a free tuning fork arm at the other end. A quartz unit comprising a tuning fork-type bent quartz crystal vibrator, a case, and a lid, wherein the tuning fork base has a first side surface, a second side surface facing the first side surface, and a first side surface. And a third side surface different from the second side surface and a fourth side surface opposite to the third side surface, wherein the tuning fork arm comprises at least a first tuning fork arm and a second tuning fork arm, The tuning fork arm is connected to the first side surface of the tuning fork base, and each of the first tuning fork arm and the second tuning fork arm has an upper surface, a lower surface opposed to the upper surface, and a side surface opposed to the first tuning fork arm. A groove is provided on each of the upper and lower surfaces of the tuning fork arm, and the first electrode is opposed to the groove. A second electrode is disposed on the side surface, the first electrode of the first tuning fork arm is electrically connected to the second electrode of the second tuning fork arm, and the second electrode of the first tuning fork arm is the first electrode of the second tuning fork arm. a is electrically connected, the first electrode and the second electrode are off Iga of merit M 1 of the fundamental wave mode vibration of the tuning fork type flexural quartz resonator having a groove in the first fork arm and the second tuning fork arms second harmonic mode is arranged to be larger than the full Iga of merit M 2 of the vibration, the frame is connected through the third side and the connecting portion on at least one side surface of the fourth side surface of the tuning fork base portion It is a crystal unit.
According to a second aspect of the crystal unit of the present invention, in the first aspect, a frame connected to at least one of the third side surface and the fourth side surface of the tuning fork base portion via a connection portion is attached to the tuning fork base portion. The crystal unit extends in the same direction as the connected first tuning fork arm and second tuning fork arm, and the frame is fixed to a fixing portion of the case.
A first aspect of the crystal oscillator according to the present invention includes an amplifier circuit configured to include at least an amplifier, a tuning fork base, and a tuning fork arm that is fixed to one end and connected to the tuning fork base. A crystal oscillator having a crystal oscillation circuit comprising a tuning fork-type bending crystal resonator having a groove in the tuning fork arm and vibrating in a bending mode and a capacitor, and an amplification circuit and a feedback circuit The ratio of the absolute value | -RL 1 | of the negative resistance of the fundamental wave mode vibration of the amplifier circuit of the crystal oscillation circuit and the equivalent series resistance R 1 of the fundamental wave mode vibration is the second harmonic mode vibration of the amplifier circuit The crystal oscillation circuit is configured to be larger than the ratio of the absolute value of negative resistance | −RL 2 | of the negative resistance and the equivalent series resistance R 2 of the second harmonic mode vibration. Configured with The output signal of the crystal oscillation circuit is an oscillation frequency of fundamental mode vibration, and the tuning fork base is different from the first side surface, the second side surface facing the first side surface, and the first side surface and the second side surface. At least a third tuning fork arm and a second tuning fork arm, and the first tuning fork arm and the second tuning fork arm of the tuning fork base. Connected to the first side, each of the first tuning fork arm and the second tuning fork arm has an upper surface, a lower surface facing the upper surface, and a side surface facing the first tuning fork arm, and an upper surface and a lower surface of the first tuning fork arm and the second tuning fork arm. A groove is provided in each, a first electrode is disposed in the groove, a second electrode is disposed on the opposing side surface, and the first electrode of the first tuning fork arm is electrically connected to the second electrode of the second tuning fork arm. The second electrode of the first tuning fork arm is electrically connected to the first electrode of the second tuning fork arm, and the
A first aspect of the information communication device of the present invention is configured to include an amplification circuit configured to include at least an amplifier, a tuning fork base, and a tuning fork arm that is fixed to one end and connected to the tuning fork base. In addition, the tuning fork arm is provided with a groove and is provided with a crystal oscillator including a tuning fork type quartz crystal vibrator that vibrates in a bending mode and a feedback circuit configured to include at least a capacitor. In the information communication device, the ratio of the absolute value | −RL 1 | of the fundamental mode vibration negative resistance of the amplification circuit of the crystal oscillation circuit including the amplification circuit and the feedback circuit to the equivalent series resistance R 1 of the fundamental mode vibration The crystal oscillation circuit is configured so that is larger than the ratio of the absolute value | −RL 2 | of the negative resistance of the second harmonic mode vibration of the amplifier circuit to the equivalent series resistance R 2 of the second harmonic mode vibration. And said sound The output signal of the crystal oscillation circuit configured with a type bending crystal resonator is an oscillation frequency of fundamental mode vibration, the output signal is a reference signal source for information communication equipment, and the tuning fork base is the first A side surface, a second side surface that opposes the first side surface, a third side surface that is different from the first side surface and the second side surface, and a fourth side surface that opposes the third side surface, wherein the tuning fork arm is at least first The tuning fork arm includes a tuning fork arm and a second tuning fork arm. The first tuning fork arm and the second tuning fork arm are connected to the first side surface of the tuning fork base, and each of the first tuning fork arm and the second tuning fork arm is opposed to the upper surface. A first tuning fork arm and a second tuning fork arm, and a groove is provided on each of the upper and lower surfaces of the first tuning fork arm and the second tuning fork arm. The first electrode is disposed in the groove, and the second electrode is disposed on the opposite side surface. The first electrode of the first tuning fork arm is electrically connected to the second electrode of the second tuning fork arm, The second electrode of the fork arm is electrically connected to the first electrode of the second tuning fork arm, and the first electrode and the second electrode are a tuning fork type quartz crystal having grooves in the first tuning fork arm and the second tuning fork arm. off Iga of merit M 1 of the fundamental wave mode vibration of the vibrator, it is arranged to be greater than the second harmonic mode vibration of full Iga of merit M 2, the third side and the fourth side surface of the tuning fork base portion An information communication device in which a frame is connected to at least one side of the frame via a connection portion.
このように、本発明は屈曲モードで振動する屈曲水晶振動子とそれを具えた水晶ユニットと水晶発振器で、しかも、屈曲水晶振動子の基部の形状と溝の構成と電極の配置を改善することにより、全長の短い屈曲水晶振動子が得られ、かつ、増幅回路と帰還回路との関係を示すことにより、2次高調波モード振動を抑え、基本波モード振動で振動する発振周波数を出力する水晶発振器を得る事ができる。 As described above, the present invention provides a bent crystal resonator that vibrates in a bending mode, a crystal unit and a crystal oscillator including the same, and improves the shape of the base, the groove configuration, and the electrode arrangement of the bent crystal resonator. By this, a bent crystal resonator with a short overall length can be obtained, and a crystal that outputs an oscillation frequency that vibrates with fundamental wave mode vibration by suppressing the second harmonic mode vibration by showing the relationship between the amplifier circuit and the feedback circuit. You can get an oscillator.
加えて、振動腕の中立線を挟んだ(含む)中央部に溝を設けるか、又は中立線の全部又は一部を残して中立線の両側に溝を設け、且つ、電極を配置し、溝の寸法の最適化を図る事により、等価直列抵抗R1が小さく、Q値が高く、電気機械変換効率の良い屈曲モードで振動する超小型の屈曲水晶振動子が得られる。と同時に、帰還回路の負荷容量を小さくできる。その結果、消費電流の少ない水晶発振器が得られる。In addition, a groove is provided in the center part including (including) the neutral line of the vibrating arm, or a groove is provided on both sides of the neutral line leaving all or part of the neutral line, and electrodes are disposed, and the groove by optimizing the dimensions, low equivalent series resistance R 1, Q value is high, micro bending crystal oscillator that oscillates at a good bending modes electromechanical conversion efficiency can be obtained. At the same time, the load capacity of the feedback circuit can be reduced. As a result, a crystal oscillator with low current consumption can be obtained.
以下、本発明の実施例を図面に基づき具体的に述べる。 Embodiments of the present invention will be specifically described below with reference to the drawings.
図1は本発明の実施例1の屈曲モードで振動する屈曲水晶振動子10の平面図を示す。また、x、y、zはそれぞれ水晶の電気軸、機械軸、光軸である。本実施例の振動子の形状は音叉形状で、屈曲水晶振動子10は振動腕20、振動腕31と基部40とから成り、振動腕20と振動腕31の一端部は基部40に接続されている。また、振動腕20と振動腕31はそれぞれ上面と下面と側面とを有する。更に、振動腕20の上面には中立線41を挟んで、即ち、中立線41を含むように溝21が設けられ、又、振動腕31の上面にも振動腕20と同様に溝27が設けられている。なお、角度θは、x軸廻りの回転角であり、通常0〜10°の範囲で選ばれる。又、振動腕20、31の下面にも上面と同様に溝が設けられている(図2参照)。詳細には、振動腕20の中立線41を挟むようにして溝21が設けられている。他方の振動腕31にも中立線42を挟むようにして溝27が設けられている。 FIG. 1 is a plan view of a
更に、基部40は一方の接続部分34を介してフレーム36に接続されていて、他方の接続部分35を介してフレーム37に接続されている。本実施例の振動子は、フレーム36、37が収納される容器の固定部に導電接着剤又は半田等で固定される。また、振動腕20の側面には電極25、26が、溝21には電極23が配置され、フレーム36まで接続部分34を介して延在している。加えて、振動腕31の側面には電極32,33が、溝27には電極29が配置され、フレーム37まで接続部分35を介して延在している。 Further, the
更に、振動腕の部分幅W1、W3と溝幅W2とすると、振動腕20,31の腕幅WはW=
W3となるように形成される。又、溝幅W2はW2≧W1,W3を満足する条件で形成される。更に具体的に述べると、本実施例では、溝幅W2と振動腕幅Wとの比(W2/W)が0.35より大きく、1より小さくなるように、好ましくは、0.35〜0.95で、図2で示すように、溝の厚みt1と振動腕の厚みtとの比(t1/t)が0.79より小さくなるように、好ましくは、0.01〜0.79となるように溝が振動(音叉)腕に形成されている。このように形成することにより、振動腕の中立線41と42を基点とするモーメントが大きくなる。即ち、電気機械変換効率が良くなるので、等価直列抵抗R1の小さい、Q値の高い、しかも、容量比の小さい屈曲水晶振動子を得る事ができる。Furthermore, assuming that the partial widths W 1 and W 3 of the vibrating arms and the groove width W 2 , the arm width W of the vibrating
W 3 is formed. Further, the groove width W 2 is formed under the conditions satisfying W 2 ≧ W 1 and W 3 . More specifically, in this embodiment, the ratio (W 2 / W) between the groove width W 2 and the vibrating arm width W is larger than 0.35 and smaller than 1, preferably 0.35. ˜0.95, and as shown in FIG. 2, the ratio (t 1 / t) between the groove thickness t 1 and the vibrating arm thickness t (t 1 / t) is preferably less than 0.79. Grooves are formed on the vibrating (tuning fork) arm so as to be 0.79. By forming in this way, the moment with the
これに対して、図示されていないが、溝21および溝27は溝の長さL0を、振動腕は腕の長さLを有する。それ故、R1の小さい振動子を得るために、L0/Lが0.4〜0.8の値を有する。ここで、溝に配置される電極が溝の一部に配置されるときには、L0は溝の電極の長さLdである。更に、音叉形状の屈曲水晶振動子10の全長Ltは要求される周波数や収納容器の大きさなどから決定される。本実施例では、Ltは2.8mm以下で、好ましくは、2.1mm以下の寸法を有する。より小型化を図るためには、1.02mm〜1.95mmの範囲内にある。そして、振動腕の全幅W5(=2W+W4)は0.43mm以下に、好ましくは、0.15mm〜0.36mmの範囲内にある。また、本実施例では、
mm以下に、好ましくは、0.15mm〜0.53mmの範囲内にある。また、フレームの幅W6は0.45mm以下に、フレームの長さL3は2.1mm以下に、振動の漏れを低減するために、好ましくは、L3は0.3mm〜1.85mmの範囲内にある。また、接続部分の幅Wsは0.41mm以下に、接続部分の長さが最小となる長さL2は0.04mm〜0.5mmの範囲内にある。更に、基本波モードで振動する良好な音叉型屈曲水晶振動子を得るためには、溝の長さL0と全長Ltとの間には密接な関係が存在する。On the other hand, although not shown, the
It is preferably in the range of 0.15 mm to 0.53 mm. The frame width W 6 is 0.45 mm or less, the frame length L 3 is 2.1 mm or less, and preferably L 3 is 0.3 mm to 1.85 mm in order to reduce vibration leakage. Is in range. The width Ws of the connecting portion is below 0.41 mm, the length L 2 length is minimum of the connecting portion is in the range of 0.04Mm~0.5Mm. Furthermore, in order to obtain a good tuning fork type flexural quartz crystal resonator vibrating at the fundamental mode, a close relationship exists between the length L 0 and the total length L t of the groove.
すなわち、振動腕20,31に設けられた溝の長さL0と音叉形状の屈曲水晶振動子の全長Ltとの比(L0/Lt)が0.23〜0.88となるように溝の長さは設けられる。特に、L0は1.45mm以下に、好ましくは、L0は0.48mm〜1.29mmの範囲内にある。又、L0は基部(基部の溝の長さLK)にまで延在しても良い。このように形成する理由は、特に、不要振動である2次高調波振動を抑圧する事ができると共に、基本波モード振動の周波数安定性を高めることができる。それ故、基本波モードで容易に振動する良好な屈曲水晶振動子が実現できる。詳述するならば、基本波モードで振動する音叉形状の屈曲水晶振動子の等価直列抵抗R1が2次高調波モード振動での等価直列抵抗R2より小さくなる。即ち、R1<R2となり、増幅器(CMOSインバータ)、コンデンサ、抵抗、本実施例の音叉形状の屈曲水晶振動子等から成る水晶発振器において、振動子が基本波モードで容易に発振する良好な水晶発振器が実現できる。即ち、基本波モード振動の発振周波数が出力信号として得られる。又、溝の長さL0は振動腕の長さ方向に分割されていても良く、その中の少なくとも1個が前記辺比(L0/Lt)を満足すれば良いか、又は、分割された溝の長さ方向の加えられた溝の長さが前記辺比(L0/Lt)を満足すれば良い。That is, the ratio (L 0 / L t ) between the length L 0 of the groove provided in the vibrating
また、この実施例では、基部40は図1中、振動子10の長さL1と幅WHの部分全体とされ、又、振動腕20と振動腕31は、図1中、振動子10の長さL1の部分から上側の部分全体とされている。本実施例では音叉の叉部はU字型をしているが、本発明は前記形状に限定されるものではなく、音叉の叉部が矩形をしていても良い。この場合もU字型の形状と同じように、振動腕と基部との寸法の関係は前記関係と同じである。また、本発明で言う溝の長さL0とは、溝幅W2と振動腕幅Wとの比(W2/W)が0.35より大きく、且つ、1より小さく、溝の厚みt1と振動腕の厚みtとの比(t1/t)が0.79より小さくなるように形成された溝の長さである。Further, in this embodiment, the
換言するならば、中立線を含む振動腕の上下面に各々少なくとも1個の溝が長さ方向に設けられ、前記溝の両側面に電極が配置され、前記溝側面の電極とその電極に対抗する振動腕側面の電極とが互いに異極となるように構成され、振動腕に生ずる慣性モーメントが大きくなるように前記各々少なくとも1個の溝の内少なくとも1個の溝幅W2と振動腕幅Wとの比(W2/W)が0.35より大きく、1より小さく、且つ、前記溝の厚みt1と振動腕の厚みtとの比(t1/t)が0.79より小さくなるように溝が形成されている。In other words, at least one groove is provided in the longitudinal direction on the upper and lower surfaces of the vibrating arm including the neutral line, electrodes are disposed on both side surfaces of the groove, and the electrodes on the side surfaces of the groove and the electrodes are opposed to the electrodes. vibrating arms and the side electrodes are configured such that different poles each other, at least one of groove width W 2 and the vibration arm width of said each at least one groove as the moment of inertia generated in the vibration arm is increased to The ratio (W 2 / W) to W is larger than 0.35 and smaller than 1 , and the ratio (t 1 / t) between the thickness t 1 of the groove and the thickness t of the vibrating arm is smaller than 0.79. A groove is formed so as to be.
一例として、振動腕は少なくとも第1振動腕と第2振動腕を具えて構成され、前記第1振動腕と前記第2振動腕と前記基部とはエッチング法によって一体に形成されていて、第1振動腕と第2振動腕の上下面にはそれぞれ厚みの方向に対抗して溝が設けられ、前記溝は第1振動腕と第2振動腕の中立線を挟んだ幅方向略中央部の上下面に各々1個の溝が設けられ、各々の溝幅W2は部分幅W1、W3と等しいか、又は部分幅W1、W3より大きくなるように形成され、且つ、各々の溝には第1振動腕の溝の電極と第2振動腕の溝の電極との極性が異なる電極が配置されると共に、前記溝の電極と対抗して配置された振動腕の側面の電極とは極性が異なる2電極端子を構成し、前記2電極端子の内、1電極端子は第1振動腕の上下面の溝に配置された電極と第2振動腕の両側面に配置された電極から構成され、且つ、上下面の溝に配置された前記電極と両側面に配置された前記電極とが接続され、他の1電極端子は第1振動腕の両側面に配置された電極と第2振動腕の上下面の溝に配置された電極から構成され、且つ、両側面に配置された前記電極と上下面の溝に配置された前記電極とが接続されている。As an example, the vibrating arm includes at least a first vibrating arm and a second vibrating arm, and the first vibrating arm, the second vibrating arm, and the base are integrally formed by an etching method, Grooves are provided on the upper and lower surfaces of the vibrating arm and the second vibrating arm, respectively, in the thickness direction, and the groove is located above the central portion in the width direction across the neutral line of the first vibrating arm and the second vibrating arm. each one of the grooves is provided on the lower surface, each groove width W 2 of equal to or partial width W 1, W 3, or partial width W 1, W 3 are formed so than larger, and, each of the grooves The electrode of the groove of the first vibrating arm and the electrode of the groove of the second vibrating arm are arranged with different polarities, and the electrode on the side surface of the vibrating arm arranged opposite to the electrode of the groove Two electrode terminals having different polarities are formed, and one of the two electrode terminals is formed in a groove on the upper and lower surfaces of the first vibrating arm. The electrode arranged on both sides of the second vibrating arm and the electrode arranged on the upper and lower grooves and the electrode arranged on both sides are connected to each other. The electrode terminal is composed of electrodes arranged on both side surfaces of the first vibrating arm and electrodes arranged in grooves on the upper and lower surfaces of the second vibrating arm, and the electrodes arranged on both side surfaces and grooves on the upper and lower surfaces. The arranged electrodes are connected.
足するように構成され、間隔W4は0.05mm〜0.37mmで、溝幅W2は0.018mm〜0.12mmの値を有する。好ましくは、W2=0.02mm〜0.069mm。このように構成する理由は超小型の屈曲水晶振動子で、かつ、音叉形状と振動腕の溝とをフオトリソグラフィ技術を用いて別々(別々の工程)に形成でき、更に、基本波モード振動の周波数安定性が2次高調波モード振動の周波数安定性より高くすることができる。この場合、厚みtは通常0.05mm〜0.15mmの水晶ウエハが用いられる。しかし、本発明はこれに限定されるものでなく、0.15mmより厚い水晶ウエハを使用してもよい。 Configured to foot spacing W 4 is 0.05Mm~0.37Mm, the groove width W 2 has a value of 0.018Mm~0.12Mm. Preferably, W 2 = 0.02 mm to 0.069 mm. The reason for this configuration is an ultra-compact bent quartz crystal resonator, and the tuning fork shape and the groove of the vibrating arm can be formed separately (separate steps) using photolithography technology. The frequency stability can be made higher than the frequency stability of the second harmonic mode vibration. In this case, a quartz wafer having a thickness t of usually 0.05 mm to 0.15 mm is used. However, the present invention is not limited to this, and a quartz wafer thicker than 0.15 mm may be used.
更に詳述するならば、屈曲水晶振動子の誘導性と電気機械変換効率と品質係数を表すフイガーオブメリットMiは品質係数Qi値と容量比riの比(Qi/ri)によって定義され(i=1のとき基本波振動、i=2のとき2次高調波振動)、屈曲水晶振動子の並列容量に依存しない機械的直列共振周波数fsと並列容量に依存する直列共振周波数frの周波数差ΔfはフイガーオブメリットMiに反比例し、その値Miが大きい程Δfは小さくなる。従って、Miが大きい程、屈曲水晶振動子の共振周波数は並列容量の影響を受けないので、屈曲水晶振動子の周波数安定性は良くなる。即ち、時間精度の高い屈曲水晶振動子が得られる。More specifically, the Figer of Merit M i representing the inductivity, electromechanical conversion efficiency, and quality factor of the bent quartz resonator is the ratio of the quality factor Q i value to the capacity ratio r i (Q i / r i ). defined by (i = 1 when the fundamental wave vibration, the second harmonic oscillation when i = 2), the series resonance that depends on the parallel capacitance and mechanical series resonance frequency f s that is independent of the parallel capacitance of the flexural crystal oscillator the frequency difference Δf of frequency f r is inversely proportional to the full Iga of merit M i, Δf becomes smaller as the value M i is large. Therefore, as M i is large, the resonance frequency of the bending crystal oscillator does not influenced by the parallel capacitance, the frequency stability of a flexural quartz crystal resonator is improved. That is, a bent crystal resonator with high time accuracy can be obtained.
詳細には、前記音叉形状と溝とその寸法の構成により、基本波モード振動のフイガーオブメリットM1が2次高調波モード振動のフイガーオブメリットM2より大きくなる。即ち、M1>M2となる。一例として、音叉形状の基本波モード振動の基準周波数が32.768kHzで、W2/W=0.5、t1/t=0.34、L0/Lt=0.48のとき、製造によるバラツキが生ずるが、音叉形状の屈曲水晶振動子のM1、M2はそれぞれM1>60、M2<30となる。即ち、高い誘導性と電気機械変換効率の良い(等価直列抵抗R1の小さい)、品質係数の大きい基本波モードで振動する屈曲水晶振動子を得ることができる。その結果、基本波モード振動の周波数安定性が2次高調波モード振動の周波数安定性より良くなると共に、2次高調波モード振動を抑圧することができる。More specifically, the configuration of the tuning fork shape, the groove, and its dimensions makes the fibre-of-merit M 1 of the fundamental mode vibration larger than the fibre-of-merit M 2 of the second harmonic mode vibration. That is, M 1 > M 2 is satisfied. As an example, when the reference frequency of the fundamental wave mode vibration of the tuning fork shape is 32.768 kHz, W 2 /W=0.5, t 1 /t=0.34, L 0 / L t = 0.48 However, M 1 and M 2 of the tuning fork-shaped bent quartz crystal resonator satisfy M 1 > 60 and M 2 <30, respectively. That is, (a small equivalent series resistance R 1) Good high inductive electromechanical conversion efficiency, can be obtained flexural quartz oscillator that vibrates at a large fundamental mode of the quality factor. As a result, the frequency stability of the fundamental wave mode vibration becomes better than the frequency stability of the second harmonic mode vibration, and the second harmonic mode vibration can be suppressed.
更に、本実施例の屈曲水晶振動子10の基部40は、接続部分34、35を介してフレーム36,37に接続されている。また、接続部分34,35の長さ寸法はそれぞれL2を有し、フレーム36,37の長さ寸法と幅寸法はそれぞれL3とW6を有する。そして、
は小型化を図るために、0.5mm未満の寸法を有する。好ましくは、0.015mm〜0.45mmの範囲内にある。同時に、L1とL2の差、即ち、L1−L2は−0.1mm〜0.32mmの範囲内にある。特に、WH>W5のとき、長さL4は0.012mm〜0.38mmの範囲内にある。本実施例では、フレーム36とフレーム37は接続されていないが、音叉先端部付近を通過するように両フレームを接続しても良い。即ち、本発明は前記形状をも包含する。また、本実施例では、フレームは基部の側面から接続部分を介して設けられているが、本発明はこれに限定されるものでなく、振動腕(音叉腕)の間に基部から突出するようにフレームを設けても良い。更に、本実施例では、振動腕に溝を設け、その中に電極を配置しているが、本発明はこれに限定されるものでなく、溝を設けない(平面)で、振動腕の上下面にそれぞれの溝の電極と極性が同じ電極を配置しても良い。これらのことは以下に述べる実施例の屈曲水晶振動子にも適用できることは言うまでもない。Further, the
Has a dimension of less than 0.5 mm for miniaturization. Preferably, it exists in the range of 0.015 mm-0.45 mm. At the same time, the difference between L 1 and L 2, i.e., L 1 -L 2 is in the range of -0.1Mm~0.32Mm. In particular, when W H > W 5 , the length L 4 is in the range of 0.012 mm to 0.38 mm. In this embodiment, the
図2は、図1の屈曲水晶振動子10の振動腕20、31のA−A′断面図を示す。図2では図1の水晶振動子の振動腕20,31の断面形状並びに電極配置について詳述する。振動腕20には溝21,22が設けられている。同様に、振動腕31には溝27,28が設けられている。更に、溝21と溝22には同極となる電極23,24が、溝27と溝28には同極となる電極29,30が配置されている。また、振動腕20の側面には同極となる電極25、26が配置され、振動腕31の側面には同極となる電極32、33が配置されている。詳細には、溝の側面に電極が配置され、前記電極に対抗して極性の異なる電極が振動腕の側面に配置されている2電極端子C−C′を構成している。即ち、1電極端子は電極25、26、29、30から構成、接続されている。他の1電極端子は電極23、24、32、33から構成、接続されている。更に詳細には、第1振動腕20の両側面と第2振動腕31の両側面に配置された電極25、26、32,33に対抗して配置された対抗電極は前記第1振動腕と前記第2振動腕の両側面の電極の各々に対して一部分対抗して配置されている。 FIG. 2 is a cross-sectional view taken along the line AA ′ of the vibrating
即ち、z軸(厚み)方向に対抗する溝電極は同極に、且つ、大略x軸方向に対抗する電極は異極になるように構成されている。詳細には、厚み方向に対抗して設けられた溝に配置された電極の対抗する溝電極と溝電極との間には前記溝電極に対して垂直に発生する電界が厚み方法に存在しないように電極が配置されている。今、2電極端子C−C′間に直流電圧を印加(C端子に正極、C′端子に負極)すると電界Exは図2に示した矢印のように働く。電界Exは振動腕の側面と溝内の側面とに対抗して配置された電極により前記電極に垂直に、即ち、直線的に引き出されるので、電界Exが大きくなり、その結果、振動(音叉)腕の長さ方向に同時に歪が発生すると共に、中立線に対して振動(音叉)腕の内側と外側では歪の方向が反対に発生し、且つ、第1振動(音叉)腕と第2振動(音叉)腕の中立線に対して音叉の内側に発生する歪の方向が同じで、第1振動(音叉)腕と第2振動(音叉)腕の中立線に対して音叉の外側に発生する歪の方向が同じで、更に、前記内側の歪と前記外側の歪とが互いに反対の方向に発生する。それ故、2電極端子C−C′間に交番電圧を印加することにより、振動(音叉)腕が逆相で振動し、共振特性が良くなると共に、発生する歪の量も大きくなる。従って、音叉形状の屈曲水晶振動子を小型化させた場合でも、等価直列抵抗R1の小さい、品質係数Q値の高い屈曲モードで振動する音叉形状の屈曲水晶振動子が得られる。That is, the groove electrode that opposes the z-axis (thickness) direction has the same polarity, and the electrode that opposes the x-axis direction generally has a different polarity. Specifically, the electric field generated perpendicularly to the groove electrode does not exist in the thickness method between the groove electrode opposed to the electrode disposed in the groove provided in the thickness direction. An electrode is disposed on the surface. Now, when a DC voltage is applied between the two electrode terminals C-C '(a positive electrode at the C terminal and a negative electrode at the C' terminal), the electric field Ex works as shown by the arrow in FIG. The electric field Ex is drawn perpendicularly to the electrode by the electrodes arranged opposite to the side surface of the vibrating arm and the side surface in the groove, that is, linearly drawn, so that the electric field Ex is increased, resulting in vibration (tuning fork). At the same time, distortion occurs in the length direction of the arm, and the direction of distortion occurs oppositely on the inside and outside of the vibrating (tuning fork) arm with respect to the neutral line, and the first vibrating (tuning fork) arm and the second vibration The direction of distortion generated inside the tuning fork is the same with respect to the neutral line of the (tuning fork) arm, and occurs outside the tuning fork with respect to the neutral line of the first vibrating (tuning fork) arm and the second vibrating (tuning fork) arm. The strain direction is the same, and the inner strain and the outer strain are generated in opposite directions. Therefore, by applying an alternating voltage between the two-electrode terminals C-C ′, the vibrating (tuning fork) arm vibrates in the opposite phase, improving the resonance characteristics and increasing the amount of distortion generated. Therefore, even when the tuning fork-shaped bent quartz crystal is reduced in size, a tuning fork-shaped bent quartz crystal that vibrates in a bending mode having a small equivalent series resistance R 1 and a high quality factor Q value can be obtained.
また、屈曲水晶振動子10の振動(音叉)腕は厚みtを有し、溝は厚みt1を有している。ここで言う厚みt1は溝の一番深いところの厚みを言う。その理由は、水晶が異方性の材料のために、化学的エッチング法では各結晶軸の方向によりエッチングスピードが異なる。それ故、化学的エッチング法では溝の深さにバラツキが生じ、図2に示した一様な形状に加工するのが極めて難しいためである。本実施例では、溝の厚みt1と振動(音叉)腕の厚みtとの比(t1/t)が0.79より小さくなるように、好ましくは、0.01〜0.79となるように溝が振動腕に形成されている。このように形成することにより、振動腕の溝側面電極とそれに対抗する側面の電極との間の電界Exが大きくなる。すなわち、中立線を基点とするモーメントが大きい、電気機械変換効率の良い屈曲水晶振動子が得られる。即ち、容量比の小さい音叉形状の屈曲水晶振動子が得られる。The vibration (tuning fork) arm of the
図3は本発明の実施例2の屈曲モードで振動する屈曲水晶振動子50の平面図を示す。振動子50は振動腕60,71と基部80とを有し、基部80の側面は接続部分75を介してフレーム77に接続されている。即ち、基部80の側面の片側にのみフレーム77が接続部分75を介して接続されている。更に、振動腕60には中立線81を挟んで溝61が設けられ、溝61には電極63が配置されている。また、振動腕60の側面には電極65、66が配置されている。一方、振動腕71には中立線82を挟んで溝67が設けられ、溝67には電極69が配置されている。また、振動腕71の側面には電極72,73が配置されている。そして、電極69はフレーム77まで延在して配置されている。 FIG. 3 is a plan view of a
尚、図3には示されていないが、振動腕の下面にも溝と電極が形成されている。即ち、振動腕の溝の構成と電極の配置は、実施例1の図2で示したのと同じように構成、接続されている、いわゆる2電極端子を構成している。また、各寸法W、W1、W2、W3、W4の関係とW5、W6、WHの関係とL、L1、L2、L3、L4、L0、Ltとの関係は、実施例1と同じである。本実施例では、フレーム77の幅W6の一端部がW6より広く形成されている。Although not shown in FIG. 3, grooves and electrodes are also formed on the lower surface of the vibrating arm. That is, the configuration of the groove of the vibrating arm and the arrangement of the electrodes constitute a so-called two-electrode terminal that is configured and connected in the same manner as shown in FIG. 2 of the first embodiment. Also, the relationship between each dimension W, W 1 , W 2 , W 3 , W 4 and the relationship between W 5 , W 6 , WH and the relationship L, L 1 , L 2 , L 3 , L 4 , L 0 , L t Is the same as in the first embodiment. In this embodiment, one end of the width W 6 of the
図4は本発明の実施例3の屈曲モードで振動する屈曲水晶振動子90の平面図を示す。本実施例の振動子の形状と寸法の関係は、上記実施例1と同じである。また、本実施例の振動子の形状は音叉形状で、屈曲水晶振動子90は少なくとも振動腕91、振動腕92と基部93とを具えて構成され、振動腕91と振動腕92の一端部は基部93に接続されている。更に、基部93にはフレーム94,95がそれぞれの接続部分96,97を介して接続されている。詳細には、一方の支持フレームはフレーム94と接続部分96からなり、他方の支持フレームはフレーム95と接続部分97からなる。即ち、支持フレームは基部93から突出して設けられている。また、振動腕91と振動腕92はそれぞれ上面と下面と側面とを有する。更に、振動腕91の上面には中立線98を挟んで、即ち、中立線98を含むように溝100が設けられ、又、振動腕92の上面にも振動腕91と同様に溝101が設けられている。また、振動腕91,92の下面にも上面と同様に溝が設けられている(図5参照)。詳細には、振動腕91の中立線98を挟むようにして溝100が設けられている。他方の振動腕92にも中立線99を挟むようにして溝101が設けられている。本実施例の振動子は、フレーム94,95が収納される容器の固定部に導電接着剤又は半田等で固定される。また、図5で示すように、振動腕91、92の側面と溝100,101には電極が配置される。 FIG. 4 shows a plan view of a
図5の(a)と(b)は、図4の屈曲水晶振動子90の振動腕91,92のB−B′断面図を示す。図5の(a)と(b)では図4の屈曲水晶振動子90の振動腕91,92の断面形状並びに電極配置の実施例について詳述する。まず、(a)では、振動腕91には溝100,102が設けられている。同様に、振動腕92には溝101,103が設けられている。更に、溝100と溝102には同極となる電極104,105が、溝101と溝103には同極となる電極106,107が配置されている。また、振動腕91,92の側面には同極となる電極108,109,110,111が配置され、これらの電極はアースに接地されている。即ち、アース電極で、記号D″で表す。更に詳述するならば、振動腕91の溝の電極と振動腕92の溝の電極とは極性の異なる電極が配置されている。それ故、本実施例では3電極端子D−D′−D″を構成している。即ち、1電極端子(記号D)は電極104,105から構成、接続されている。他の1電極端子(記号D′)は電極106,107から構成、接続されている。更に残りの1電極端子(記号D″)はアース電極(零の極性)で、電極108,109,110,111から構成、接続されている。即ち、3電極端子D、D′、D″に接続される電極はそれぞれ極性が異なる。更に電極について詳述するならば、第1振動腕91の両側面と第2振動腕92の両側面に配置された電極108,109,110,111に対抗して配置された対抗電極は前記第1振動腕と前記第2振動腕の両側面の電極の各々に対して一部分対抗して配置されている。 FIGS. 5A and 5B are cross-sectional views taken along the line BB ′ of the vibrating
即ち、振動腕のz軸(厚み)方向に対抗する溝電極は同極に、且つ、大略x軸の方向に対抗する電極は極性が異なるように構成、配置されている。詳細には、厚み方向に対抗して設けられた溝に配置された電極の対抗する溝電極と溝電極との間には前記溝電極に対して垂直に発生する電界が厚み方法に存在しないように電極が配置されている。今、2電極端子D−D′間に直流電圧を印加(D端子に正極、D′端子に負極)すると、電界Exは図5の(a)に示した矢印のように働く。電界Exは振動腕の側面と溝内の側面とに対抗して配置された電極により前記電極に垂直に、即ち、直線的に引き出されるので、電界Exが大きくなり、その結果、振動(音叉)腕の長さ方向に同時に歪が発生すると共に、中立線に対して振動(音叉)腕の内側と外側では歪の方向が反対に発生し、且つ、第1振動(音叉)腕と第2振動(音叉)腕の中立線に対して音叉の内側に発生する歪の方向とが同じで、第1振動(音叉)腕と第2振動(音叉)腕の中立線に対して音叉の外側に発生する歪の方向が同じで、更に、前記内側の歪と前記外側の歪とが互いに反対の方向に発生する。それ故、2電極端子D−D′間に交番電圧を印加することにより、振動(音叉)腕が基本波モードで、かつ、逆相の屈曲モードで振動し、共振特性が良くなると共に、発生する歪の量も大きくなる。従って、音叉形状の屈曲水晶振動子を小型化させた場合でも、等価直列抵抗R1の小さい、品質係数Q値の高い屈曲モードで振動する音叉形状の屈曲水晶振動子が得られる。That is, the groove electrode that opposes the z-axis (thickness) direction of the vibrating arm is configured and arranged so as to have the same polarity and the electrode that opposes the x-axis direction generally has a different polarity. Specifically, the electric field generated perpendicularly to the groove electrode does not exist in the thickness method between the groove electrode opposed to the electrode disposed in the groove provided in the thickness direction. An electrode is disposed on the surface. Now, when a DC voltage is applied between the two electrode terminals D-D '(a positive terminal is applied to the D terminal and a negative electrode is applied to the D' terminal), the electric field Ex works as indicated by an arrow shown in FIG. The electric field Ex is drawn perpendicularly to the electrode by the electrodes arranged opposite to the side surface of the vibrating arm and the side surface in the groove, that is, linearly drawn, so that the electric field Ex is increased, resulting in vibration (tuning fork). At the same time, distortion occurs in the length direction of the arm, and the direction of distortion occurs oppositely on the inside and outside of the vibrating (tuning fork) arm with respect to the neutral line, and the first vibrating (tuning fork) arm and the second vibration The direction of the distortion generated inside the tuning fork is the same as that of the (tuning fork) arm neutral line, and is generated outside the tuning fork with respect to the neutral line of the first vibrating (tuning fork) arm and the second vibrating (tuning fork) arm. The direction of strain to be generated is the same, and the inner strain and the outer strain are generated in opposite directions. Therefore, by applying an alternating voltage between the two electrode terminals D-D ', the vibration (tuning fork) arm vibrates in the fundamental wave mode and in the bending mode of the opposite phase, improving the resonance characteristics and generating. The amount of distortion that occurs is also increased. Therefore, even when the tuning fork-shaped bent quartz crystal is reduced in size, a tuning fork-shaped bent quartz crystal that vibrates in a bending mode having a small equivalent series resistance R 1 and a high quality factor Q value can be obtained.
また、屈曲水晶振動子90の振動(音叉)腕は厚みtを有し、溝は厚みt1を有している。ここで言う厚みt1は溝の一番深いところの厚みを言う。本実施例では、溝の断面形状は矩形の形状をしているが、実際には大略U字形状、又は大略V字形状、あるいは大略U字形状と大略V字形状が合成された形状をしている。より詳細には、溝が深くなるにつれて、溝の幅は徐々に狭くなる。このことは他の実施例の屈曲水晶振動子でも言える。The vibration (tuning fork) arm
次に、図5の(b)では、振動腕91には溝100,102が設けられている。同様に、振動腕92には溝101,103が設けられている。更に、溝100,101,102,103には同極となる電極114,115,116,117が配置され、これらの電極はアースに接地されている。即ち、アース電極である。また、振動腕91の側面には同極となる電極118,119が配置され、振動腕92の側面には同極となる電極120,121が配置されている。更に詳述するならば、振動腕91の側面の電極と振動腕92の側面の電極とは極性の異なる電極が配置されている。それ故、本実施例では3電極端子E−E′−E″を構成している。即ち、1電極端子(記号E)は電極118,119から構成、接続されている。他の1電極端子(記号E′)は電極120,121から構成、接続されている。更に残りの1電極端子(記号E″)はアース電極(零の極性)で、電極114,115,116,117から構成、接続されている。即ち、3電極端子E、E′、E″に接続される電極はそれぞれ極性が異なる。更に電極について詳述するならば、第1振動腕91の両側面と第2振動腕92の両側面に配置された電極118,119,120,121に対抗して配置された対抗電極は前記第1振動腕と前記第2振動腕の両側面の電極の各々に対して一部分対抗して配置されている。 Next, in FIG. 5B,
即ち、振動腕のz軸(厚み)方向に対抗する溝電極は同極に、且つ、大略X軸の方向に対抗する電極は極性が異なるように構成、配置されている。詳細には、厚み方向に対抗して設けられた溝に配置された電極の対抗する溝電極と溝電極との間には前記溝電極に対して垂直に発生する電界が厚み方法に存在しないように電極が配置されている。今、2電極端子E−E′間に直流電圧を印加(E端子に正極、E′端子に負極)すると、電界Exは図5の(b)に示した矢印のように働く。電界Exは振動腕の側面と溝内の側面とに対抗して配置された電極により前記電極に垂直に、即ち、直線的に引き出されるので、電界Exが大きくなり、その結果、音叉形状の屈曲水晶振動子を小型化させた場合でも、等価直列抵抗R1の小さい、品質係数Q値の高い屈曲モードで振動する音叉形状の屈曲水晶振動子が得られる。更に振動腕とその上に配置される電極について詳述するならば、振動腕は複数(本)個からなり、振動腕の上下面又は上下面に設けられた溝側面と振動腕の側面の内、少なくとも一面にアース電極が、少なくとも一面に正極となる電極が、少なくとも一面に負極となる電極が配置されている。即ち、3電極端子となるように電極が形成され、振動腕は屈曲モードの基本波モードで、かつ逆相で振動するように電極は配置されている。That is, the groove electrode that opposes the z-axis (thickness) direction of the vibrating arm has the same polarity, and the electrode that opposes the X-axis direction generally has a different polarity. Specifically, the electric field generated perpendicularly to the groove electrode does not exist in the thickness method between the groove electrode opposed to the electrode disposed in the groove provided in the thickness direction. An electrode is disposed on the surface. Now, when a DC voltage is applied between the two electrode terminals EE ′ (a positive electrode is applied to the E terminal and a negative electrode is applied to the E ′ terminal), the electric field Ex works as indicated by an arrow shown in FIG. The electric field Ex is drawn perpendicularly to the electrode by the electrodes arranged opposite to the side surface of the vibrating arm and the side surface in the groove, that is, linearly drawn, so that the electric field Ex is increased, and as a result, the tuning fork shape is bent. even when a crystal oscillator was miniaturized, small equivalent series resistance R 1, the flexural quartz oscillator tuning fork vibrating at a high bending mode quality factor Q value is obtained. Further, if the vibration arm and the electrodes disposed thereon are described in detail, the vibration arm is composed of a plurality (pieces) of the groove arm provided on the upper and lower surfaces or the upper and lower surfaces of the vibration arm and the side surface of the vibration arm. The ground electrode is disposed on at least one surface, the electrode serving as the positive electrode is disposed on at least one surface, and the electrode serving as the negative electrode is disposed on at least one surface. In other words, the electrodes are formed so as to be three-electrode terminals, and the electrodes are arranged so that the vibrating arm vibrates in the fundamental wave mode of the bending mode and in the opposite phase.
図6は本発明の実施例4の屈曲モードで振動する音叉形状の屈曲水晶振動子130の平面図を示す。振動子130は音叉腕131,132と溝133,134を有する。即ち、本実施例の屈曲水晶振動子130は、前記実施例1のL2=L3のときの形状である。図示されていないが、裏面にも溝と電極が設けられ、前記実施例1のように構成されている。FIG. 6 is a plan view of a tuning fork-shaped bent
図7は本発明の実施例5の屈曲モードで振動する音叉形状の屈曲水晶振動子140の平面図を示す。振動子140は音叉腕141,142と溝143,144を有する。即ち、本実施例の屈曲水晶振動子140は、前記実施例2のL2=L3のときの形状である。FIG. 7 shows a plan view of a tuning-fork-shaped bent
図8は本発明の実施例6の屈曲モードで振動する音叉形状の屈曲水晶振動子145の平面図を示す。振動子145は音叉腕146,147と溝148,149を有する。即ち、本実施例の屈曲水晶振動子145は、前記実施例4の振動子の接続部又はフレームに切り欠き部150、151を形成した形状である。同時に、音叉腕(振動部)の先端部の腕幅を広くした形状を有する。このような構造にすることにより、音叉腕が質量効果を持つ。それ故、同じ周波数でもより腕の長さを短くできるので小型化ができる。実際には、腕幅を広くする音叉腕の長さは、音叉腕の自由端である先端部から腕の長さの約半分の位置まで、広く形成される。即ち、前記範囲内で任意の位置に幅が広く設けられる。更に、本実施例では、溝は音叉腕に設けられているが、溝は基部にまで延在して設けても良い。また、上記実施例1から実施例6の屈曲水晶振動子は圧電定数e12(=e′12)によって励振され、その絶対値が大きい程、電気機械変換効率は良くなる。本発明の屈曲水晶振動子の圧電定数e12の絶対値は0.095C/m2より大きい値を有する。特に、基本波モード振動で、より小さい等価直列抵抗R1を得るために、好ましくは、e12の絶対値は0.12C/m2〜0.19C/m2の範囲内にある。但し、e12の計算には水晶の圧電定数e11=0.171C/m2と圧電定数e14=−0.0406C/m2を用いた。FIG. 8 is a plan view of a tuning-fork-shaped
図9は本発明の実施例1の水晶ユニット120の上面図である。表面実装型のケース165には固定部166,167が設けられている。また、本実施例の水晶ユニット120は音叉形状の屈曲水晶振動子10、ケース165と蓋(図示されていない)とを具えて構成されている。更に詳述するならば、振動子10のフレーム36,37はケース165に設けられた固定部166,167に導電性接着剤168,169や半田によって固定される。又、ケース165と蓋は接合部材を介して接合される。本実施例では、フレームの2箇所でケースに振動子を固定しているが、音叉基部又は接続部分での固定を追加固定しても良い。また、固定部は蓋に設けても良い。また、振動子10の代わりに実施例3の屈曲水晶振動子90を搭載しても良い。この場合には、例えば、フレームに3電極端子を構成し、固定部もそれらの電極と接続される3電極が構成される。 FIG. 9 is a top view of the
図10は本発明の実施例2の水晶ユニット170の上面図である。表面実装型ケース175には固定部176,177が設けられている。また、本実施例の水晶ユニット170は音叉形状の屈曲水晶振動子50、ケース175と蓋(図示されていない)とを具えて構成されている。更に詳述するならば、振動子50のフレーム77はケース175に設けられた固定部176,177に導電性接着剤178,179や半田によって固定される。又、ケース175と蓋は接合部材を介して接合される。また、3電極端子の屈曲水晶振動子を用いる場合には、振動子を固定する固定部もそれらの電極と接続される、分割された3電極が形成される。それらの電極は容器(例えば、ケース)の外側(裏面)に延在して配置される。 FIG. 10 is a top view of the
また、実施例3から実施例6の音叉形状の屈曲水晶振動子も前記水晶ユニットの構成と同じように、少なくともフレームで導電接着剤等を用いて固定される。前記実施例の水晶ユニットは回路素子(CMOSインバータ、抵抗、コンデンサ)に接続され、水晶ユニットの外側に設けられた2電極端子、又は3電極端子に電気的に接続される。即ち、音叉形状の屈曲水晶振動子のみがユニット内に収納されている。このとき、屈曲水晶振動子は真空中のユニット内に収納されている。更に、ケースの部材はセラミックスかガラス、蓋の部材は金属かガラス、そして、接合部材は金属か低融点ガラスでできている。また、前記構成とは異なり、容器(ユニット)内に回路素子と一緒に実施例1から実施例6の音叉形状の屈曲水晶振動子を収納しても良い。 In addition, the tuning-fork-shaped bent quartz resonators of the third to sixth embodiments are also fixed at least on the frame using a conductive adhesive or the like, similar to the configuration of the quartz crystal unit. The crystal unit of the embodiment is connected to a circuit element (CMOS inverter, resistor, capacitor) and is electrically connected to a two-electrode terminal or a three-electrode terminal provided outside the crystal unit. That is, only a tuning fork-shaped bent quartz crystal is housed in the unit. At this time, the bent crystal resonator is housed in a vacuum unit. Further, the case member is made of ceramic or glass, the lid member is made of metal or glass, and the joining member is made of metal or low-melting glass. Further, unlike the above configuration, the tuning fork-shaped bent quartz crystal resonators of the first to sixth embodiments may be housed in a container (unit) together with the circuit elements.
図11は本発明の実施例1の水晶発振器を構成する水晶発振回路図の一実施例である。本実施例では、水晶発振回路1は増幅器(CMOSインバータ)2、帰還抵抗4、ドレイン抵抗7、コンデンサ5,6と音叉形状の屈曲水晶振動子3から構成されている。即ち、水晶発振回路1は、増幅器2と帰還抵抗4から成る増幅回路8とドレイン抵抗7、コンデンサ5,6と屈曲水晶振動子3から成る帰還回路9から構成されている。詳細には、本発明の水晶発振回路は、増幅回路と帰還回路から構成されていて、増幅回路は少なくとも増幅器から構成され、帰還回路は少なくとも音叉形状の屈曲水晶振動子とコンデンサから構成されている。又、本発明の水晶発振器に用いられる音叉形状の屈曲水晶振動子は実施例1から実施例6で述べた屈曲水晶振動子が用いられ、前記振動子は容器(ユニット)に収納されている。いわゆる、水晶ユニットが用いられる。 FIG. 11 is an example of a crystal oscillation circuit diagram constituting the crystal oscillator of Example 1 of the present invention. In this embodiment, the crystal oscillation circuit 1 includes an amplifier (CMOS inverter) 2, a
図12は図11の帰還回路図を示す。今、屈曲モードで振動する音叉形状の水晶振動子の角周波数をωi、ドレイン抵抗7の抵抗をRd、コンデンサ5、6の容量をCg、Cd、水晶のクリスタルインピーダンスをRei,入力電圧をV1,出力電圧をV2とすると、帰還率βiはβi=|V2|i/|V1|iで定義される。但し、iは屈曲振動モードの振動次数を表し、例えば、i=1のとき、基本波モード振動、i=2のとき、2次高調波モード振動である。更に、負荷容量CLはCL=CgCd/(Cg+Cd)で与えられ、Cg=Cd=CgdとRd>>Reiとすると、帰還率βiはβi=1/(1+kCL 2)で与えられる。但し、kはωi、Rd、Reiの関数で表される。又、Reiは近似的に等価直列抵抗Riに等しくなる。FIG. 12 shows the feedback circuit diagram of FIG. Now, the angular frequency of the tuning-fork-shaped crystal resonator that vibrates in the bending mode is ω i , the resistance of the
このように、帰還率βiと負荷容量CLとの関係から、CLが小さくなると、基本波モード振動と高調波モード振動の帰還率はそれぞれ大きくなることが良く分かる。それ故、CLが小さくなると、基本波モード振動よりも2次高調波モード振動の方が発振し易くなる。その理由は高調波モード振動の最大振動振幅が基本波モード振動の最大振動振幅より小さいために、発振持続条件である振幅条件と位相条件を同時に満足するためである。Thus, from the relationship between the feedback rate β i and the load capacitance C L , it is well understood that the feedback rates of the fundamental mode vibration and the harmonic mode vibration increase as C L decreases. Thus, the C L decreases, towards the second harmonic mode vibration tends to oscillate than the fundamental mode vibration. The reason is that since the maximum vibration amplitude of the harmonic mode vibration is smaller than the maximum vibration amplitude of the fundamental mode vibration, the amplitude condition and the phase condition which are oscillation continuation conditions are satisfied simultaneously.
本発明の屈曲水晶振動子を用いた水晶発振器は、消費電流が少なく、しかも、出力周波数が高い周波数安定性(高い時間精度)を有する、基本波モード振動の発振周波数である水晶発振器を提供することを目的としている。それ故、消費電流を少なくするために、負荷容量CLは18pF以下を用いる。より消費電流を少なくするには、消費電流は負荷容量に比例するので、CL=14pF以下が好ましい。また、2次高調波モードの振動を抑え、発振器の出力信号が基本波モード振動の発振周波数を得るために、α1/α2>β2/β1とα1β1>1を満足するように本実施例の発振回路は構成される。但し、α1、α2は基本波モード振動と2次高調波モード振動の増幅回路の増幅率で、β1、β2は基本波モード振動と2次高調波モード振動の帰還回路の帰還率である。The crystal oscillator using the bent crystal resonator according to the present invention provides a crystal oscillator having a fundamental mode oscillation frequency with low current consumption and high frequency stability (high time accuracy). The purpose is that. Therefore, in order to reduce current consumption, the load capacitance C L is used below 18 pF. In order to further reduce the current consumption, since the current consumption is proportional to the load capacity, C L = 14 pF or less is preferable. Further, in order to suppress the vibration of the second harmonic mode and the output signal of the oscillator obtains the oscillation frequency of the fundamental mode vibration, α 1 / α 2 > β 2 / β 1 and α 1 β 1 > 1 are satisfied. Thus, the oscillation circuit of this embodiment is configured. Where α 1 and α 2 are the amplification factors of the fundamental wave mode vibration and the second harmonic mode vibration amplification circuit, and β 1 and β 2 are the feedback factors of the feedback circuit of the fundamental wave mode vibration and the second harmonic mode vibration. It is.
換言するならば、増幅回路の基本波モード振動の増幅率α1と2次高調波モード振動の増幅率α2との比が帰還回路の2次高調波モード振動の帰還率β2と基本波モード振動の帰還率β1との比より大きく、かつ、基本波モード振動の増幅率α1と基本波モード振動の帰還率β1の積が1より大きくなるように構成される。このような構成により、消費電流の少ない、出力信号が基本波モード振動の発振周波数である水晶発振器が実現できる。又、水晶発振回路の出力信号はバッファ回路を介して出力される。更に、基本波モード振動での最適な帰還率を得るために、ドレイン抵抗Rdは通常200kΩから1MΩの範囲内にあるが、好ましくは、300kΩから600kΩが用いられる。In other words, the ratio between the amplification factor α 1 of the fundamental mode vibration of the amplifier circuit and the amplification factor α 2 of the second harmonic mode vibration is equal to the feedback factor β 2 of the second harmonic mode oscillation of the feedback circuit and the fundamental wave. greater than the ratio of the feedback factor beta 1 mode vibration, and the product of the feedback factor beta 1 amplification factor alpha 1 and the fundamental mode vibration of the fundamental wave mode vibration is configured to be greater than 1. With such a configuration, it is possible to realize a crystal oscillator that consumes less current and whose output signal has an oscillation frequency of fundamental mode vibration. The output signal of the crystal oscillation circuit is output through a buffer circuit. Furthermore, in order to obtain an optimum feedback factor of the fundamental mode oscillation, but the drain resistance R d is usually 200kΩ within the 1 M.OMEGA, preferably, 600Keiomega is used from 300Keiomega.
又、本実施例の水晶発振回路を構成する増幅回路の増幅部は負性抵抗−RLiでその特性を示すことができる。i=1のとき基本波モード振動の負性抵抗で、i=2のとき2次高調波モード振動の負性抵抗である。本実施例の水晶発振器は、増幅回路の基本波モード振動の負性抵抗の絶対値|−RL1|言と基本波モード振動の等価直列抵抗R1との比が増幅回路の2次高調波モード振動の負性抵抗の絶対値|−RL2|と2次高調波モード振動の等価直列抵抗R2との比より大きくなるように発振回路が構成される。即ち、|−RL1|/R1>|−RL2|/R2を満足するように構成される。好ましくは、|−RL1|/R1>1>|−RL2|/R2の関係を有する。このような水晶発振回路の構成により、2次高調波モード振動の発振起動が抑えられるので基本波モード振動の発振周波数が出力信号として得られる。特に、超小型化した音叉形状の屈曲水晶振動子で前記目的を達成するには、一例として、基本波モード振動の基準周波数が32.768kHz(発振周波数が大略32.768kHz)の場合、その基本波モード振動での増幅部での負性抵抗の絶対値|−RL1|が80kΩより大きく、且つ、2次高調波モード振動の増幅部での負性抵抗の絶対値|−RL2|が75kΩより小さくなることが必要である。また、本実施例の水晶発振回路を構成する屈曲水晶振動子の電極構成は、2電極端子を示したが、3電極端子の屈曲水晶振動子でも良く、この場合には、図5の(a)と(b)で示したアース電極を水晶振動子3に追加すればよい。3電極端子の場合には、電界が発生する電極間の容量が2電極端子間の並列容量C0と同じになる。即ち、2電極端子でも3電極端子でもC0の結果は同じになる。Further, the amplifying part of the amplifying circuit constituting the crystal oscillation circuit of the present embodiment can exhibit the characteristic by a negative resistance -RL i . When i = 1, it is a negative resistance of fundamental mode vibration, and when i = 2, it is a negative resistance of second harmonic mode vibration. In the crystal oscillator of this embodiment, the ratio of the absolute value | −R L1 | of the negative resistance of the fundamental mode vibration of the amplifier circuit to the equivalent series resistance R 1 of the fundamental mode vibration is the second harmonic of the amplifier circuit. The oscillation circuit is configured to be larger than the ratio of the absolute value | −RL 2 | of the negative resistance of mode vibration and the equivalent series resistance R 2 of second harmonic mode vibration. That is, it is configured to satisfy | −RL 1 | / R 1 > | −RL 2 | / R 2 . Preferably, it has a relationship of | -RL 1 | / R 1 >1> | -RL 2 | / R 2 . With such a configuration of the crystal oscillation circuit, the oscillation activation of the second harmonic mode vibration can be suppressed, so that the oscillation frequency of the fundamental mode vibration can be obtained as an output signal. In particular, in order to achieve the above-described object with an ultra-miniaturized tuning-fork-shaped bent quartz crystal, as an example, when the reference frequency of the fundamental mode vibration is 32.768 kHz (oscillation frequency is approximately 32.768 kHz), the basic The absolute value | -RL 1 | of the negative resistance in the amplification section in the wave mode vibration is larger than 80 kΩ, and the absolute value | -RL 2 | of the negative resistance in the amplification section of the second harmonic mode vibration is It is necessary to be smaller than 75 kΩ. In addition, the electrode configuration of the bent crystal unit constituting the crystal oscillation circuit of the present embodiment is a two-electrode terminal, but a bent crystal unit having a three-electrode terminal may be used. In this case, (a ) And the ground electrode shown in (b) may be added to the
以上、図示例に基づき説明したが、この発明は上述の例に限定されるものではなく、上記実施例1から実施例6の音叉形状の屈曲水晶振動子では、溝が中立線を挟む(含む)ように音叉腕に設けられているが、本発明はこれに限定されるものでなく、中立線を残して、その両側に溝を形成しても良い。この場合、音叉腕の中立線を含めた部分幅W7は0.05mmより小さくなるように形成される。又、各々の溝の幅は0.04mmより小さくなるように形成され、溝の厚みt1と音叉腕の厚みtとの比は0.79以下に成るように形成される。このように形成することにより、M1をM2より大きくする事ができる。また、本実施例では、部分幅W7は音叉腕の長さ方向に連続して設けても良いし、不連続に設けても良い。即ち、部分的に設けられる。詳細には、長さ方向に段差があるように設けられる。このような部分幅W7の形成により、音叉の外形形状と溝を同時に形成でき、工数の削減ができるので、安価な水晶振動子が実現できる。Although the present invention has been described based on the illustrated example, the present invention is not limited to the above-described example, and in the tuning-fork-shaped bent quartz resonators of the first to sixth embodiments, the groove sandwiches the neutral line (including the neutral line). However, the present invention is not limited to this, and grooves may be formed on both sides of the neutral fork. In this case, partial width W 7 including the neutral line of the tuning fork arms are formed to be smaller than 0.05 mm. The width of each groove is formed to be smaller than 0.04 mm, and the ratio between the groove thickness t 1 and the tuning fork arm thickness t is 0.79 or less. By thus forming, it can be larger than M 2 and M 1. Further, in this embodiment, the partial width W 7 may be provided continuously in the length direction of the tuning fork arm or may be provided discontinuously. That is, it is provided partially. Specifically, it is provided so that there is a step in the length direction. By forming such a partial width W 7 , the outer shape of the tuning fork and the groove can be formed at the same time, and the number of steps can be reduced, so that an inexpensive crystal resonator can be realized.
更に、一例として、振動腕である音叉腕は第1音叉腕と第2音叉腕からなり、第1音叉腕と第2音叉腕の上下面にはそれぞれ厚みの方向に対抗して溝が設けられ、前記溝は第1音叉腕と第2音叉腕の中立線の全部、又は一部を残して幅方向の上下面に各々2個の溝が設けられている。更に、各々の溝には第1音叉腕の溝の電極と第2音叉腕の溝の電極との極性が異なる電極が配置されると共に、前記溝の電極と対抗して配置された音叉腕の側面の電極とは極性が異なる2電極端子を構成し、前記2電極端子の内、1電極端子は第1音叉腕の上下面の溝に配置された電極と第2音叉腕の両側面に配置された電極から構成され、且つ、上下面の溝に配置された前記電極と両側面に配置された前記電極とが接続され、他の1電極端子は第1音叉腕の両側面に配置された電極と第2音叉腕の上下面の溝に配置された電極から構成され、且つ、両側面に配置された前記電極と上下面の溝に配置された前記電極とが接続されている。 Further, as an example, a tuning fork arm that is a vibrating arm is composed of a first tuning fork arm and a second tuning fork arm, and grooves are provided on the upper and lower surfaces of the first tuning fork arm and the second tuning fork arm in the thickness direction, respectively. The groove is provided with two grooves on the upper and lower surfaces in the width direction, leaving all or part of the neutral line of the first tuning fork arm and the second tuning fork arm. Further, in each groove, electrodes having different polarities between the electrode of the groove of the first tuning fork arm and the electrode of the groove of the second tuning fork arm are arranged, and the tuning fork arm arranged opposite to the electrode of the groove is arranged. Two electrode terminals having different polarities from those of the side electrodes are formed. Among the two electrode terminals, one electrode terminal is disposed on both sides of the first tuning fork arm and the second tuning fork arm. The electrodes arranged in the upper and lower grooves and the electrodes arranged on both sides are connected, and the other one electrode terminal is arranged on both sides of the first tuning fork arm. The electrodes are arranged in the grooves on the upper and lower surfaces of the second tuning fork arm, and the electrodes arranged on both side surfaces are connected to the electrodes arranged in the grooves on the upper and lower surfaces.
更に、上記実施例1〜実施例6の音叉形状の屈曲水晶振動子の基本波モード振動での容量比r1は2次高調波モード振動の容量比r2より小さくなるように構成されている。このような構成により、同じ負荷容量CLの変化に対して、基本波モードで振動する屈曲水晶振動子の周波数変化が2次高調波モードで振動する屈曲水晶振動子の周波数変化より大きくなる。即ち、基本波モード振動の方が2次高調波モード振動より周波数の可変範囲を広くとることができる。さらに詳細には、CL=18pF付近では、そのCL値が1pF変わると、基本波モード振動の周波数変化は2次高調波モード振動の周波数変化より大きくなる。それ故、基本波モード振動では、CLの可変量が小さくても、周波数の可変範囲を広くできるという著しい効果を有する。これにより、コンデンサの可変容量の範囲を小さくできるので、用いるコンデンサの数を少なくできる。その結果、安価な水晶発振器が得られる。また、上記各実施例の音叉形状の屈曲水晶振動子の基本波モード振動での容量比r1は250から480の範囲内にあり、容量比r2は1200より大きい値を有する。Further, the capacity ratio r 1 in the fundamental mode vibration of the tuning fork-shaped bent quartz crystal of the first to sixth embodiments is configured to be smaller than the capacity ratio r 2 of the second harmonic mode vibration. . With such a configuration, with respect to the same change in the load capacitance C L, greater than the frequency change of the bending quartz oscillator frequency change of the bending quartz oscillator which oscillates at the fundamental mode oscillates at the second harmonic mode. That is, the fundamental mode vibration can take a wider frequency variable range than the second harmonic mode vibration. More specifically, in the vicinity of C L = 18 pF, if the C L value changes by 1 pF, the frequency change of the fundamental mode vibration becomes larger than the frequency change of the second harmonic mode vibration. Therefore, the fundamental mode vibration has significant effect even with a small variable amounts of C L, it can widen the variable range of frequency. Thereby, since the range of the variable capacitance of the capacitor can be reduced, the number of capacitors to be used can be reduced. As a result, an inexpensive crystal oscillator can be obtained. Further, the capacitance ratio r 1 in the fundamental mode vibration of the tuning fork-shaped bent quartz crystal of each of the above embodiments is in the range of 250 to 480, and the capacitance ratio r 2 has a value greater than 1200.
また、音叉形状の屈曲水晶振動子の容量比r1、r2はそれぞれr1=C0/C1、r2=C0/C2で与えられる。但し、C0は電気的等価回路の並列容量で、C1とC2は等価回路の基本波モード振動と2次高調波モード振動の等価容量である。即ち、C0は屈曲水晶振動子の2電極端子間、又は3電極端子間の、各々の端子間の全容量である。換言するならば、電界が生じる電極間の容量である。更に、音叉形状の屈曲水晶振動子の基本波モード振動と2次高調波モード振動の品質係数はQ1値とQ2値で与えられる。そして、前記各実施例の音叉形状の屈曲水晶振動子は、基本波モードで振動する共振周波数の並列容量による依存性が2次高調波モードで振動する共振周波数の並列容量による依存性より小さく成るように構成される。すなわち、r1/2Q1 2<r2/2Q2 2を満たすように構成される。この構成により、基本波モードで振動する共振周波数の並列容量による影響が無視できるほど極めて小さくなるので、高い周波数安定性を有する基本波モードで振動する音叉形状の屈曲水晶振動が得られる。又、本発明では、r1/2Q1 2とr2/2Q2 2をそれぞれS1とS2と置き、S1とS2をそれぞれ基本波モード振動と2次高調波モード振動の周波数安定係数と呼ぶ。即ち、S1=r1/2Q1 2とS2=r2/2Q2 2で与えられる。更に、通常、Q1>Q2
内にあるときには、Q1<Q2の関係が得られる場合がある。The capacitance ratios r 1 and r 2 of the tuning fork-shaped bent quartz crystal resonator are given by r 1 = C 0 / C 1 and r 2 = C 0 / C 2 , respectively. However, C 0 is a shunt capacitance electrical equivalent circuit, C 1 and C 2 is the equivalent capacitance of the fundamental mode vibration and second harmonic mode vibration of an equivalent circuit. That is, C 0 is the total capacitance between the terminals, between the two electrode terminals or between the three electrode terminals of the bent crystal resonator. In other words, it is the capacitance between electrodes where an electric field is generated. Further, the quality factor of the fundamental mode vibration and the second harmonic mode vibration of the tuning fork-shaped bent quartz crystal resonator is given by Q 1 value and Q 2 value. In each of the tuning fork-shaped bent quartz resonators of the above-described embodiments, the dependency of the resonance frequency oscillating in the fundamental wave mode due to the parallel capacitance is smaller than the dependency of the resonance frequency oscillating in the second harmonic mode due to the parallel capacitance. Configured as follows. That is, it is configured to satisfy r 1 / 2Q 1 2 <r 2 / 2Q 2 2 . With this configuration, the influence of the parallel capacitance of the resonance frequency oscillating in the fundamental wave mode is so small that it can be ignored, so that a tuning-fork-shaped bent quartz crystal oscillating in the fundamental wave mode having high frequency stability can be obtained. Further, in the present invention, r 1 / 2Q 1 2 and r 2 / 2Q 2 2 are respectively set as S 1 and S 2 , and S 1 and S 2 are respectively frequency-stable for fundamental mode vibration and second harmonic mode vibration. Called coefficient. That is, S 1 = r 1 / 2Q 1 2 and S 2 = r 2 / 2Q 2 2 are given. Furthermore, usually Q 1 > Q 2
If it is within the range, a relationship of Q 1 <Q 2 may be obtained.
又、上記各実施例で述べられた振動子の基本波モード振動の電気機械結合係数は、2次高調波モード振動の電気機械結合係数より大きくなると共に、基本波モード振動の等価直列抵抗R1は35kΩ〜105kΩの範囲内にある。又、R2はR2/R1>1の関係を有する。即ち、R2>35kΩの関係を満たすように溝と電極が構成されている。更に、本発明の水晶発振器は、基本波モード振動の発振周波数が出力信号として得られ、且つ、発振の立ち上がり時間trが1秒以内にある水晶発振器を提供する事を目的にしている、その
trは水晶発振回路の出力の最大出力電圧の80%に達する時間を言う。また、Lm1は音叉形状の屈曲水晶振動子の基本波モード振動での電気的等価回路の等価インダクタンスで
きくしないで、trを短くするために本発明の振動子の基本波モード振動(基準周波数が32.768kHz)での等価インダクタンスLm1は12kHより小さく、好ましくは、10.9kH以下にある。上記各実施例の音叉形状の屈曲水晶振動子の基本波モード振動での基準周波数として32.768kHzが用いられるが、本発明はこの周波数に限定されるものでなく、10kHz〜200kHzの基準周波数に適用される。In addition, the electromechanical coupling coefficient of the fundamental mode vibration of the vibrator described in each of the above embodiments is larger than the electromechanical coupling coefficient of the second harmonic mode vibration, and the equivalent series resistance R 1 of the fundamental mode vibration. Is in the range of 35 kΩ to 105 kΩ. R 2 has a relationship of R 2 / R 1 > 1. That is, the groove and the electrode are configured to satisfy the relationship of R 2 > 35 kΩ. Furthermore, the crystal oscillator of the present invention aims to provide a crystal oscillator in which the oscillation frequency of the fundamental wave mode vibration is obtained as an output signal and the oscillation rise time tr is within 1 second.
tr is the time required to reach 80% of the maximum output voltage of the crystal oscillation circuit. L m1 is an equivalent inductance of an electrical equivalent circuit in a fundamental mode vibration of a tuning fork-shaped bent quartz crystal.
Not Kikushi, equivalent inductance L m1 of the fundamental mode vibration of the vibrator of the present invention (reference frequency 32.768kHz) in order to shorten the t r is smaller than 12KH, preferably, in the following 10.9KH. Although the reference frequency of 32.768 kHz is used as the reference frequency in the fundamental mode vibration of the tuning-fork-shaped bent quartz crystal of each of the above embodiments, the present invention is not limited to this frequency, and the reference frequency of 10 kHz to 200 kHz is used. Applied.
また、一例として、音叉形状の屈曲水晶振動子の基準周波数が32.768kHzで、水晶発振回路の出力信号が32.768kHz±100ppm(parts per million)以内の発振周波数を出力周波数として得るには、まず、水晶ウエハ内にフォトリソグラフィ法とエッチング法により、32.768kHzより周波数が高くなるように振動子が形成される。次に、前記振動子を収納する容器の固定部に固定した後に、水晶発振回路の出力信号が32.768kHz±100ppm以内の発振周波数が出力周波数として得られるように音叉腕に重りを付加して周波数調整するか、若しくは、周波数が32.768kHzより低くなるように音叉腕に重りを付着し、前記振動子を収納する容器の固定部に固定した後に、水晶発振回路の出力信号が32.768kHz±100ppm以内の発振周波数が出力周波数として得られるように音叉腕の重りを除去して周波数調整される。本実施例では、水晶発振回路の負荷容量CL値は18pF以下が用いられる。更に、前記周波数調整には、レーザビームと、蒸着と、電子ビームと、イオン化した原子、分子による、いわゆるイオンエッチング法、又はスパッタリング法の内の少なくとも一つが使用される。また、本実施例では、水晶ウエハ内に32.768kHzより周波数が高くなるように振動子が形成された後に、水晶ウエハ内で良振動子か不良振動子かを検査する工程を入れても良い。即ち、不良振動子が存在するときには、不良振動子は水晶ウエハから取り除かれるか、又は振動子に何かマーキングされるか、又は振動子はコンピユタに記憶される。Further, as an example, in order to obtain an oscillation frequency as an output frequency where the reference frequency of the tuning-fork-shaped bent quartz crystal resonator is 32.768 kHz and the output signal of the crystal oscillation circuit is within 32.768 kHz ± 100 ppm (parts per million), First, a vibrator is formed in a quartz wafer by a photolithography method and an etching method so that the frequency is higher than 32.768 kHz. Next, after fixing to the fixing part of the container for housing the vibrator, a weight is added to the tuning fork arm so that an oscillation frequency within 32.768 kHz ± 100 ppm is obtained as an output frequency of the output signal of the crystal oscillation circuit. After adjusting the frequency or attaching a weight to the tuning fork arm so that the frequency is lower than 32.768 kHz, and fixing the tuning fork arm to the fixing portion of the container for housing the vibrator, the output signal of the crystal oscillation circuit is 32.768 kHz. The frequency is adjusted by removing the weight of the tuning fork arm so that an oscillation frequency within ± 100 ppm is obtained as the output frequency. In this embodiment, the load capacitance C L value of the crystal oscillator circuit is used below 18 pF. Furthermore, for the frequency adjustment, at least one of a so-called ion etching method or sputtering method using a laser beam, vapor deposition, electron beam, and ionized atoms and molecules is used. Further, in this embodiment, after the vibrator is formed in the quartz wafer so that the frequency is higher than 32.768 kHz, a step of inspecting whether the vibrator is a good vibrator or a defective vibrator in the quartz wafer may be added. . That is, when a defective vibrator is present, the defective vibrator is removed from the quartz wafer, or some marking is made on the vibrator, or the vibrator is stored in the computer.
更に、本実施例の屈曲水晶振動子の音叉形状と溝は化学的、物理的と機械的方法の内の少なくとも一つの方法を用いて加工される。物理的方法では、例えば、イオン化した原子、分子等のいわゆる粒子を飛散させて加工するものである。又、機械的方法では、例えば、ブラスト加工用の粒子を飛散させて加工するものである。前記の例では、加工に粒子を用いるので、本発明では、これを粒子法による(エッチング)加工と言う。 Further, the tuning fork shape and the groove of the bent quartz crystal resonator of this embodiment are processed using at least one of chemical, physical and mechanical methods. In the physical method, for example, so-called particles such as ionized atoms and molecules are scattered and processed. In the mechanical method, for example, particles for blasting are scattered and processed. In the above example, since particles are used for processing, in the present invention, this is called (etching) processing by a particle method.
本発明の水晶振動子と水晶ユニットと水晶発振器は超小型で、高い周波数安定性を有するので、特に、超小型で、高い周波数安定性を必要とする携帯機器や民生機器等に適用できる。 Since the crystal resonator, crystal unit, and crystal oscillator of the present invention are ultra-compact and have high frequency stability, they are particularly applicable to portable devices and consumer devices that are ultra-compact and require high frequency stability.
WH、Ws 音叉基部の幅、接続部分の幅
W4、W5、W6 音叉腕の間隔、音叉腕の全幅、フレームの幅
L0、L1 溝の長さ、音叉基部の長さ
L2、L3 接続部分の長さ、フレームの長さ
Lt 音叉の全長W H , Ws tuning fork base width, connection width W 4 , W 5 , W 6 tuning fork arm spacing, tuning fork arm full width, frame width L 0 , L 1 groove length, tuning fork base length L 2 , L 3 connection length, frame length L t Overall length of tuning fork
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006189802A JP4411492B6 (en) | 2003-06-30 | 2006-06-13 | Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003205844 | 2003-06-30 | ||
JP2003205844 | 2003-06-30 | ||
JP2006189802A JP4411492B6 (en) | 2003-06-30 | 2006-06-13 | Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003436310A Division JP4026074B2 (en) | 2003-06-30 | 2003-12-05 | Crystal unit, crystal unit and crystal oscillator |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006325240A true JP2006325240A (en) | 2006-11-30 |
JP4411492B2 JP4411492B2 (en) | 2010-02-10 |
JP4411492B6 JP4411492B6 (en) | 2011-11-30 |
Family
ID=
Also Published As
Publication number | Publication date |
---|---|
JP4411492B2 (en) | 2010-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4026074B2 (en) | Crystal unit, crystal unit and crystal oscillator | |
JP5531319B2 (en) | Crystal resonator, crystal unit, and crystal oscillator manufacturing method | |
JP4379119B2 (en) | Crystal oscillator | |
JP4411494B2 (en) | Crystal oscillator | |
JP4411495B2 (en) | Crystal unit with a bent crystal unit | |
JP2003273703A (en) | Quartz vibrator and its manufacturing method | |
JP4411496B2 (en) | Portable device equipped with crystal oscillator and manufacturing method thereof | |
JP4411492B2 (en) | Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment | |
JP4411496B6 (en) | Portable device equipped with crystal oscillator and manufacturing method thereof | |
JP4411492B6 (en) | Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment | |
JP4074934B2 (en) | Crystal oscillator and manufacturing method thereof | |
JP2005094733A (en) | Resonator, resonator unit, oscillator, electronic apparatus and manufacturing method thereof | |
JP2003273696A (en) | Method for manufacturing crystal unit and method of manufacturing crystal oscillator | |
JP4697190B2 (en) | Manufacturing methods for crystal units and crystal units | |
JP4697196B2 (en) | Crystal unit and crystal oscillator manufacturing method | |
JP4697190B6 (en) | Manufacturing methods for crystal units and crystal units | |
JP4697196B6 (en) | Crystal unit and crystal oscillator manufacturing method | |
JP4074935B2 (en) | Quartz crystal oscillator and crystal oscillator manufacturing method | |
JP2005094734A (en) | Resonator, resonator unit, oscillator, and electronic apparatus | |
JP2003273647A (en) | Crystal oscillator and method of manufacturing the same | |
JP2003273702A (en) | Quartz unit, its manufacturing method, and quartz oscillator | |
JP2003273695A (en) | Crystal unit and crystal oscillator | |
JP2003273701A (en) | Quartz oscillator | |
JP2003273699A (en) | Crystal unit and crystal oscillator | |
JP2003273697A (en) | Crystal oscillator, and method of manufacturing crystal oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091102 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151127 Year of fee payment: 6 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4411492 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090528 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |