JP2006319349A - Magnetic material and its manufacturing method - Google Patents

Magnetic material and its manufacturing method Download PDF

Info

Publication number
JP2006319349A
JP2006319349A JP2006160279A JP2006160279A JP2006319349A JP 2006319349 A JP2006319349 A JP 2006319349A JP 2006160279 A JP2006160279 A JP 2006160279A JP 2006160279 A JP2006160279 A JP 2006160279A JP 2006319349 A JP2006319349 A JP 2006319349A
Authority
JP
Japan
Prior art keywords
temperature
phase
powder
magnetic material
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006160279A
Other languages
Japanese (ja)
Other versions
JP5011588B2 (en
Inventor
Akira Nagatomi
晶 永富
Bunichi Kanamaru
文一 金丸
Shinichi Yoshikawa
信一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2006160279A priority Critical patent/JP5011588B2/en
Publication of JP2006319349A publication Critical patent/JP2006319349A/en
Application granted granted Critical
Publication of JP5011588B2 publication Critical patent/JP5011588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain, a metastable compound, α"-Fe<SB>16</SB>N<SB>2</SB>depositing accompanied by a phase transformation of crystallizing from martensite phase of α'-Fe(N) not as a compound in a matrix but as a bulk substance isolated as a single phase. <P>SOLUTION: The magnetic material comprises a particle aggregation substantially comprising the α"-Fe<SB>16</SB>N<SB>2</SB>crystal of body-centered cubic (bct). The magnetic material is synthesized directly by making microparticles of α-Fe react with a nitrogen-containing gas at a temperature of ≤200°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、本来は窒素を固溶したマルテンサイトをアニールしたさいに晶出する準安定相のα"-Fe162を、単離した結晶として化学的に合成してなる高い飽和磁束密度をもつ磁性材料およびその製法に関する。 The present invention is a high saturation magnetic flux density obtained by chemically synthesizing metastable phase α "-Fe 16 N 2 as an isolated crystal, which originally crystallizes when annealing martensite in which nitrogen is dissolved. The present invention relates to a magnetic material with

Fe−N系の化合物のうちのα"-Fe162は、窒素を固溶するマルテンサイトを長時間アニールした場合に晶出する準安定化合物として知られている。このα"-Fe162の結晶はbct構造(体心正方晶)であり、大きな飽和磁化をもつ巨大磁気物質として期待されているが、この化合物を単離した状態で化学的に合成された例はない。 Of Fe-N compounds, α "-Fe 16 N 2 is known as a metastable compound that crystallizes when martensite that dissolves nitrogen is annealed for a long time. This α" -Fe 16 The crystal of N 2 has a bct structure (body-centered tetragonal crystal) and is expected as a giant magnetic substance having a large saturation magnetization, but there is no example of chemically synthesizing this compound in an isolated state.

これまで、α"-Fe162を作成すべく、蒸着法、MBE法(分子エキタキシャル法)、イオン注入法、スパッタ法、アンモニア窒化法などの様々な方法が試みられた。しかし、α"-Fe162が準安定相であることと、これより安定なγ'-Fe4Nやε-Fe2-3Nなどが生成し易いこと等からα"-Fe162単一化合物を単離して製造することに困難を伴い,また薄膜としてα"-Fe162結晶が得られたとしても、薄膜では磁性材料への適用に限界がある。 So far, various methods such as vapor deposition, MBE (molecular epitaxial method), ion implantation, sputtering, ammonia nitriding, etc. have been tried to produce α ″ -Fe 16 N 2 . "-Fe 16 N 2 quasi and be stable phase, which more stable γ'-Fe 4 N or ε-Fe 2-3 α etc. can easily produce such N" -Fe 16 N 2 single compounds with difficulty be prepared isolated and even as α "-Fe 16 N 2 crystals were obtained thin film, there is a limitation in application to magnetic material with a thin film.

このようなことから、α"-Fe162の粉末を製造する試みも種々なされており、特開平8−165502号公報では、Fe(N)の粉末をγ相(オーステナイト相)から急冷し、さらに粉砕して加工誘起マルテンサイトを生成させるという処法によりα'(マルテンサイト相)の多いFe(N)の粉末とし、このマルテンサイト相の粉末をアニール処理することによりα"-Fe162を晶出させる方法が提案されている。しかし、この方法によってもα−Feが残存することは否めない。事実、該公報に記載の実施例では、α"-Fe162の含有率は80重量%に満たず、α"-Fe162単一相の粉末とすることはできない。 For this reason, various attempts have been made to produce α ″ -Fe 16 N 2 powder. In JP-A-8-165502, Fe (N) powder is quenched from the γ phase (austenite phase). Further, it is made a powder of Fe (N) with a lot of α ′ (martensite phase) by a process of pulverizing to produce processing-induced martensite, and this martensite phase powder is annealed to obtain α ″ -Fe 16. A method for crystallizing N 2 has been proposed. However, it cannot be denied that α-Fe remains even by this method. In fact, in the examples described in the publication, the content of α ″ -Fe 16 N 2 is less than 80% by weight, and α ″ -Fe 16 N 2 single-phase powder cannot be obtained.

また特開平7−118702号公報では、純鉄粉末をアンモニアと水素の混合ガスと高温で反応保持させてオーステナイト単相の粉末とし、この高温のオーステナイト単相から急冷してマルテンサイト主相の粉末とし、これに時効処理を施すことにより窒素固溶マルテンサイト中にα"-Fe162相が微量析出した粉末とし、さらに窒素雰囲気中で粉砕処理してα"-Fe162の析出を促進させる方法が提案されている。しかし、この方法によってもα"-Fe162相の含有量は70容積%程度である。 In JP-A-7-118702, pure iron powder is reacted and held at a high temperature with a mixed gas of ammonia and hydrogen to form an austenite single-phase powder, which is rapidly cooled from the high-temperature austenite single-phase powder. By subjecting this to an aging treatment, a powder in which a small amount of α "-Fe 16 N 2 phase is precipitated in nitrogen solid solution martensite is obtained, and further pulverized in a nitrogen atmosphere to precipitate α" -Fe 16 N 2 . A method for promoting the above has been proposed. However, even by this method, the content of the α ″ -Fe 16 N 2 phase is about 70% by volume.

マルテンサイト相〔α'-Fe(N)〕からα"-Fe162を晶出させる方法では、α"-Fe162は金属組織中の析出相として存在するので、α"-Fe162結晶化合物を単一相として分離することは困難である。したがって、このような相変態を伴うα"-Fe162の晶出法ではα"-Fe162単一相の磁性材料を得ることができない。このことは、材料が粉末形態であっても変わるところはなく、前記の公報に見られるようにα"-Fe162を粉末中に晶出させる方法でも同様のことが言える。 In the method of crystallizing α "-Fe 16 N 2 from the martensite phase [α'-Fe (N)], α" -Fe 16 N 2 exists as a precipitated phase in the metal structure. the 16 N 2 crystal compound that is difficult to separate a single phase. Therefore, such phase transformation involving alpha "of -Fe 16 N 2 at crystallization method alpha" of -Fe 16 N 2 single phase It is not possible to obtain a magnetic material, even if the material is in a powder form, and the same applies to the method of crystallizing α "-Fe 16 N 2 in the powder as seen in the above publication. I can say that.

また、薄膜作成法ではたとえα"-Fe162の薄膜が得られたとしても、汎用の磁性材料とするには生産性や経済性に問題がある。 Moreover, even if a thin film of α ″ -Fe 16 N 2 is obtained by the thin film forming method, there are problems in productivity and economical efficiency for making a general-purpose magnetic material.

したがって、本発明は、前記のような相変態を伴う熱処理による晶出とは異なり、α"-Fe162の結晶化合物を母相とは分離した形で得ることを課題としたものであり、実質的にα"-Fe162結晶化合物からなる磁性材料を提供しようとするものである。 Therefore, the object of the present invention is to obtain an α "-Fe 16 N 2 crystalline compound in a form separated from the parent phase, unlike the crystallization by the heat treatment accompanied by the phase transformation as described above. An object of the present invention is to provide a magnetic material substantially consisting of an α ″ -Fe 16 N 2 crystalline compound.

本発明者らは、前記の課題を解決すべくα"-Fe162の化学的合成法について種々の試験研究を重ねた結果、α"-Fe162結晶単一相のバルク物質としてα"-Fe162の合成に成功した。すなわち、従来のような相変態過程を経る晶出にはよらないで、準安定化合物であるα"-Fe162の結晶そのものを化学的に合成できた。したがって、本発明によれば、体心正方晶(bct)をもつα"-Fe162結晶から実質的になる粒子の集合からなる磁性材料を提供するものである。すなわち該粒子はα"-Fe162結晶の単一相であり、この粒子粉末は高い飽和磁束密度(飽和磁化)を有する。 The present inventors have found that "the result of extensive research various tests for -Fe 16 N 2 of chemical synthesis, alpha" the problem to solve the alpha as a bulk material -Fe 16 N 2 crystal single phase We have succeeded in synthesizing α "-Fe 16 N 2. That is, the crystal of α" -Fe 16 N 2 , which is a metastable compound, can be chemically obtained without crystallization through the conventional phase transformation process. Was synthesized. Therefore, according to the present invention, there is provided a magnetic material comprising a collection of particles substantially consisting of α ″ -Fe 16 N 2 crystals having body-centered tetragonal crystals (bct). It is a single phase of -Fe 16 N 2 crystal, and this particle powder has a high saturation magnetic flux density (saturation magnetization).

このようなα"-Fe162結晶の単一相の粒子粉末は、α−Feの微粒子を200℃以下、好ましくは150℃以下、さらに好ましくは120℃以下の温度で窒素含有ガス例えばアンモニアガスと反応させることによって直接的に合成することができる。 Such α ″ -Fe 16 N 2 crystal single-phase particle powder is obtained by converting α-Fe fine particles into a nitrogen-containing gas such as ammonia at a temperature of 200 ° C. or lower, preferably 150 ° C. or lower, more preferably 120 ° C. or lower. It can be synthesized directly by reacting with a gas.

前記のように、α"-Fe162は大きな飽和磁化をもつ巨大磁化物質として期待されていながらも、これまで単一相バルク物質としてα"-Fe162の合成に成功した例はなく、したがって、α"-Fe162を汎用の磁性材料として使用された例はない。本発明者らは、微細なα−鉄粒子粉末をある条件のもとで窒化処理するとα"-Fe162単一相の結晶を合成できることを知った。そして、得られたα"-Fe162結晶の粒子粉末は大きな飽和磁化を有することが確証され、優れた磁性材料であることがわかった。 As mentioned above, α ″ -Fe 16 N 2 is expected to be a giant magnetized material with large saturation magnetization, but examples of successful α ”-Fe 16 N 2 as single-phase bulk materials are Therefore, there is no example in which α ″ -Fe 16 N 2 is used as a general-purpose magnetic material. The inventors of the present invention have found that α ”-when fine α-iron particle powder is nitrided under certain conditions. I found out that Fe 16 N 2 single phase crystals can be synthesized. The obtained α ″ -Fe 16 N 2 crystal particle powder was confirmed to have a large saturation magnetization, and was found to be an excellent magnetic material.

Fe−N系の化合物に関しては、FenNの表示で、n=8、4、3、2および1などの組成を持つ多くの窒化鉄が存在するが、窒素含有ガスによるα−Feの通常の窒化では各相の化合物が共存して生成する。本発明者らは先にFe箔によるアンモニア窒化の実験を行ったが、窒化温度が低くなるにつれて窒素含有量の少ない結晶相が生成することがわかった。そして、210℃以下の低い温度ではα"-Fe162が生成することを確認したが、このような低い温度では、窒素原子の拡散が遅いのでα"-Fe162単一相にすることは困難であった。 Regarding Fe-N-based compounds, there are many iron nitrides having a composition such as n = 8, 4, 3, 2, and 1 in terms of Fe n N. In nitriding, the compounds of each phase coexist and form. The present inventors previously conducted an ammonia nitriding experiment with Fe foil, and found that a crystalline phase with a low nitrogen content was formed as the nitriding temperature was lowered. Then, it was confirmed that α ″ -Fe 16 N 2 was formed at a low temperature of 210 ° C. or lower. However, at such a low temperature, diffusion of nitrogen atoms was slow, so that the α ″ -Fe 16 N 2 single phase was formed. It was difficult to do.

ところが、αFeの微細な粉末を原料とし、これを窒素含有ガスで100〜200℃の低温で長時間窒化処理すると、α"-Fe162が生成することがわかった。α"-Fe162単一相の結晶からなる粒子粉末を得るためには、原料鉄粉の粒径、組成および純度、窒化ガスの種類や濃度、窒化温度(反応温度)、保持時間(反応時間)等の様々な要因が関与するが、鉄粉の粒径については小さい程よい。 However, a fine powder of αFe as a raw material, which upon prolonged nitriding treatment at a low temperature of 100 to 200 ° C. in a nitrogen-containing gas, α "-Fe 16 N 2 .α was found to produce" -Fe 16 In order to obtain a particle powder composed of N 2 single phase crystals, the particle size, composition and purity of the raw iron powder, the type and concentration of nitriding gas, nitriding temperature (reaction temperature), retention time (reaction time), etc. Various factors are involved, but the smaller the particle size of the iron powder, the better.

窒化ガスについては、窒素ガス、窒素+水素の混合ガス、アンモニアガス等が使用できるが、アンモニアガスが使用に便宜である。また、窒化処理に先立ち、原料鉄粉の表面に存在する酸化皮膜を水素ガスで還元しておくのがよい。   As the nitriding gas, nitrogen gas, nitrogen + hydrogen mixed gas, ammonia gas, or the like can be used, but ammonia gas is convenient for use. Prior to the nitriding treatment, it is preferable to reduce the oxide film present on the surface of the raw iron powder with hydrogen gas.

窒化温度と保持時間はα"-Fe162単一相を生成させるための重要な要件であり、後記の実施例に示すように粒径20nmのFe微粒子を原料としてアンモニアガスで窒化する場合には、120℃以下の温度で1日以上、好ましくは100〜120℃の温度で1〜12日間とするのがよく、最適には110℃で10日間の処理によりα"-Fe162単一相の粒子粉末が得られることがわかった。この窒化処理の反応時間と保持時間は、用いる鉄粉の形態(粒径や組成)と用いる窒化ガスの種類や濃度により最適範囲が変るが、50nm以下の鉄粉を原料とする場合には、およそ100〜200℃の温度範囲で0.5〜12時間の範囲であればよいと考えられる。 Nitriding temperature and holding time are important requirements for producing an α "-Fe 16 N 2 single phase, and when nitriding with ammonia gas using Fe fine particles having a particle size of 20 nm as a raw material as shown in the examples described later. In this case, the temperature is 120 ° C. or lower for 1 day or longer, preferably 100 to 120 ° C. for 1 to 12 days, and most preferably α ″ -Fe 16 N 2 by treatment at 110 ° C. for 10 days. It was found that single phase particle powder was obtained. The optimum range of the reaction time and holding time of the nitriding treatment varies depending on the form (particle size and composition) of the iron powder used and the type and concentration of the nitriding gas used, but when using iron powder of 50 nm or less as a raw material, It is considered that it may be in the range of 0.5 to 12 hours in a temperature range of about 100 to 200 ° C.

以下に実施例により、本発明のα"-Fe162を具体的に説明する。 The α ″ -Fe 16 N 2 of the present invention will be specifically described below with reference to examples.

表1の組成(重量%)の粒径20nm(X線半値幅から計測)の鉄粉を準備した。     An iron powder having a particle size of 20 nm (measured from the X-ray half width) having the composition (% by weight) shown in Table 1 was prepared.

Figure 2006319349
Figure 2006319349

この微粒鉄粉を図1に示した装置を用いてアンモニア窒化処理した。図1において、1は電気炉であり、この電気炉1内に内径30mmの反応管(石英管)2を設置し、この反応管内に鉄粉試料3をいれたトレー4をセットする。反応管2には、N2ガス源5、水素ガス源6、アンモニアガス源7をそれぞれ流量計を解して接続し、反応管2へのこれらのガス導入流路の途中に乾燥剤としてのゼオライト層8を介装させてあり、これにより、ガス中に微量に含有する水蒸気による鉄粉の酸化を防止する。また、空気中の酸素及び水蒸気の混入を防ぐためにガス出口側にオイルトラップ9を設けてある。 This fine iron powder was subjected to ammonia nitriding using the apparatus shown in FIG. In FIG. 1, reference numeral 1 denotes an electric furnace. A reaction tube (quartz tube) 2 having an inner diameter of 30 mm is installed in the electric furnace 1, and a tray 4 containing an iron powder sample 3 is set in the reaction tube. An N 2 gas source 5, a hydrogen gas source 6, and an ammonia gas source 7 are connected to the reaction tube 2 through respective flowmeters, and are used as a desiccant in the middle of these gas introduction channels to the reaction tube 2. The zeolite layer 8 is interposed, thereby preventing the iron powder from being oxidized by water vapor contained in a trace amount in the gas. An oil trap 9 is provided on the gas outlet side in order to prevent oxygen and water vapor from entering the air.

〔例1〕
前記の鉄粉5gをトレー4に入れ、水素ガスを100ml/分の流量で反応管に導入し反応管内温度を500℃に保持して鉄粉表面の酸化皮膜を還元したあと、室温にまで冷却した。次いで、アンモニアガスに切換え、このアンモニアガスを反応管2内に100ml/分の流量で反応管に連続的に導入し、管内温度を120℃に保持しながら10日間のアンモニア窒化処理を行った。得られた生成物を空気中の酸素による酸化を防止するためにN2ガス中でシリコンオイルに浸し、そのサンプルを採取して粉末X線回折装置により結晶相の同定を行った。図2のAおよびBにそのX線回折パターンを示した。図2Bは、A図の2θ:38〜50°の部分を拡大したものである。
[Example 1]
Put 5g of the above iron powder into the tray 4, introduce hydrogen gas into the reaction tube at a flow rate of 100ml / min, keep the temperature in the reaction tube at 500 ° C and reduce the oxide film on the iron powder surface, then cool to room temperature did. Subsequently, it switched to ammonia gas, this ammonia gas was continuously introduce | transduced into the reaction tube at the flow volume of 100 ml / min in the reaction tube 2, and ammonia nitriding treatment was performed for 10 days, maintaining the tube temperature at 120 degreeC. The obtained product was immersed in silicon oil in N 2 gas to prevent oxidation by oxygen in the air, a sample was taken, and the crystal phase was identified by a powder X-ray diffractometer. The X-ray diffraction patterns are shown in FIGS. FIG. 2B is an enlarged view of the 2θ: 38-50 ° portion of FIG.

〔例2〕
反応温度(管内温度)を110℃に変更した以外は、例1を繰り返した(保持時間10日間)。図2にそのX線回折パターンを併記した。
[Example 2]
Example 1 was repeated (retention time 10 days) except that the reaction temperature (in-tube temperature) was changed to 110 ° C. The X-ray diffraction pattern is also shown in FIG.

〔例3〕
反応温度(管内温度)を100℃とし、その温度での保持時間を10日間とした以外は、例1を繰り返した。図2にそのX線回折パターンを併記した。
[Example 3]
Example 1 was repeated except that the reaction temperature (in-tube temperature) was 100 ° C. and the holding time at that temperature was 10 days. The X-ray diffraction pattern is also shown in FIG.

〔例4〕
反応温度(管内温度)を150℃とし、その温度での保持時間を3日間とした以外は、例1を繰り返した。図3AおよびBにそのX線回折パターンを示した。図3Bは、A図の2θ:38〜50°の部分を拡大したものである。
[Example 4]
Example 1 was repeated except that the reaction temperature (in-tube temperature) was 150 ° C. and the holding time at that temperature was 3 days. 3A and B show the X-ray diffraction patterns. FIG. 3B is an enlarged view of the 2θ: 38-50 ° portion of FIG.

〔例5〕
反応温度(管内温度)を120℃とし、その温度での保持時間を4日間とした以外は、例1を繰り返した。図3にそのX線回折パターンを併記した。
[Example 5]
Example 1 was repeated except that the reaction temperature (in-tube temperature) was 120 ° C. and the holding time at that temperature was 4 days. The X-ray diffraction pattern is also shown in FIG.

〔例6〕
反応温度(管内温度)を100℃とし、その温度での保持時間を3日間とした以外は、例1を繰り返した。図3にそのX線回折パターンを併記した。
[Example 6]
Example 1 was repeated except that the reaction temperature (in-tube temperature) was 100 ° C. and the holding time at that temperature was 3 days. The X-ray diffraction pattern is also shown in FIG.

〔例7〕
反応温度(管内温度)を300℃とし、その温度での保持時間を半日間とした以外は、例1を繰り返した。図4にそのX線回折パターンを示した。
[Example 7]
Example 1 was repeated except that the reaction temperature (in-tube temperature) was 300 ° C. and the holding time at that temperature was half a day. FIG. 4 shows the X-ray diffraction pattern.

〔例8〕
反応温度(管内温度)を200℃とし、その温度での保持時間を3日間とした以外は、例1を繰り返した。図4にそのX線回折パターンを併記した。
[Example 8]
Example 1 was repeated except that the reaction temperature (in-tube temperature) was 200 ° C. and the holding time at that temperature was 3 days. FIG. 4 also shows the X-ray diffraction pattern.

例1〜例8で得られた各生成物について、そのX線回折から同定された結晶を表2に示した。   For each product obtained in Examples 1 to 8, crystals identified from the X-ray diffraction are shown in Table 2.

Figure 2006319349
Figure 2006319349

表2の結果から、例1〜6ではいずれもα"-Fe162結晶が生成していることがわかる。より具体的には、反応温度が高くても(例3)、保持時間が短くても(例6)、他の相が共存するようになるが、適切な反応温度と保持時間では(例えば(例1、2、5)ではほぼα"-Fe162となり、特に例2の場合には、他の相が存在しないα"-Fe162だけの結晶が得られたことがわかる。また、例7〜9のように反応温度が高く且つ保持時間が短い場合には、α"-Fe162は全く現れずにFe2Nが主相となる。 From the results of Table 2, it can be seen that α "-Fe 16 N 2 crystals are formed in all of Examples 1 to 6. More specifically, even when the reaction temperature is high (Example 3), the retention time is high. Even if it is short (Example 6), other phases coexist, but at an appropriate reaction temperature and holding time (for example (Examples 1, 2, 5), it is almost α "-Fe 16 N 2 , which is In the case of 2, it can be seen that a crystal of only α ″ -Fe 16 N 2 without any other phase was obtained. When the reaction temperature was high and the retention time was short as in Examples 7-9. In this case, α ″ -Fe 16 N 2 does not appear at all and Fe 2 N becomes the main phase.

例2で得られたα"-Fe162結晶だけからなる粒子粉末について、そのX線回折結果からRietveld解析を行って格子定数と原子座標を求めた。その結果を図5に示したが、α"-Fe162は、空間群がI4/mmmであり、格子定数はa=0.571nm、c=0.628nmの体心正方晶(bct)である。 From the X-ray diffraction results, the Rietveld analysis was performed on the particle powder consisting of only the α "-Fe 16 N 2 crystal obtained in Example 2, and the lattice constant and atomic coordinates were obtained. The results are shown in FIG. , Α ″ -Fe 16 N 2 is a body-centered tetragonal crystal (bct) having a space group of I4 / mmm and lattice constants of a = 0.571 nm and c = 0.628 nm.

例2で得られたα"-Fe162結晶だけからなる粒子粉末について、メスバウワア測定した。そのメスバウワスペクトルを図6に示した。その結果、Nに隣接する第三近接Fe原子の内部磁場は40.3Tの値をもつことがわかった。また、Nの第一近接Fe原子、第二近接Fe原子および第三近接Fe原子の各内部磁場の値(それぞれ、29.8、31.7および40.3T)から、各Fe原子の磁気モーメントを計算し、その値からα"-Fe162単一結晶の飽和磁化を求めたところ、245.2emu/g となった。 Mossbauer measurement was performed on the particle powder consisting only of α ″ -Fe 16 N 2 crystals obtained in Example 2. The Mossbauer spectrum was shown in FIG. 6. As a result, the third adjacent Fe atom adjacent to N was measured. The internal magnetic field was found to have a value of 40.3 T. Also, the values of the internal magnetic fields of the N first adjacent Fe atom, the second adjacent Fe atom, and the third adjacent Fe atom (29.8, 31 respectively). 7) and 40.3 T), the magnetic moment of each Fe atom was calculated, and the saturation magnetization of the α "-Fe 16 N 2 single crystal was calculated from the calculated value. As a result, it was 245.2 emu / g.

例2で得られたα"-Fe162結晶だけからなる粒子粉末について磁化測定を行った。測定は0.1Tずつ外部磁化を変化させ、−5Tから5Tの範囲で、290K(絶対温度)と、4Kで行った。それらの結果を図7(290K)と図8(4K)に示した。比較のために、原料に用いたα−Feの微粒鉄粉についての測定結果もこれらの図に併記した。 Magnetization measurement was performed on the particle powder made of only the α "-Fe 16 N 2 crystal obtained in Example 2. The measurement was performed by changing the external magnetization by 0.1 T in a range of -5 T to 5 T, and 290 K (absolute temperature). 7) and 4K, and the results are shown in Fig. 7 (290K) and Fig. 8 (4K) .For comparison, the measurement results on the fine iron powder of α-Fe used as a raw material are also shown in these figures. Also shown in the figure.

図7に見られるように、例2のものは常温(290K)での飽和磁化は162emu/g であり、α−Feの148emu/g より大きな値を示した。同様に図8に見られるように、4Kでも172emu/g であり、α−Feの152emu/g より大きな値を示した。図9は、例2の粒子粉末について290Kから4Kの範囲で温度変化させ、0.1Tの外部磁場をかけて測定した磁化の温度依存性をα−Feのそれと比較して示したものである。   As seen in FIG. 7, the saturation magnetization at room temperature (290 K) in Example 2 was 162 emu / g, which was larger than 148 emu / g of α-Fe. Similarly, as seen in FIG. 8, even at 4K, it was 172 emu / g, showing a value larger than 152 emu / g of α-Fe. FIG. 9 shows the temperature dependence of magnetization measured by applying an external magnetic field of 0.1 T with respect to the particle powder of Example 2 in the range of 290 K to 4 K and comparing with that of α-Fe. .

α−Fe微粒子の室温での飽和磁化は本来は220emu/g を示す筈であるが、これが148emu/g であったことは表面が酸化膜で覆われていることによると考えられる。同様に例2の試料も磁気測定までの間に酸化膜で覆われていると考えてよい。そこで、α−Feの微粒子の室温での飽和磁化148emu/g から、その微粒子の酸化膜の量を計算し、この酸化膜と等量の酸化膜が例2の微粒子表面に生成していると仮定すると、α"-Fe162の飽和磁化は240emu/g という非常に大きな値を有することになる。この値は先の各Fe原子の磁気モーメントから得られた飽和磁化の値245.2emu/g にほぼ対応している。 The saturation magnetization of α-Fe fine particles at room temperature should originally show 220 emu / g, but it was thought that this was 148 emu / g because the surface was covered with an oxide film. Similarly, the sample of Example 2 may be considered to be covered with an oxide film before the magnetic measurement. Therefore, the amount of oxide film of the fine particle of α-Fe is calculated from the saturation magnetization 148 emu / g of the fine particle at room temperature, and an oxide film equivalent to this oxide film is formed on the surface of the fine particle of Example 2. Assuming that the saturation magnetization of α "-Fe 16 N 2 has a very large value of 240 emu / g. This value is the saturation magnetization value 245.2 emu obtained from the magnetic moment of each Fe atom. Almost corresponds to / g.

以上説明したように、本発明は、α'-Fe(N)のマルテンサイト相からの晶出という相変態を伴って析出する準安定化合物であるα"-Fe162を、マトリクス中の化合物としてではなく、単一相の単離したバルク物質として得たものであるから、従来のものにはない新規な磁性材料を提供できる。しかも、その合成は比較的低温での簡易な処法で実現できるので、高い飽和磁束密度をもつ磁性材料を経済的に得ることができる。 As described above, in the present invention, α ″ -Fe 16 N 2 , which is a metastable compound that precipitates with a phase transformation of crystallization from the martensite phase of α′-Fe (N), is contained in the matrix. Since it was obtained not as a compound but as a single-phase isolated bulk material, it can provide a novel magnetic material not found in conventional materials, and its synthesis is a simple process at a relatively low temperature. Therefore, a magnetic material having a high saturation magnetic flux density can be obtained economically.

本発明に従うα"-Fe162の合成試験に用いた装置の概略図である。Is a schematic diagram of an apparatus used for the synthesis tests α "-Fe 16 N 2 according to the present invention. α−Fe微粒子のアンモニア窒化処理において反応温度と保持時間を変えた場合に生成した生成物のX線回折パターンである。It is an X-ray-diffraction pattern of the product produced | generated when reaction temperature and holding time were changed in the ammonia nitriding process of alpha-Fe fine particles. α−Fe微粒子のアンモニア窒化処理において反応温度と保持時間を変えた場合に生成した生成物のX線回折パターンである。It is an X-ray-diffraction pattern of the product produced | generated when reaction temperature and holding time were changed in the ammonia nitriding process of alpha-Fe fine particles. α−Fe微粒子のアンモニア窒化処理において反応温度と保持時間を変えた場合に生成した生成物のX線回折パターンである。It is an X-ray-diffraction pattern of the product produced | generated when reaction temperature and holding time were changed in the ammonia nitriding process of alpha-Fe fine particles. α"-Fe162粒子粉末についてのX線回折結果からRietveld解析を行って得たα"-Fe162結晶のX線回折パターンと、格子定数を示す図である。and X-ray diffraction pattern of the "go-obtained alpha the Rietveld analysis from X-ray diffraction results for -Fe 16 N 2 particles" -Fe 16 N 2 crystal alpha, is a diagram showing a lattice constant. α"-Fe162粒子粉末についてのメスバウワアスペクトルである。It is a Mossbauer spectrum about α ”-Fe 16 N 2 particle powder. α"-Fe162粒子粉末についての290Kでの磁化測定結果を、α−Fe微粒子のそれと対比して示した図である。The magnetization measurements at 290K for α "-Fe 16 N 2 particles is a diagram showing, in comparison with that of alpha-Fe fine particles. α"-Fe162粒子粉末についての4Kでの磁化測定結果を、α−Fe微粒子のそれと対比して示した図である。The magnetization measurements at 4K for α "-Fe 16 N 2 particles is a diagram showing, in comparison with that of alpha-Fe fine particles. α"-Fe162粒子粉末についての290Kから4Kの温度範囲での磁化の温度依存性を、α−Fe微粒子のそれと対比して示した図である。It is the figure which showed the temperature dependence of the magnetization in the temperature range of 290K to 4K about the α "-Fe 16 N 2 particle powder in comparison with that of the α-Fe fine particles.

符号の説明Explanation of symbols

1 電気炉
2 反応管(石英管)
3 鉄粉試料
8 ゼオライト層
9 オイルトラップ
1 Electric furnace 2 Reaction tube (quartz tube)
3 Iron powder sample 8 Zeolite layer 9 Oil trap

Claims (2)

体心正方晶(bct)をもつα"-Fe162結晶から実質的になる粒子の集合からなる磁性材料。 A magnetic material comprising a collection of particles substantially consisting of α ″ -Fe 16 N 2 crystals having body-centered tetragonal crystals (bct). 粒子はα"-Fe162結晶の単一相である請求項1に記載の磁性材料。 The magnetic material according to claim 1, wherein the particles are a single phase of α ″ -Fe 16 N 2 crystal.
JP2006160279A 2006-06-08 2006-06-08 Magnetic material Expired - Lifetime JP5011588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160279A JP5011588B2 (en) 2006-06-08 2006-06-08 Magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160279A JP5011588B2 (en) 2006-06-08 2006-06-08 Magnetic material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14126198A Division JP3932326B2 (en) 1998-05-22 1998-05-22 Manufacturing method of iron nitride magnetic material

Publications (2)

Publication Number Publication Date
JP2006319349A true JP2006319349A (en) 2006-11-24
JP5011588B2 JP5011588B2 (en) 2012-08-29

Family

ID=37539677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160279A Expired - Lifetime JP5011588B2 (en) 2006-06-08 2006-06-08 Magnetic material

Country Status (1)

Country Link
JP (1) JP5011588B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049080A1 (en) 2009-10-22 2011-04-28 戸田工業株式会社 Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet
JP2012253248A (en) * 2011-06-03 2012-12-20 Sumitomo Electric Ind Ltd Iron nitride material and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049080A1 (en) 2009-10-22 2011-04-28 戸田工業株式会社 Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet
JP2012253248A (en) * 2011-06-03 2012-12-20 Sumitomo Electric Ind Ltd Iron nitride material and method for manufacturing the same

Also Published As

Publication number Publication date
JP5011588B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP3932326B2 (en) Manufacturing method of iron nitride magnetic material
JP6334812B2 (en) Multi-layer iron nitride hard magnetic material
US8535634B2 (en) Iron nitride powders for use in magnetic, electromagnetic, and microelectronic devices
Yamanaka et al. Humidity effects in Fe16N2 fine powder preparation by low-temperature nitridation
JP2001176715A (en) HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL
Hayashi et al. Oxygen-holes creating different electronic phases in Fe4+-oxides: successful growth of single crystalline films of SrFeO3 and related perovskites at low oxygen pressure
Waki et al. Effect of oxygen potential on Co solubility limit in La–Co co-substituted magnetoplumbite-type strontium ferrite
Cao et al. Nonmetal sulfur-doped coral-like cobalt ferrite nanoparticles with enhanced magnetic properties
Kikkawa et al. Fine Fe16N2 powder prepared by low-temperature nitridation
Kikkawa et al. Magnetic iron nitrides inspired by historic research on α ″-Fe16N2
Masubuchi et al. Magnetite/maghemite mixture prepared in benzyl alcohol for the preparation of α ″-Fe16N2 with α-Fe
Bohr et al. Atomic scale growth of GdFeO3 perovskite thin films
Wojciechowski et al. Iron nitride thin films: Growth, structure, and properties
Zhang et al. Iron carbide and nitride via a flexible route: synthesis, structure and magnetic properties
Tajima et al. Synthesis and magnetic properties of Fe7C3 particles with high saturation magnetization
JP5011588B2 (en) Magnetic material
Intaphong et al. Combustion synthesis of nickel ferrite powders: effect of NaClO4 content on their characteristics and magnetic properties
Sun et al. Epitaxially grown Fe16N2 single-crystal films with high saturation magnetization prepared by facing targets sputtering
Ying et al. Advantageous use of metallic cobalt in the target for pulsed laser deposition of cobalt-doped ZnO films
JPS5976403A (en) Ferromagnetic substance containing as base carburized nitrided iron
Beer et al. Ferromagnetic europium sulfide thin films: Influence of precursors on magneto-optical properties
Kim et al. Mössbauer study and magnetic properties of Ti0. 99 57Fe0. 01O2
Zestrea et al. Structural and magnetic properties of FeCr 2 S 4 spinel prepared by field-activated sintering and conventional solid-state synthesis
Rastogi et al. Kinetics, growth, structure, and atmospheric chemical vapor deposition of ferrimagnetic iron oxide thin films from metallorganic acetyl acetonate precursor
Tobise et al. Proposal of New Co-Addition Method for α”-Fe₁₆ (N, C) ₂ Particles by Gas–Solid Reactions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term