JP2006322027A - Fuse element - Google Patents

Fuse element Download PDF

Info

Publication number
JP2006322027A
JP2006322027A JP2005145009A JP2005145009A JP2006322027A JP 2006322027 A JP2006322027 A JP 2006322027A JP 2005145009 A JP2005145009 A JP 2005145009A JP 2005145009 A JP2005145009 A JP 2005145009A JP 2006322027 A JP2006322027 A JP 2006322027A
Authority
JP
Japan
Prior art keywords
fuse element
fuse
temperature
alloy
thin wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005145009A
Other languages
Japanese (ja)
Other versions
JP4818641B2 (en
Inventor
Tomokuni Mitsui
朋晋 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2005145009A priority Critical patent/JP4818641B2/en
Publication of JP2006322027A publication Critical patent/JP2006322027A/en
Application granted granted Critical
Publication of JP4818641B2 publication Critical patent/JP4818641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuse element made of Zn-Al-containing alloy and built into a tantalum capacitor etc. by which fusion temperature of fuse can be sufficiently lowered and safety against soldering mounting using a lead-free soft solder can be maintained. <P>SOLUTION: An alloy having a composition which comprises Zn, Al and Ge and in which respective contents of Al and Ge are made to 0.5 to 15%, respectively, total amount of Al and Ge are 5 to 20% and the balance is composed of Zn is worked into a fine wire. The respective contents of Al and Ge are made to 0.5 to 1.5%, respectively, in order to regulate the ratio between melting heat quantity at 260 to 370°C (H<SB>(260 to 370°C)</SB>) and total melting heat quantity (ΣH), H<SB>(260 to 370°C)</SB>/ΣH, to ≥0.2 to make the fusion temperature of the fuse element markedly lower than the fusion temperature of a Zn-Al fuse element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒュ−ズ素子に関し、コンデンサやトランジスタ等の電子部品に内蔵して使用するヒュ−ズ素子として有用なものである。   The present invention relates to a fuse element, and is useful as a fuse element used in an electronic component such as a capacitor or a transistor.

電子部品においては、電流ヒュ−ズ素子を部品本体に接続し、これらを樹脂モ−ルド等により封止することがある。
例えば、タンタルコンデンサにおいては、万一の極性誤装着による過電流を未然に防止するために、コンデンサ素子にヒュ−ズ素子を接続し、これらを樹脂でモ−ルドしている。 また、パワ−トランジスタにヒュ−ズ素子を接続し、これらを樹脂で封止することも知られている。
In an electronic component, the current fuse element is connected to the component main body, and these may be sealed with a resin mold or the like.
For example, in a tantalum capacitor, a fuse element is connected to a capacitor element and is molded with a resin in order to prevent overcurrent due to a wrong polarity mounting. It is also known to connect fuse elements to power transistors and seal them with resin.

これらのヒュ−ズ内蔵電子部品においては、ヒュ−ズ溶断時のヒュ−ズ素子の発熱温度で加熱される。
而して、その電子部品本体やモ−ルド樹脂の炭化・燃焼を防止するために、その発熱温度を所定の発煙温度以下に抑える必要がある。
そこで、電子部品が発煙するまえにヒューズ素子の溶断で通電を遮断するために、ヒューズ素子の溶断温度を、ヒューズ素子が取付けられる電子部品、例えばタンタルコンデンサやパワートランジスタの発煙温度よりも充分に低くすることが要請される。
These electronic components with a built-in fuse are heated at the heat generation temperature of the fuse element when the fuse is blown.
Thus, in order to prevent carbonization and combustion of the electronic component body and the mold resin, it is necessary to keep the heat generation temperature below a predetermined smoke generation temperature.
Therefore, in order to cut off the energization by fusing the fuse element before the electronic component smokes, the fusing temperature of the fuse element is sufficiently lower than the fume temperature of the electronic component to which the fuse element is attached, such as a tantalum capacitor or a power transistor. It is requested to do.

前記ヒューズ素子付き電子部品は、通常リフロ−法またはフロ−法により、回路基板に実装されるから、ヒューズ素子はこのはんだ付け温度に耐え得るものでなければならず、前記ヒューズ素子の溶断温度をはんだ付け温度よりも高くする必要がある。   Since the electronic component with a fuse element is usually mounted on a circuit board by a reflow method or a flow method, the fuse element must be able to withstand this soldering temperature. It must be higher than the soldering temperature.

従来、廃棄された電子・電気電子部品からの鉛イオンの溶出による環境汚染を防止するために、鉛フリ−はんだの使用が要請され、Sn−Ag系、Sn−Cu系、Sn−In系、Sn−Bi系等の鉛フリ−はんだが開発されている。これらの鉛フリ−はんだを使用しての実装温度は、Pb−Snはんだ使用の場合よりも高く、ほぼ260℃が予定されている。   Conventionally, in order to prevent environmental pollution due to elution of lead ions from discarded electronic / electrical electronic parts, the use of lead-free solder has been requested, and Sn-Ag, Sn-Cu, Sn-In, Sn-Bi based lead-free solder has been developed. The mounting temperature using these lead-free solders is higher than that in the case of using Pb—Sn solders, and is approximately 260 ° C.

このはんだの鉛フリ−化に対応して、上記ヒュ−ズ素子においても、鉛フリ−化が要請されている。
従来、動作温度300〜400℃の鉛フリーヒューズ素子の一つとして「Alが0.5〜17%、残部がZnの合金を細線に加工したもの」が提案されている(特許文献1)。
特開平10−134698号公報
Corresponding to this lead freezing of solder, lead freezing is also demanded in the fuse element.
Conventionally, as a lead-free fuse element having an operating temperature of 300 to 400 ° C., an “alloy of 0.5 to 17% Al and the balance of Zn processed into a thin wire” has been proposed (Patent Document 1).
JP-A-10-134698

図2−1はZn−Al合金の状態図を示し、Alが0.5〜17%での液相線温度がほぼ440℃〜ほぼ380℃の間にあり、固相線温度がほぼ380℃である。
図2−2はZn−5AlのDSC(示差走査熱量測定)結果を示し、ほぼ380℃で溶解し始め、ほぼ389℃で溶解を完了して完全に液相化されている(284.8℃のピークは結晶変態によるものであり、溶解に関与していない)。
合金が加熱されて固相線温度を越えると液相化が始まり固相分が減少して固液共存状態になり、液相線温度で固相分が零となって完全な液相状態となる。
通常、ヒューズ素子の溶断は固相線温度と液相線温度との間で生じる。而して、前記特許文献1に記載されたヒューズ素子の溶断温度は、図2−1の状態図によれば380℃〜440℃である。
この380℃〜440℃の溶断温度では、ヒューズ素子が取付けられる電子部品、例えばタンタルコンデンサやパワートランジスタの発煙温度に対し余裕が少なく、溶断温度を下げるためにAu、Ag、Cu、Ni、Pd、Pから選ばれた少なくとも一種を0.1%〜5%添加することが前記特許文献1に開示されている。
FIG. 2-1 shows a phase diagram of a Zn—Al alloy, where the liquidus temperature is between about 440 ° C. and about 380 ° C. when Al is 0.5 to 17%, and the solidus temperature is about 380 ° C. It is.
FIG. 2-2 shows the DSC (Differential Scanning Calorimetry) result of Zn-5Al, starting to dissolve at approximately 380 ° C. and completing dissolution at approximately 389 ° C. and being completely liquid phase (284.8 ° C. The peak of is due to crystal transformation and is not involved in dissolution).
When the alloy is heated and exceeds the solidus temperature, the liquid phase starts and the solid content decreases and becomes a solid-liquid coexistence state. Become.
Usually, the fusing of the fuse element occurs between the solidus temperature and the liquidus temperature. Thus, the fusing temperature of the fuse element described in Patent Document 1 is 380 ° C. to 440 ° C. according to the state diagram of FIG. 2-1.
At the fusing temperature of 380 ° C. to 440 ° C., there is little margin with respect to the smoke generation temperature of electronic components to which the fuse element is attached, such as tantalum capacitors and power transistors, and in order to lower the fusing temperature, Au, Ag, Cu, Ni, Pd, Patent Document 1 discloses that 0.1% to 5% of at least one selected from P is added.

しかしながら、これらの元素を添加すると、固相線温度は低くできても、260℃〜370℃での溶解熱量が全溶解熱量の数%程度にとどまり、この260℃〜370℃での液相化は僅かである。
これでは、ヒューズ素子が比較的低い温度で溶解し始めても、ヒューズ素子が溶断される温度は、Au等無添加のZn−Alヒユーズ素子に較べてさして低くならない。
However, when these elements are added, even when the solidus temperature can be lowered, the heat of solution at 260 ° C. to 370 ° C. is only about several percent of the total heat of solution, and the liquid phase is formed at 260 ° C. to 370 ° C. Is slight.
In this case, even if the fuse element starts to melt at a relatively low temperature, the temperature at which the fuse element is blown is not lower than that of an additive-free Zn—Al fuse element such as Au.

本発明の目的は、かかる知見に基づき、タンタルコンデンサ等に内蔵させるZn−Alを含む合金からなるヒューズ素子において、ヒューズ溶断温度を充分に低減でき、しかも鉛フリーはんだによるはんだ付け実装に対し安全に保持できるヒューズ素子を提供することにある。   The object of the present invention is based on such knowledge, and in a fuse element made of an alloy containing Zn-Al incorporated in a tantalum capacitor or the like, the fuse fusing temperature can be sufficiently reduced, and it is safe for solder mounting by lead-free solder. An object of the present invention is to provide a fuse element that can be held.

請求項1に係るヒュ−ズ素子は、ZnとAlとGeとを含有し、AlとGeのそれぞれの含有量が0.5〜15%、AlとGeとの合計量が5〜20%、残部がZnの合金が細線に加工されてなることを特徴とする。AlとGeのそれぞれの含有量を0.5〜15%とする理由は、260℃〜370℃での溶解熱量H260℃〜370℃と全溶解熱量ΣHとの比H260℃〜370℃/ΣHを0.2以上、好ましくは0.5以上としてヒュ−ズ素子溶断温度をZn−Alヒュ−ズ素子の溶断温度よりも一段と低くするためであり、0.5%未満ではその比を0.2以上にできず、15%を越えると260℃近傍でも溶解が生じて鉛フリーはんだ付けを安全に行い難くなるからである。AlとGeとの合計量を5〜20%とする理由は、細線加工を容易に行い得るようにするためであり、5%未満では脆弱であり線引きが難しく、20%を越えると延性が大になり過ぎ線引きが難しくなるからである。 The fuse element according to claim 1 contains Zn, Al, and Ge, the content of each of Al and Ge is 0.5 to 15%, the total amount of Al and Ge is 5 to 20%, The balance is characterized in that the alloy of Zn is processed into a thin wire. The reason why the respective contents of Al and Ge are 0.5 to 15% is the ratio of the heat of dissolution H 260 ° C. to 370 ° C. at 260 ° C. to 370 ° C. and the total heat of heat ΣH H 260 ° C. to 370 ° C. / This is because ΣH is set to 0.2 or more, preferably 0.5 or more to make the fuse element fusing temperature much lower than the fusing temperature of the Zn-Al fuse element. If it exceeds 15%, dissolution occurs even at around 260 ° C. and lead-free soldering is difficult to perform safely. The reason why the total amount of Al and Ge is 5 to 20% is to enable easy thin wire processing, and if it is less than 5%, it is fragile and difficult to draw, and if it exceeds 20%, the ductility is large. This is because it becomes too difficult to draw the line.

請求項2に係るヒュ−ズ素子は、ZnとAlとMg、Sn、In、Ga、Geの少なくとも1種を含有し、AlとMg、Sn、In、Ga、Geの少なくとも1種のそれぞれの含有量が0.5〜15%、AlとMg、Sn、In、Ga、Geの少なくとも1種との合計量が5〜20%、残部がZnの合金が細線に加工されてなることを特徴とする。AlとMg、Sn、In、Ga、Geの少なくとも1種のそれぞれの含有量を0.5〜15%とする理由は、260℃〜370℃での溶解熱量H260℃〜370℃と全溶解熱量ΣHとの比H260℃〜370℃/ΣHを0.2以上、好ましくは0.5以上としてヒュ−ズ素子溶断温度をZn−Alヒュ−ズ素子の溶断温度よりも一段と低くするためであり、0.5%未満ではその比を0.2以上にできず、15%を越えると260℃近傍でも溶解が生じて鉛フリーはんだ付けを安全に行い難くなるからである。AlとMg、Sn、In、Ga、Geの少なくとも1種のそれぞれの含有量を5〜20%とする理由は、細線加工を容易に行い得るようにするためであり、5%未満では脆弱であり線引きが難しく、20%を越えると延性が大になり過ぎ線引きが難しくなるからである。 The fuse element according to claim 2 contains at least one of Zn, Al, Mg, Sn, In, Ga, and Ge, and each of at least one of Al, Mg, Sn, In, Ga, and Ge. A content of 0.5 to 15%, a total amount of Al and at least one of Mg, Sn, In, Ga, and Ge is 5 to 20%, and the balance of Zn is processed into a thin wire. And The reason why the content of each of at least one of Al and Mg, Sn, In, Ga, and Ge is 0.5 to 15% is that the heat of dissolution at 260 ° C. to 370 ° C. H 260 ° C. to 370 ° C. is completely dissolved The ratio H with heat quantity ΣH H 260 ° C. to 370 ° C./ΣH is set to 0.2 or more, preferably 0.5 or more to make the fuse element fusing temperature much lower than the fusing temperature of the Zn—Al fuse element. If the ratio is less than 0.5%, the ratio cannot be increased to 0.2 or more. If the ratio exceeds 15%, dissolution occurs even in the vicinity of 260 ° C., and it is difficult to perform lead-free soldering safely. The reason why the content of each of Al and at least one of Mg, Sn, In, Ga, and Ge is 5 to 20% is to facilitate the thin wire processing, and is less than 5%. This is because it is difficult to draw, and if it exceeds 20%, the ductility becomes too large and drawing becomes difficult.

請求項3に係るヒュ−ズ素子は、Mg、Sn、In、Gaの少なくとも1種が3〜20%、残部がZnである合金が細線に加工されてなることを特徴とする。Mg、Sn、In、Gaの少なくとも1種の合計含有量を3〜20%とする理由は、260℃〜370℃での溶解熱量H260℃〜370℃と全溶解熱量ΣHとの比H260℃〜370℃/ΣHを0.2以上好ましくは0.5以上としてヒュ−ズ素子溶断温度をZn−Alヒュ−ズ素子の溶断温度よりも一段と低くするためであり、3%未満ではその比を0.2以上にできず、20%を越えると260℃近傍でも溶解が生じて鉛フリーはんだ付けを安全に行い難くなるからである。 The fuse element according to claim 3 is characterized in that an alloy in which at least one of Mg, Sn, In, and Ga is 3 to 20% and the balance is Zn is processed into a thin wire. The reason why the total content of at least one of Mg, Sn, In, and Ga is 3 to 20% is that the ratio of the heat of dissolution H 260 ° C. to 370 ° C. at 260 ° C. to 370 ° C. and the total heat of heat ΣH H 260 C. to 370.degree. C./.SIGMA.H is set to 0.2 or more, preferably 0.5 or more to make the fuse element fusing temperature much lower than the fusing temperature of the Zn-Al fuse element. If it exceeds 20%, dissolution occurs even at around 260 ° C., and lead-free soldering is difficult to perform safely.

請求項4に係るヒュ−ズ素子は、請求項1〜3何れか記載の合金にBi、Au、Ag、Cu、Ni、Pd、P、Sbの少なくとも一種が1%以下添加された合金が細線に加工されてなることを特徴とする。Bi、Au、Ag、Cu、Ni、Pd、P、Sbを添加する理由は、ヒュ−ズ素子がスポット溶接等で接続される電極との相溶性を高め、電極との界面に機械的に強靱な合金層を生成させて接合強度を向上させるためである。   A fuse element according to claim 4 is a thin wire alloy in which at least one of Bi, Au, Ag, Cu, Ni, Pd, P, and Sb is added to the alloy according to any one of claims 1 to 3 in an amount of 1% or less. It is characterized by being processed. The reason for adding Bi, Au, Ag, Cu, Ni, Pd, P, and Sb is to increase the compatibility of the fuse element with the electrode connected by spot welding or the like, and mechanically toughen the interface with the electrode. This is because a strong alloy layer is formed to improve the bonding strength.

請求項5に係るヒュ−ズ素子は、請求項1〜4何れか記載のヒュ−ズ素子において、細線断面が線径0.03〜0.6mmφの円形または厚み0.01〜0.2mm、幅3〜0.1mmのリボン状であることを特徴とする。   The fuse element according to claim 5 is the fuse element according to any one of claims 1 to 4, wherein the thin wire section has a circular shape with a wire diameter of 0.03 to 0.6 mmφ or a thickness of 0.01 to 0.2 mm. It is characterized by a ribbon shape with a width of 3 to 0.1 mm.

(1)生体に有害な金属元素を含有しておらず、環境保全に資する。更に耐食性に優れ、腐食性環境でも安全に使用できる。
(2)260℃〜370℃での溶解熱量H260℃〜370℃と全溶解熱量ΣHとの比H260℃〜370℃/ΣHが0.2以上であり、固相線温度を260℃に向け低減できると共に260℃〜370℃の温度域で液相化を充分に進行させることができてヒューズを370℃以下で溶断させることができる。この温度はタンタルコンデンサ等の発煙温度に対し充分に低いから、タンタルコンデンサ等の発煙防止を確実に行うことができる。
(4)固相線温度が260℃以上であるから、鉛フリーはんだによるはんだ付けでも、ヒューズ素子付き電子部品を回路基板に安全に実装できる。
従って、本発明に係るヒューズ素子によれば、タンタルコンデンサ等の発煙を迅速作動で未然に防止でき、鉛フリーはんだ付けを安全に行い得、電子部品への取付けを容易に行い得る鉛フリーのヒューズ素子を提供できる。
(1) Contain no metallic elements harmful to the living body and contribute to environmental conservation. Furthermore, it has excellent corrosion resistance and can be used safely in corrosive environments.
(2) Heat of dissolution H at 260 ° C. to 370 ° C. Ratio H 260 ° C. to 370 ° C. and total heat of fusion ΣH 260 ° C. to 370 ° C./ΣH is 0.2 or more, and the solidus temperature is set to 260 ° C. In addition, the liquid phase can be sufficiently advanced in the temperature range of 260 ° C. to 370 ° C., and the fuse can be blown at 370 ° C. or lower. Since this temperature is sufficiently lower than the fuming temperature of a tantalum capacitor or the like, it is possible to reliably prevent fuming of the tantalum capacitor or the like.
(4) Since the solidus temperature is 260 ° C. or higher, an electronic component with a fuse element can be safely mounted on a circuit board even by soldering with lead-free solder.
Therefore, according to the fuse element of the present invention, a lead-free fuse that can prevent smoke generation of a tantalum capacitor or the like by a quick operation, can perform lead-free soldering safely, and can be easily attached to an electronic component. An element can be provided.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、本発明に係るヒュ−ズ素子を内蔵させたコンデンサの一例を示している。
図1において、1はタンタルコンデンサ素子、2は陽極リ−ド導体である。3は配線板であり、一対の電極31,32を有し、その電極間に本発明に係るヒュ−ズ素子aを接続し、一方の電極31をコンデンサ素子1の陰極に接合し、他方の電極32にリ−ド導体4を接合してある。5は封止樹脂層、例えばエポキシ樹脂層である。
上記ヒュ−ズ素子と電極との接合には、抵抗溶接、超音波溶接、若しくはワイヤボ−ルボンディング、ウェッジボンディング、または熱圧接等を用いることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a capacitor incorporating a fuse element according to the present invention.
In FIG. 1, 1 is a tantalum capacitor element, and 2 is an anode lead conductor. Reference numeral 3 denotes a wiring board having a pair of electrodes 31 and 32, connecting the fuse element a according to the present invention between the electrodes, joining one electrode 31 to the cathode of the capacitor element 1, and The lead conductor 4 is joined to the electrode 32. 5 is a sealing resin layer, for example, an epoxy resin layer.
For joining the fuse element and the electrode, resistance welding, ultrasonic welding, wire ball bonding, wedge bonding, heat pressure welding, or the like can be used.

上記のコンデンサは、IC、トランジスタ、チップ抵抗等の他の電子部品と共に鉛フリ−はんだを使用してリフロ−法やフロ−法によって回路基板に温度230℃〜280℃で実装される。   The capacitor is mounted on a circuit board at a temperature of 230 ° C. to 280 ° C. by a reflow method or a flow method using lead-free solder together with other electronic components such as an IC, a transistor, and a chip resistor.

上記したタンタルコンデンサにヒュ−ズ素子を内蔵させる理由は、万一の極性誤接続によって過電流が流れ発煙するのを防止するためである。
発煙には、温度以外にヒューズ遮断時間も関与し、ヒューズ遮断時間が長いと低い温度で発煙し、そのヒューズ遮断時間はヒューズ素子の抵抗が低くなるほど長くなるから、発煙にはヒューズ素子の抵抗値も関与する。
而るに、コンデンサ等に付設されるヒューズ素子の比抵抗が5.0〜6.0μΩcmであり、ヒューズ遮断時間が60〜90msecであり、かかるもとで発煙を防止するには、ヒューズ溶断温度を400℃よりも可及的に低くし、かつ鉛フリーはんだによる実装上260℃よりも高くすることが有効である。
The reason why the fuse element is built in the tantalum capacitor is to prevent overcurrent from flowing and generating smoke due to an incorrect polarity connection.
In addition to the temperature, the fuse shut-off time is also involved in the smoke generation. If the fuse shut-off time is long, smoke is emitted at a low temperature, and the fuse shut-off time becomes longer as the fuse element resistance decreases. Also involved.
Therefore, the specific resistance of the fuse element attached to the capacitor or the like is 5.0 to 6.0 μΩcm, and the fuse cutoff time is 60 to 90 msec. It is effective to make the temperature lower than 400 ° C. as much as possible and higher than 260 ° C. in the lead-free solder mounting.

ヒューズ素子の断面寸法や形状は線径0.03〜0.6mmφの丸線または厚み0.01〜0.2mm、幅3〜0.1mmのリボン状とされる。
上限については、ヒューズ素子の断面積を抑えて遮断時間が長くなり過ぎるのを回避することにあり、下限については、ヒューズ素子を電子部品に内蔵する際のハンドリング、組込の作業性、線引き加工性やコスト低減を保証することにある。
厚み0.01〜0.2mm、幅3〜0.1mmのリボン状では、電極との接触面積を充分に広くして接合性を向上できる有利性もある。
The cross-sectional dimension and shape of the fuse element are a round wire having a wire diameter of 0.03 to 0.6 mmφ or a ribbon having a thickness of 0.01 to 0.2 mm and a width of 3 to 0.1 mm.
The upper limit is to reduce the cross-sectional area of the fuse element and prevent the cut-off time from becoming too long. The lower limit is handling when the fuse element is built in an electronic component, assembly workability, drawing process Is to guarantee performance and cost reduction.
The ribbon shape having a thickness of 0.01 to 0.2 mm and a width of 3 to 0.1 mm has an advantage that the contact area with the electrode can be sufficiently widened to improve the bondability.

本発明に係るヒュ−ズ素子は、リフロ−法またはフロ−法により実装した後での補修やあと付けでも、鏝で安全にはんだ付けすることもできる。
これらの場合、ヒュ−ズ素子が曲げをうけるが、充分な柔軟性を有し、折損なく、スム−ズに、装着、実装またはあと付けできる。
The fuse element according to the present invention can be safely soldered with scissors even after repairing or retrofitting after mounting by the reflow method or the flow method.
In these cases, the fuse element is bent but has sufficient flexibility and can be mounted, mounted or retrofitted smoothly without breakage.

本発明に係るヒュ−ズ素子は地金を所定の配合比で溶融してビレットを鋳造し、これを線引き加工することにより得ることができる。
Zn地金には、不純物Pb、Fe、Cd等をJISH2107規定の範囲内で含むものを使用することもできる。
The fuse element according to the present invention can be obtained by melting a base metal at a predetermined blending ratio, casting a billet, and drawing the billet.
As the Zn ingot, one containing impurities Pb, Fe, Cd and the like within the range defined by JISH2107 can be used.

この線引き加工の外、回転液中紡糸法によっても製造できる。すなわち、回転ドラムの内周面に遠心力により形成保持された冷却液層に、ノズルから噴射した溶融ジェットを冷却液層の周速と同速・同方向で入射させ、この液層入射ジェットを冷却液層で急冷・凝固させて紡糸することもできる。この場合、ノズルから冷却液層に至る空間でのジェットは、ノズルの円形形状が溶融金属の表面張力により保持されて円形断面となる。更に、ジェットの表面張力による円形保持力を冷却液層の動圧(ジェットを扁平化しようとする圧力)よりも大とするように、冷却液層周速、ジェットの冷却液層入射角等を調整してあり、冷却液層に入射されたジェットも、断面円形を保持しつつ冷却・凝固されていく。従って、線径30μmφという細線のヒュ−ズ素子でも容易に製造できる。
これらの製線中、ボビンへの巻取りを必要とするか、充分な柔軟性のために、折損なく、スム−ズに巻き取ることができる。
In addition to this drawing process, it can also be produced by spinning in a rotating liquid. That is, the molten jet sprayed from the nozzle is incident on the cooling liquid layer formed and held on the inner peripheral surface of the rotating drum by centrifugal force at the same speed and in the same direction as the peripheral speed of the cooling liquid layer, and this liquid layer incident jet is It can also be spun by rapid cooling and solidification in the cooling liquid layer. In this case, the jet in the space from the nozzle to the coolant layer has a circular cross section with the circular shape of the nozzle being held by the surface tension of the molten metal. Furthermore, the peripheral velocity of the cooling fluid layer, the incident angle of the cooling fluid layer of the jet, etc. are set so that the circular holding force due to the surface tension of the jet is larger than the dynamic pressure of the cooling fluid layer (pressure for flattening the jet). The jet that has been adjusted and entered the cooling liquid layer is cooled and solidified while maintaining a circular cross section. Accordingly, even a thin fuse element having a wire diameter of 30 μm can be easily manufactured.
During these wire making operations, winding onto a bobbin is required, or for sufficient flexibility, it can be wound smoothly without breakage.

Al:5.0%、Ge:2.0%、残部Znの合金組成にて線径60μmφの細線をダイス伸線により製造した。この合金のDSC(昇温速度10℃/min)の結果は、図3の通りであり、H260℃〜370℃/ΣHを求めたところ0.8以上であった。
この細線の3mm切断片をAgメッキ42アロイ電極間に抵抗溶接し、細線中央の上方0.5mmの位置に熱電温度計を配し3Aを通電してヒュ−ズ遮断温度を測定したところ370℃以下であった(n=10箇の平均値)。
また、細線を42アロイ電極に抵抗溶接し(n=10箇の平均値)、引張り力を加え細線切断したものが100%ものを接合性◎、細線切断したものが50〜90%ものを接合性○、細線切断したものが10〜40%もの、または接合箇所が剥離したものが100%のものを接合性×として接合性を評価したところ、○であった。
また、260℃×10秒加熱して抵抗値変動の有無をチェックしたが、異常は何ら観られなかった。
A thin wire having a wire diameter of 60 μmφ was produced by die drawing with an alloy composition of Al: 5.0%, Ge: 2.0%, and the balance Zn. The result of DSC (temperature increase rate: 10 ° C./min) of this alloy is as shown in FIG. 3. When H 260 ° C. to 370 ° C./ΣH was determined, it was 0.8 or more.
This thin 3 mm piece was resistance-welded between the Ag-plated 42 alloy electrodes, a thermoelectric thermometer was placed at a position 0.5 mm above the center of the fine line, and 3A was energized to measure the fuse cutoff temperature. It was as follows (n = 10 average values).
In addition, a thin wire was resistance-welded to 42 alloy electrodes (n = 10 average values), 100% of the thin wire cut by applying a tensile force was joined, and 50 to 90% of the thin wire cut was joined. When the bondability was evaluated as a bondability x with 10% to 40% of the thin line cut or 100% of the bonded part peeled off, the evaluation was good.
Further, heating was performed at 260 ° C. for 10 seconds to check whether there was a change in the resistance value, but no abnormality was observed.

〔比較例1〕
実施例1に対しGe無添加とした以外、実施例1と同様にして細線を製造した。DSCの結果は図2−2の通りであり、H260℃〜370℃/ΣHは0であった。
また、実施例1と同様にして遮断温度を測定したところ390℃以上であった。接合性は○であった。
この比較例1と実施例1との対比から、Ge添加により無添加の場合に較べヒューズ溶断温度を20℃以上低減できることを確認できた。
[Comparative Example 1]
A fine wire was produced in the same manner as in Example 1 except that Ge was not added to Example 1. The result of DSC is as shown in FIG. 2-2, and H 260 ° C. to 370 ° C./ΣH was 0.
Moreover, when the cutoff temperature was measured like Example 1, it was 390 degreeC or more. The bondability was good.
From the comparison between Comparative Example 1 and Example 1, it was confirmed that the fuse blowing temperature could be reduced by 20 ° C. or more as compared with the case of no addition by addition of Ge.

〔実施例2〜実施例5〕
表1に示すように実施例1に対し、Al量及びGe量を変えた以外、実施例1と同様にして細線を製造し、H260℃〜370℃/ΣH及びヒューズ溶断温度並びに接合性を求めたところ表1の通りであった。
260℃×10秒加熱して抵抗値変動の有無をチェックしたが、異常は何ら観られなかった。
[Example 2 to Example 5]
As shown in Table 1, with respect to Example 1, except that the Al amount and Ge amount were changed, a thin wire was produced in the same manner as in Example 1, and H 260 ° C. to 370 ° C./ΣH, fuse fusing temperature, and bondability were The results were as shown in Table 1.
Although it was heated at 260 ° C. for 10 seconds and checked for the presence or absence of fluctuations in resistance, no abnormality was observed.

Figure 2006322027
Figure 2006322027

〔実施例6〜実施例13〕
表2に示すように実施例1に対し、Bi、Ag、Cu、Ni、Pd、P、Sbを添加した以外、実施例1と同様にして細線を製造し、H260〜370℃/ΣH及びヒューズ溶断温度並びに接合性を求めたところ表2の通りであった。
何れの実施例品に対しても、260℃×10秒加熱して抵抗値変動の有無をチェックしたが、異常は何ら観られなかった。
[Examples 6 to 13]
As shown in Table 2, a thin wire was manufactured in the same manner as in Example 1 except that Bi, Ag, Cu, Ni, Pd, P, and Sb were added to Example 1, and H260 to 370 ° C./ΣH and fuse It was as Table 2 when fusing temperature and bondability were calculated | required.
Any example product was heated at 260 ° C. for 10 seconds to check whether there was a change in resistance value, but no abnormality was observed.

Figure 2006322027
Figure 2006322027

〔実施例14〜実施例18〕
表3に示すように、ZnとAlとMg、Sn、In、Gaの少なくとも1種を含有した組成とした以外、実施例1と同様にして細線を製造し、H260〜370℃/ΣH及びヒューズ溶断温度並びに接合性を求めたところ表3の通りであった。
何れの実施例品に対しても、260℃×10秒加熱して抵抗値変動の有無をチェックしたが、異常は何ら観られなかった。
何れの実施例においても、Bi、Ag、Cu、Ni、Pd、P、Sbの何れかを0.5%添加することにより接合性を◎にできることを確認した。
[Examples 14 to 18]
As shown in Table 3, a thin wire was produced in the same manner as in Example 1 except that the composition contained at least one of Zn, Al, Mg, Sn, In, and Ga. H260 to 370 ° C./ΣH and fuse The fusing temperature and bondability were determined as shown in Table 3.
Any example product was heated at 260 ° C. for 10 seconds to check whether there was a change in resistance value, but no abnormality was observed.
In any of the examples, it was confirmed that the joining property could be improved by adding 0.5% of any of Bi, Ag, Cu, Ni, Pd, P, and Sb.

Figure 2006322027
Figure 2006322027

〔比較例2〜比較例3〕
表3に示すように、ZnとAlとSnまたはInを含有し、AlとSnまたはInとの合計量を5%未満とした以外、実施例1と同様にして細線を製造し、H260℃〜370℃/ΣH及びヒューズ溶断温度並びに接合性を求めたところ表3の通りであった。
[Comparative Examples 2 to 3]
As shown in Table 3, containing Zn, Al and Sn or In, except that the total amount of Al and Sn, or In is less than 5%, to produce a fine line in the same manner as in Example 1, H 260 ° C. It was as Table 3 when -370 degreeC / (Sigma) H, fuse fusing temperature, and joining property were calculated | required.

Figure 2006322027
Figure 2006322027

〔実施例19〜実施例23〕
表4に示す合金組成とした以外、実施例1と同様にして細線を製造し、固相線温度及び比抵抗を実施例1と同様にして測定したところ、H260℃〜370℃/ΣH及びヒューズ溶断温度並びに接合性を求めたところ表3の通りであった。
260℃×10秒加熱して抵抗値変動の有無をチェックしたが、異常は何ら観られなかった。
何れの実施例においても、Bi、Ag、Cu、Ni、Pd、P、Sbの何れかを0.5%添加することにより接合性を◎にできることを確認した。
[Example 19 to Example 23]
A thin wire was produced in the same manner as in Example 1 except that the alloy composition shown in Table 4 was used, and the solidus temperature and specific resistance were measured in the same manner as in Example 1. As a result, H 260 ° C. to 370 ° C./ΣH and The fuse fusing temperature and bondability were determined as shown in Table 3.
Although it was heated at 260 ° C. for 10 seconds and checked for the presence or absence of fluctuations in resistance, no abnormality was observed.
In any of the examples, it was confirmed that the joining property could be improved by adding 0.5% of any of Bi, Ag, Cu, Ni, Pd, P, and Sb.

本発明に係るヒュ−ズ内蔵電子部品の一例を示す図面である。It is drawing which shows an example of the electronic component with a fuse concerning this invention. Zn−Al合金の温度状態図である。It is a temperature state figure of a Zn-Al alloy. Zn−5Al合金のDSC結果である。It is a DSC result of a Zn-5Al alloy. Zn−5Al−2Ge合金のDSC結果である。It is a DSC result of a Zn-5Al-2Ge alloy.

符号の説明Explanation of symbols

a ヒュ−ズ素子
1 コンデンサ素子
5 封止樹脂層
a fuse element 1 capacitor element 5 sealing resin layer

Claims (5)

ZnとAlとGeとを含有し、AlとGeのそれぞれの含有量が0.5〜15%、AlとGeとの合計量が5〜20%、残部がZnの合金が細線に加工されてなることを特徴とするヒュ−ズ素子。 An alloy containing Zn, Al and Ge, each containing Al and Ge of 0.5 to 15%, the total amount of Al and Ge being 5 to 20%, and the balance being Zn is processed into a thin wire. A fuse element characterized by comprising: ZnとAlとMg、Sn、In、Ga、Geの少なくとも1種とを含有し、AlとMg、Sn、In、Ga、Geの少なくとも1種のそれぞれの含有量が0.5〜15%、AlとMg、Sn、In、Ga、Geの少なくとも1種との合計量が5〜20%、残部がZnの合金が細線に加工されてなることを特徴とするヒュ−ズ素子。 Zn, Al, and at least one of Mg, Sn, In, Ga, and Ge, and each content of Al and at least one of Mg, Sn, In, Ga, and Ge is 0.5 to 15%, A fuse element obtained by processing an alloy of Al and at least one of Mg, Sn, In, Ga, and Ge into a thin wire of 5 to 20% and the balance of Zn. Mg、Sn、In、Gaの少なくとも1種が3〜20%、残部がZnである合金が細線に加工されてなることを特徴とするヒュ−ズ素子。 A fuse element, wherein an alloy in which at least one of Mg, Sn, In, and Ga is 3 to 20% and the balance is Zn is processed into a thin wire. 請求項1〜3何れか記載の合金100重量部にBi、Au、Ag、Cu、Ni、Pd、P、Sbの少なくとも一種が1重量以下添加された合金が細線に加工されてなることを特徴とするヒュ−ズ素子。 An alloy in which at least one of Bi, Au, Ag, Cu, Ni, Pd, P, and Sb is added in an amount of 1 weight or less to 100 parts by weight of the alloy according to any one of claims 1 to 3 is processed into a thin wire. A fuse element. 細線断面が線径0.03〜0.6mmφの円形または厚み0.01〜0.2mm、幅3〜0.1mmのリボン状であることを特徴とする請求項1〜4何れか記載のヒュ−ズ素子。 The thin wire cross-section is a circular shape having a wire diameter of 0.03 to 0.6 mmφ or a ribbon shape having a thickness of 0.01 to 0.2 mm and a width of 3 to 0.1 mm. -Element.
JP2005145009A 2005-05-18 2005-05-18 Fuse element Expired - Fee Related JP4818641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145009A JP4818641B2 (en) 2005-05-18 2005-05-18 Fuse element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145009A JP4818641B2 (en) 2005-05-18 2005-05-18 Fuse element

Publications (2)

Publication Number Publication Date
JP2006322027A true JP2006322027A (en) 2006-11-30
JP4818641B2 JP4818641B2 (en) 2011-11-16

Family

ID=37541918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145009A Expired - Fee Related JP4818641B2 (en) 2005-05-18 2005-05-18 Fuse element

Country Status (1)

Country Link
JP (1) JP4818641B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130045131A1 (en) * 2011-08-17 2013-02-21 Honeywell International Inc. Lead-Free Solder Compositions
JP2015001023A (en) * 2013-06-18 2015-01-05 住友金属鉱山株式会社 Zn-Al ALLOY FUSE
EP3077151A4 (en) * 2013-12-04 2017-09-27 Honeywell International Inc. Zinc-based lead-free solder compositions
US10046417B2 (en) 2011-08-17 2018-08-14 Honeywell International Inc. Lead-free solder compositions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225678A (en) * 1996-02-21 1997-09-02 Suzuki Motor Corp Zn alloy for solder, press die and die casting
JPH10134698A (en) * 1996-10-31 1998-05-22 Tanaka Denshi Kogyo Kk Fuse material
JPH11172353A (en) * 1997-12-04 1999-06-29 Sumitomo Metal Mining Co Ltd Zn alloy for high temperature soldering
JPH11288955A (en) * 1998-04-02 1999-10-19 Sumitomo Metal Mining Co Ltd High temperature soldering zn alloy
JPH11347786A (en) * 1998-06-11 1999-12-21 Sumitomo Metal Mining Co Ltd Zn alloy for soldering
JP2000208533A (en) * 1999-01-14 2000-07-28 Sumitomo Metal Mining Co Ltd Die bonding zn alloy
JP2001028228A (en) * 1999-07-14 2001-01-30 Uchihashi Estec Co Ltd Current fuse element
JP2002260518A (en) * 2001-03-05 2002-09-13 Dowa Mining Co Ltd Zinc alloy for fuse, fuse and method for manufacturing fuse

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225678A (en) * 1996-02-21 1997-09-02 Suzuki Motor Corp Zn alloy for solder, press die and die casting
JPH10134698A (en) * 1996-10-31 1998-05-22 Tanaka Denshi Kogyo Kk Fuse material
JPH11172353A (en) * 1997-12-04 1999-06-29 Sumitomo Metal Mining Co Ltd Zn alloy for high temperature soldering
JPH11288955A (en) * 1998-04-02 1999-10-19 Sumitomo Metal Mining Co Ltd High temperature soldering zn alloy
JPH11347786A (en) * 1998-06-11 1999-12-21 Sumitomo Metal Mining Co Ltd Zn alloy for soldering
JP2000208533A (en) * 1999-01-14 2000-07-28 Sumitomo Metal Mining Co Ltd Die bonding zn alloy
JP2001028228A (en) * 1999-07-14 2001-01-30 Uchihashi Estec Co Ltd Current fuse element
JP2002260518A (en) * 2001-03-05 2002-09-13 Dowa Mining Co Ltd Zinc alloy for fuse, fuse and method for manufacturing fuse

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130045131A1 (en) * 2011-08-17 2013-02-21 Honeywell International Inc. Lead-Free Solder Compositions
CN104169041A (en) * 2011-08-17 2014-11-26 霍尼韦尔国际公司 Lead-free solder compositions
US10046417B2 (en) 2011-08-17 2018-08-14 Honeywell International Inc. Lead-free solder compositions
US10661393B2 (en) 2011-08-17 2020-05-26 Honeywell International Inc. Lead-free solder compositions
JP2015001023A (en) * 2013-06-18 2015-01-05 住友金属鉱山株式会社 Zn-Al ALLOY FUSE
EP3077151A4 (en) * 2013-12-04 2017-09-27 Honeywell International Inc. Zinc-based lead-free solder compositions

Also Published As

Publication number Publication date
JP4818641B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
CN104520062B (en) high-temperature lead-free solder alloy
JP3599101B2 (en) Solder, surface treatment method of printed wiring board using the same, and mounting method of electronic component using the same
US6488888B2 (en) Lead-free solder alloys
JP3544904B2 (en) Solder, surface treatment method of printed wiring board using the same, and mounting method of electronic component using the same
KR101231550B1 (en) Cu-p-ag-zn brazing alloy
CN100462183C (en) Lead-free anti-oxidation rare-earth-contg. type SnZn alloy welding flux, and its prepn. method
JP5278616B2 (en) Bi-Sn high temperature solder alloy
JP5943065B2 (en) Bonding method, electronic device manufacturing method, and electronic component
JP2006255762A (en) Wire-shaped solder for electronic component
JP2006255784A (en) Unleaded solder alloy
US20040115088A1 (en) Lead-free solder
TW201402260A (en) Brazing alloys and methods of brazing
KR20190113903A (en) Solder Alloys, Solder Bonding Materials, and Electronic Circuit Boards
JP4818641B2 (en) Fuse element
JP5140644B2 (en) Soldering composition and electronic component
JP2009082986A (en) Lead-free solder alloy for manual soldering
JP2007207558A (en) Fusible alloy type thermal fuse and circuit protection element
JP4425760B2 (en) Fuse element
JP2007313548A (en) Cream solder
JP4429476B2 (en) Fuse element for built-in electrical parts
JP2008188672A (en) Manual soldering lead-free solder alloy
JP4435439B2 (en) Method for mounting fuse element and fuse built-in electric component
CN104703749A (en) Solder alloy for die bonding
WO2009150759A1 (en) Solder bonding method and solder joint
JP2002150906A (en) Alloy-type thermal fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees