JP2006320256A - Polyhydroxybutyrate-producing microorganism - Google Patents

Polyhydroxybutyrate-producing microorganism Download PDF

Info

Publication number
JP2006320256A
JP2006320256A JP2005146792A JP2005146792A JP2006320256A JP 2006320256 A JP2006320256 A JP 2006320256A JP 2005146792 A JP2005146792 A JP 2005146792A JP 2005146792 A JP2005146792 A JP 2005146792A JP 2006320256 A JP2006320256 A JP 2006320256A
Authority
JP
Japan
Prior art keywords
phb
molecular weight
strain
average molecular
polyhydroxybutyrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005146792A
Other languages
Japanese (ja)
Other versions
JP4688570B2 (en
Inventor
Jun Tsubota
潤 坪田
Fumihiko Hasumi
文彦 蓮実
Masayuki Takeguchi
昌之 竹口
Shinsuke Horie
信介 堀江
Daisuke Isobe
大介 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2005146792A priority Critical patent/JP4688570B2/en
Publication of JP2006320256A publication Critical patent/JP2006320256A/en
Application granted granted Critical
Publication of JP4688570B2 publication Critical patent/JP4688570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microorganism capable of producing PHB (polyhydroxybutyrate) having a high average molecular weight, for the purpose of enhancing a performance of the PHB as a biodegradable plastic. <P>SOLUTION: This polyhydroxybutyrate-producing microorganism contains a sequence expressed by sequence number 1 in its 16S rRNA gene (16S rDNA), can accumulate the PHB having an average molecular weight of ≥3,000,000, and belongs to the genus Methylocystis. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規なポリヒドロキシブチレート生産菌に関する。   The present invention relates to a novel polyhydroxybutyrate-producing bacterium.

一般に、プラスチックは化石資源である石油から製造され、化学的に非常に安定した化合物である。そのため、本来の利用が行われている限りは分解する等して環境に悪影響を及ぼすことは殆どないと考えられる。
一方、前記プラスチックは、その化学的安定性ゆえに、微生物により速やかな分解を受け難いとされている。そのため、プラスチック製品を使用後、環境中にそのまま廃棄すると、景観を汚す、野生動物を傷つける等の弊害を引き起こす。また、プラスチック製品をごみ焼却炉で焼却すると有毒ガスを発生する、あるいは、高温を発生して焼却炉を傷める等、様々な問題点がある。
In general, plastic is a compound that is produced from petroleum, a fossil resource, and is chemically very stable. Therefore, as long as the original use is performed, it is considered that there is almost no adverse effect on the environment by decomposition or the like.
On the other hand, the plastic is difficult to be rapidly decomposed by microorganisms because of its chemical stability. For this reason, if the plastic product is used and discarded in the environment as it is, it will cause harmful effects such as soiling the landscape and damaging wild animals. In addition, when plastic products are incinerated in a garbage incinerator, there are various problems such as generation of toxic gas, or generation of high temperature and damage of the incinerator.

生分解性プラスチックは、使用中は、前記プラスチックと同様な利用が可能であり、さらに、使用後は自然界の微生物によって水と二酸化炭素等の無機物に分解され得る。従って、上述したプラスチックを廃棄処分する際の問題点を解決できるものと期待されている。   The biodegradable plastic can be used in the same manner as the plastic during use, and can be further decomposed into inorganic substances such as water and carbon dioxide by natural microorganisms after use. Therefore, it is expected that the above-mentioned problems in disposal of plastic can be solved.

そのため、生分解性プラスチックの実用化に向けた研究が進められている。生分解性プラスチックには、大別して、澱粉などの天然物を原料とするもの、微生物合成によるもの、及び、化学合成によるものがある。   For this reason, research for the practical application of biodegradable plastics is underway. Biodegradable plastics are roughly classified into those using natural products such as starch as raw materials, those based on microbial synthesis, and those based on chemical synthesis.

脂肪族ポリエステル系生分解性プラスチックは、各種の微生物により産生されるとともに、化学合成によっても種々のものが得られ、また、汎用樹脂(前記プラスチック)に近い物性を持つために多方面での応用が考えられている。
この脂肪族ポリエステル系生分解性プラスチックの1つに、ポリヒドロキシブチレート(以下、「PHB」と称する。)があり、微生物により産生される。
Aliphatic polyester biodegradable plastics are produced by various microorganisms and can be obtained by chemical synthesis. In addition, they have physical properties similar to those of general-purpose resins (the plastics mentioned above), so they can be applied in various fields. Is considered.
One of the aliphatic polyester-based biodegradable plastics is polyhydroxybutyrate (hereinafter referred to as “PHB”), which is produced by microorganisms.

PHBを産生する微生物として、メタン資化細菌、メタノール資化細菌、及び、アルカリゲネス(Alcaligenes)属細菌が知られている。これら細菌は、それぞれ、メタン、メタノール、糖を炭素源としてPHBを菌体内に蓄積する。   As microorganisms that produce PHB, methane-utilizing bacteria, methanol-utilizing bacteria, and bacteria belonging to the genus Alcaligenes are known. Each of these bacteria accumulates PHB in the microbial cells using methane, methanol, and sugar as carbon sources.

メタノール資化細菌の場合、平均分子量が20万程度のPHBを生産可能であり、生分解プラスチックとして実用化されている。しかしながら、この程度の分子量のPHBでは伸び率が低く脆いので、用途が限られてしまうという問題点があった(例えば、非特許文献1参照。)。   In the case of methanol-utilizing bacteria, PHB having an average molecular weight of about 200,000 can be produced, and it is put into practical use as a biodegradable plastic. However, PHB having such a molecular weight has a problem that its elongation is low and brittle, so that its application is limited (for example, see Non-Patent Document 1).

一般に、プラスチックの伸び率は平均分子量が高いほど高くなる傾向にあるので、更に高分子のPHBを蓄積可能な微生物が求められている。メタン資化菌の一種であるMethylocystis(メチロシスティス) sp. GB 25 DSMZ 7674では、分子量250万のPHBを体内に蓄積することが知られている(例えば、非特許文献2参照。)。   In general, since the elongation percentage of plastic tends to increase as the average molecular weight increases, a microorganism capable of further accumulating high molecular PHB is desired. It is known that Methylocystis (methylocystis) sp. GB 25 DSMZ 7674, a kind of methane-utilizing bacterium, accumulates PHB having a molecular weight of 2.5 million in the body (for example, see Non-Patent Document 2).

井上義夫監修、「グリーンプラスチック最新技術」、シーエムシー出版、2002年6月、p271−290Supervised by Yoshio Inoue, “Green Plastics Latest Technology”, CMC Publishing, June 2002, p271-290

K.D.ウェンドラント(K.D.Wendlandt)、M.ジェコレック(M.Jechorek)、J.ヘルム(J.Helm)、及び、U.ストットメイスター(U.Stottmeister)、「メタンからの高分子量ポリ−3−ヒドロキシブチレート生産」(“Producing poly-3-hydroxybutyrate with a high molecular mass from methane.”)、Journal of Biotechnology 86 (2001) p127-p133KD Wendlandt, M. Jechorek, J. Helm, and U. Stottmeister, “High Molecular Weight Poly-3 from Methane -Production of hydroxybutyrate "(" Producing poly-3-hydroxybutyrate with a high molecular mass from methane. "), Journal of Biotechnology 86 (2001) p127-p133

本発明の目的は、上記問題点に鑑み、更に生分解性プラスチックとしての性能を高めるため、平均分子量の高いPHBを生産する微生物を提供することにある。   In view of the above problems, an object of the present invention is to provide a microorganism that produces PHB having a high average molecular weight in order to further improve the performance as a biodegradable plastic.

この目的を達成するための本発明のPHB生産菌の特徴構成は、請求項1に記載されているように、16S rRNA遺伝子(16S rDNA)に配列番号1に記載の配列を含み、平均分子量300万以上のPHBを蓄積可能なメチロシスティス(Methylocystis)属の細菌である点にある。   In order to achieve this object, the characteristic constitution of the PHB-producing bacterium of the present invention includes, as described in claim 1, a 16S rRNA gene (16S rDNA) comprising the sequence of SEQ ID NO: 1, and an average molecular weight of 300 It is a bacterium belonging to the genus Methylocystis that can accumulate more than 10,000 PHBs.

上記特徴構成において、請求項2に記載されているように、前記PHB生産菌が、メチロシスティス(Methylocystis) sp. I431−029II−4A菌株(FERM AP−20425)であることが好ましい。   In the above characteristic configuration, as described in claim 2, the PHB-producing bacterium is Methylocystis sp. It is preferable that it is I431-029II-4A strain (FERM AP-20425).

発明者らは、上記課題を解決すべく、日本国内の温泉水を対象としてスクリーニングを行なった。この結果、従来知られているより高い平均分子量を有するPHBを蓄積する新規微生物を分離することに成功し、本発明を完成させた。   The inventors screened hot spring water in Japan to solve the above problems. As a result, the present inventors have succeeded in separating a novel microorganism that accumulates PHB having a higher average molecular weight than conventionally known, and completed the present invention.

即ち、本発明は、平均分子量300万以上のPHBを蓄積可能なメタン資化細菌であるPHB生産菌に関する。具体的には、前記PHB生産菌は、メチロシスティス(Methylocystis)属の細菌であり、16S rRNA遺伝子(16S rDNA)に配列番号1に記載の配列を含むメチロシスティス(Methylocystis) sp. I431−029II−4A菌株(FERM AP−20425)である。
前記メチロシスティス sp. I431−029II−4A菌株を例に、本発明に係るPHB生産菌の入手方法及び性質を以下に示す。
That is, the present invention relates to a PHB-producing bacterium that is a methane-utilizing bacterium capable of accumulating PHB having an average molecular weight of 3 million or more. Specifically, the PHB-producing bacterium is a bacterium belonging to the genus Metylocystis, and a 16S rRNA gene (16S rDNA) containing the sequence described in SEQ ID NO: 1 is used as a methyrocystis sp. It is I431-029II-4A strain (FERM AP-20425).
The methylocystis sp. Taking the I431-029II-4A strain as an example, the method for obtaining PHB-producing bacteria and the properties thereof according to the present invention are shown below.

日本各地の土壌及び温泉水から、高分子量のPHBの生産可能な微生物の探索を行った。具体的には、土壌及び温泉水を試料とし、気相をメタン:空気=1:1とした無機塩液体培地(表1を参照。)を用いて集積培養を行った。前記無機塩液体培地に1(重量)%になるように寒天を加えて作成した寒天培地を用意し、ここに増殖が観察された集積培養液を接種し、気相をメタン:空気=1:1として固体培養を行った。尚、集積培養、固体培養とも30℃で行った。   We searched for microorganisms capable of producing high molecular weight PHB from soil and hot spring water in various parts of Japan. Specifically, enrichment culture was performed using an inorganic salt liquid medium (see Table 1) in which the soil and hot spring water were used as samples and the gas phase was methane: air = 1: 1. An agar medium prepared by adding agar to the inorganic salt liquid medium to 1% (by weight) is prepared, inoculated with an enriched culture solution in which growth has been observed, and the gas phase is methane: air = 1: Solid culture was performed as 1. In addition, both enrichment culture and solid culture were performed at 30 ° C.

Figure 2006320256
Figure 2006320256

前記固体倍地上で単一株に分離された菌株(10株)について、16S rRNAに対応するDNAの塩基配列を調べることで菌種の同定を行うとともに、生育最適温度、生育速度、PHB蓄積率、蓄積PHBの平均分子量の測定を行った。   For the strain (10 strains) isolated on the solid medium above, the bacterial species is identified by examining the base sequence of DNA corresponding to 16S rRNA, and the optimum growth temperature, growth rate, PHB accumulation rate The average molecular weight of accumulated PHB was measured.

上記のスクリーニング操作により得られた菌株の中で、蓄積したPHBの平均分子量が最も大きかったI431−029II−4A菌株の菌学的性質を以下に示す。また、この菌株の16S rDNAの塩基配列を決定し、公知の微生物の16S rDNAの塩基配列との比較を行った。結果は以下の通りである。   Among the strains obtained by the above screening procedure, the mycological properties of the I431-029II-4A strain having the highest average molecular weight of accumulated PHB are shown below. In addition, the base sequence of 16S rDNA of this strain was determined and compared with the base sequence of 16S rDNA of known microorganisms. The results are as follows.

(a)形態的性質
1.細胞の形状 :球菌(無機塩液体培地)・桿菌状(無機塩液体培地)
2.細胞の大きさ :0.2〜0.4μm×0.6〜0.8μm
3.細胞の多形性 :あり
4.運動性 :なし
5.胞子形成 :なし
(A) Morphological properties Cell shape: Cocci (inorganic salt liquid medium), Aspergillus (inorganic salt liquid medium)
2. Cell size: 0.2-0.4 μm × 0.6-0.8 μm
3. 3. Cell polymorphism: Yes 4. Mobility: None Sporulation: None

(b)培養的性質
1.使用培地 :NMS−VCR培地(表2を参照。)
2.培養条件 :25℃、空気:メタン=4:1(容積)、25日目
3.直径 :1mm
4.色調 :薄いピンク
5.形 :円状
6.隆起形状 :半レンズ状
7.周縁 :全縁
8.表面の形状等 :スムーズ
9.透明度 :不透明
10.粘稠度 :バター様
(B) Culture properties Medium used: NMS-VCR medium (see Table 2)
2. Culture conditions: 25 ° C., air: methane = 4: 1 (volume), day 25 Diameter: 1mm
4). Color: Light pink Shape: Circular shape 6. 6. Raised shape: half-lens shape Perimeter: All edges 8. Surface shape, etc .: Smooth Transparency: opaque 10 Viscosity: Butter

Figure 2006320256
Figure 2006320256

(c)生理学的性質
1.グラム染色性 :陰性
2.生育至適温度 :20〜37℃
3.生育至適pH :6.9
4.酸素に対する態度:好気性
(C) Physiological properties Gram stainability: negative Growth optimal temperature: 20-37 ° C
3. Growth optimum pH: 6.9
4). Attitude toward oxygen: aerobic

(d)化学的性質
1.16S rDNAの塩基配列:配列番号1に示す
2.系統的に最も近い菌:I431−029II−4A菌株の16S rDNAの部分塩基配列を決定した。DNA データベース(DDBJ)にアクセスし、BLASTプログラムを用い、決定した16S rDNAの塩基配列に基づいて相同性検索を行った。この結果、メチロシスティス・エキノイデス(Methylocystis echinoides)と本菌株の16S rDNAの相同性は98.9%、メチロシスティス・パルバス(Methylocystis parvus)と本菌株の16S rDNAの相同性は97.6%であった。他方、メチロシスティス属と近縁種であるメチロシナス(Methylosinus)属に分類される微生物の16S rDNAと本菌株の16S rDNAの相同性は、最大でも96.4%であった。従って、本菌株はメチロシスティス属に分類されるメタン資化菌であると判定した。
(D) Chemical properties 1.16S rDNA base sequence: as shown in SEQ ID NO: 1. The closest base strain of the strain: the partial base sequence of 16S rDNA of the I431-029II-4A strain was determined. A DNA database (DDBJ) was accessed, and a homology search was performed based on the determined base sequence of 16S rDNA using the BLAST program. As a result, the homology between Methylocystis echinoides and 16S rDNA of this strain was 98.9%, and the homology between Methylocystis parvus and 16S rDNA of this strain was 97.6%. On the other hand, the homology between 16S rDNA of microorganisms classified into the genus Methylosinus, which is closely related to the genus Methylosistis, and 16S rDNA of this strain was 96.4% at the maximum. Therefore, this strain was determined to be a methane-utilizing bacterium classified into the genus Methylocystis.

更に、「バージェイズ・マニュアル・オブ・システマチック・バクテリオロジー 第1版」(Bergery´s Manual of Systematic Bacteriology 1st Edition (1984))」等を参照にしたが、公知のメチロシスティス属細菌で平均分子量300万以上のPHBを蓄積する菌株は公知ではなく、本菌株がメチロシスティス属に分類される新菌株であることが明らかになった。メチロシスティス sp.I431−029II−4Aと命名された本菌株は、平成17年2月22日に、独立行政法人産業技術総合研究所 特許生物寄託センターに、受領番号FERM AP−20425として受領された。   Furthermore, reference was made to “Bergey's Manual of Systematic Bacteriology 1st Edition (1984)”, etc., but it is a known methylocystis bacterium with an average molecular weight of 300. A strain that accumulates more than 10,000 PHBs is not publicly known, and it has been clarified that this strain is a new strain classified into the genus methylocystis. Methylocystis sp. This strain, designated I431-029II-4A, was received on February 22, 2005 by the National Institute of Advanced Industrial Science and Technology as a receipt number FERM AP-20425.

尚、非特許文献2に開示されたPHBを蓄積するメチロシスティス属の細菌については、菌学的性質及び16S rDNAの塩基配列が開示された刊行物等を発見することができず、本発明に係るPHB生産菌を含めた他の菌との分類学的な比較はできなかった。しかし、生産するPHBの分子量が、非特許文献2に開示されたメチロシスティス属の細菌では250万が上限であるのに対して、本発明に係るPHB生産菌は平均分子量300万以上のPHBを生産可能である点で異なり、これらは少なくとも別の菌株であると判断した。   In addition, regarding the bacteria of the genus Methylostis that accumulate PHB disclosed in Non-Patent Document 2, publications in which mycological properties and the base sequence of 16S rDNA are disclosed cannot be found, and the present invention relates to Taxonomic comparison with other bacteria including PHB producing bacteria was not possible. However, the molecular weight of PHB to be produced is 2.5 million in the upper limit in the bacteria of the genus Methylostis disclosed in Non-Patent Document 2, whereas the PHB producing bacterium according to the present invention produces PHB having an average molecular weight of 3 million or more. They differed in that they were possible and were judged to be at least another strain.

ここで、JIS K7127に従って、平均分子量300万のPHBの弾性率と平均分子量250万のPHBの弾性率とを比較したところ、前者は弾性率が3790MPaであったのに対して、後者は3030MPaであった。このように、公知の微生物産生PHBに比べて、本発明に係る微生物が産生したPHBは弾性率が約25%向上した。PHBの耐久性を向上させたり用途を拡大したりするためには弾性率を向上させることが重要であり、本発明に係るPHB生産菌は生分解性プラスチックとして非常に優れたPHBを供給することができる。   Here, according to JIS K7127, the elastic modulus of PHB having an average molecular weight of 3 million and the elastic modulus of PHB having an average molecular weight of 2.5 million were compared. The former had an elastic modulus of 3790 MPa, whereas the latter had 3030 MPa. there were. Thus, the elastic modulus of the PHB produced by the microorganism according to the present invention is improved by about 25% compared to the known microorganism-produced PHB. It is important to improve the elastic modulus in order to improve the durability of PHB and expand its applications. The PHB-producing bacterium according to the present invention supplies a very excellent PHB as a biodegradable plastic. Can do.

本発明に係る16S rRNA遺伝子(16S rDNA)に配列番号1に記載の配列を含み、平均分子量300万以上のPHBを蓄積可能なメチロシスティス(Methylocystis)属の他のPHB生産菌は、前記メチロシスティス sp.I431−029II−4A菌株と同様なスクリーニング方法によって入手することができる。又、上記微生物に公知の変異処理法(例えば、紫外線照射等)を施して得られ、平均分子量300万以上のPHBを蓄積可能なメチロシスティス(Methylocystis)属の変異体等も、本発明に係る微生物に含まれる。   Another PHB-producing bacterium belonging to the genus Methylocystis, which contains the sequence described in SEQ ID NO: 1 in the 16S rRNA gene (16S rDNA) according to the present invention and can accumulate PHB having an average molecular weight of 3 million or more, is the above-mentioned methylocystis sp. It can be obtained by the same screening method as the I431-029II-4A strain. In addition, mutants of the genus Metylocystis that are obtained by subjecting the above microorganisms to a known mutation treatment method (for example, ultraviolet irradiation) and can accumulate PHB having an average molecular weight of 3 million or more are also microorganisms according to the present invention. include.

以下に本発明の実施の形態を、上掲の新規PHB生産菌であるメチロシスティス sp.I431−029II−4A株を例に挙げて説明する。   Hereinafter, embodiments of the present invention will be described with reference to methylocystis sp. The I431-029II-4A strain will be described as an example.

前掲のスクリーニング方法により分離されたメチロシスティス sp.I431−029II−4A株は、公知のメタン資化菌と同様に培養できる。即ち、炭素源、窒素源、無機塩類を含有する通常の水性培地であり、炭素源としてメタンを必須とする。前記菌株の培地としては前記NMS−VCR培地が好適であるが、これに限定されるものではない。例えば、窒素源としては、非限定的に、カゼイン水解物、酵母抽出物、酵母自己消化物、酵母加水分解物、大豆粉、コーンスティープリカー、肉エキス等が使用できる。無機塩類としては、非限定的に、ナトリウム、カリウム、マグネシウム、アンモニウム、カルシウム、マンガン、亜鉛、鉄、コバルト、リン酸塩、硫酸塩、硝酸塩、塩化物、炭酸塩等のイオンを放出し得る通常の塩が使用できる。好ましくは、培地のpH6.5〜7.5、20〜37℃(34℃が至適)で、振とう又は通気培養する。   Methylocystis sp. Isolated by the screening method described above. The I431-029II-4A strain can be cultured in the same manner as known methane-utilizing bacteria. That is, it is a normal aqueous medium containing a carbon source, a nitrogen source, and inorganic salts, and requires methane as a carbon source. The NMS-VCR medium is preferred as the medium for the strain, but is not limited thereto. For example, casein hydrolyzate, yeast extract, yeast autolysate, yeast hydrolyzate, soy flour, corn steep liquor, meat extract and the like can be used as a nitrogen source. Examples of inorganic salts include, but are not limited to, sodium, potassium, magnesium, ammonium, calcium, manganese, zinc, iron, cobalt, phosphate, sulfate, nitrate, chloride, carbonate, etc. The salt can be used. Preferably, the culture is shaken or aerated at pH 6.5 to 7.5, 20 to 37 ° C. (34 ° C. is optimal).

培地雰囲気は、必須成分としてメタンを、例えば、1〜50容量%程度、好適には10〜50容量%程度含む。また、メタン資化菌は偏性好気菌であるため、酸素を1〜50容量%程度、好適には10〜50容量%程度、培地雰囲気に含ませなければならない。前記培地雰囲気は、前掲のメタン及び酸素の他、本発明のPHB生産菌の生育を妨げない範囲で、窒素、二酸化炭素等の他のガスが含まれることを許容する。例えば、空気:メタン=4:1(メタン 約20容積%、酸素 約16容積%)の雰囲気で本発明に係るPHB生産菌を培養することができる。   The medium atmosphere contains methane as an essential component, for example, about 1 to 50% by volume, preferably about 10 to 50% by volume. In addition, since the methane-utilizing bacterium is an obligate aerobic bacterium, oxygen must be contained in the medium atmosphere at about 1 to 50% by volume, preferably about 10 to 50% by volume. The medium atmosphere allows other gases such as nitrogen and carbon dioxide to be contained within the range not impeding the growth of the PHB-producing bacteria of the present invention in addition to the above-mentioned methane and oxygen. For example, the PHB-producing bacterium according to the present invention can be cultured in an atmosphere of air: methane = 4: 1 (methane about 20% by volume, oxygen about 16% by volume).

前記メチロシスティス sp.I431−029II−4A株の菌体内に蓄積されたPHBの平均分子量を測定するため、以下の実験を行った。以下に、本発明の実施例を説明する。   The methylocystis sp. In order to measure the average molecular weight of PHB accumulated in the cells of the I431-029II-4A strain, the following experiment was conducted. Examples of the present invention will be described below.

〔PHBの産生〕
前記無機塩液体培地200mLに前記メチロシスティス sp.I431−029II−4A株を接種し、メタン:空気=1:4のガスを400mL/日の割合で供給しながら、72時間(振とう又は静置)培養した。次いで、前記培地を遠心分離して菌体のみ採取し、凍結乾燥させた。この凍結乾燥菌体5gを乳鉢でよくすりつぶした後、クロロホルム300mLを加え、60℃で5時間加熱した。ガラスフィルターに通して菌体残渣を除去した後、液体画分についてエバポレーター用いてクロロホルムを除去した。
その後、得られたフィルム状物質をメタノールで3回洗浄して脂肪等の不純物を除去したのち、エバポレーターを用いて残留メタノールを除去した。
[Production of PHB]
In 200 mL of the inorganic salt liquid medium, the methylocystis sp. I431-029II-4A strain was inoculated and cultured for 72 hours (shaking or standing) while supplying methane: air = 1: 4 at a rate of 400 mL / day. Subsequently, the culture medium was centrifuged, and only the cells were collected and lyophilized. After 5 g of this freeze-dried microbial cell was well ground in a mortar, 300 mL of chloroform was added and heated at 60 ° C. for 5 hours. After removing the cell residue through a glass filter, chloroform was removed from the liquid fraction using an evaporator.
Thereafter, the obtained film-like substance was washed with methanol three times to remove impurities such as fat, and then residual methanol was removed using an evaporator.

〔PHBの平均分子量〕
得られたフィルム状物質をクロロホルムに溶解し、ゲル浸透クロマトグラフィ(以下、GPCと称する)を用いて、表3に示す条件で平均分子量を測定した。
[Average molecular weight of PHB]
The obtained film-like substance was dissolved in chloroform, and the average molecular weight was measured under the conditions shown in Table 3 using gel permeation chromatography (hereinafter referred to as GPC).

Figure 2006320256
Figure 2006320256

ポリスチレンを分子量標準とし、GPCの結果得られたデータに基づいてPHBの平均分子量を算出したところ、少なくとも3x10であることが判明した。 When the average molecular weight of PHB was calculated based on the data obtained as a result of GPC using polystyrene as the molecular weight standard, it was found to be at least 3 × 10 6 .

本発明に係るPHB生産菌は平均分子量300万以上の非常に分子量の高いPHBを生産することができる。前記PHB生産菌から得られたPHBは伸び率が高いので、強度や耐久性に優れたプラスチックを提供することができる。   The PHB-producing bacterium according to the present invention can produce a very high molecular weight PHB having an average molecular weight of 3 million or more. Since the PHB obtained from the PHB-producing bacterium has a high elongation rate, a plastic excellent in strength and durability can be provided.

Claims (2)

16S rRNA遺伝子(16S rDNA)に配列番号1に記載の配列を含み、平均分子量300万以上のポリヒドロキシブチレートを蓄積可能なメチロシスティス(Methylocystis)属のポリヒドロキシブチレート生産菌。   A polyhydroxybutyrate-producing bacterium belonging to the genus Metylocystis, which can accumulate polyhydroxybutyrate having an average molecular weight of 3 million or more, comprising the sequence of SEQ ID NO: 1 in a 16S rRNA gene (16S rDNA). メチロシスティス(Methylocystis) sp. I431−029II−4A菌株(FERM AP−20425)である請求項1に記載のポリヒドロキシブチレート生産菌。   Metylocystis sp. The polyhydroxybutyrate-producing bacterium according to claim 1, which is strain I431-029II-4A (FERM AP-20425).
JP2005146792A 2005-05-19 2005-05-19 Polyhydroxybutyrate-producing bacteria Expired - Fee Related JP4688570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146792A JP4688570B2 (en) 2005-05-19 2005-05-19 Polyhydroxybutyrate-producing bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146792A JP4688570B2 (en) 2005-05-19 2005-05-19 Polyhydroxybutyrate-producing bacteria

Publications (2)

Publication Number Publication Date
JP2006320256A true JP2006320256A (en) 2006-11-30
JP4688570B2 JP4688570B2 (en) 2011-05-25

Family

ID=37540387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146792A Expired - Fee Related JP4688570B2 (en) 2005-05-19 2005-05-19 Polyhydroxybutyrate-producing bacteria

Country Status (1)

Country Link
JP (1) JP4688570B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8334129B2 (en) 2008-07-10 2012-12-18 Hitachi Chemical Co., Ltd. Microorganism capable of producing polyhydroxyalkanoate, polyhydroxyalkanoate synthase, and gene encoding the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010062963, 沼津工業高等専門学校研究報告 No.35 Page.139−143 (2001.01.31) *
JPN6010062965, J Biotechnol Vol.117 No.1 Page.119−129 (2005.04.20) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8334129B2 (en) 2008-07-10 2012-12-18 Hitachi Chemical Co., Ltd. Microorganism capable of producing polyhydroxyalkanoate, polyhydroxyalkanoate synthase, and gene encoding the same

Also Published As

Publication number Publication date
JP4688570B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
Kim et al. Polymer film-based screening and isolation of polylactic acid (PLA)-degrading microorganisms
CN101363034B (en) Method for producing polyhydroxyalkanoate using engineering strain
WO2016208542A1 (en) Method for producing polyhydroxyalkanoic acid using purple photosynthetic bacterium
Aly et al. Effects of culture conditions on growth and poly-β-hydroxybutyric acid production by Bacillus cereus MM7 isolated from soil samples from Saudi Arabia
Tay et al. Polyhydroxyalkanoate (PHA) accumulating bacteria from the gut of higher termite Macrotermes carbonarius (Blattodea: Termitidae)
Thuoc et al. Bioconversion of crude fish Oil into poly-3-hydroxybutyrate by Ralstonia sp. M91
CN116925981B (en) High-temperature halophilic bacteria and application thereof
Chandani et al. Production of polyhydroxybutyrate (biopolymer) by Bacillus tequilensis NCS-3 isolated from municipal waste areas of Silchar, Assam
JP5717119B2 (en) Method for producing L-lactic acid
JP4688570B2 (en) Polyhydroxybutyrate-producing bacteria
Zaki Biodegradable Plastic Production by Bacillus spp. Isolated from Agricultural Wastes and Genetic Determination of PHA Synthesis
Adwitiya et al. Mutagenesis of Bacillus thuringiensis IAM 12077 for increasing poly (-\beta-) hydroxybutyrate (PHB) production
JP4614756B2 (en) Denitrification strain and method for removing nitric acid using the same
WO2003055985A1 (en) Novel microorganism
JP2008245600A (en) New bacterium and method for producing monoacetin from glycerol using the bacterium
WO2012137771A1 (en) Process for producing adipic acid
JP4649593B2 (en) Method for decomposing polyhydroxyalkanoate resin
JP4526943B2 (en) PHB production method
JP5721162B2 (en) Method for producing high purity lactic acid
CN100400646C (en) Chlorine resisting strain No.1 and screening process thereof
JP2006158237A (en) Microorganism having polyurethane decomposing ability and method for decomposing polyurethane
Jamil et al. Characterization of biopolymer produced by Pseudomonas sp. CMG607w of marine origin
TW201107486A (en) Proteus mirabilis TMR isolate having the abilities to decompose polystyrene and/or styrofoam and uses of the same
JP4931009B2 (en) Method for producing polyhydroxybutyrate (PHB)
TW200914620A (en) Method for producing malic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees