JP2006322539A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2006322539A
JP2006322539A JP2005146532A JP2005146532A JP2006322539A JP 2006322539 A JP2006322539 A JP 2006322539A JP 2005146532 A JP2005146532 A JP 2005146532A JP 2005146532 A JP2005146532 A JP 2005146532A JP 2006322539 A JP2006322539 A JP 2006322539A
Authority
JP
Japan
Prior art keywords
sealing plate
bearing
tip
ring
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005146532A
Other languages
Japanese (ja)
Inventor
Hideki Koizumi
秀樹 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005146532A priority Critical patent/JP2006322539A/en
Publication of JP2006322539A publication Critical patent/JP2006322539A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • F16C33/7846Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with a gap between the annular disc and the inner race
    • F16C33/785Bearing shields made of sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • F16C33/782Details of the sealing or parts thereof, e.g. geometry, material of the sealing region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing having small bearing torque and excellent sealing property. <P>SOLUTION: This rolling bearing is provided with a pair of bearing rings (an inner ring 2, an outer ring 4) arranged opposingly so as to rotate relatively each other, a plurality of rolling bodies 6 installed between raceway grooves (between an inner ring raceway groove 2g and an outer ring raceway groove 4g) formed on opposing faces (an inner ring outside diameter face 2s, an outer ring inside diameter face 4s) of each bearing ring so as to roll freely, respectively, and an annular sealing plate 8 attached between opposing faces on both sides of each bearing ring. A base end 8e of the sealing plate is fitted and fixed in an annular recessed part M formed on the opposing face of the bearing ring on one side, its tip 8t is positioned in a non-contact condition to the opposing face of the bearing ring on the other side, and a part of it enters annular sealing grooves P formed on the opposing faces. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば電気掃除機や電動工具のモータ、自動車のラジエタ冷却用電動ファンのモータ、オルタネータ(発電機)などの回転駆動系を支持する転がり軸受に関する。   The present invention relates to a rolling bearing that supports a rotary drive system such as a motor for a vacuum cleaner or a power tool, a motor for an electric fan for cooling an automobile radiator, or an alternator (generator).

各種のモータや発電機などの回転駆動系の設置環境には、例えばブラシモータのブラシ磨耗により生じる磨耗粉や外部から浸入する塵埃が充満する場合があり、そのような環境下で使用される転がり軸受には、高いシール性が要求されている。ところで、磨耗粉や塵埃などの異物が軸受内部に侵入し、例えば内外輪の軌道面と転動体との間に入り込んだ状態で軸受を回転させると、当該異物による研磨作用が働いて軌道面や転動体表面を磨耗或いは摩損させる場合がある。また、浸入した異物が潤滑剤に混入すると、潤滑剤の劣化を早める場合もある。この場合、軌道面や転動体表面が磨耗或いは摩損した状態、或いは、潤滑剤が劣化した状態で軸受を回転し続けると、例えば異常音が発生したり、焼付きが生じることにより、軸受寿命を延命化させることが困難になってしまう。   The installation environment of rotary drive systems such as various motors and generators may be filled with, for example, wear powder generated by brush wear of brush motors or dust entering from the outside, and rolling used in such an environment. The bearing is required to have high sealing performance. By the way, if foreign matter such as abrasion powder or dust enters the inside of the bearing and rotates, for example, between the raceway surface of the inner and outer rings and the rolling element, the grinding action by the foreign matter works and the raceway surface or The surface of the rolling element may be worn or worn. In addition, when the foreign matter that has entered enters the lubricant, the deterioration of the lubricant may be accelerated. In this case, if the bearing surface continues to rotate with the raceway surface or the rolling element surface worn or worn, or the lubricant has deteriorated, for example, abnormal noise may be generated or seizure may occur. It becomes difficult to extend the life.

そこで、このような問題を解消するために、内外輪間に密封板を配設することで、異物が軸受内部に侵入するのを防止した転がり軸受が提案されている。例えば特許文献1に示された転がり軸受には、基端が外輪に固定され且つ先端が内輪に接触した接触ゴムシールが用いられており、例えば特許文献2に示された転がり軸受には、基端が外輪に固定され且つ先端が内輪に非接触となる非接触シールドが用いられている。   Therefore, in order to solve such a problem, a rolling bearing has been proposed in which a sealing plate is disposed between the inner and outer rings to prevent foreign matter from entering the bearing. For example, the rolling bearing shown in Patent Document 1 uses a contact rubber seal whose base end is fixed to the outer ring and whose tip is in contact with the inner ring. For example, the rolling bearing shown in Patent Document 2 has a base end. A non-contact shield is used in which is fixed to the outer ring and the tip is not in contact with the inner ring.

しかし、接触ゴムシールを用いた転がり軸受では、その回転時において接触ゴムシールの先端と内輪とが互いに摺接した状態で相対回転するため、軸受トルク(例えば、起動トルク、回転トルク)が大きくなる。この場合、転がり軸受の回転効率が低下するため、当該軸受を組込んだ装置の稼動効率も低下してしまう。一方、非接触シールドを用いた転がり軸受では、その回転時において非接触シールドの先端と内輪とが互いに摺接すること無く相対回転する。この場合、軸受トルクを小さくすることはできるが、非接触シールドの先端と内輪との間には所定の隙間が構成されているため、当該隙間から異物が混入し易くなっている。異物の浸入を防止する方法としては、隙間を小さくすることも考えられるが、シールド板及び基端取付部(例えば、板溝、環状凹部など)の加工精度を上げる必要があるため、高いコストを要する。
実開平7−10556号公報 特開2002−115724号公報
However, in a rolling bearing using a contact rubber seal, the bearing torque (for example, start-up torque, rotation torque) increases because the tip of the contact rubber seal and the inner ring rotate relative to each other during rotation. In this case, since the rotational efficiency of the rolling bearing is lowered, the operating efficiency of the apparatus incorporating the bearing is also lowered. On the other hand, in a rolling bearing using a non-contact shield, the tip of the non-contact shield and the inner ring rotate relative to each other without sliding contact with each other. In this case, although the bearing torque can be reduced, since a predetermined gap is formed between the tip of the non-contact shield and the inner ring, foreign matter is easily mixed from the gap. As a method of preventing the intrusion of foreign matter, it is conceivable to reduce the gap, but it is necessary to increase the processing accuracy of the shield plate and the base end mounting portion (for example, plate groove, annular recess, etc.), which increases the cost. Cost.
Japanese Utility Model Publication No. 7-10556 JP 2002-115724 A

本発明は、このような問題を解決するためになされており、その目的は、軸受トルクが小さく且つシール性に優れた転がり軸受を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a rolling bearing having a small bearing torque and excellent sealing performance.

このような目的を達成するために、本発明は、互いに相対回転可能に対向配置された一対の軌道輪と、各軌道輪の対向面にそれぞれ形成された軌道溝間に転動自在に組込まれた複数の転動体と、各軌道輪の両側の対向面間に取り付けられた環状の密封板とを備えた転がり軸受であって、密封板の基端は、いずれか一方の軌道輪の対向面に形成された環状凹部に嵌め込み固定されており、その先端は、他方の軌道輪の対向面に対して非接触状態に位置決めされていると共に、当該対向面に形成された環状シール溝内に一部入り込んでいる。   In order to achieve such an object, the present invention is incorporated in a freely rollable manner between a pair of raceways opposed to each other so as to be rotatable relative to each other and raceway grooves formed on opposite surfaces of each raceway. A rolling bearing provided with a plurality of rolling elements and an annular sealing plate attached between opposing surfaces on both sides of each bearing ring, wherein the base end of the sealing plate is the opposing surface of one of the bearing rings The tip of the bearing ring is positioned in a non-contact state with respect to the opposing surface of the other race ring, and is positioned in an annular seal groove formed on the opposing surface. I am in the department.

本発明において、密封板の先端の径寸法は、環状シール溝の径寸法に対して所定の寸法差に設定されている。この場合、密封板には、外方側に向って凸状に湾曲した凸状部が基端と先端との間の中央部分に構成されており、当該基端を環状凹部に嵌め込みながら凸状部を外方側から押圧して弾性変形させることにより、当該密封板は、その先端が環状シール溝内に一部入り込んだ状態で各軌道輪の対向面間に取り付けられる。なお、密封板の先端に複数のスリットを周方向に沿って所定間隔で形成しても良い。   In the present invention, the diameter dimension of the front end of the sealing plate is set to a predetermined difference from the diameter dimension of the annular seal groove. In this case, the sealing plate is formed with a convex portion curved in a convex shape toward the outer side at a central portion between the proximal end and the distal end, and the convex shape while fitting the proximal end into the annular recess. By pressing the part from the outer side and elastically deforming the sealing plate, the sealing plate is attached between the facing surfaces of the races in a state where the tip end partly enters the annular seal groove. A plurality of slits may be formed at a predetermined interval along the circumferential direction at the tip of the sealing plate.

本発明によれば、密封板の先端を軌道輪の対向面に形成された環状シール溝内に非接触状態で一部入り込ませることにより、軸受トルクが小さく且つシール性に優れた転がり軸受を実現することができる。   According to the present invention, a rolling bearing having a small bearing torque and excellent sealing performance is realized by partially inserting the front end of the sealing plate into an annular seal groove formed on the facing surface of the raceway in a non-contact state. can do.

以下、本発明の一実施の形態に係る転がり軸受について添付図面を参照して説明する。
図1(a)に示すように、本実施の形態の転がり軸受は、互いに相対回転可能に対向配置された一対の軌道輪(内輪2、外輪4)と、内外輪2,4の対向面(内輪外径面2s、外輪内径面4s)にそれぞれ形成された軌道溝間(内輪軌道溝2gと外輪軌道溝4gとの間)に転動自在に組込まれた複数の転動体6と、内外輪2,4の両側の対向面2s,4s間に取り付けられた環状の密封板8とを備えている。
Hereinafter, a rolling bearing according to an embodiment of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1 (a), the rolling bearing of the present embodiment includes a pair of race rings (inner ring 2 and outer ring 4) arranged so as to be relatively rotatable with each other, and opposed surfaces of inner and outer rings 2 and 4 ( A plurality of rolling elements 6 which are rotatably incorporated between raceway grooves (between the inner ring raceway groove 2g and the outer ring raceway groove 4g) respectively formed on the inner ring outer diameter surface 2s and the outer ring inner diameter surface 4s); 2 and 4 and an annular sealing plate 8 attached between the opposing surfaces 2s and 4s on both sides.

なお、当該軸受において、複数の転動体6は、保持器10で1つずつ回転可能に保持されているが、かかる保持器10の種類については特に限定しない。また、内外輪2,4の対向面2s,4sと密封板8で囲まれた領域には、潤滑剤(例えば、グリース、油)が封入されることになるが、当該潤滑剤について図面上では省略する。更に、転動体6としては、図面上では玉を例示しているが、ころであっても良い。   In addition, in the said bearing, although the several rolling element 6 is rotatably hold | maintained one by one with the holder | retainer 10, the kind of this holder | retainer 10 is not specifically limited. In addition, a lubricant (for example, grease or oil) is enclosed in a region surrounded by the opposing surfaces 2s and 4s of the inner and outer rings 2 and 4 and the sealing plate 8, but the lubricant is illustrated in the drawing. Omitted. Furthermore, as the rolling element 6, a ball is illustrated in the drawing, but a roller may be used.

この場合、密封板8の基端8eは、いずれか一方の軌道輪の対向面に形成された環状凹部Mに嵌め込み固定されており、その先端8tは、他方の軌道輪の対向面に対して非接触状態に位置決めされていると共に、当該対向面に形成された環状シール溝P内に一部入り込んでいる。本実施の形態では図面上、基端8eが外輪4(外輪内径面4s)の環状凹部Mに嵌め込み固定され且つ先端8tが内輪2(内輪外径面2s)の環状シール溝P内に一部入り込んだ密封板8を例示しているが、これに限定されることは無く、例えば図1(b),(c)に示すような密封板8でも良い。   In this case, the base end 8e of the sealing plate 8 is fitted and fixed to an annular recess M formed on the facing surface of one of the race rings, and the tip 8t thereof is opposed to the facing surface of the other race ring. While being positioned in a non-contact state, it partially enters an annular seal groove P formed on the facing surface. In the present embodiment, in the drawing, the base end 8e is fitted and fixed in the annular recess M of the outer ring 4 (outer ring inner diameter surface 4s), and the tip 8t is partially in the annular seal groove P of the inner ring 2 (inner ring outer diameter surface 2s). Although the enclosing sealing plate 8 is illustrated, the present invention is not limited to this. For example, the sealing plate 8 as shown in FIGS. 1B and 1C may be used.

図1(b)の構成例において、密封板8は、基端8eが内輪2(内輪外径面2s)の環状凹部Mに嵌め込み固定され且つ先端8tが外輪4(外輪内径面4s)の環状シール溝P内に一部入り込んで非接触状態に位置決めされている。また、図1(c)の構成例において、軸受一方側の密封板8は、基端8eが内輪2(内輪外径面2s)の環状凹部Mに嵌め込み固定され且つ先端8tが外輪4(外輪内径面4s)の環状シール溝P内に一部入り込んで非接触状態に位置決めされており、軸受他方側の密封板8は、基端8eが外輪4(外輪内径面4s)の環状凹部Mに嵌め込み固定され且つ先端8tが内輪2(内輪外径面2s)の環状シール溝P内に一部入り込んで非接触状態に位置決めされている。   In the configuration example of FIG. 1B, the sealing plate 8 has a base end 8e fitted and fixed in an annular recess M of the inner ring 2 (inner ring outer diameter surface 2s) and a tip 8t formed in an annular shape of the outer ring 4 (outer ring inner diameter surface 4s). The seal groove P is partially inserted into the non-contact state. In the configuration example of FIG. 1C, the sealing plate 8 on one side of the bearing has a base end 8e fitted and fixed in an annular recess M of the inner ring 2 (inner ring outer diameter surface 2s), and a distal end 8t having an outer ring 4 (outer ring). The seal plate 8 on the other side of the bearing is positioned in a non-contact state by partially entering the annular seal groove P of the inner diameter surface 4s), and the base end 8e of the seal plate 8 on the other side of the bearing is in the annular recess M of the outer ring 4 (outer ring inner diameter surface 4s). It is fitted and fixed, and the tip 8t partially enters the annular seal groove P of the inner ring 2 (inner ring outer diameter surface 2s) and is positioned in a non-contact state.

いずれの構成例でも、図1(d)に示すように、密封板8の先端8tの径寸法は、環状シール溝Pの径寸法に対して所定の寸法差Wに設定されている。具体的に説明すると、環状シール溝Pが内輪2(内輪外径面2s)に構成されている場合、密封板8の先端8tの内径寸法は、環状シール溝Pの外径部Rpの外径寸法よりも寸法差Wだけ小さく設定する。これに対して、環状シール溝Pが外輪4(外輪内径面4s)に構成されている場合、密封板8の先端8tの外径寸法は、環状シール溝Pの内径部Rpの内径寸法よりも寸法差Wだけ大きく設定する。   In any configuration example, as shown in FIG. 1 (d), the diameter dimension of the tip 8 t of the sealing plate 8 is set to a predetermined dimension difference W with respect to the diameter dimension of the annular seal groove P. More specifically, when the annular seal groove P is formed in the inner ring 2 (inner ring outer diameter surface 2s), the inner diameter of the tip 8t of the sealing plate 8 is the outer diameter of the outer diameter portion Rp of the annular seal groove P. The dimension difference W is set smaller than the dimension. On the other hand, when the annular seal groove P is formed in the outer ring 4 (outer ring inner diameter surface 4s), the outer diameter dimension of the tip 8t of the sealing plate 8 is larger than the inner diameter dimension of the inner diameter portion Rp of the annular seal groove P. Set a larger size difference W.

なお、環状の密封板8の先端8tの形状については、例えば図1(d)に示すように環状シール溝Pに向けて略ストレートに延出させる形状に限定されることは無く、先端8tが環状シール溝P内に一部入り込んだ形状を成していれば任意の形状を適用することが可能である。例えば図1(e)に示すように内方側(転動体6側)に折り返した形状、例えば図1(f)に示すように外方側(転動体6とは反対側)に向けて折り返した形状でも良い。また、密封板8の厚さや表面処理(メッキ処理)についても特に限定されることは無い。   Note that the shape of the tip 8t of the annular sealing plate 8 is not limited to a shape that extends substantially straight toward the annular seal groove P as shown in FIG. Any shape can be applied as long as the shape partially enters the annular seal groove P. For example, as shown in FIG. 1 (e), it is folded back toward the inner side (the rolling element 6 side), for example, as shown in FIG. 1 (f), it is folded toward the outer side (the opposite side to the rolling element 6). A different shape is also acceptable. Further, the thickness and surface treatment (plating treatment) of the sealing plate 8 are not particularly limited.

ここで、密封板8を内外輪2,4間に取り付ける方法例について、図2(a)〜(d)を参照して説明する。
図2(a)に示すように、内外輪2,4間に取り付ける前において、密封板8の先端8tの内径寸法は、環状シール溝Pの外径部Rpの外径寸法よりも寸法差Kだけ大きく設定されている。また、密封板8には、外方側に向って凸状に湾曲した凸状部8aが基端8eと先端8tとの間の中央部分に構成されている。
Here, an example of a method for attaching the sealing plate 8 between the inner and outer rings 2 and 4 will be described with reference to FIGS.
As shown in FIG. 2A, before mounting between the inner and outer rings 2 and 4, the inner diameter dimension of the tip 8t of the sealing plate 8 is smaller than the outer diameter dimension of the outer diameter portion Rp of the annular seal groove P. Only set larger. Further, the sealing plate 8 is formed with a convex portion 8a curved in a convex shape toward the outer side at a central portion between the base end 8e and the distal end 8t.

このような密封板8を用意した後、図2(b)に示すように、その基端8eを環状凹部Mに嵌め込みながら凸状部8aを外方側から、所定の圧力Fで軸方向(アキシアル方向)に押圧して塑性変形させる。この場合、凸状部8aを押圧する方法としては、既存の押圧治具を用いれば良いので、ここでは特に押圧治具についての限定はしない。   After preparing such a sealing plate 8, as shown in FIG. 2 (b), the base 8e is fitted into the annular recess M and the convex portion 8a is axially moved from the outer side with a predetermined pressure F ( Press in the axial direction) to cause plastic deformation. In this case, as a method of pressing the convex portion 8a, an existing pressing jig may be used. Therefore, the pressing jig is not particularly limited here.

そして、図2(c)に示すように密封板8の凸状部8aを更に押圧し続けると、密封板8は、押圧力Fの作用を受けて径方向に引き延ばされるため、その先端8tの内径寸法が小さくなる。この後、凸状部8aに作用させる押圧力Fを調整することにより、図2(d)に示すように、基端8eが外輪4(外輪内径面4s)の環状凹部Mに嵌め込み固定され且つ先端8tが内輪2(内輪外径面2s)の環状シール溝P内に一部入り込んだ密封板8を内外輪2,4間に取り付けることができる。   Then, as shown in FIG. 2 (c), when the convex portion 8a of the sealing plate 8 is further pressed, the sealing plate 8 is stretched in the radial direction under the action of the pressing force F. The inner diameter dimension of becomes smaller. Thereafter, by adjusting the pressing force F applied to the convex portion 8a, the base end 8e is fitted and fixed in the annular concave portion M of the outer ring 4 (outer ring inner diameter surface 4s) as shown in FIG. A sealing plate 8 whose tip 8t partially enters the annular seal groove P of the inner ring 2 (inner ring outer diameter surface 2s) can be attached between the inner and outer rings 2 and 4.

このような取付方法において、例えば図3に示すように、密封板8の先端8tに複数のスリット8mを周方向に沿って所定間隔で形成しておけば、密封板8を変形し易くできるため、取付性を向上させることができる。なお、スリット8mの個数や幅などは、密封板8の大きさや種類に応じて任意に設定されるため、ここでは特に限定しない。また、スリット8mを形成する代わりに、例えば密封板8の先端8tを周方向に沿って薄肉化して取り付け易くしても良い。   In such an attachment method, for example, as shown in FIG. 3, if a plurality of slits 8m are formed at predetermined intervals along the circumferential direction at the tip 8t of the sealing plate 8, the sealing plate 8 can be easily deformed. , The mounting property can be improved. The number and width of the slits 8m are not particularly limited here because they are arbitrarily set according to the size and type of the sealing plate 8. Instead of forming the slit 8m, for example, the tip 8t of the sealing plate 8 may be thinned along the circumferential direction to facilitate attachment.

以上、本実施の形態によれば、密封板8の先端8tを環状シール溝P内に一部入り込んだ構成としたことにより、先端8tと環状シール溝Pとの間に狭い隙間のラビリンスシールを構築することができる。このため、封入された潤滑剤が軸受回転中に外方に押し出された場合でも、その押し出された潤滑剤は、先端8tと環状シール溝Pとの隙間を埋めるように停留し、いわゆるグリースシールと称される状態となる。この結果、潤滑剤が軸受外部に漏洩するのを確実に防止することができる。なお、予め密封板8の先端8tと環状シール溝Pとの隙間に潤滑剤を充填しておくことでも同様の効果を得ることができる。   As described above, according to the present embodiment, since the tip 8t of the sealing plate 8 is partially inserted into the annular seal groove P, a labyrinth seal with a narrow gap between the tip 8t and the annular seal groove P is provided. Can be built. For this reason, even when the enclosed lubricant is pushed outward during rotation of the bearing, the pushed lubricant is retained so as to fill the gap between the tip 8t and the annular seal groove P, so-called grease seal. It becomes a state called. As a result, it is possible to reliably prevent the lubricant from leaking outside the bearing. The same effect can be obtained by previously filling the gap between the tip 8t of the sealing plate 8 and the annular seal groove P with a lubricant.

また、例えば軸受内部に対する異物(例えば、水、塵埃)の侵入性は、軸受内部と軸受外部との圧力差により変動する。この場合、異物の浸入を防止する方策としては、例えば密封板8の外部から内輪軌道溝2g(外輪軌道溝4g)までの距離を長くとるか、或いは内外の圧力差を小さくすれば良い。本実施の形態では、密封板8の先端8tを環状シール溝P内に一部入り込んだ構成としたことで、密封板8の外部から内輪軌道溝2g(外輪軌道溝4g)までの距離を長くとることができると同時に、内外の圧力変動を小さくすることができる。これにより、異物の浸入を確実に防止することができる。
更に、密封板8の先端8tは、環状シール溝Pに対して非接触状態に位置決めされているため、軸受回転に際し軸受トルク(例えば、起動トルク、回転トルク)が接触ゴムシールより大きくなることは無い。
In addition, for example, the penetration of foreign matter (for example, water and dust) into the bearing varies depending on the pressure difference between the inside of the bearing and the outside of the bearing. In this case, as a measure for preventing the intrusion of foreign matter, for example, the distance from the outside of the sealing plate 8 to the inner ring raceway groove 2g (outer ring raceway groove 4g) may be increased, or the pressure difference between the inside and the outside may be reduced. In the present embodiment, since the tip 8t of the sealing plate 8 is partially inserted into the annular seal groove P, the distance from the outside of the sealing plate 8 to the inner ring raceway groove 2g (outer ring raceway groove 4g) is increased. At the same time, the pressure fluctuation inside and outside can be reduced. Thereby, invasion of foreign matter can be reliably prevented.
Further, since the tip 8t of the sealing plate 8 is positioned in a non-contact state with respect to the annular seal groove P, the bearing torque (for example, starting torque, rotational torque) does not become larger than the contact rubber seal when the bearing rotates. .

ここで、本実施の形態の転がり軸受と従来の軸受とのシール性の比較試験について説明する。
この比較試験において、従来の軸受として例えば図4(a),(b)に示すような2つの軸受(比較例1,2)を用意した。同図(a)の比較例1において、内輪2(内輪外径面2s)には、略フラットな環状シール溝Pが形成されており、密封板8の先端8tは、その環状シール溝Pの外径部Rpの外径寸法よりも寸法差Wだけ大きく設定されている(図4(c))。また、同図(b)の比較例2において、内輪2(内輪外径面2s)には、深堀された環状シール溝Pが形成されており、密封板8の先端8tは、その環状シール溝Pの外径部Rpの外径寸法よりも寸法差Wだけ大きく設定されている(図4(c))。この場合、比較例1,2のいずれの軸受も密封板8の先端8tは、環状シール溝Pに対して非接触状態に位置決めされている。
Here, a comparative test of the sealing performance between the rolling bearing of the present embodiment and the conventional bearing will be described.
In this comparative test, for example, two bearings (Comparative Examples 1 and 2) as shown in FIGS. 4A and 4B were prepared as conventional bearings. In Comparative Example 1 in FIG. 2A, a substantially flat annular seal groove P is formed on the inner ring 2 (inner ring outer diameter surface 2s), and the tip 8t of the sealing plate 8 is formed on the annular seal groove P. The dimension difference W is set larger than the outer diameter dimension of the outer diameter portion Rp (FIG. 4C). Further, in Comparative Example 2 in FIG. 5B, the inner ring 2 (inner ring outer diameter surface 2s) is formed with a deepened annular seal groove P, and the tip 8t of the sealing plate 8 is formed in the annular seal groove. It is set larger than the outer diameter dimension of the outer diameter portion Rp of P by a dimension difference W (FIG. 4C). In this case, in both the bearings of Comparative Examples 1 and 2, the tip 8t of the sealing plate 8 is positioned in a non-contact state with respect to the annular seal groove P.

一方、本実施の形態の転がり軸受としては、例えば図1(a)に示された軸受(実施例1)を用意した。そして、密封板8以外の構成については、三者(比較例1,2、実施例1)とも同一に設定した。例えば軸受外径を22mm、軸受内径を8mm、軸受幅を7mmに統一し、保持器10については樹脂製のものを選択した。また、潤滑剤としては、40℃における動粘度が48mm/s、混和ちょう度が230となるように、添加剤を適宜使用して増ちょう剤と基油とを調合した。そして、かかる潤滑剤を軸受空間容積の30容積%となるように軸受内部に封入した。この場合、増ちょう剤としては、例えばウレア系、リチウム石鹸、ナトリウム石鹸、ベントナイト、PTFE、カーボンブラックなどを選択することができ、基油としては、例えば合成炭化水素油、エステル油、エーテル油、フッ素油、シリコーン油、鉱油などを選択することができる。 On the other hand, as the rolling bearing of the present embodiment, for example, a bearing (Example 1) shown in FIG. The configuration other than the sealing plate 8 was set the same for the three parties (Comparative Examples 1 and 2 and Example 1). For example, the outer diameter of the bearing is 22 mm, the inner diameter of the bearing is 8 mm, the bearing width is 7 mm, and the cage 10 is made of resin. Further, as the lubricant, a thickener and a base oil were prepared by appropriately using additives so that the kinematic viscosity at 40 ° C. was 48 mm 2 / s and the penetration degree was 230. Then, the lubricant was sealed inside the bearing so as to be 30% by volume of the bearing space volume. In this case, as the thickener, for example, urea, lithium soap, sodium soap, bentonite, PTFE, carbon black and the like can be selected, and as the base oil, for example, synthetic hydrocarbon oil, ester oil, ether oil, Fluorine oil, silicone oil, mineral oil, etc. can be selected.

図6には、シール性の比較試験に用いた試験装置の構成例が示されている。
当該試験装置は、試験本体12内に中空のハウジング14が介在されており、ハウジング14内には回転軸16が延出配置されている。また、ハウジング14と回転軸16との間には、比較試験に用いる軸受18(比較例1,2、実施例1)をセットできるようになっている。具体的には、外輪4をハウジング14に内嵌させると共に、内輪2を回転軸16に外嵌した後、スリーブ20により内輪2を軸方向に押圧することで、軸受18に所定の予圧を付加した状態で、内輪2を回転軸16に固定することができる。また、ハウジング14内には、ダスト貯留部22が形成されている。
FIG. 6 shows an example of the configuration of a test apparatus used for the sealability comparison test.
In the test apparatus, a hollow housing 14 is interposed in a test main body 12, and a rotating shaft 16 extends and is disposed in the housing 14. Further, a bearing 18 (Comparative Examples 1 and 2 and Example 1) used for a comparative test can be set between the housing 14 and the rotating shaft 16. Specifically, the outer ring 4 is fitted in the housing 14, and the inner ring 2 is fitted on the rotary shaft 16, and then the inner ring 2 is pressed in the axial direction by the sleeve 20, thereby applying a predetermined preload to the bearing 18. In this state, the inner ring 2 can be fixed to the rotating shaft 16. A dust reservoir 22 is formed in the housing 14.

本試験では、ダスト貯留部22に0.1gのけい砂(直径:6.6〜8.6μm)を封入した。けい砂の化学成分には、97%以上のSiOに加えて、3%以下のFe、Al、TiO、MgOが含まれている。また、けい砂の粒子密度は、2.6〜2.7g/cmの値である。 In this test, 0.1 g of silica sand (diameter: 6.6 to 8.6 μm) was sealed in the dust reservoir 22. In addition to 97% or more of SiO 2 , the chemical composition of silica sand contains 3% or less of Fe 2 O 3 , Al 2 O 3 , TiO 2 , and MgO. Moreover, the particle density of silica sand is a value of 2.6 to 2.7 g / cm 3 .

このような構成において、空気供給部24内を0.15MPaに加圧し、空気取入口26からダスト貯留部22に空気を噴出させる。このとき、ダスト貯留部22に導入された空気は、ハウジング14と回転軸16との間にセットされた軸受18を経由してハウジング開口14aから外部に流出する。このとき、加熱用ヒータ28でハウジング14を加熱することで、ダスト貯留部22内を80℃に設定した。そして、回転軸16を40,000rpmで回転させることで、16時間毎の音響上昇値を比較し、比較例1,2と実施例1とのシール性を評価した。なお、シール性評価時における軸受18のアキシアル荷重(Fa)は49Nに設定した。また、本試験の前後に行う軸受音響測定値は、グリースノイズテスター(NSK テクニカルジャーナル667号、1999年刊に記載)を用いた。この場合の測定条件は、1800rpm、Fa=29Nとし、ハイバンド(HB)の値をデータとして採用した。   In such a configuration, the inside of the air supply unit 24 is pressurized to 0.15 MPa, and air is ejected from the air intake 26 to the dust storage unit 22. At this time, the air introduced into the dust storage part 22 flows out from the housing opening 14 a via the bearing 18 set between the housing 14 and the rotating shaft 16. At this time, the inside of the dust reservoir 22 was set to 80 ° C. by heating the housing 14 with the heater 28 for heating. Then, by rotating the rotating shaft 16 at 40,000 rpm, the sound increase values every 16 hours were compared, and the sealing properties of Comparative Examples 1 and 2 and Example 1 were evaluated. In addition, the axial load (Fa) of the bearing 18 at the time of sealing performance evaluation was set to 49N. In addition, a grease noise tester (NSK Technical Journal No.667, published in 1999) was used as a bearing acoustic measurement value before and after this test. The measurement conditions in this case were 1800 rpm, Fa = 29N, and a high band (HB) value was adopted as data.

本試験において、ダストが軸受18内部に侵入し、内外輪2,4と転動体との間に入り込むと、軌道溝にダストの噛む込みによる損傷が発生し、それにより音響(アンデロン)が大きくなる。従って、音響上昇値が小さいほどシール性が良好であると評価できる。図5には、本試験における比較例1,2と実施例1との音響上昇値が示されており、かかる評価結果から明らかなように、実施例1の軸受では、比較例1,2に比べて音響上昇値が小さくなっている。これにより、本実施の形態に係る転がり軸受は、シール性に優れていることが評価できる。   In this test, if dust enters the bearing 18 and enters between the inner and outer rings 2 and 4 and the rolling elements, damage to the raceway due to the biting of dust occurs, thereby increasing the sound (Anderon). . Therefore, it can be evaluated that the smaller the acoustic increase value, the better the sealing performance. FIG. 5 shows the acoustic rise values of Comparative Examples 1 and 2 and Example 1 in this test. As is apparent from the evaluation results, the bearings of Example 1 are compared with Comparative Examples 1 and 2. Compared with the acoustic increase value. Thereby, it can be evaluated that the rolling bearing according to the present embodiment is excellent in sealing performance.

(a)は、本発明の一実施の形態に係る転がり軸受の構成例を示す断面図、(b)は、転がり軸受の他の構成例を示す断面図、(c)は、転がり軸受の他の構成例を示す断面図、(d)は、転がり軸受に取り付けられた密封板の先端部分の構成例を示す部分断面図、(e)は、密封板の先端部分の他の構成例を示す部分断面図、(f)は、密封板の先端部分の他の構成例を示す部分断面図。(a) is sectional drawing which shows the structural example of the rolling bearing which concerns on one embodiment of this invention, (b) is sectional drawing which shows the other structural example of a rolling bearing, (c) is other than rolling bearing. FIG. 4D is a partial cross-sectional view illustrating a configuration example of the tip portion of the sealing plate attached to the rolling bearing, and FIG. 5E illustrates another configuration example of the tip portion of the sealing plate. Partial sectional view, (f) is a partial sectional view showing another configuration example of the tip portion of the sealing plate. (a)〜(d)は、密封板の取付方法を説明するための断面図。(a)-(d) is sectional drawing for demonstrating the attachment method of a sealing board. 密封板の先端にスリットを形成した構成例を示す平面図。The top view which shows the structural example which formed the slit in the front-end | tip of a sealing board. (a)は、シール性比較試験に用いる比較例1に係る軸受の部分断面図、(b)は、シール性比較試験に用いる比較例2に係る軸受の部分断面図、(c)は、比較例1の軸受に用いた密封板の先端部分の拡大断面図、(d)は、比較例2の軸受に用いた密封板の先端部分の拡大断面図。(a) is a partial cross-sectional view of a bearing according to Comparative Example 1 used in the sealability comparison test, (b) is a partial cross-sectional view of a bearing according to Comparative Example 2 used in the sealability comparison test, and (c) is a comparison. The expanded sectional view of the front-end | tip part of the sealing board used for the bearing of Example 1, (d) is an expanded sectional view of the front-end | tip part of the sealing board used for the bearing of the comparative example 2. FIG. シール性比較試験の結果を示す図。The figure which shows the result of a sealing property comparison test. シール性比較試験に用いる試験機の部分断面図。The fragmentary sectional view of the testing machine used for a sealing property comparison test.

符号の説明Explanation of symbols

2 内輪
2s 内輪外径面
4 外輪
4s 外輪内径面
6 転動体
8 密封板
8e 密封板の基端
8t 密封板の先端
10 保持器
M 環状凹部
P 環状シール溝
2 Inner ring 2s Inner ring outer diameter surface 4 Outer ring 4s Outer ring inner diameter surface 6 Rolling element 8 Sealing plate 8e Sealing plate base 8t Sealing plate tip 10 Cage M Annular recess P Annular seal groove

Claims (4)

互いに相対回転可能に対向配置された一対の軌道輪と、各軌道輪の対向面にそれぞれ形成された軌道溝間に転動自在に組込まれた複数の転動体と、各軌道輪の両側の対向面間に取り付けられた環状の密封板とを備えた転がり軸受であって、
密封板の基端は、いずれか一方の軌道輪の対向面に形成された環状凹部に嵌め込み固定されており、その先端は、他方の軌道輪の対向面に対して非接触状態に位置決めされていると共に、当該対向面に形成された環状シール溝内に一部入り込んでいることを特徴とする転がり軸受。
A pair of bearing rings arranged so as to be capable of relative rotation with each other, a plurality of rolling elements incorporated in a freely rolling manner between raceway grooves formed on opposite surfaces of each bearing ring, and opposite sides of each bearing ring A rolling bearing with an annular sealing plate attached between the faces,
The base end of the sealing plate is fitted and fixed in an annular recess formed on the facing surface of one of the race rings, and the tip thereof is positioned in a non-contact state with respect to the facing surface of the other race ring. A rolling bearing characterized in that it partially enters an annular seal groove formed on the facing surface.
密封板の先端の径寸法は、環状シール溝の径寸法に対して所定の寸法差に設定されていることを特徴とする請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein a diameter dimension of a tip of the sealing plate is set to a predetermined dimension difference with respect to a diameter dimension of the annular seal groove. 密封板には、外方側に向って凸状に湾曲した凸状部が基端と先端との間の中央部分に構成されており、当該基端を環状凹部に嵌め込みながら凸状部を外方側から押圧して弾性変形させることにより、当該密封板は、その先端が環状シール溝内に一部入り込んだ状態で各軌道輪の対向面間に取り付けられることを特徴とする請求項1又は2に記載の転がり軸受。   The sealing plate is formed with a convex portion curved in a convex shape toward the outer side at the central portion between the base end and the tip end, and the convex portion is removed while fitting the base end into the annular recess. 2. The sealing plate is attached between opposing surfaces of each raceway ring in a state in which the tip of the sealing plate partially enters the annular seal groove by being elastically deformed by being pressed from the side. 2. A rolling bearing according to 2. 密封板には、その先端に複数のスリットが周方向に沿って所定間隔で形成されていることを特徴とする請求項1〜3のいずれかに記載の転がり軸受。
The rolling bearing according to any one of claims 1 to 3, wherein the sealing plate has a plurality of slits formed at the tip thereof at predetermined intervals along the circumferential direction.
JP2005146532A 2005-05-19 2005-05-19 Rolling bearing Pending JP2006322539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146532A JP2006322539A (en) 2005-05-19 2005-05-19 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146532A JP2006322539A (en) 2005-05-19 2005-05-19 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2006322539A true JP2006322539A (en) 2006-11-30

Family

ID=37542375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146532A Pending JP2006322539A (en) 2005-05-19 2005-05-19 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2006322539A (en)

Similar Documents

Publication Publication Date Title
US6234489B1 (en) Bearing isolator
JP2009133483A (en) Ball bearing
WO2014192724A1 (en) Anti-friction bearing
JP5300420B2 (en) Sealed bearing
CN109690101B (en) Bearing with seal
JP2003287040A (en) Rolling bearing with sealing seal
JP2002369474A (en) Rolling bearing equipment for retaining impeller shaft
JP5455334B2 (en) Sealed bearing
JP2004019722A (en) Roller bearing
JP2008025685A (en) Rolling bearing
JP2006266496A (en) Rolling bearing and bearing device
JP5371230B2 (en) Alternator bearing
JP2016023669A (en) Hermetically sealed rolling bearing
JP2001280347A (en) Ball bearing
JP2010261545A (en) Bearing with seal
JP4017827B2 (en) Ball bearing
JP2008025668A (en) Sealing device
JP2004218789A (en) Sealed rolling bearing
JP2006322539A (en) Rolling bearing
JP2000052986A (en) Bearing device for rolling stock
JP2008121830A (en) Bearing for alternator
JP2009197894A (en) Rolling bearing and motor
JP2009085277A (en) Sealing device for rolling bearing and grease-lubricated rolling bearing
JP2006322600A (en) Sealing type rolling bearing
JP2007056939A (en) Bearing for high-speed motor