JP2006324507A - Manufacturing method of light emitting diode - Google Patents

Manufacturing method of light emitting diode Download PDF

Info

Publication number
JP2006324507A
JP2006324507A JP2005146876A JP2005146876A JP2006324507A JP 2006324507 A JP2006324507 A JP 2006324507A JP 2005146876 A JP2005146876 A JP 2005146876A JP 2005146876 A JP2005146876 A JP 2005146876A JP 2006324507 A JP2006324507 A JP 2006324507A
Authority
JP
Japan
Prior art keywords
acid
layer
light emitting
emitting diode
gaasp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005146876A
Other languages
Japanese (ja)
Other versions
JP4692072B2 (en
Inventor
Tatsuhiko Kawakami
龍彦 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005146876A priority Critical patent/JP4692072B2/en
Publication of JP2006324507A publication Critical patent/JP2006324507A/en
Application granted granted Critical
Publication of JP4692072B2 publication Critical patent/JP4692072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode having a high light intensity whose surface is so made coarse as to improve the taking-out efficiency of its light to the external, by the etching means for making effectively coarse the surface of the light emitting diode including GaAsP mixed crystal layers formed on a GaP substrate. <P>SOLUTION: A manufacturing method of the light emitting diode, wherein there are formed on a GaP substrate 1 GaAs<SB>x</SB>P<SB>1-x</SB>(0<x<1) layers 3, 4 and nitrogen-doped GaAs<SB>x</SB>P<SB>1-x</SB>(0<x<1) layers 5, 6 having a pn-junction 10 in between them, is performed by following processes (1), (2). In the process (1), its surface is etched chemically by using the mixed liquid containing iodic acid, hydrofluoric acid, nitric acid, and acetic acid. In the process (2), its surface is etched chemically by using at least either one of (a) hydrochloric acid having a temperature not lower than 20°C, (b) hydrofluoric acid, and (c) the mixed liquid of hydrofluoric acid and sulfuric acid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、GaP基板上に形成された窒素ドープされたGaAsP層を発光層とするGaAsP系の発光ダイオードの製造方法に関する。   The present invention relates to a method of manufacturing a GaAsP-based light emitting diode using a nitrogen-doped GaAsP layer formed on a GaP substrate as a light emitting layer.

GaP基板上に形成された窒素ドープされたGaAs1−x(0<x<1)層(以下「GaAsP混晶層」又は「GaAsP発光層」と称す場合がある。)を発光層とするGaAsP系の発光ダイオードは、混晶率yを変化させることにより、650nm付近の赤色の波長領域から、580nm付近の黄色の波長領域まで、発光する光の波長を変化させることができ、表示装置などの光源として広く使われている。 A nitrogen-doped GaAs x P 1-x (0 <x <1) layer (hereinafter sometimes referred to as “GaAsP mixed crystal layer” or “GaAsP light emitting layer”) formed on the GaP substrate is referred to as a light emitting layer. The GaAsP-based light emitting diode can change the wavelength of emitted light from the red wavelength region near 650 nm to the yellow wavelength region near 580 nm by changing the mixed crystal ratio y. Widely used as a light source.

発光ダイオードの光強度を向上させる方法としては、内部量子効率を上げる方法と、光の取り出し効率を上げる方法がある。このうち後者は、発光ダイオードの内部での光吸収による損失を抑制したり、あるいは光放出面における全反射によって外部に取り出されないことによる光の損失を抑制したりすること等によって達成される。   As a method for improving the light intensity of the light emitting diode, there are a method for increasing the internal quantum efficiency and a method for increasing the light extraction efficiency. Among these, the latter is achieved by suppressing loss due to light absorption inside the light emitting diode, or suppressing light loss due to being not extracted to the outside due to total reflection on the light emitting surface.

光放出面における全反射を抑制する方法としては、発光ダイオードの表面(基板面、発光層面および側面のすべての面を含む)を粗面化する方法が知られている。発光ダイオードの表面を粗面化する方法としては、コストおよび簡便性などの点で、エッチング液による化学エッチングが有効である。   As a method of suppressing total reflection on the light emitting surface, a method of roughening the surface of the light emitting diode (including all surfaces of the substrate surface, the light emitting layer surface, and the side surface) is known. As a method for roughening the surface of the light emitting diode, chemical etching with an etching solution is effective in terms of cost and simplicity.

従来、発光ダイオードのエッチングによる粗面化処理方法としては、例えば、GaAsP混晶層に対しては、Br又はIと硝酸、フッ化水素、および酢酸を含むエッチング液を用いて粗面化する方法が提案されている(特許文献1)。一方、GaP発光素子チップに対しては、塩酸を用いた粗面化方法が開示されている(特許文献2)。また、実際には塩酸のみによる粗面化処理では、十分な光取り出し効率の向上が期待できないことから、まずラップ加工による粗面加工を行った後に、王水系、硫酸系等のエッチング液で処理する方法も提案されている(特許文献3)。
特開平2000−196141号公報 特開平4−354382号公報 特開平10−65211号公報
Conventionally, as a surface roughening method by etching a light emitting diode, for example, for a GaAsP mixed crystal layer, a surface roughening is performed by using an etching solution containing Br 2 or I 2 and nitric acid, hydrogen fluoride, and acetic acid. A method to do this has been proposed (Patent Document 1). On the other hand, a roughening method using hydrochloric acid is disclosed for a GaP light emitting device chip (Patent Document 2). In fact, roughening treatment with only hydrochloric acid cannot be expected to improve the light extraction efficiency sufficiently. Therefore, after roughing the surface by lapping, treatment with aqua regia, sulfuric acid, etc. There has also been proposed a method (Patent Document 3).
JP 2000-196141 A JP-A-4-354382 Japanese Patent Laid-Open No. 10-652111

しかしながら、GaP基板上に形成されたGaAsP混晶層を含む、組成の異なる複数層を有する発光ダイオードにおいては、前記いずれの方法を用いてもエッチングによる粗面化の効果、すなわち、発光ダイオードの外部への光取り出し効率の向上が不十分であった。   However, in a light emitting diode having a plurality of layers having different compositions, including a GaAsP mixed crystal layer formed on a GaP substrate, the effect of roughening by etching, that is, the outside of the light emitting diode The improvement of the light extraction efficiency was insufficient.

例えば、特許文献1に記載されるBr又はIと、硝酸、フッ化水素、および酢酸を含むエッチング液で粗面化した場合、GaAsP層はある程度粗面化されるものの、GaP基板やGaP組成が高い部分のGaAsP層の粗面化は不十分であり、光取り出し効率はさほど向上しなかった。また、特許文献2に開示される塩酸単独によるエッチングは、GaP基板の粗面化には有効であるが、GaAsP層の粗面化は不十分であり、やはり光取り出し効率の向上効果は低い。 For example, when roughening with Br 2 or I 2 described in Patent Document 1 and an etching solution containing nitric acid, hydrogen fluoride, and acetic acid, the GaAsP layer is roughened to some extent, but a GaP substrate or GaP The surface of the GaAsP layer having a high composition was not sufficiently roughened, and the light extraction efficiency was not improved so much. Etching with hydrochloric acid alone disclosed in Patent Document 2 is effective for roughening the GaP substrate, but roughening of the GaAsP layer is insufficient, and the effect of improving the light extraction efficiency is low.

特許文献3で行われているラップ加工による粗面加工を行った後にエッチング液で処理する方法では、エッチング工程に加えてラップ加工という機械加工の工程が増えるために処理時間、コストの点で好ましくなく、エッチング液による処理工程のみで発光ダイオードの全表面の粗面化が可能となる簡便な方法が求められていた。   The method of processing with an etching solution after performing rough surface processing by lapping performed in Patent Document 3 is preferable in terms of processing time and cost because a machining process called lapping increases in addition to the etching process. In addition, there has been a demand for a simple method capable of roughening the entire surface of the light-emitting diode only by a processing step using an etching solution.

本発明は、かかる課題を解決しようとするものであり、GaP基板上に形成したGaAsP混晶層を含む発光ダイオードチップの表面を効率的に粗面化し、外部への光の取り出し効率が著しく向上した高い光強度の発光ダイオードを製造する方法を提供することを目的とする。   The present invention is intended to solve such problems, and the surface of a light-emitting diode chip including a GaAsP mixed crystal layer formed on a GaP substrate is efficiently roughened, and the light extraction efficiency to the outside is remarkably improved. It is an object of the present invention to provide a method for manufacturing a light emitting diode with high light intensity.

本発明者は、GaP基板とGaAsP混晶層の双方を粗面化するため、種々のエッチング液とその組合せなどについて鋭意検討を行った結果、特定の酸性エッチング液が、GaP基板又はGaAsP混晶層を適切に粗面化すること、そして、これらのエッチング液を適切に組み合わせてエッチングを2段階で行うこと、更には、2段階のエッチング工程間で、先のエッチング液の影響を排除する処理工程を介在させることにより、発光ダイオードの光出力が著しく向上することを見出した。   As a result of intensive studies on various etching solutions and combinations thereof in order to roughen both the GaP substrate and the GaAsP mixed crystal layer, the present inventors have found that a specific acidic etching solution is a GaP substrate or a GaAsP mixed crystal. Properly roughen the layer, and perform etching in two stages by appropriately combining these etchants, and further eliminate the influence of the previous etchant between the two stages of the etching process. It has been found that the light output of the light emitting diode is remarkably improved by interposing the process.

即ち、本発明の発光ダイオードの製造方法は、GaP基板上に、GaAs1−x(0<x<1)層と、内部にpn接合を有する窒素ドープGaAs1−x(0<x<1)層とが形成された発光ダイオードチップの表面を化学エッチングする工程を有する発光ダイオードの製造方法であって、該エッチング工程は、下記(1)および(2)の工程をこの順又は逆の順に含むことを特徴とする(請求項1)。
工程(1):ヨウ素酸、フッ化水素酸、硝酸および酢酸を含む混合液を用いてエッチングする工程
工程(2):(a)20℃以上の塩酸、(b)フッ化水素酸、および(c)フッ化水素酸と硫酸の混合液よりなる群から選ばれる1種又は2種以上の酸を用いてエッチングする工程
That is, in the method for manufacturing a light emitting diode according to the present invention, a GaAs x P 1-x (0 <x <1) layer on a GaP substrate and a nitrogen-doped GaAs x P 1-x (0 < x <1) A method for manufacturing a light-emitting diode comprising a step of chemically etching a surface of a light-emitting diode chip formed with a layer, wherein the etching step comprises the following steps (1) and (2) in this order or They are included in the reverse order (claim 1).
Step (1): Step of etching using a mixed solution containing iodic acid, hydrofluoric acid, nitric acid and acetic acid Step (2): (a) hydrochloric acid at 20 ° C. or higher, (b) hydrofluoric acid, and ( c) A step of etching using one or more acids selected from the group consisting of a mixture of hydrofluoric acid and sulfuric acid.

この方法において、前記工程(1)および(2)、或いは工程(2)および(1)の間に、アルカリで処理する工程を含むことが好ましい(請求項2)。   In this method, it is preferable to include a step of treating with an alkali between the steps (1) and (2) or between the steps (2) and (1).

また、前記ヨウ素酸、フッ化水素酸、硝酸および酢酸を含む混合液は、ヨウ素酸1モルに対して、フッ化水素酸を1〜30000モル、硝酸を1〜20000モル、酢酸を50〜80000モル含むことが好ましい(請求項3)。   The mixed solution containing iodic acid, hydrofluoric acid, nitric acid and acetic acid is 1 to 30000 mol of hydrofluoric acid, 1 to 20000 mol of nitric acid, and 50 to 80,000 acetic acid with respect to 1 mol of iodic acid. It is preferable to contain a mole (claim 3).

本発明の発光ダイオードの製造方法により、GaP基板又はGaAsP混晶層の表面を粗面化することが可能な酸性エッチング液をそれぞれ選択し、これを組み合わせて用いることにより、GaP基板上にGaAsP混晶層が形成された発光ダイオードの全表面を適切な微細形状に粗面化することが可能となり、光取り出し効率の高い発光ダイオードを製造することが可能となる。   According to the method for manufacturing a light emitting diode of the present invention, an acidic etching solution capable of roughening the surface of a GaP substrate or a GaAsP mixed crystal layer is selected and used in combination, whereby a GaAsP mixed solution is formed on the GaP substrate. It is possible to roughen the entire surface of the light emitting diode on which the crystal layer is formed into an appropriate fine shape, and it is possible to manufacture a light emitting diode with high light extraction efficiency.

以下に、図面を参照して本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に特定はされない。   DESCRIPTION OF EMBODIMENTS Embodiments of the present invention will be described in detail below with reference to the drawings. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is the gist thereof. Unless specified above, the following contents are not specified.

まず、図1を参照して本発明により製造される発光ダイオードについて説明する。   First, a light emitting diode manufactured according to the present invention will be described with reference to FIG.

図1は、本発明の方法により得られた表面が粗面化された発光ダイオードの実施の形態を示す断面の模式図である。   FIG. 1 is a schematic cross-sectional view showing an embodiment of a light-emitting diode having a roughened surface obtained by the method of the present invention.

この発光ダイオードでは、GaP基板1の上に、GaP層2、GaAsP組成変化層(GaAs1−x(0<x<1)でxが変化する層)3、GaAsP組成一定層(GaAs1−x(0<x<1)でxが一定の層)4、n型窒素ドープGaAsP層(GaAs1−x(0<x<1)層でxが一定の層)5、およびp型窒素ドープGaAsP層(GaAs1−x(0<x<1)層でxが一定の層)6がこの順で順次積層形成されている。なお、一般的にはGaAsP組成一定層のxと窒素ドープGaAsP層のxとは同一であるが、ウエハの反りを補正するために異なる場合もある。また、p型窒素ドープGaAsP層6のn型窒素ドープGaAsP層5と反対側の面にはp側電極7が形成されており、GaP基板1の各層を形成した面と反対側の面にはn側電極8を形成されている。10はn型窒素ドープGaAsP層5とp型窒素ドープGaAsP層6との界面のpn接合である。 In this light emitting diode, on a GaP substrate 1, a GaP layer 2, a GaAsP composition change layer (layer in which x changes in GaAs x P 1-x (0 <x <1)) 3, a GaAsP constant composition layer (GaAs x P 1-x (0 <x <1) and x is constant layer) 4, n-type nitrogen doped GaAsP layer (GaAs x P 1-x (0 <x <1) layer and x is constant) 5, A p-type nitrogen-doped GaAsP layer (GaAs x P 1-x (0 <x <1) layer where x is constant) 6 is sequentially laminated in this order. In general, x in the GaAsP composition constant layer and x in the nitrogen-doped GaAsP layer are the same, but may be different to correct the warpage of the wafer. Further, a p-side electrode 7 is formed on the surface of the p-type nitrogen-doped GaAsP layer 6 opposite to the n-type nitrogen-doped GaAsP layer 5, and on the surface opposite to the surface on which each layer of the GaP substrate 1 is formed. An n-side electrode 8 is formed. Reference numeral 10 denotes a pn junction at the interface between the n-type nitrogen-doped GaAsP layer 5 and the p-type nitrogen-doped GaAsP layer 6.

なお、GaP基板1の上に直接GaAsP組成変化層3を形成しても差し支えないが、基板1とGaAsP組成変化層3との間に基板1と同一組成のGaP層2を厚さ0.1〜100μm、好ましくは厚さ0.1〜15μm程度で形成した方が、ミスフィット転移を抑制でき、また、安定に高光出力が得られるので好ましい。   The GaAsP composition change layer 3 may be formed directly on the GaP substrate 1, but a GaP layer 2 having the same composition as the substrate 1 is formed between the substrate 1 and the GaAsP composition change layer 3 with a thickness of 0.1. It is preferable that the thickness is about 100 μm, preferably about 0.1 to 15 μm because misfit transition can be suppressed and high light output can be stably obtained.

GaAsP組成変化層3は、GaPとGaAsの混晶比率を変化させることにより格子定数を変化させた層であり、GaP層2とGaAsP組成一定層4の格子定数の差を緩和するように任意に設けることができる。例えば、GaPとの界面ではGaPと格子定数が略一致しかつGaAsP組成一定層4との界面ではGaAsP組成一定層4と格子定数が略一致するように層厚さ方向に組成を変化させたGaAsP組成変化層3を形成することで、結晶欠陥の少ないGaAsP組成一定層4を得ることが好ましい。   The GaAsP composition change layer 3 is a layer in which the lattice constant is changed by changing the mixed crystal ratio of GaP and GaAs. The GaAsP composition change layer 3 is arbitrarily set so as to relax the difference in lattice constant between the GaP layer 2 and the GaAsP constant composition layer 4. Can be provided. For example, GaAsP whose composition is changed in the layer thickness direction so that the lattice constant substantially coincides with GaP at the interface with GaP and substantially coincides with the lattice constant with GaAsP constant composition layer 4 at the interface with GaAsP constant composition layer 4. It is preferable to obtain the GaAsP constant composition layer 4 with few crystal defects by forming the composition change layer 3.

このGaAsP組成変化層3は、層厚さ方向に連続的に組成変化するものだけでなく、GaAsP組成一定層4の格子定数およびGaPの格子定数の中間の格子定数を有するものであれば、格子の歪みを緩和できることから、組成変化の形態によらず、例えば層厚さ方向に複数の階段状に組成変化するものであっても、GaAsP組成変化層3と見なすことができる。   The GaAsP composition changing layer 3 is not only a layer whose composition changes continuously in the layer thickness direction, but also has a lattice constant intermediate between the lattice constant of the GaAsP constant composition layer 4 and the lattice constant of GaP. Therefore, even if the composition changes in a plurality of steps in the layer thickness direction, for example, it can be regarded as the GaAsP composition change layer 3 regardless of the form of the composition change.

このようなGaAsP組成変化層3の層厚は、好ましくは1〜100μm、より好ましくは10〜80μmである。また、組成変化層3のキャリア濃度は、0.5×1017〜30×1017cm-3、好ましくは0.8×1017cm-3〜20×1017cm-3であり、平均で1×1017〜8×1017cm-3であることがLED化した時の順方向電圧を下げ、良好な結晶性が得られるという点で好ましい。なお、キャリア濃度が30×1017cm-3を超えるとGaAsP組成変化層3の結晶性が悪化してエピタキシャル層表面に結晶欠陥が発生したり、LEDの光出力の低下を生じる。 The thickness of the GaAsP composition change layer 3 is preferably 1 to 100 μm, more preferably 10 to 80 μm. Further, the carrier concentration of the composition change layer 3 is 0.5 × 10 17 to 30 × 10 17 cm −3 , preferably 0.8 × 10 17 cm −3 to 20 × 10 17 cm −3 , and on average 1 × 10 17 to 8 × 10 17 cm −3 is preferable in that the forward voltage when an LED is formed is lowered and good crystallinity is obtained. When the carrier concentration exceeds 30 × 10 17 cm −3 , the crystallinity of the GaAsP composition change layer 3 is deteriorated, crystal defects are generated on the surface of the epitaxial layer, and the light output of the LED is reduced.

GaAsP組成一定層4は、通常、発光層と同じGaAsP組成を持つ層、すなわち発光層と同じ格子定数を有する層として、GaAsP組成変化層3とn型窒素ドープGaAsP層5の間に任意に設けることができる。このGaAsP組成一定層4の層厚は好ましくは10〜70μm、より好ましくは10〜30μmである。また、GaAsP組成一定層4のキャリア濃度は、0.5×1017〜30×1017cm-3、好ましくは0.8×1017cm-3〜20×1017cm-3であり、平均で2×1017〜8×1017cm-3であることが、LED化した時の順方向電圧を下げ、良好な結晶性が得られるという点で好ましい。 The constant GaAsP composition layer 4 is usually arbitrarily provided between the GaAsP composition change layer 3 and the n-type nitrogen-doped GaAsP layer 5 as a layer having the same GaAsP composition as the light emitting layer, that is, a layer having the same lattice constant as the light emitting layer. be able to. The layer thickness of the GaAsP constant composition layer 4 is preferably 10 to 70 μm, more preferably 10 to 30 μm. The carrier concentration of the GaAsP constant composition layer 4 is 0.5 × 10 17 to 30 × 10 17 cm −3 , preferably 0.8 × 10 17 cm −3 to 20 × 10 17 cm −3. 2 × 10 17 to 8 × 10 17 cm −3 is preferable in that the forward voltage when the LED is formed is lowered and good crystallinity is obtained.

そして、GaAsP組成変化層3およびGaAsP組成一定層4の合計層厚は、30〜130μmであることが好ましい。   The total thickness of the GaAsP composition change layer 3 and the GaAsP composition constant layer 4 is preferably 30 to 130 μm.

GaAsP組成変化層3、GaAsP組成一定層4の各層厚、および合計層厚は、いずれも、上記範囲よりも薄いと、これを設けたことによる効果を得ることができず、上記範囲よりも厚くても問題は少ないものの、コストの点で不利である。   If the thickness of each of the GaAsP composition changing layer 3 and the constant GaAsP composition layer 4 and the total layer thickness are both smaller than the above range, the effect obtained by providing them cannot be obtained, and the thickness is larger than the above range. Although there are few problems, it is disadvantageous in terms of cost.

n型窒素ドープGaAsP層5、p型窒素ドープGaAsP層6は、いずれも窒素ドープをしたGaAsP発光層であり、界面にpn接合10が形成されている。窒素ドープは、例えば、GaAsP層形成時にNHを用いて行うことができる。pn接合の形成方法としては、例えば、基板1の上に層2〜層6(層5、層6はノンドープ)を任意の方法で結晶成長させた後、Zn等のp型ドーパントを拡散源とした熱拡散を行い、所定の厚みでGaAsP層の表層部をp型に変換して層6を形成することにより、層5と層6の界面にpn接合を形成する方法が挙げられる。この際、GaP基板1側の表層部もp型となっているので、ラッピングによりp型となった部分を除去し、その後電極7,8の形成を行う。 Each of the n-type nitrogen doped GaAsP layer 5 and the p-type nitrogen doped GaAsP layer 6 is a nitrogen-doped GaAsP light emitting layer, and a pn junction 10 is formed at the interface. Nitrogen doping can be performed, for example, using NH 3 when forming the GaAsP layer. As a method for forming a pn junction, for example, layers 2 to 6 (layers 5 and 6 are non-doped) are grown on the substrate 1 by an arbitrary method, and then a p-type dopant such as Zn is used as a diffusion source. There is a method of forming a pn junction at the interface between the layer 5 and the layer 6 by performing the thermal diffusion and converting the surface layer portion of the GaAsP layer to a p-type with a predetermined thickness to form the layer 6. At this time, since the surface layer portion on the GaP substrate 1 side is also p-type, the portion that has become p-type by lapping is removed, and then the electrodes 7 and 8 are formed.

前記層2〜層6の形成方法としては、気相エピタキシャル成長法の中から選択することが好ましく、具体的には、ハロゲン輸送法又は有機金属気相成長法(MOCVD)のいずれかが選択される。原料としてハロゲン化合物原料を少なくとも1つ以上有するハロゲン輸送法は、高純度のエピタキシャル層が得られ、量産性に富むことから有利であり、特にハイドライド気相法が一般的である。   The formation method of the layers 2 to 6 is preferably selected from vapor phase epitaxial growth methods, and specifically, either halogen transport method or metal organic vapor phase growth method (MOCVD) is selected. . The halogen transport method having at least one halogen compound raw material as a raw material is advantageous because a high-purity epitaxial layer is obtained and mass productivity is high, and a hydride vapor phase method is particularly common.

なお、GaAsP組成一定層(GaAs1−x(0<x<1))および窒素ドープGaAsP層(GaAs1−x(0<x<1))のxは好ましくは0.45<x<1である。 Note that x in the GaAsP constant composition layer (GaAs x P 1-x (0 <x <1)) and the nitrogen-doped GaAsP layer (GaAs x P 1-x (0 <x <1)) is preferably 0.45 < x <1.

p側電極7、n側電極8は、例えば、金を主成分とする導電性の材料を、p型窒素ドープGaAsP層6の表面とGaP基板1の表面に蒸着することにより形成することができる。   The p-side electrode 7 and the n-side electrode 8 can be formed, for example, by depositing a conductive material mainly composed of gold on the surface of the p-type nitrogen-doped GaAsP layer 6 and the surface of the GaP substrate 1. .

粗面化処理前の発光ダイオードチップは、上述のようにしてGaP基板上に各層の形成および電極7,8の形成を行った後、ダイシング加工により所望の形状に切断して製造される。なお、ダイシングによって、切断面に機械的なダメージ層が生じる場合は、硫酸、過酸化水素、および水の混合液によって処理し、機械的なダメージ層を除去しておくことが好ましい。   The light emitting diode chip before the surface roughening treatment is manufactured by forming each layer and forming the electrodes 7 and 8 on the GaP substrate as described above, and then cutting into a desired shape by dicing. In addition, when a mechanical damage layer arises in a cut surface by dicing, it is preferable to process with the liquid mixture of a sulfuric acid, hydrogen peroxide, and water, and to remove a mechanical damage layer.

本発明の発光ダイオードの製造方法では、このようにして得られる発光ダイオードチップの表面を、次の(1),(2)の2段階のエッチング工程を経る化学エッチングにより粗面化処理する。
工程(1):ヨウ素酸、フッ化水素酸、硝酸および酢酸を含む混合液を用いてエッチングする工程
工程(2):(a)20℃以上の塩酸、(b)フッ化水素酸、および(c)フッ化水素酸と硫酸の混合液よりなる群から選ばれる1種又は2種以上の酸を用いてエッチングする工程
In the light emitting diode manufacturing method of the present invention, the surface of the light emitting diode chip thus obtained is roughened by chemical etching through the following two-stage etching steps (1) and (2).
Step (1): Step of etching using a mixed solution containing iodic acid, hydrofluoric acid, nitric acid and acetic acid Step (2): (a) hydrochloric acid at 20 ° C. or higher, (b) hydrofluoric acid, and ( c) A step of etching using one or more acids selected from the group consisting of a mixture of hydrofluoric acid and sulfuric acid.

工程(1)は、ヨウ素酸、フッ化水素酸、硝酸および酢酸を含む混合液を用いて、エッチングする工程である。ここで用いるエッチング液の酸の混合比率と、エッチング時間は、製造する発光ダイオードの発光波長とエッチングされる面方位で最適値が異なり、個々の製品に応じて、最大輝度が得られる条件を微調整することができる。例えば、ヨウ素酸、フッ化水素酸、硝酸、酢酸溶液のモル混合比率は、好ましくは、ヨウ素酸(HIO)1に対して、フッ化水素酸(HF)を1〜30000、硝酸(HNO)を1〜20000、酢酸(CHCOOH)を50〜80000の範囲、より好ましくはHIO:HF:HNO:CHCOOH=1:10〜10000:10〜10000:100〜50000(モル比)、特に好ましくは1:70〜7000:40〜4000:400〜40000(モル比)の範囲である。なお、これらは、合計濃度として10重量%以上、特に50重量%以上、とりわけ75重量%以上の水溶液とすることが好ましい。また、エッチング時間は、通常5秒から10分間の範囲で設定される。この合計濃度が低過ぎるとエッチングに要する時間が長くなる。合計濃度の上限は、薬品の入手や取り扱い上の操作性から適宜決定される。なお、この混合液の温度については特に制限はなく、通常5〜45℃、好ましくは15〜35℃(実用的には室温25℃前後)程度である。この工程(1)では主にGaAsP層のエッチングが行われる。 Step (1) is a step of etching using a mixed solution containing iodic acid, hydrofluoric acid, nitric acid and acetic acid. The acid mixing ratio and etching time used here differ optimally depending on the emission wavelength of the light emitting diode to be manufactured and the surface orientation to be etched, and the conditions under which the maximum luminance can be obtained vary depending on the individual product. Can be adjusted. For example, the molar mixing ratio of iodic acid, hydrofluoric acid, nitric acid, and acetic acid solution is preferably 1 to 30000 hydrofluoric acid (HF) and nitric acid (HNO 3 ) with respect to iodic acid (HIO 3 ) 1. ) In the range of 1 to 20000 and acetic acid (CH 3 COOH) in the range of 50 to 80000, more preferably HIO 3 : HF: HNO 3 : CH 3 COOH = 1: 10 to 10000: 10 to 10000: 100 to 50000 (molar ratio) ), Particularly preferably in the range of 1:70 to 7000: 40 to 4000: 400 to 40,000 (molar ratio). In addition, it is preferable to make these into an aqueous solution having a total concentration of 10% by weight or more, particularly 50% by weight or more, and particularly 75% by weight or more. The etching time is usually set in the range of 5 seconds to 10 minutes. If this total concentration is too low, the time required for etching becomes long. The upper limit of the total concentration is appropriately determined from the availability of chemicals and operability in handling. In addition, there is no restriction | limiting in particular about the temperature of this liquid mixture, Usually, 5-45 degreeC, Preferably it is about 15-35 degreeC (practically room temperature around 25 degreeC) grade. In this step (1), the GaAsP layer is mainly etched.

工程(2)は、(a)塩酸、(b)フッ化水素酸、(c)フッ化水素酸と硫酸の混合液のうちのいずれかの酸を用いて、エッチングする工程である。   Step (2) is a step of etching using any one of (a) hydrochloric acid, (b) hydrofluoric acid, and (c) a mixture of hydrofluoric acid and sulfuric acid.

ここで、(a)塩酸の温度としては20℃以上であり、好ましくは40℃以上90℃未満、さらに好ましくは50℃以上80℃未満である。塩酸の温度がこの範囲より低いと十分なエッチングを行えず、高いと作業上、安全性の面で好ましくない。塩酸は濃度20〜40重量%程度の濃塩酸を用いることが好ましい。   Here, the temperature of (a) hydrochloric acid is 20 ° C. or higher, preferably 40 ° C. or higher and lower than 90 ° C., more preferably 50 ° C. or higher and lower than 80 ° C. When the temperature of hydrochloric acid is lower than this range, sufficient etching cannot be performed, and when the temperature is high, it is not preferable in terms of safety in terms of work. It is preferable to use concentrated hydrochloric acid having a concentration of about 20 to 40% by weight.

(b)フッ化水素酸は、70重量%未満、特に30〜65重量%の水溶液を用いることが好ましい。フッ化水素酸の濃度がこの範囲より低いと十分なエッチングを行うことができない。このフッ化水素酸の温度については特に制限はなく、通常15〜35℃程度(実用的には室温25℃前後)である。   (B) Hydrofluoric acid is preferably used in an aqueous solution of less than 70% by weight, particularly 30 to 65% by weight. If the concentration of hydrofluoric acid is lower than this range, sufficient etching cannot be performed. There is no restriction | limiting in particular about the temperature of this hydrofluoric acid, Usually, it is about 15-35 degreeC (practically room temperature around 25 degreeC).

また、(c)フッ化水素酸と硫酸の混合液の温度については特に制限はなく、通常15〜70℃程度である。   Moreover, there is no restriction | limiting in particular about the temperature of the liquid mixture of (c) hydrofluoric acid and a sulfuric acid, Usually, it is about 15-70 degreeC.

工程(2)のエッチング時間は任意であるが、例えば30秒以上、好ましくは1分以上、より好ましくは10分以上で1時間未満である。このエッチング時間が短すぎると粗面化が不十分であり、長すぎると粗面化が進行しすぎて逆効果となり、光出力が低下する。この工程(2)では主にGaP基板とGaP組成の多いGaAsP層のエッチングが行われる。   Although the etching time of process (2) is arbitrary, it is 30 seconds or more, for example, Preferably it is 1 minute or more, More preferably, it is 10 minutes or more and is less than 1 hour. If this etching time is too short, roughening will be insufficient, and if it is too long, roughening will proceed too much, resulting in an adverse effect, and light output will be reduced. In this step (2), the GaP substrate and the GaAsP layer having a large GaP composition are mainly etched.

エッチング工程(1),(2)は具体的には、所定の組成及び温度のエッチング液を用いて、発光ダイオードチップを浸漬することにより行われる。   Specifically, the etching steps (1) and (2) are performed by immersing the light emitting diode chip using an etching solution having a predetermined composition and temperature.

これらのエッチング工程(1)および(2)は、どちらを先に行っても良く、工程(1)の次に工程(2)を行っても、また、工程(2)の次に工程(1)を行っても良く、いずれの場合も同等の効果を得ることができる。   Either of these etching steps (1) and (2) may be performed first. Even if step (2) is performed after step (1), step (1) is performed after step (2). ) May be performed, and an equivalent effect can be obtained in any case.

いずれの場合においても、直前のエッチング工程で用いたエッチング液成分が、発光ダイオードチップの表面に残留していると、次工程におけるエッチングで良好な粗面を形成し得ないため、これらの工程間に直前のエッチング工程の残留酸成分を除去するための処理を行うことが好ましい。この処理の方法には特に制限はなく、水洗等で残留酸成分を洗い流す方法も採用し得るが、アルカリを用いた中和処理を行うことが好ましい。中和工程は、水酸化カリウム、水酸化ナトリウム、アンモニア等のアルカリの1種又は2種以上を含むアルカリ水溶液を用いてエッチング表面を処理することにより行うことができる。この中和工程の前及び/又は後で超純水等を用いた流水洗浄を行っても良い。   In any case, if the etchant component used in the immediately preceding etching process remains on the surface of the light emitting diode chip, a good rough surface cannot be formed by etching in the next process. It is preferable to perform a treatment for removing the residual acid component in the immediately preceding etching step. There is no particular limitation on the method of this treatment, and a method of washing away residual acid components by washing with water or the like can be adopted, but it is preferable to perform a neutralization treatment using an alkali. A neutralization process can be performed by processing the etching surface using the aqueous alkali solution containing 1 type, or 2 or more types of alkalis, such as potassium hydroxide, sodium hydroxide, and ammonia. Washing with running water using ultrapure water or the like may be performed before and / or after this neutralization step.

特に、工程(2)において(a)塩酸を用い、工程(2)を先に行い、次に工程(1)を行う場合には、エッチングにより粗面化された凹凸面の凹部に塩酸が残留することにより、工程(2)の混合液によるエッチング作用が阻害される場合があることから、工程(2)と工程(1)との間に上記中和工程を行うことが好ましい。工程(1)を先に行い、工程(2)を後に行う場合には、このような残留成分によるエッチング阻害の問題は小さいが、中和工程を介在させた方がより良好な粗面を形成することができ、好ましい。   In particular, when (a) hydrochloric acid is used in step (2), step (2) is performed first, and then step (1) is performed, hydrochloric acid remains in the concave portions of the rough surface roughened by etching. By doing so, the etching action by the mixed liquid in the step (2) may be hindered, and therefore, the neutralization step is preferably performed between the step (2) and the step (1). When step (1) is performed first and step (2) is performed later, the problem of etching inhibition due to such residual components is small, but a better rough surface is formed by interposing the neutralization step. Can be preferred.

中和処理に用いるアルカリは、弱過ぎると効率的な中和を行えないことから、0.1〜5N程度のアルカリであることが好ましい。   The alkali used for the neutralization treatment is preferably an alkali of about 0.1 to 5N because efficient neutralization cannot be performed if it is too weak.

アルカリによる中和処理は具体的には前段のエッチング工程を経た発光ダイオードチップをアルカリ水溶液に浸漬することにより行われる。   Specifically, the neutralization treatment with alkali is performed by immersing the light-emitting diode chip that has undergone the previous etching step in an alkaline aqueous solution.

本発明によるエッチング工程の後は、必要に応じて発光ダイオードの表面に残留する酸成分を除去するために、超純水で流水洗浄を行ってもよい。また、流水洗浄の後に、アンモニア水を用いて中和を行い、再度超純水洗浄を行うとより効率よく酸成分を除去できる。超純水洗浄の終了は、例えば洗浄槽出口の排水の導電率をモニターすることで、再現性よく決定することができる。   After the etching process according to the present invention, in order to remove an acid component remaining on the surface of the light emitting diode, it may be washed with running ultrapure water as necessary. Further, after washing with running water, neutralization is performed using ammonia water, and washing with ultrapure water is performed again, whereby the acid component can be removed more efficiently. The end of the ultrapure water cleaning can be determined with good reproducibility, for example, by monitoring the conductivity of the waste water at the outlet of the cleaning tank.

このような2段階のエッチング工程、好ましくは2段階のエッチング工程間にアルカリによる中和工程を行うエッチング工程による粗面化処理で得られる発光ダイオードは、好ましくは電極形成部を除く全表面が、非円弧状の断面形状の微細な凹凸を含み、かつ、この凹凸が連なっている粗面とされたものである。ここで、非円弧状の微細な凹凸とは、微細な凹凸が単に断面円弧状の粒状凹凸の集まりではなく、非円弧状の凹凸が連なった非粒状凹凸のことをいう。   The light-emitting diode obtained by the roughening treatment by the etching process in which the two-stage etching process, preferably the neutralization process with an alkali between the two-stage etching processes, is preferably performed on the entire surface except for the electrode forming portion. It is a rough surface including fine irregularities having a non-arc-shaped cross-sectional shape and continuous with the irregularities. Here, the non-arc-shaped fine irregularities mean non-granular irregularities in which the fine irregularities are not simply a collection of granular irregularities having an arc-shaped cross section, but non-arc-shaped irregularities.

発光ダイオードの表面が鏡面である場合に比べて、微細な凹凸がある場合には、一般に光取り出し効率が向上して光強度が向上することは知られているが、本発明者等は、この微細な凹凸が断面円弧状の場合に比べて、断面が非円弧状の部分を含み、かつこの凹凸が連なっている場合に、著しく光強度が向上する現象を見出した。特に、これらの凹凸のうち、結晶の面方位を反映したファセットと呼ばれる面が出ている凹凸の密度が高いことが、輝度向上にとって有効である。   It is known that the light extraction efficiency is generally improved and the light intensity is improved when the surface of the light emitting diode has a fine unevenness as compared with the case where the surface is a mirror surface. The inventors have found a phenomenon that the light intensity is remarkably improved when the unevenness includes a portion having a non-arc shape and the unevenness is continuous as compared with the case where the fine unevenness has an arcuate cross section. In particular, among these irregularities, it is effective for improving the brightness that the density of the irregularities in which a surface called facet reflecting the crystal plane orientation is projected is high.

本発明の方法により、このような凹凸が形成された発光ダイオードの表面の粗面は、平均粗さ(Ra)が5〜450nmの範囲であり、かつ10nm×10nmの面積内に存在する根二乗平均粗さ(RMS)以上の高さの突起の数(N)が、10個以上1000個未満の範囲であることが好ましい。Ra及びNが上記範囲よりも小さいと、粗面化による光取り出し効率の向上効果が十分でなく、大きくても外部への光取り出し効率が低下する傾向がある。   According to the method of the present invention, the rough surface of the surface of the light emitting diode on which such unevenness is formed has an average roughness (Ra) in the range of 5 to 450 nm and a root square existing in an area of 10 nm × 10 nm. The number (N) of protrusions having a height equal to or higher than the average roughness (RMS) is preferably in the range of 10 or more and less than 1000. If Ra and N are smaller than the above range, the effect of improving the light extraction efficiency due to the roughening is not sufficient, and even if it is large, the light extraction efficiency to the outside tends to decrease.

次に、実験例、実施例、及び比較例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。   Next, the present invention will be described more specifically with reference to experimental examples, examples, and comparative examples. However, the present invention is not limited to the description of the following examples unless it exceeds the gist.

なお、以下において、エッチング処理に供した粗面化前の発光ダイオードチップは、次のようにして製造したものである。   In the following description, the light-emitting diode chip before the roughening provided for the etching process is manufactured as follows.

<発光ダイオードチップの製造方法>
ハイドライド気相法を用いてGaP基板上に、厚さ3μmのGaP層、厚さ23μmのGaAsP組成変化層(GaAs1−xでxが0からxに連続的に増加する層)、厚さ12μmのGaAsP組成一定層(GaAs1−x層)、厚さ20μmの窒素ドープGaAsP層(GaAs1−y層)を順次エピタキシャル成長させた後、ZnAs2を拡散源としてP型不純物であるZnと共に石英アンプル内に真空に封管して、760℃の温度で表面から4μmの深さまでZnを拡散させてpn接合を形成した。次いで基板側をラッピングして粗面加工してダメージを取るために王水のエッチング液でエッチングを行い、裏面を半鏡面加工し、厚みを280μmにそろえた。続いて、真空蒸着による表裏の電極形成等を行った。表面は350μm間隔で直径120μmの円形電極を蒸着し、裏面は上下左右70μm間隔で直径50μmの円形電極を蒸着した。なお、ここで両面合わせマスクを使えば、表裏電極を所定の位置に形成することは可能である。ダイシングは350μm間隔の表電極に合わせて、裏面の裏電極の間のエッチング面からエピタキシャルウエハ内を通して、表電極を見て位置決定して、50μm残してハーフダイスした。さらに硫酸及び過酸化水素系のエッチング液でダイシングのダメージを除去した。粘着シートに張り付けて、ブレーキングを行って、254μm×254μmで高さ280μmの四角柱形の発光ダイオードチップを完成させた。
<Light emitting diode chip manufacturing method>
A GaP layer with a thickness of 3 μm, a GaAsP composition change layer with a thickness of 23 μm (a layer in which x increases continuously from 0 to x in GaAs x P 1-x ) on a GaP substrate using a hydride vapor phase method, After sequentially epitaxially growing a 12 μm thick GaAsP composition constant layer (GaAs x P 1-x layer) and a 20 μm thick nitrogen-doped GaAsP layer (GaAs y P 1-y layer), a P-type impurity using ZnAs 2 as a diffusion source Then, a pn junction was formed by diffusing Zn from a surface to a depth of 4 μm at a temperature of 760 ° C. in a quartz ampule together with Zn. Next, the substrate side was lapped to roughen the surface and etched with aqua regia etchant to remove damage, and the back surface was semi-mirror finished to a thickness of 280 μm. Subsequently, front and back electrodes were formed by vacuum deposition. Circular electrodes with a diameter of 120 μm were deposited on the surface at intervals of 350 μm, and circular electrodes with a diameter of 50 μm were deposited on the back surface at intervals of 70 μm in the vertical and horizontal directions. If a double-sided mask is used here, the front and back electrodes can be formed at predetermined positions. Dicing was performed in accordance with the front electrodes at intervals of 350 μm, and the position was determined by looking at the front electrodes from the etching surface between the back electrodes on the back surface through the epitaxial wafer, and half dicing was performed leaving 50 μm. Further, dicing damage was removed with an etching solution of sulfuric acid and hydrogen peroxide. By sticking to an adhesive sheet and performing braking, a square pillar-shaped light emitting diode chip having a height of 254 μm × 254 μm and a height of 280 μm was completed.

なお、発光色毎のGaAsP発光層の組成比は次の通りである。
赤色発光ダイオード:GaAs0.450.55
オレンジ色発光ダイオード:GaAs0.350.65
ソフトオレンジ色発光ダイオード:GaAs0.250.75
イエロー色発光ダイオード:GaAs0.10.9
The composition ratio of the GaAsP light emitting layer for each light emission color is as follows.
Red light emitting diode: GaAs 0.45 P 0.55
Orange light emitting diode: GaAs 0.35 P 0.65
Soft orange light emitting diode: GaAs 0.25 P 0.75
Yellow light emitting diode: GaAs 0.1 P 0.9

また、以下の実施例および比較例において、粗面化発光ダイオードの平均相対輝度は次のようにして求めた。   In the following Examples and Comparative Examples, the average relative luminance of the roughened light emitting diode was determined as follows.

<平均相対輝度>
各発光ダイオード毎に、粗面化の前後でウェハの面内分布の影響を少なくするために、1cm×1cmの指定したエリアから、254μm×254μmサイズの発光ダイオードを取り出し、各5チップずつの動作電流20mAにおける光出力を測定し、粗面化前の発光ダイオードの光出力の平均値に対する、粗面化後の発光ダイオードの光出力の平均値の割合を算出した。
<Average relative luminance>
For each light emitting diode, in order to reduce the influence of the in-plane distribution of the wafer before and after the surface roughening, the light emitting diode of 254 μm × 254 μm size is taken out from the designated area of 1 cm × 1 cm, and each chip operates by 5 chips. The light output at a current of 20 mA was measured, and the ratio of the average value of the light output of the light-emitting diode after roughening to the average value of the light output of the light-emitting diode before roughening was calculated.

また、以下の実験例、実施例および比較例において、エッチング処理に用いた薬剤の詳細は次の通りである。   In the following experimental examples, examples, and comparative examples, details of the chemicals used for the etching treatment are as follows.

<使用薬剤>
ヨウ素酸:0.1規定水溶液
硝酸:69重量%水溶液
フッ化水素酸:49重量%水溶液
塩酸:36重量%水溶液
酢酸:99.7重量%水溶液
クエン酸:1.0規定水溶液
酒石酸:1.0規定水溶液
<Drugs used>
Iodic acid: 0.1N aqueous solution Nitric acid: 69% aqueous solution Hydrofluoric acid: 49% aqueous solution Hydrochloric acid: 36% aqueous solution Acetic acid: 99.7% aqueous solution Citric acid: 1.0N aqueous solution Tartaric acid: 1.0 Normal aqueous solution

実施例1
発光ダイオードチップを、65℃の塩酸中に浸漬して15分間のエッチング処理を行った後(工程(2))、引き上げ、1.0N水酸化カリウム水溶液中に5分間浸漬した後、14L/minの流量の超純水で5分間洗浄することにより表面の残留酸成分を除去し(中和工程)、その後、ヨウ素酸、フッ化水素酸、硝酸及び酢酸を、HIO:HF:HNO:CHCOOH=1:720:389:3553(モル比)の割合で、合計濃度87.3重量%に混合した、温度25℃の混合液中に浸漬して2〜3分間のエッチング処理を行った(工程(1))。
得られた粗面化発光ダイオードについて、平均相対輝度を調べ、結果を表1に示した。
Example 1
The light-emitting diode chip was immersed in hydrochloric acid at 65 ° C. and etched for 15 minutes (step (2)), then pulled up, immersed in 1.0N aqueous potassium hydroxide solution for 5 minutes, and then 14 L / min. The remaining acid component on the surface is removed by washing with ultrapure water at a flow rate of 5 minutes (neutralization step), and then iodic acid, hydrofluoric acid, nitric acid and acetic acid are removed from HIO 3 : HF: HNO 3 : Etching is performed for 2 to 3 minutes by immersing in a mixed solution at a temperature of 25 ° C. mixed at a ratio of CH 3 COOH = 1: 720: 389: 3553 (molar ratio) to a total concentration of 87.3% by weight. (Step (1)).
The resulting roughened light emitting diode was examined for average relative luminance, and the results are shown in Table 1.

実施例2
実施例1において、工程(2)と工程(1)とを入れかえ、工程(1)、中和工程、工程(2)の順で行ったこと以外は、同様にしてエッチング処理し、得られた粗面化発光ダイオードについて、平均相対輝度を調べ、結果を表1に示した。
Example 2
In Example 1, the process (2) and the process (1) were replaced, and the etching process was performed in the same manner except that the process (1), the neutralization process, and the process (2) were performed in this order. The average relative luminance of the roughened light emitting diode was examined, and the results are shown in Table 1.

比較例1
実施例1の工程(2)のみを行ったこと以外は、同様にしてエッチング処理し、得られた粗面化発光ダイオードについて、平均相対輝度を調べ、結果を表1に示した。
Comparative Example 1
Etching was conducted in the same manner except that only step (2) of Example 1 was performed, and the average relative luminance of the obtained roughened light emitting diode was examined. The results are shown in Table 1.

比較例2
実施例1の工程(1)のみを行ったこと以外は、同様にしてエッチング処理し、得られた粗面化発光ダイオードについて、平均相対輝度を調べ、結果を表1に示した。
Comparative Example 2
Etching was conducted in the same manner except that only step (1) of Example 1 was performed, and the average relative luminance of the obtained roughened light emitting diode was examined. The results are shown in Table 1.

Figure 2006324507
Figure 2006324507

表1より、本発明によれば、光取り出し効率に優れ、高輝度の発光ダイオードが提供されることが分かる。   From Table 1, it can be seen that according to the present invention, a light-emitting diode having excellent light extraction efficiency and high luminance is provided.

なお、実施例1,2及び比較例1,2で得られた発光ダイオードのGaP基板表面とGaAsP発光層(窒素ドープGaAsP層)表面の走査電子顕微鏡写真を各々図2〜図5に示す。ただし、GaP基板表面については、GaP基板にGaAsP発光層を成膜した後では、走査電子顕微鏡観察を行い難いため、別途GaAsP発光層を形成していない(100)n型GaP基板を準備し、このGaP基板について、同様の手順でエッチング処理したものについて、その(100)面の走査電子顕微鏡写真を撮影したものである。このように、GaAsP発光層形成前のGaP基板であってもGaAsP発光層形成後のGaP基板と同等の粗面化処理を行えるため、発光ダイオードのGaP基板の粗面化の状況を模擬するものとして採用することができる。   Scanning electron micrographs of the surface of the GaP substrate and the surface of the GaAsP light emitting layer (nitrogen doped GaAsP layer) of the light emitting diodes obtained in Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIGS. However, with respect to the surface of the GaP substrate, since it is difficult to perform observation with a scanning electron microscope after forming the GaAsP light emitting layer on the GaP substrate, a (100) n-type GaP substrate without a separate GaAsP light emitting layer is prepared, A scanning electron micrograph of the (100) plane is taken for this GaP substrate etched in the same procedure. Thus, even a GaP substrate before the formation of the GaAsP light emitting layer can be subjected to a surface roughening process equivalent to that of the GaP substrate after the formation of the GaAsP light emitting layer, so that the surface roughness of the GaP substrate of the light emitting diode is simulated. Can be adopted as.

図2〜図5より次のことが明らかである。   The following is clear from FIGS.

工程(2)の塩酸によるエッチングのみを行った比較例1(図4)では、GaP基板は著しく粗面化されているが、CaAsP発光層の粗面化の程度は低い。また、工程(1)のヨウ素酸混酸液によるエッチングのみを行った比較例2(図5)では、GaAsP発光層の表面は粗面化されているが、GaP基板は粗面化されていない。   In Comparative Example 1 (FIG. 4) in which only etching with hydrochloric acid in the step (2) is performed, the GaP substrate is extremely roughened, but the degree of roughening of the CaAsP light emitting layer is low. Further, in Comparative Example 2 (FIG. 5) in which only the etching with the iodic acid mixed acid solution in the step (1) is performed, the surface of the GaAsP light emitting layer is roughened, but the GaP substrate is not roughened.

このように、工程(1)と(2)の一方のみを行った場合には、GaP基板とGaAsP発光層の両方を効率的に粗面化することはできないため、得られる発光ダイオードの平均相対輝度は低いものとなる。   As described above, when only one of the steps (1) and (2) is performed, both the GaP substrate and the GaAsP light emitting layer cannot be roughened efficiently. The brightness is low.

これに対して、工程(1)と(2)の両方を行った実施例1,2では、GaP基板もGaAsP発光層も良好な粗面に粗面化され、また、工程(1)と工程(2)の順には特に制約はなく、いずれを先に行っても良いことが分かる。   On the other hand, in Examples 1 and 2 in which both steps (1) and (2) were performed, both the GaP substrate and the GaAsP light emitting layer were roughened to a good rough surface. It will be understood that there is no particular restriction on the order of (2), and either may be performed first.

実施例3,4
実施例1,2において、1.0N水酸化カリウム水溶液による中和工程を行わず、5分間の水洗のみを行ったこと以外は同様にしてエッチングを行い、得られた粗面化発光ダイオードのGaP基板とGaAsP発光層の表面の走査電子顕微鏡写真をそれぞれ図6,7に示した。
Examples 3 and 4
Etching was performed in the same manner as in Examples 1 and 2 except that the neutralization step with 1.0N potassium hydroxide aqueous solution was not performed, and only water washing was performed for 5 minutes, and GaP of the obtained roughened light emitting diode was obtained. Scanning electron micrographs of the surface of the substrate and the GaAsP light emitting layer are shown in FIGS.

実施例5
実施例3において、水洗を15分間行ったこと以外は同様にしてエッチングを行い、得られた粗面化発光ダイオードのGaP基板とGaAsP発光層の表面の走査電子顕微鏡写真を図8に示した。
Example 5
Etching was performed in the same manner as in Example 3 except that washing was performed for 15 minutes, and scanning electron micrographs of the surface of the GaP substrate and the GaAsP light emitting layer of the obtained roughened light emitting diode are shown in FIG.

図6〜8より、工程(2)と工程(1)との間、又は、工程(1)と工程(2)との間に水洗を行うのみでは、GaP基板とGaAsP発光層とを共に粗面化することができるものの、GaAsP発光層表面の粗面化の程度が小さいこと、即ち、前段のエッチング液の酸が残留していると後段のエッチング液によるエッチングを阻害し、特に、工程(2)を先に行い、塩酸が残留した場合のエッチング阻害が大きいこと、従って、工程(1)と工程(2)、又は工程(2)と工程(1)との間には前段の残留酸成分を十分に除去することが好ましく、そのためには水洗よりもアルカリによる中和処理が好ましいことが分かる。   6-8, the GaP substrate and the GaAsP light emitting layer are both roughened only by washing with water between step (2) and step (1) or between step (1) and step (2). Although the surface of the GaAsP light emitting layer can be roughened, the surface of the GaAsP light-emitting layer has a small degree of roughening, that is, if the acid in the former etching solution remains, the etching with the latter etching solution is inhibited. 2) is performed first, and the etching inhibition when hydrochloric acid remains is large. Therefore, there is a residual acid in the previous stage between step (1) and step (2) or between step (2) and step (1). It is preferable to sufficiently remove the components, and for that purpose, it is understood that neutralization with an alkali is preferable to washing with water.

実験例1
本発明による粗面化の予備実験として、表2に示す組成及び温度のエッチング液中に発光ダイオードチップを1分間浸漬してエッチング処理を行い、粗面化の有無を調べ、結果を表2に示した。
Experimental example 1
As a preliminary experiment for roughening according to the present invention, a light emitting diode chip was immersed in an etching solution having the composition and temperature shown in Table 2 for 1 minute to perform etching treatment, and the presence or absence of roughening was investigated. Indicated.

Figure 2006324507
Figure 2006324507

表2より明らかなように、ヨウ素酸/フッ化水素酸/硝酸/塩酸の混酸系エッチング液であればGaAsP発光層を粗面化することができるが、GaP基板を粗面化することはできない(No.2)。この混酸系エッチングの硝酸を削除するとGaAsP発光層も粗面化できず(No.1)、また、フッ化水素酸を塩酸に変更しても、また、この混酸系エッチング液に更に塩酸を添加しても粗面化できず(No.3〜5)、また、酢酸よりも重いカルボン酸を用いても粗面化できない(No.6,7)。   As can be seen from Table 2, a mixed acid etching solution of iodic acid / hydrofluoric acid / nitric acid / hydrochloric acid can roughen the GaAsP light-emitting layer, but cannot roughen the GaP substrate. (No. 2). If the nitric acid in this mixed acid etching is removed, the GaAsP light emitting layer cannot be roughened (No. 1), and even if hydrofluoric acid is changed to hydrochloric acid, hydrochloric acid is further added to this mixed acid etching solution. However, it cannot be roughened (Nos. 3 to 5), and even if a carboxylic acid heavier than acetic acid is used, it cannot be roughened (Nos. 6 and 7).

従って、GaAsP発光層の粗面化にはヨウ素酸/フッ化水素酸/硝酸/塩酸の混酸系エッチング液が好ましいこと、また、この混酸系ではGaAsP発光層のみの粗面しかできず、また、他の組成のエッチング液でもGaAsP発光層とGaP基板との両方を粗面化することはできないことから、別途GaP基板の粗面化を行う必要があることが分かる。   Therefore, it is preferable to use a mixed acid etching solution of iodic acid / hydrofluoric acid / nitric acid / hydrochloric acid for roughening the GaAsP light emitting layer, and in this mixed acid system, only a rough surface of the GaAsP light emitting layer can be formed. Since it is impossible to roughen both the GaAsP light-emitting layer and the GaP substrate with other etching solutions, it can be seen that it is necessary to separately roughen the GaP substrate.

本発明の方法により得られた表面が粗面化された発光ダイオードの実施の形態を示す断面の模式図である。It is the schematic diagram of the cross section which shows embodiment of the light emitting diode by which the surface obtained by the method of this invention was roughened. 実施例1で得られた粗面化発光ダイオードの表面の走査電子顕微鏡写真であり、(a)図はGaAsP発光層表面、(b)図はGaP基板表面の写真である。It is a scanning electron micrograph of the surface of the roughened light emitting diode obtained in Example 1, (a) A figure is a GaAsP light emitting layer surface, (b) A figure is a photograph of the GaP substrate surface. 実施例2で得られた粗面化発光ダイオードの表面の走査電子顕微鏡写真であり、(a)図はGaAsP発光層表面、(b)図はGaP基板表面の写真である。It is a scanning electron micrograph of the surface of the roughened light emitting diode obtained in Example 2, (a) A figure is a GaAsP light emitting layer surface, (b) A figure is a photograph of the GaP substrate surface. 比較例1で得られた粗面化発光ダイオードの表面の走査電子顕微鏡写真であり、(a)図はGaAsP発光層表面、(b)図はGaP基板表面の写真である。It is a scanning electron micrograph of the surface of the roughened light emitting diode obtained by the comparative example 1, (a) A figure is a GaAsP light emitting layer surface, (b) A figure is a photograph of the GaP substrate surface. 比較例2で得られた粗面化発光ダイオードの表面の走査電子顕微鏡写真であり、(a)図はGaAsP発光層表面、(b)図はGaP基板表面の写真である。It is a scanning electron micrograph of the surface of the roughened light emitting diode obtained by the comparative example 2, (a) A figure is a GaAsP light emitting layer surface, (b) A figure is a photograph of the GaP substrate surface. 実施例3で得られた粗面化発光ダイオードの表面の走査電子顕微鏡写真であり、(a)図はGaAsP発光層表面、(b)図はGaP基板表面の写真である。It is a scanning electron micrograph of the surface of the roughening light emitting diode obtained in Example 3, (a) A figure is a GaAsP light emitting layer surface, (b) A figure is a photograph of the GaP substrate surface. 実施例4で得られた粗面化発光ダイオードの表面の走査電子顕微鏡写真であり、(a)図はGaAsP発光層表面、(b)図はGaP基板表面の写真である。It is a scanning electron micrograph of the surface of the roughened light emitting diode obtained in Example 4, (a) A figure is a GaAsP light emitting layer surface, (b) A figure is a photograph of the GaP substrate surface. 実施例5で得られた粗面化発光ダイオードの表面の走査電子顕微鏡写真であり、(a)図はGaAsP発光層表面、(b)図はGaP基板表面の写真である。It is a scanning electron micrograph of the surface of the roughened light emitting diode obtained in Example 5, (a) A figure is a GaAsP light emitting layer surface, (b) A figure is a photograph of the GaP substrate surface.

符号の説明Explanation of symbols

1 GaP基板
2 GaP層
3 GaAsP組成変化層
4 GaAsP組成一定層
5 n型窒素ドープGaAsP層
6 p型窒素ドープGaAsP層
7 p側電極
8 n側電極
10 pn接合
1 GaP substrate 2 GaP layer 3 GaAsP composition change layer 4 GaAsP constant composition layer 5 n-type nitrogen doped GaAsP layer 6 p-type nitrogen doped GaAsP layer 7 p-side electrode 8 n-side electrode 10 pn junction

Claims (3)

GaP基板上に、GaAs1−x(0<x<1)層と、内部にpn接合を有する窒素ドープGaAs1−x(0<x<1)層とが形成された発光ダイオードチップの表面を化学エッチングする工程を有する発光ダイオードの製造方法において、
該エッチング工程は、下記(1)および(2)の工程をこの順又は逆の順に含むことを特徴とする発光ダイオードの製造方法。
工程(1):ヨウ素酸、フッ化水素酸、硝酸および酢酸を含む混合液を用いてエッチングする工程
工程(2):(a)20℃以上の塩酸、(b)フッ化水素酸、および(c)フッ化水素酸と硫酸の混合液よりなる群から選ばれる1種又は2種以上の酸を用いてエッチングする工程
On a GaP substrate, GaAs x P 1-x (0 <x <1) layer and the nitrogen-doped GaAs x P 1-x (0 <x <1) layer and the formed light-emitting diode having a pn junction therein In a method of manufacturing a light emitting diode having a step of chemically etching the surface of a chip
The etching step includes the following steps (1) and (2) in this order or in the reverse order.
Step (1): Step of etching using a mixed solution containing iodic acid, hydrofluoric acid, nitric acid and acetic acid Step (2): (a) hydrochloric acid at 20 ° C. or higher, (b) hydrofluoric acid, and ( c) A step of etching using one or more acids selected from the group consisting of a mixture of hydrofluoric acid and sulfuric acid.
請求項1において、前記工程(1)および(2)、或いは工程(2)および(1)の間に、アルカリで処理する工程を含むことを特徴とする発光ダイオードの製造方法。   2. The method of manufacturing a light emitting diode according to claim 1, further comprising a step of treating with an alkali between the steps (1) and (2) or the steps (2) and (1). 請求項1又は2において、前記ヨウ素酸、フッ化水素酸、硝酸および酢酸を含む混合液が、ヨウ素酸1モルに対して、フッ化水素酸を1〜30000モル、硝酸を1〜20000モル、酢酸を50〜80000モル含むことを特徴とする発光ダイオードの製造方法。   The mixed liquid containing iodic acid, hydrofluoric acid, nitric acid and acetic acid according to claim 1 or 2, wherein 1 to 30000 mol of hydrofluoric acid and 1 to 20000 mol of nitric acid with respect to 1 mol of iodic acid, A method for producing a light-emitting diode, comprising 50 to 80,000 mol of acetic acid.
JP2005146876A 2005-05-19 2005-05-19 Manufacturing method of light emitting diode Expired - Fee Related JP4692072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146876A JP4692072B2 (en) 2005-05-19 2005-05-19 Manufacturing method of light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146876A JP4692072B2 (en) 2005-05-19 2005-05-19 Manufacturing method of light emitting diode

Publications (2)

Publication Number Publication Date
JP2006324507A true JP2006324507A (en) 2006-11-30
JP4692072B2 JP4692072B2 (en) 2011-06-01

Family

ID=37543958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146876A Expired - Fee Related JP4692072B2 (en) 2005-05-19 2005-05-19 Manufacturing method of light emitting diode

Country Status (1)

Country Link
JP (1) JP4692072B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295835A (en) * 2008-06-06 2009-12-17 Sanyo Electric Co Ltd Nitride semiconductor light-emitting element and method of manufacturing the same
JP2010514192A (en) * 2006-12-22 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ III-nitride light-emitting devices grown on templates for strain reduction
JP2010258039A (en) * 2009-04-21 2010-11-11 Shin Etsu Handotai Co Ltd Method of manufacturing light emitting element, and light emitting element
JP2014120695A (en) * 2012-12-19 2014-06-30 Rohm Co Ltd Semiconductor light-emitting element
WO2016079929A1 (en) * 2014-11-21 2016-05-26 信越半導体株式会社 Light emitting element and method for producing light emitting element
EP3008152A4 (en) * 2013-06-11 2017-02-22 Specmat Inc. Chemical compositions for semiconductor manufacturing processes and/or methods, apparatus made with same, and semiconductor structures with reduced potential induced degradation
US10619097B2 (en) 2014-06-30 2020-04-14 Specmat, Inc. Low-[HF] room temperature wet chemical growth (RTWCG) chemical formulation
CN111430512A (en) * 2020-03-31 2020-07-17 山西飞虹微纳米光电科技有限公司 Preparation method of coarsened AlGaAs base L ED and L ED

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354382A (en) * 1991-05-31 1992-12-08 Shin Etsu Handotai Co Ltd Surface treatment method for gap light emitting element chip
JPH09116191A (en) * 1995-10-09 1997-05-02 Temic Telefunken Microelectron Gmbh Manufacture of light emitting diode
JP2000196141A (en) * 1998-12-28 2000-07-14 Shin Etsu Handotai Co Ltd Light emitting diode and its manufacture
JP2001501365A (en) * 1996-08-13 2001-01-30 シーメンス アクチエンゲゼルシヤフト Method of manufacturing a semiconductor component for transmitting and / or receiving light
JP2002359399A (en) * 2001-05-31 2002-12-13 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
JP2003046256A (en) * 2001-05-25 2003-02-14 Ibiden Co Ltd Method for manufacturing substrate for packaging ic chip
JP2003063900A (en) * 2001-08-28 2003-03-05 Daido Steel Co Ltd Method for treating surface of single crystal semiconductor substrate
JP2004356279A (en) * 2003-05-28 2004-12-16 Hitachi Cable Ltd Method for manufacturing semiconductor light emitting element
JP2005317664A (en) * 2004-04-27 2005-11-10 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354382A (en) * 1991-05-31 1992-12-08 Shin Etsu Handotai Co Ltd Surface treatment method for gap light emitting element chip
JPH09116191A (en) * 1995-10-09 1997-05-02 Temic Telefunken Microelectron Gmbh Manufacture of light emitting diode
JP2001501365A (en) * 1996-08-13 2001-01-30 シーメンス アクチエンゲゼルシヤフト Method of manufacturing a semiconductor component for transmitting and / or receiving light
JP2000196141A (en) * 1998-12-28 2000-07-14 Shin Etsu Handotai Co Ltd Light emitting diode and its manufacture
JP2003046256A (en) * 2001-05-25 2003-02-14 Ibiden Co Ltd Method for manufacturing substrate for packaging ic chip
JP2002359399A (en) * 2001-05-31 2002-12-13 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
JP2003063900A (en) * 2001-08-28 2003-03-05 Daido Steel Co Ltd Method for treating surface of single crystal semiconductor substrate
JP2004356279A (en) * 2003-05-28 2004-12-16 Hitachi Cable Ltd Method for manufacturing semiconductor light emitting element
JP2005317664A (en) * 2004-04-27 2005-11-10 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514192A (en) * 2006-12-22 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ III-nitride light-emitting devices grown on templates for strain reduction
KR101505833B1 (en) * 2006-12-22 2015-03-25 필립스 루미리즈 라이팅 캄파니 엘엘씨 Iii-nitride light emitting diodes grown on templates to reduce strain
JP2009295835A (en) * 2008-06-06 2009-12-17 Sanyo Electric Co Ltd Nitride semiconductor light-emitting element and method of manufacturing the same
JP2010258039A (en) * 2009-04-21 2010-11-11 Shin Etsu Handotai Co Ltd Method of manufacturing light emitting element, and light emitting element
JP2014120695A (en) * 2012-12-19 2014-06-30 Rohm Co Ltd Semiconductor light-emitting element
EP3008152A4 (en) * 2013-06-11 2017-02-22 Specmat Inc. Chemical compositions for semiconductor manufacturing processes and/or methods, apparatus made with same, and semiconductor structures with reduced potential induced degradation
TWI626297B (en) * 2013-06-11 2018-06-11 斯貝克麥特公司 Chemical compositions for semiconductor manufacturing processes and/or methods, apparatus made with same, and semiconductor structures with reduced potential induced degradation
US10619097B2 (en) 2014-06-30 2020-04-14 Specmat, Inc. Low-[HF] room temperature wet chemical growth (RTWCG) chemical formulation
WO2016079929A1 (en) * 2014-11-21 2016-05-26 信越半導体株式会社 Light emitting element and method for producing light emitting element
JPWO2016079929A1 (en) * 2014-11-21 2017-06-15 信越半導体株式会社 Light emitting device and method for manufacturing light emitting device
CN111430512A (en) * 2020-03-31 2020-07-17 山西飞虹微纳米光电科技有限公司 Preparation method of coarsened AlGaAs base L ED and L ED

Also Published As

Publication number Publication date
JP4692072B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4692072B2 (en) Manufacturing method of light emitting diode
JP5370262B2 (en) Semiconductor light emitting chip and substrate processing method
WO2009139376A1 (en) Process for producing group iii nitride semiconductor light-emitting element, group iii nitride semiconductor light-emitting element, and lamp
JP2006005331A (en) Group iii nitride semiconductor crystal and manufacturing method of the same, group iii nitride semiconductor device and manufacturing method of the same, and light emitting device
US20070105260A1 (en) Nitride-based semiconductor device and production method thereof
JP2010118450A (en) Method of manufacturing semiconductor light-emitting element, and semiconductor light-emitting element
TW201216503A (en) Method for fabricating a vertical light-emitting diode with high brightness
JP2007088351A (en) Light emitting diode and epitaxial wafer therefor
JP2007042851A (en) Light emitting diode and its manufacturing method
JP2006339427A (en) Method for producing epitaxial wafer for nitride semiconductor light-emitting diode, epitaxial wafer for the nitride semiconductor light-emitting diode, and the nitride semiconductor light-emitting diode
CN102569543B (en) A kind of manufacture method of light-emitting diode chip for backlight unit
JP2007165596A (en) Nitride semiconductor light emitting element, method for manufacturing same, and lamp
US11355664B2 (en) Aluminum nitride substrate removal for ultraviolet light-emitting devices
JP2003347660A (en) Method of manufacturing nitride semiconductor device
JP2007165612A (en) Gallium-nitride compound semiconductor light-emitting element and manufacturing method thereof
JP4457691B2 (en) GaN-based semiconductor device manufacturing method
TW200945467A (en) Semiconductor device manufacturing method
US20120068196A1 (en) Semiconductor light-emitting device and a method of manufacture thereof
JP5287467B2 (en) Method for manufacturing light emitting device
JP2008282942A (en) Semiconductor element, and manufacturing method thereof
JPWO2009017017A1 (en) High brightness light emitting diode and method for manufacturing the same
JP2010199344A (en) Method for manufacturing light emitting element
JP2009033205A (en) Method for fabricating nitride semiconductor light-emitting device
JP2006186257A (en) Manufacturing method of semiconductor light emitting element, integrated semiconductor light emitting device, apparatus for displaying image, and lighting device
WO2019079239A1 (en) Electrochemical removal of aluminum nitride substrates for electronic and optoelectronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees