JP2006324147A - Fuel cell and method of manufacturing same - Google Patents

Fuel cell and method of manufacturing same Download PDF

Info

Publication number
JP2006324147A
JP2006324147A JP2005147235A JP2005147235A JP2006324147A JP 2006324147 A JP2006324147 A JP 2006324147A JP 2005147235 A JP2005147235 A JP 2005147235A JP 2005147235 A JP2005147235 A JP 2005147235A JP 2006324147 A JP2006324147 A JP 2006324147A
Authority
JP
Japan
Prior art keywords
catalyst layer
fuel cell
electrolyte membrane
catalyst
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005147235A
Other languages
Japanese (ja)
Other versions
JP4930821B2 (en
Inventor
Kazunori Shibata
和則 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005147235A priority Critical patent/JP4930821B2/en
Publication of JP2006324147A publication Critical patent/JP2006324147A/en
Application granted granted Critical
Publication of JP4930821B2 publication Critical patent/JP4930821B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent degradation of an end of a catalyst layer arranged at an electrolyte film of a fuel cell. <P>SOLUTION: The fuel cell 1, provided with an electrolyte film 11, and a catalyst layer 12 for an electrode arranged at each side of the catalyst film 11, is further provided with a non-catalyst layer 13 arranged at a non-catalyst-layer formed area of the electrolyte film 11. The non-catalyst layer 13 has a compression ratio nearly identical to that of the catalyst layer 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池及びその製造方法に関する。   The present invention relates to a fuel cell and a manufacturing method thereof.

燃料電池システムは、電解質膜と、この電解質膜の両面に設けられた電極用の触媒層と、を有する燃料電池を備えており、この燃料電池の一方の触媒層(アノード側電極)にアノードガスを、他方の触媒層(カソード側電極)にカソードガスを、各々供給して電気化学反応を起こすことにより発電を行っている。   The fuel cell system includes a fuel cell having an electrolyte membrane and electrode catalyst layers provided on both sides of the electrolyte membrane, and an anode gas is provided on one catalyst layer (anode side electrode) of the fuel cell. The cathode gas is supplied to the other catalyst layer (cathode side electrode) to cause an electrochemical reaction to generate electricity.

燃料電池システムの運転時には、燃料電池における電気化学反応に起因して水分が生成される。このように生成された水分(以下「生成水」という)には、過酸化水素等の劣化要因物質が含まれているため、生成水が燃料電池の電解質膜の触媒層形成領域から触媒層非形成領域(周縁部)に向けて移動して触媒層の端部近傍に溜まると、触媒層の端部が劣化するおそれがある。近年においては、かかる問題を解決する可能性のある技術として、電解質膜の周縁部にシリコンゴムやフッ素ゴムで構成したシール材を設ける技術が提案されている(例えば、特許文献1参照。)。
特開平7−220742号公報
During operation of the fuel cell system, moisture is generated due to an electrochemical reaction in the fuel cell. Since the moisture generated in this manner (hereinafter referred to as “product water”) contains deterioration-causing substances such as hydrogen peroxide, the produced water is not removed from the catalyst layer formation region of the electrolyte membrane of the fuel cell. When moving toward the formation region (peripheral edge) and collecting near the end of the catalyst layer, the end of the catalyst layer may be deteriorated. In recent years, as a technique that may solve such a problem, a technique has been proposed in which a sealing material made of silicon rubber or fluorine rubber is provided on the periphery of an electrolyte membrane (see, for example, Patent Document 1).
JP-A-7-220742

しかし、前記特許文献1に記載の技術で採用されているシール材の圧縮率は、触媒層の圧縮率と異なるため、燃料電池製作の際にこれらシール材及び触媒層に共通の圧縮力を作用させて締結すると触媒層の端部近傍に間隙が生じ、かかる間隙に生成水が溜まるおそれがある。従って、前記特許文献1に記載の技術を採用しても、触媒層の端部の劣化を防ぐには不充分であった。   However, since the compression rate of the sealing material employed in the technique described in Patent Document 1 is different from the compression rate of the catalyst layer, a common compressive force is applied to the sealing material and the catalyst layer when the fuel cell is manufactured. When fastened, a gap is formed in the vicinity of the end of the catalyst layer, and the generated water may accumulate in the gap. Therefore, even if the technique described in Patent Document 1 is adopted, it is insufficient to prevent deterioration of the end portion of the catalyst layer.

本発明は、燃料電池の電解質膜に設けられた触媒層の端部の劣化を防止することを目的とする。   An object of the present invention is to prevent deterioration of an end portion of a catalyst layer provided on an electrolyte membrane of a fuel cell.

前記目的を達成するため、本発明に係る燃料電池は、電解質膜と、この電解質膜の両面に設けられた電極用の触媒層と、を備える燃料電池であって、電解質膜の触媒層が設けられていない領域の少なくとも一部に設けられた非触媒層を備え、非触媒層は、触媒層の圧縮率と略同一の圧縮率を有するものである。   In order to achieve the above object, a fuel cell according to the present invention is a fuel cell comprising an electrolyte membrane and a catalyst layer for an electrode provided on both surfaces of the electrolyte membrane, wherein the catalyst layer of the electrolyte membrane is provided. A non-catalytic layer is provided in at least a part of the region that is not provided, and the non-catalytic layer has a compression rate substantially the same as that of the catalyst layer.

かかる構成によれば、電解質膜の触媒層非形成領域の少なくとも一部に、触媒層の圧縮率と略同一の圧縮率を有する非触媒層が設けられているので、これら触媒層及び非触媒層に共通の圧縮力を作用させた場合に、触媒層の端部近傍に間隙が生じるのを阻止することができる。従って、劣化要因物質を含む生成水が触媒層の端部近傍に溜まることを阻止することができるので、触媒層の端部の劣化を効果的に防止することができ、触媒層の耐久性を向上させることができる。   According to such a configuration, since the non-catalyst layer having a compression rate substantially the same as the compression rate of the catalyst layer is provided in at least a part of the catalyst layer non-formation region of the electrolyte membrane, these catalyst layer and non-catalyst layer When a common compressive force is applied to the catalyst layer, it is possible to prevent a gap from being generated near the end of the catalyst layer. Therefore, it is possible to prevent the produced water containing the deterioration factor substance from being collected near the end of the catalyst layer, so that deterioration of the end of the catalyst layer can be effectively prevented, and the durability of the catalyst layer can be improved. Can be improved.

なお、本発明において「圧縮率」とは、触媒層及び非触媒層に作用する圧縮力の変化と、かかる圧縮力変化に対応する触媒層及び非触媒層の圧縮力作用方向における寸法の変化と、の比を意味し、「触媒層の圧縮率と略同一の圧縮率を有する」とは、触媒層と同一の圧縮力を作用させた場合に略同一寸法だけ圧縮力作用方向に収縮することを意味する。   In the present invention, the “compression ratio” means a change in compressive force acting on the catalyst layer and the non-catalyst layer, and a change in dimension in the direction of the compressive force action of the catalyst layer and the non-catalyst layer corresponding to the change in the compressive force. The term “having approximately the same compressibility as the compressibility of the catalyst layer” means that when the same compressive force as that of the catalyst layer is applied, the contraction in the compressive force acting direction is approximately the same dimension. Means.

前記燃料電池において、非触媒層は、圧縮力が作用していない状態で触媒層と略同一の厚さを有することが好ましく、さらに、触媒層を構成する材料のうち触媒を除いた材料で構成されることが好ましい。また、電解質膜の触媒層が設けられていない領域に液滴吐出法により非触媒層用の溶液を塗布して固化させることにより非触媒層を形成することもできる。また、非触媒層は、撥水性材料又は不透水性材料を含むことが好ましい。   In the fuel cell, the non-catalyst layer preferably has substantially the same thickness as the catalyst layer in a state in which no compressive force is applied, and is further composed of a material excluding the catalyst among the materials constituting the catalyst layer. It is preferred that In addition, the non-catalyst layer can be formed by applying a solution for the non-catalyst layer to the region where the catalyst layer of the electrolyte membrane is not provided by a droplet discharge method and solidifying the solution. Moreover, it is preferable that a non-catalyst layer contains a water-repellent material or a water-impermeable material.

また、本発明に係る燃料電池の製造方法は、電解質膜と、この電解質膜の両面に設けられた触媒層と、電解質膜の触媒層が形成されていない領域の少なくとも一部に設けられ触媒層の圧縮率と略同一の圧縮率を有する非触媒層と、を備える燃料電池の製造方法であって、触媒層を構成する材料を電解質膜に塗布し乾燥させることにより触媒層を形成する工程と、触媒層を構成する材料のうち触媒を除いた材料を電解質膜の触媒層非形成領域に塗布し乾燥させることにより非触媒層を形成する工程と、を含むものである。   Further, the fuel cell manufacturing method according to the present invention includes an electrolyte membrane, a catalyst layer provided on both surfaces of the electrolyte membrane, and a catalyst layer provided in at least a part of a region where the catalyst layer of the electrolyte membrane is not formed. And a non-catalytic layer having a compression rate substantially the same as the compression rate of the fuel cell, the method comprising: forming a catalyst layer by applying a material constituting the catalyst layer to the electrolyte membrane and drying it; And a step of forming a non-catalyst layer by applying a material excluding the catalyst out of the material constituting the catalyst layer to the catalyst layer non-formation region of the electrolyte membrane and drying it.

かかる方法によれば、触媒層を構成する材料の塗布作業と、非触媒層を構成する材料(触媒層を構成する材料のうち触媒を除いた材料)の塗布作業と、を略同時に一挙に実施することができ、塗布後の乾燥も同時に実施することができるので、短時間で触媒層及び非触媒層を形成することができる。   According to such a method, the application work of the material constituting the catalyst layer and the application work of the material constituting the non-catalyst layer (the material excluding the catalyst among the materials constituting the catalyst layer) are performed substantially simultaneously. Since drying after coating can be performed at the same time, the catalyst layer and the non-catalyst layer can be formed in a short time.

本発明によれば、燃料電池の電解質膜に設けられた触媒層の端部の劣化を効果的に防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, deterioration of the edge part of the catalyst layer provided in the electrolyte membrane of the fuel cell can be prevented effectively.

以下、図面を参照して、本発明の実施形態に係る燃料電池について説明する。以下の実施形態に係る燃料電池は、車載に好適な固体高分子電解質型の燃料電池である。   Hereinafter, a fuel cell according to an embodiment of the present invention will be described with reference to the drawings. The fuel cell according to the following embodiments is a solid polymer electrolyte type fuel cell suitable for in-vehicle use.

まず、図1及び図2を用いて、本実施形態に係る燃料電池1の構成について説明する。燃料電池1は、複数の単電池10を積層したスタック本体2を備えており、スタック本体2の両端に位置する単電池10の外側に、出力端子付の集電板3、絶縁板4及びエンドプレート5がこの順に配置されて構成されている。各エンドプレート5の外側には図示していないテンションプレートが配置され、これらテンションプレートが各々エンドプレート5にボルト固定されることにより、単電池10の積層方向に所定の圧縮力が加えられるようになっている。   First, the configuration of the fuel cell 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. The fuel cell 1 includes a stack body 2 in which a plurality of unit cells 10 are stacked. A current collector plate 3 with an output terminal, an insulating plate 4 and an end are provided outside the unit cells 10 located at both ends of the stack body 2. The plates 5 are arranged in this order. A tension plate (not shown) is disposed outside each end plate 5, and these tension plates are bolted to the end plates 5 so that a predetermined compressive force is applied in the stacking direction of the cells 10. It has become.

次に、図2及び図3を用いて、単電池10の構成について説明する。単電池10は、図2及び図3に示すように、電解質膜11、電解質膜11の両面に設けられた電極用の触媒層12、電解質膜11の触媒層非形成領域11aに設けられたダミー層13、触媒層12の外側に配設される拡散層14、反応ガス流路が設けられたセパレータ15、拡散層14とセパレータ15との間をシールするシール部材16等から構成されている。   Next, the configuration of the unit cell 10 will be described with reference to FIGS. 2 and 3. As shown in FIGS. 2 and 3, the unit cell 10 includes an electrolyte membrane 11, an electrode catalyst layer 12 provided on both surfaces of the electrolyte membrane 11, and a dummy provided in a catalyst layer non-formation region 11 a of the electrolyte membrane 11. The layer 13, a diffusion layer 14 disposed outside the catalyst layer 12, a separator 15 provided with a reaction gas flow path, a seal member 16 that seals between the diffusion layer 14 and the separator 15, and the like.

電解質膜11は、固体高分子材料のイオン交換膜から構成されている。触媒層12は、白金やコバルト等の電極触媒が担持されたシート状成形体であって、アノード側電極とカソード側電極とを構成する。電解質膜11及び触媒層12は何れも平面視で矩形形状を呈しており、図2及び図3に示すように、電解質膜11は触媒層12よりも広い面積を有している。   The electrolyte membrane 11 is made of an ion exchange membrane made of a solid polymer material. The catalyst layer 12 is a sheet-like molded body on which an electrode catalyst such as platinum or cobalt is supported, and constitutes an anode side electrode and a cathode side electrode. Both the electrolyte membrane 11 and the catalyst layer 12 have a rectangular shape in plan view, and the electrolyte membrane 11 has a larger area than the catalyst layer 12 as shown in FIGS.

ダミー層13は、本発明における非触媒層であり、燃料電池製作の際の締結時に触媒層12の端部近傍に間隙が生じることを阻止して、触媒層12の端部を保護するものである。ダミー層13は、触媒層12を構成する材料のうち白金等の触媒を除いた材料で構成され、圧縮力が作用していない状態で触媒層12の厚さと略同一の厚さを有するとともに、触媒層12の圧縮率と略同一の圧縮率を有している。本実施形態においては、電解質膜11の触媒層非形成領域11aに液滴吐出法(インクジェット法)で所定の溶液を塗布して固化させることにより、ダミー層13を形成している。   The dummy layer 13 is a non-catalyst layer in the present invention, and prevents the gap from being generated near the end of the catalyst layer 12 during fastening in the manufacture of the fuel cell, thereby protecting the end of the catalyst layer 12. is there. The dummy layer 13 is made of a material excluding the catalyst such as platinum among the materials constituting the catalyst layer 12 and has a thickness substantially the same as the thickness of the catalyst layer 12 in a state where the compressive force is not acting. The compression rate of the catalyst layer 12 is substantially the same. In the present embodiment, the dummy layer 13 is formed by applying and solidifying a predetermined solution to the catalyst layer non-formation region 11a of the electrolyte membrane 11 by a droplet discharge method (inkjet method).

拡散層14は、カーボンペーパ等の多孔質の素材から構成され、燃料電池1の外部からセパレータ15を介して触媒層12側に供給された反応ガスを拡散させて触媒層12に流すものである。セパレータ15は、ガス不透過の導電性材料で構成され、その電極側の面には反応ガス流路15aが形成されている。また、セパレータ15には、反応ガスの入口及び出口となるマニホールド15bが設けられており、マニホールド15bは反応ガス流路15aに連通するようになっている。   The diffusion layer 14 is made of a porous material such as carbon paper, and diffuses the reaction gas supplied from the outside of the fuel cell 1 to the catalyst layer 12 via the separator 15 and flows to the catalyst layer 12. . The separator 15 is made of a gas-impermeable conductive material, and a reaction gas channel 15a is formed on the electrode side surface. The separator 15 is provided with a manifold 15b serving as an inlet and an outlet for the reaction gas, and the manifold 15b communicates with the reaction gas channel 15a.

次に、図3等を用いて、本実施形態に係る燃料電池1の製造方法について説明する。   Next, the manufacturing method of the fuel cell 1 according to the present embodiment will be described with reference to FIG.

まず、電解質膜11を準備する(電解質膜準備工程)。次いで、白金担持カーボン粉末とナフィオン溶液とを酢酸ブチル溶媒に分散させることにより、ペースト状の電極触媒スラリーを調製する。また、かかる電極触媒スラリーから触媒である白金を除いたペースト状の非触媒スラリーを調製する(スラリー調製工程)。   First, the electrolyte membrane 11 is prepared (electrolyte membrane preparation process). Next, a paste-like electrode catalyst slurry is prepared by dispersing platinum-supported carbon powder and Nafion solution in a butyl acetate solvent. Further, a paste-like non-catalyst slurry obtained by removing platinum as a catalyst from the electrode catalyst slurry is prepared (slurry preparation step).

次いで、電極触媒スラリーを電解質膜11の中央部に塗布するとともに、非触媒スラリーを電解質膜11の周縁部(触媒層非形成領域11a)に塗布し、これら電極触媒スラリー及び非触媒スラリーを乾燥させることにより、触媒層12及びダミー層を形成する(触媒層・ダミー層形成工程)。   Next, the electrode catalyst slurry is applied to the central portion of the electrolyte membrane 11, and the non-catalyst slurry is applied to the peripheral portion (catalyst layer non-formation region 11a) of the electrolyte membrane 11, and these electrode catalyst slurry and non-catalyst slurry are dried. Thus, the catalyst layer 12 and the dummy layer are formed (catalyst layer / dummy layer forming step).

続いて、図3に示すように、触媒層12及びダミー層13の上にカーボンペーパを接合して拡散層14を形成する(拡散層形成工程)。そして、これら電解質膜11、触媒層12、ダミー層13及び拡散層14からなる積層体を、シール部材16を介してセパレータ15で挟持することにより、単電池10を構成する。その後、単電池10を複数積層してスタック本体2を構成し、このスタック本体2の端部に集電板3、絶縁板4及びエンドプレート5を配置し、エンドプレート5にテンションプレートをボルト固定することにより、燃料電池1を得る。   Subsequently, as shown in FIG. 3, carbon paper is bonded onto the catalyst layer 12 and the dummy layer 13 to form the diffusion layer 14 (diffusion layer forming step). Then, the unit cell 10 is configured by sandwiching the laminate composed of the electrolyte membrane 11, the catalyst layer 12, the dummy layer 13, and the diffusion layer 14 with the separator 15 through the seal member 16. Thereafter, a stack body 2 is formed by stacking a plurality of single cells 10, a current collector plate 3, an insulating plate 4 and an end plate 5 are arranged at the end of the stack body 2, and a tension plate is bolted to the end plate 5. By doing so, the fuel cell 1 is obtained.

以上説明した実施形態に係る燃料電池1においては、電解質膜11の触媒層非形成領域11aに、触媒層12の圧縮率と略同一の圧縮率を有するダミー層13が設けられているので、これら触媒層12及びダミー層13に共通の圧縮力を作用させた場合に、触媒層12の端部近傍に間隙が生じるのを阻止することができる。従って、劣化要因物質を含む生成水が触媒層12の端部近傍に溜まることを阻止することができるので、触媒層12の端部の劣化を効果的に防止することができ、触媒層12の耐久性を向上させることができる。   In the fuel cell 1 according to the embodiment described above, since the dummy layer 13 having the compression rate substantially the same as the compression rate of the catalyst layer 12 is provided in the catalyst layer non-formation region 11a of the electrolyte membrane 11, these When a common compressive force is applied to the catalyst layer 12 and the dummy layer 13, it is possible to prevent a gap from being generated near the end of the catalyst layer 12. Therefore, it is possible to prevent the produced water containing the deterioration factor substance from being collected in the vicinity of the end portion of the catalyst layer 12, so that deterioration of the end portion of the catalyst layer 12 can be effectively prevented. Durability can be improved.

また、以上説明した実施形態に係る燃料電池1の製造方法においては、触媒層12を構成する材料の塗布作業と、ダミー層13を構成する材料(触媒層12を構成する材料のうち触媒を除いた材料)の塗布作業と、を共通の工程で略同時に一挙に実施することができ、塗布後の乾燥も同時に実施することができる。従って、短時間で触媒層12及びダミー層13を形成することができる。   Moreover, in the manufacturing method of the fuel cell 1 according to the embodiment described above, the application work of the material constituting the catalyst layer 12 and the material constituting the dummy layer 13 (the catalyst is excluded from the materials constituting the catalyst layer 12). The application operation of the material) can be performed at the same time in a common process, and drying after the application can also be performed at the same time. Therefore, the catalyst layer 12 and the dummy layer 13 can be formed in a short time.

なお、以上の実施形態においては、電極触媒スラリーから触媒(白金)を除いた非触媒スラリー(カーボン粉末とナフィオン溶液とを酢酸ブチル溶媒に分散させたもの)を用いてダミー層13を構成した例を示したが、ダミー層13を構成する非触媒スラリーに撥水性材料又は不透水性材料を含有させることもできる。   In the above embodiment, the dummy layer 13 is configured using a non-catalytic slurry (carbon powder and Nafion solution dispersed in a butyl acetate solvent) obtained by removing the catalyst (platinum) from the electrode catalyst slurry. However, the non-catalytic slurry constituting the dummy layer 13 may contain a water-repellent material or a water-impermeable material.

撥水性材料としては、PTFE(ポリテトラフルオロエチレン)、テトラフルオロエチレンーペルフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレンーヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、テトラフルオロエチレンーエチレン共重合体等を採用することができる。   Examples of water-repellent materials include PTFE (polytetrafluoroethylene), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, A tetrafluoroethylene-ethylene copolymer or the like can be employed.

本発明の第1実施形態に係る燃料電池を示す斜視図である。1 is a perspective view showing a fuel cell according to a first embodiment of the present invention. 図1に示した燃料電池を構成する単電池の分解斜視図である。It is a disassembled perspective view of the single cell which comprises the fuel cell shown in FIG. 図2に示した単電池を構成する電解質膜等を示す断面図である。It is sectional drawing which shows the electrolyte membrane etc. which comprise the single battery shown in FIG.

符号の説明Explanation of symbols

1…燃料電池、11…電解質膜、11a…触媒層非形成領域、12…触媒層、13…ダミー層(非触媒層)

DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 11 ... Electrolyte membrane, 11a ... Catalyst layer non-formation area | region, 12 ... Catalyst layer, 13 ... Dummy layer (non-catalyst layer)

Claims (8)

電解質膜と、この電解質膜の両面に設けられた電極用の触媒層と、を備える燃料電池であって、
前記電解質膜の前記触媒層が設けられていない領域の少なくとも一部に設けられた非触媒層を備え、
前記非触媒層は、前記触媒層の圧縮率と略同一の圧縮率を有する燃料電池。
A fuel cell comprising an electrolyte membrane and electrode catalyst layers provided on both surfaces of the electrolyte membrane,
A non-catalytic layer provided in at least a part of a region where the catalyst layer of the electrolyte membrane is not provided;
The non-catalyst layer is a fuel cell having a compression rate substantially the same as the compression rate of the catalyst layer.
前記非触媒層は、前記電解質膜の前記触媒層が設けられていない領域の全部に設けられた請求項1に記載の燃料電池。   2. The fuel cell according to claim 1, wherein the non-catalyst layer is provided in an entire region of the electrolyte membrane where the catalyst layer is not provided. 前記非触媒層は、圧縮力が作用していない状態で前記触媒層と略同一の厚さを有する請求項1又は2に記載の燃料電池。   The fuel cell according to claim 1, wherein the non-catalyst layer has substantially the same thickness as the catalyst layer in a state where no compressive force is applied. 前記非触媒層は、前記触媒層を構成する材料のうち触媒を除いた材料で構成されてなる請求項1から3の何れか一項に記載の燃料電池。   The fuel cell according to any one of claims 1 to 3, wherein the non-catalyst layer is made of a material excluding a catalyst among materials constituting the catalyst layer. 前記非触媒層は、前記電解質膜の前記触媒層が設けられていない領域に液滴吐出法により塗布された非触媒層用の溶液が固化したものである請求項1から4の何れか一項に記載の燃料電池。   5. The non-catalyst layer is obtained by solidifying a solution for a non-catalyst layer applied by a droplet discharge method in a region of the electrolyte membrane where the catalyst layer is not provided. 6. A fuel cell according to claim 1. 前記非触媒層は、撥水性材料を含む請求項1から5の何れか一項に記載の燃料電池。   The fuel cell according to any one of claims 1 to 5, wherein the non-catalytic layer includes a water-repellent material. 前記非触媒層は、不透水性材料を含む請求項1から5の何れか一項に記載の燃料電池。   The fuel cell according to any one of claims 1 to 5, wherein the non-catalytic layer includes an impermeable material. 電解質膜と、この電解質膜の両面に設けられた触媒層と、前記電解質膜の前記触媒層が形成されていない領域の少なくとも一部に設けられ、前記触媒層の圧縮率と略同一の圧縮率を有する非触媒層と、を備える燃料電池の製造方法であって、
前記触媒層を構成する材料を前記電解質膜に塗布し乾燥させることにより前記触媒層を形成する工程と、
前記触媒層を構成する材料のうち触媒を除いた材料を前記電解質膜の触媒層非形成領域に塗布し乾燥させることにより前記非触媒層を形成する工程と、
を含む燃料電池の製造方法。

An electrolyte membrane, a catalyst layer provided on both surfaces of the electrolyte membrane, and a compression rate substantially the same as the compression rate of the catalyst layer provided in at least a part of the region of the electrolyte membrane where the catalyst layer is not formed A non-catalytic layer comprising: a fuel cell manufacturing method comprising:
Forming the catalyst layer by applying a material constituting the catalyst layer to the electrolyte membrane and drying;
Forming the non-catalyst layer by applying a material excluding the catalyst from the material constituting the catalyst layer to the catalyst layer non-formation region of the electrolyte membrane and drying;
A method for producing a fuel cell comprising:

JP2005147235A 2005-05-19 2005-05-19 Manufacturing method of fuel cell Expired - Fee Related JP4930821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147235A JP4930821B2 (en) 2005-05-19 2005-05-19 Manufacturing method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147235A JP4930821B2 (en) 2005-05-19 2005-05-19 Manufacturing method of fuel cell

Publications (2)

Publication Number Publication Date
JP2006324147A true JP2006324147A (en) 2006-11-30
JP4930821B2 JP4930821B2 (en) 2012-05-16

Family

ID=37543665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147235A Expired - Fee Related JP4930821B2 (en) 2005-05-19 2005-05-19 Manufacturing method of fuel cell

Country Status (1)

Country Link
JP (1) JP4930821B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192575A (en) * 2007-02-08 2008-08-21 Toyota Motor Corp Power generation element, fuel cell, and manufacturing method of power generation element
JP2012226847A (en) * 2011-04-15 2012-11-15 Honda Motor Co Ltd Electrolyte membrane and electrode structure for fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110263A (en) * 1985-11-08 1987-05-21 Hitachi Ltd Fuel cell
JPH07201346A (en) * 1993-12-29 1995-08-04 Toyota Motor Corp Fuel cell and its solid high molecular electrolytic film and electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110263A (en) * 1985-11-08 1987-05-21 Hitachi Ltd Fuel cell
JPH07201346A (en) * 1993-12-29 1995-08-04 Toyota Motor Corp Fuel cell and its solid high molecular electrolytic film and electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192575A (en) * 2007-02-08 2008-08-21 Toyota Motor Corp Power generation element, fuel cell, and manufacturing method of power generation element
JP2012226847A (en) * 2011-04-15 2012-11-15 Honda Motor Co Ltd Electrolyte membrane and electrode structure for fuel cell

Also Published As

Publication number Publication date
JP4930821B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US7977005B2 (en) Edge-protected catalyst-coated membrane electrode assemblies
JP2011124238A (en) Edge-protected catalyst-coated membrane electrode assembly
JP2005209605A (en) Electrolyte membrane / electrode structure and fuel cell
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
WO2005109556A1 (en) Fuel cell and separator thereof
JP4810841B2 (en) Method and apparatus for producing electrolyte membrane-catalyst layer assembly for polymer electrolyte fuel cell
JP2008521167A (en) Storage or transportation of fuel cell components
JP4506796B2 (en) Electrolyte membrane-electrode assembly and method for producing electrolyte membrane
US20080182150A1 (en) Method of forming membrane electrode assemblies for electrochemical devices
WO2012153453A1 (en) Polymer electrolyte fuel cell and method for producing same
JP4930821B2 (en) Manufacturing method of fuel cell
JP2007087728A (en) Laminate, method of manufacturing it, as well as fuel cell
JP2006140061A (en) Electrode and membrane-electrode assembly of fuel cell, and fuel cell system
JP2005222720A (en) Fuel cell
JP5619841B2 (en) Method for producing polymer electrolyte fuel cell
JP5604404B2 (en) Fuel cell
CA2641032A1 (en) Method of forming membrane electrode assemblies for electrochemical devices
JP5710351B2 (en) Electrolyte membrane / electrode structure for fuel cells
JP5461370B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP6356436B2 (en) Electrolyte membrane / electrode structure
JP2007005245A (en) Fuel cell and its manufacturing method
US20230411645A1 (en) Method for producing a membrane-electrode assembly
JP7226350B2 (en) FUEL BATTERY CELL AND METHOD FOR MANUFACTURING FUEL BATTERY CELL
JP2004349013A (en) Fuel cell stack
JP2000228205A (en) High polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

R151 Written notification of patent or utility model registration

Ref document number: 4930821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees