JP2012253248A - Iron nitride material and method for manufacturing the same - Google Patents

Iron nitride material and method for manufacturing the same Download PDF

Info

Publication number
JP2012253248A
JP2012253248A JP2011125800A JP2011125800A JP2012253248A JP 2012253248 A JP2012253248 A JP 2012253248A JP 2011125800 A JP2011125800 A JP 2011125800A JP 2011125800 A JP2011125800 A JP 2011125800A JP 2012253248 A JP2012253248 A JP 2012253248A
Authority
JP
Japan
Prior art keywords
iron nitride
binder
nitride material
nitride particles
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011125800A
Other languages
Japanese (ja)
Other versions
JP5769069B2 (en
Inventor
Toru Maeda
前田  徹
Motoki Nagasawa
基 永沢
Asayuki Ishimine
朝之 伊志嶺
Takeshi Kato
武志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011125800A priority Critical patent/JP5769069B2/en
Publication of JP2012253248A publication Critical patent/JP2012253248A/en
Application granted granted Critical
Publication of JP5769069B2 publication Critical patent/JP5769069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an iron nitride material which has a high content of iron nitride particles containing α''FeNas a major ingredient, and to provide a method for manufacturing the same.SOLUTION: Granulated powders having an average particle diameter of 1 μm or more are formed by mixing raw powders made of iron nitride particles which contain α''FeNas a major ingredient and have a minor axis average length of 100 nm or less, and a binder. After a molding die is filled with the granulated powders, a molded body (iron nitride material) is formed by pressure molding. The pressure molding is carried out while performing exhaust of the molding die to be 0.9 atmospheres or less, in a heated state at a temperature of ±20°C of a decomposition temperature of the binder and an applied state of a magnetic field equal to or larger than 2T. By applying a strong magnetic field in the presence of the binder which has melted by heating, transfer and rotation of iron nitride particles become easy and crystal orientation can be oriented in a specific direction. When removing the binder by heating and exhausting, a filling rate of the iron nitride particles can be increased. According to the manufacturing method, iron nitride material having a high content of the iron nitride particles and an oriented texture can be obtained, and the iron nitride material excels in magnetic properties.

Description

本発明は、永久磁石などの磁性部材の素材に適した窒化鉄材、及びその製造方法に関する。特に、α"Fe16N2を主成分とする粉末の含有量が多い窒化鉄材に関するものである。 The present invention relates to an iron nitride material suitable for a material of a magnetic member such as a permanent magnet, and a manufacturing method thereof. In particular, the present invention relates to an iron nitride material having a large content of powder mainly composed of α ″ Fe 16 N 2 .

従来、磁気記録媒体といった磁気部材の原料に、粒径がナノオーダーの球状の窒化鉄や短軸がナノオーダーの柱状の窒化鉄からなるナノ粉末が利用されている。この窒化鉄として、飽和磁化が非常に高く、磁気特性に非常に優れるα"型のFe16N2(原理計算や薄膜による実験において飽和磁化:2.8T程度、正方晶、a=5.72Å、c=6.29Å、結晶記号:I4/mmm)が利用されている(特許文献1など)。 Conventionally, as a raw material for a magnetic member such as a magnetic recording medium, nano-powder made of spherical iron nitride having a particle size of nano order or columnar iron nitride having a short axis of nano order has been used. As this iron nitride, α ”type Fe 16 N 2 with very high saturation magnetization and excellent magnetic properties (saturation magnetization: about 2.8 T in tetragonal calculations, thin film experiments, tetragonal, a = 5.72Å, c = 6.29 mm, crystal symbol: I4 / mmm) is used (Patent Document 1, etc.).

一方、モータや発電機などに利用される永久磁石として、Nd(ネオジム)やSm(サマリウム)といった希土類元素を含有する希土類磁石が広く利用されている。   On the other hand, rare earth magnets containing rare earth elements such as Nd (neodymium) and Sm (samarium) are widely used as permanent magnets used in motors and generators.

特開2007-335592号公報JP 2007-335592 A

希土類磁石は、磁気特性に優れるものの、希土類元素は希少元素であるため、使用量の低減が望まれる。一方、鉄元素や窒素元素は希土類元素よりも豊富である。従って、α"Fe16N2を主成分とする窒化鉄材を磁石の素材に利用すれば、希土類磁石よりも磁気特性に優れる永久磁石が得られると期待される。 Although rare earth magnets are excellent in magnetic properties, since rare earth elements are rare elements, it is desired to reduce the amount used. On the other hand, iron elements and nitrogen elements are more abundant than rare earth elements. Therefore, it is expected that a permanent magnet having a magnetic property superior to that of a rare earth magnet can be obtained by using an iron nitride material containing α ″ Fe 16 N 2 as a main component for a magnet material.

しかし、従来のα"Fe16N2を含有する窒化鉄材は、α"Fe16N2の含有量が少なく、磁気特性に劣り、磁石といった磁性部材の素材に適用することが困難である。 However, the conventional alpha "Fe 16 N 2 nitriding iron containing is, alpha" Fe 16 N less content of 2, inferior magnetic properties, it is difficult to apply to a magnetic member such as a magnet material.

例えば、磁気記録媒体に利用される窒化鉄材は、α"Fe16N2の粉末と樹脂や有機物などの結合剤との混合物を樹脂などからなる支持フィルムに塗布したテープ状のものが代表的である(特許文献1参照)。結合剤や支持フィルムが存在することで、上記窒化鉄材は、上記粉末の充填率が低く、結果としてα"Fe16N2の含有量が少ない。 For example, an iron nitride material used for a magnetic recording medium is typically a tape-like material in which a mixture of an α "Fe 16 N 2 powder and a binder such as a resin or an organic material is applied to a support film made of a resin or the like. (Refer to Patent Document 1.) Due to the presence of the binder and the support film, the iron nitride material has a low filling rate of the powder, and as a result, the content of α ”Fe 16 N 2 is low.

また、上述したナノ粉末を原料粉末に利用する場合、ナノ粒子の結晶方位を特定の方向に配向させて成形すると、磁気特性をより向上することができる。しかし、ナノ粉末は、一般に凝集し易く、表面エネルギーが高い。そのため、ナノ粒子の結晶方位を特定の方向に配向させて成形することが難しい。また、凝集により粗大化すると、磁気特性が低下する。   Moreover, when using the nanopowder described above as a raw material powder, the magnetic properties can be further improved by forming the nanoparticle with the crystal orientation in a specific direction. However, nanopowder generally tends to aggregate and has high surface energy. For this reason, it is difficult to shape the crystal orientation of the nanoparticles in a specific direction. Further, when coarsening is caused by aggregation, the magnetic properties are deteriorated.

従って、α"Fe16N2を含有するナノ粉末の充填率が高く、磁気特性に優れるバルク材の開発が望まれる。 Therefore, it is desired to develop a bulk material having a high filling rate of nano-powder containing α "Fe 16 N 2 and excellent magnetic properties.

そこで、本発明の目的の一つは、α"Fe16N2を主成分とする粉末の含有量が多い窒化鉄材を提供することにある。また、本発明の他の目的は、上記窒化鉄材の製造方法を提供することにある。 Accordingly, one of the objects of the present invention is to provide an iron nitride material having a high content of powder mainly composed of α ″ Fe 16 N 2. Another object of the present invention is to provide the iron nitride material described above. It is in providing the manufacturing method of.

本発明者らは、原料粉末に特定のバインダを混合して作製した造粒粉を成形型に充填し、特定の温度に加熱しながら脱気してバインダを除去しつつ、特定の強磁場を印加することで、結晶の配向性を高められる上に、充填率を高められる、との知見を得た。本発明は、上記知見に基づくものである。   The inventors filled a granulated powder prepared by mixing a raw material powder with a specific binder into a mold, heated to a specific temperature, deaerated while removing the binder, and applied a specific strong magnetic field. It has been found that application can improve the orientation of the crystal and increase the filling rate. The present invention is based on the above findings.

本発明の窒化鉄材の製造方法は、磁石などの磁気部材の素材に利用される窒化鉄材を製造する方法に係るものであり、以下の準備工程と、造粒工程と、成形工程とを具える。
準備工程:α"Fe16N2を主成分とし、短軸の平均長さが100nm以下である柱状の鉄窒化物粒子からなる原料粉末を準備する工程。
造粒工程:上記原料粉末と、α"Fe16N2の分解温度よりも低い分解温度を有するバインダとを混合して、平均粒径1μm以上の造粒粉を形成する工程。
成形工程:上記造粒粉を成形型に充填した後、加圧成形して成形体を形成する工程。
上記成形工程では、上記成形型内を0.9気圧以下に排気しながら、{(上記バインダの分解温度)−20}℃以上{(上記バインダの分解温度)+20}℃以下の温度に加熱した状態で、かつ、2T以上の磁場を印加した状態で加圧成形する。
The method for producing an iron nitride material of the present invention relates to a method for producing an iron nitride material used as a material for a magnetic member such as a magnet, and includes the following preparation step, granulation step, and molding step. .
Preparation step: A step of preparing a raw material powder composed of columnar iron nitride particles containing α "Fe 16 N 2 as a main component and having an average minor axis length of 100 nm or less.
Granulation step: a step of mixing the raw material powder and a binder having a decomposition temperature lower than that of α ″ Fe 16 N 2 to form a granulated powder having an average particle size of 1 μm or more.
Molding step: A step of forming a molded body by filling the granulated powder into a mold and then press-molding it.
In the molding step, while the inside of the mold is evacuated to 0.9 atm or less, it is heated to a temperature of {(decomposition temperature of the binder) −20} ° C. or more {(decomposition temperature of the binder) +20} ° C. or less. In addition, pressure molding is performed with a magnetic field of 2 T or more applied.

なお、バインダにおける分解温度は、大気圧(1気圧≒0.1MPa)の状態で当該バインダの示差熱・熱重量曲線(TG/DTA)を求め、当該バインダの重量の減少が始まる温度(重量減少開始温度)をいい、ここでは、オフセット温度を利用する。オフセット温度:Toは、以下のように求める。まず、上述のようにして求めたTG曲線において、図2に示すようにバインダの重量の減少が始まる温度を通り、X軸に平行な直線L1をとる。原料粉末に用いる鉄窒化物粒子の重量に対するバインダの添加量の重量割合をX(wt%)、バインダの初期重量をM1とするとき、直線L1に平行であって、直線L1から初期重量:M1の(5×X)wt%小さい重量をとる直線L2をとる。更に、TG曲線とこの直線L2との交点における接線L3をとる。そして、直線L1と接線L3との交点をとり、この交点の温度をオフセット温度TOとする。 The decomposition temperature in the binder is the temperature at which the binder begins to lose weight (TG / DTA) after the differential thermal / thermogravimetric curve (TG / DTA) of the binder is obtained at atmospheric pressure (1 atm ≒ 0.1 MPa). Temperature), and here, offset temperature is used. Offset temperature: T o is determined as follows. First, in the TG curve obtained as described above, as the temperature at which the reduction of the weight of the binder starts, as shown in FIG. 2, it takes the straight line L 1 parallel to the X axis. The weight ratio of the amount of the binder to the weight of the iron nitride particles used in the raw material powder X (wt%), when the initial weight of the binder M1, which is parallel to the straight line L 1, the initial weight from the straight line L 1 : Take a straight line L 2 which takes (5 × X) wt% smaller weight of M1. Further, a tangent line L 3 at the intersection of the TG curve and the straight line L 2 is taken. Then, taking the intersection of the straight line L 1 and the tangent line L 3, the temperature of the intersection point and the offset temperature T O.

上記本発明窒化鉄材の製造方法により、上記鉄窒化物粒子の含有量が多い本発明窒化鉄材が得られる。具体的には、本発明の窒化鉄材は、上記本発明製造方法により得られた窒化鉄材であり、α"Fe16N2を主成分とする複数の鉄窒化物粒子から構成された成形体からなる。そして、本発明窒化鉄材は、上記成形体における上記鉄窒化物粒子の含有量が85体積%以上である。 The iron nitride material of the present invention having a high content of the iron nitride particles can be obtained by the method for producing the iron nitride material of the present invention. Specifically, the iron nitride material of the present invention is an iron nitride material obtained by the above-described production method of the present invention, and from a molded body composed of a plurality of iron nitride particles mainly containing α ″ Fe 16 N 2. In the iron nitride material of the present invention, the content of the iron nitride particles in the molded body is 85% by volume or more.

或いは、本発明の窒化鉄材として、α"Fe16N2を主成分とする複数の鉄窒化物粒子から構成される成形体からなり、上記鉄窒化物粒子が柱状で、短軸の平均長さが100nm以下であり、上記成形体における上記鉄窒化物粒子の含有量が85体積%以上であるものが挙げられる。 Alternatively, the iron nitride material of the present invention comprises a molded body composed of a plurality of iron nitride particles containing α ″ Fe 16 N 2 as a main component, and the iron nitride particles are columnar and have an average length of a short axis. In which the content of the iron nitride particles in the molded body is 85% by volume or more.

本発明製造方法は、原料粉末にナノ粉末を利用し、このナノ粉末とバインダとを混合した造粒粉を利用することで、当該バインダの介在により凝集を効果的に抑制できる。また、本発明製造方法は、成形時、特定の温度に加熱すると共に排気することで上記バインダを容易に除去できるため、得られる成形体中のナノ粉末の充填率を高められる。即ち、本発明製造方法は、上記バインダを実質的に含有せず、ナノ粉末の含有量が多い成形体を製造できる。   In the production method of the present invention, nano powder is used as the raw material powder, and agglomerated powder can be effectively suppressed by the inclusion of the binder by using the granulated powder obtained by mixing the nano powder and the binder. Moreover, since the said binder can be easily removed by heating and exhausting to a specific temperature at the time of shaping | molding, this invention manufacturing method can raise the filling rate of the nanopowder in the molded object obtained. In other words, the production method of the present invention can produce a molded body that does not substantially contain the binder and has a high content of nanopowder.

かつ、本発明製造方法は、成形時、加熱により溶融状態にあるバインダの介在によりナノ粉末がある程度移動可能及び回転可能である。そのため、ナノ粉末が実質的に単結晶の磁性材料からなる場合、特定の強磁場を印加することで、磁場の印加方向に、結晶の磁化容易軸が配向可能となる。即ち、本発明製造方法は、バインダの利用と特定の強磁場の印加とにより配向性が高い成形体を効率よく製造することができる。   Moreover, in the production method of the present invention, the nanopowder can be moved and rotated to some extent by the presence of a binder that is in a molten state by heating during molding. Therefore, when the nanopowder is substantially made of a single crystal magnetic material, the easy magnetization axis of the crystal can be oriented in the direction of application of the magnetic field by applying a specific strong magnetic field. That is, the production method of the present invention can efficiently produce a molded article having high orientation by using a binder and applying a specific strong magnetic field.

上記本発明製造方法により得られた窒化鉄材(代表的には本発明窒化鉄材)は、鉄窒化物粒子の含有量が多いことで磁気特性に優れる。また、上記窒化鉄材を構成する成形体は、結晶方位が一方向に揃った配向組織を有することからも、本発明窒化鉄材は、磁気特性に優れる。更に、本発明窒化鉄材は、希土類元素を含有しなくても磁気特性に優れることから、永久磁石といった磁石の素材に好適に利用でき、磁石のレアアースフリー化に寄与することができると期待される。   The iron nitride material obtained by the production method of the present invention (typically, the iron nitride material of the present invention) has excellent magnetic properties due to the high content of iron nitride particles. Moreover, since the molded object which comprises the said iron nitride material has the orientation structure | tissue where the crystal orientation aligned in one direction, this invention iron nitride material is excellent in a magnetic characteristic. Furthermore, since the iron nitride material of the present invention is excellent in magnetic properties even if it does not contain rare earth elements, it can be suitably used for a magnet material such as a permanent magnet, and is expected to contribute to a rare earth-free magnet. .

本発明製造方法の一形態として、上記鉄窒化物粒子におけるα"Fe16N2の含有量が85体積%以上である形態が挙げられる。 As one mode of the present invention production process, the content of the iron nitride α in the particle "Fe 16 N 2 can be mentioned embodiment is 85 vol% or more.

原料粉末を構成する窒化鉄物粒子中のα"Fe16N2の含有量が多い(純度が高い)ことで、成形後に得られる成形体中のα"Fe16N2の含有量も多くなることから、上記形態は、磁気特性により優れる窒化鉄材を製造することができる。 The content of α "Fe 16 N 2 in the iron nitride particles constituting the raw material powder is high (high purity), so the content of α" Fe 16 N 2 in the molded product obtained after molding also increases. Therefore, the above embodiment can produce an iron nitride material that is more excellent in magnetic properties.

本発明製造方法の一形態として、上記鉄窒化物粒子における短軸の長さに対する長軸の長さの比をアスペクト比とするとき、上記アスペクト比が2以上である形態が挙げられる。   One aspect of the production method of the present invention is an aspect in which the aspect ratio is 2 or more when the ratio of the length of the major axis to the length of the minor axis in the iron nitride particles is defined as the aspect ratio.

アスペクト比が大きい原料粉末を用いることで、成形後に得られる成形体を構成する鉄窒化物粒子もアスペクト比が大きくなることから、上記形態は、形状磁気異方性が大きい。また、特定の強磁場を印加することで、α"Fe16N2結晶のc軸が鉄窒化物粒子の長軸方向に配向している。従って、上記形態は、この形状による磁気異方性の磁化容易方向と、鉄窒化物の結晶磁気異方性の磁化容易軸とを上述の強磁場の印加により揃えられるため、磁気特性に更に優れる窒化鉄材を製造することができる。 By using the raw material powder having a large aspect ratio, the aspect ratio of the iron nitride particles constituting the molded body obtained after the molding also increases. Therefore, the above form has a large shape magnetic anisotropy. In addition, by applying a specific strong magnetic field, the c-axis of the α "Fe 16 N 2 crystal is oriented in the major axis direction of the iron nitride particles. The easy magnetization direction and the easy magnetization axis of crystal magnetic anisotropy of iron nitride are aligned by the application of the above-described strong magnetic field, so that an iron nitride material having further excellent magnetic properties can be manufactured.

本発明製造方法の一形態として、上記バインダの分解温度が240℃以下である形態が挙げられる。   As one form of this invention manufacturing method, the form whose decomposition temperature of the said binder is 240 degrees C or less is mentioned.

α"Fe16N2の分解温度は260℃程度であることから、上記形態は、成形時の加熱温度を(バインダの分解温度)+20℃とした場合でも、α"Fe16N2が分解せず、良好に成形を行えて、α"Fe16N2を十分に含有する窒化鉄材を製造することができる。 Since the decomposition temperature of α ”Fe 16 N 2 is about 260 ° C., the above form does not decompose α” Fe 16 N 2 even when the heating temperature during molding is (binder decomposition temperature) + 20 ° C. Therefore, it is possible to produce an iron nitride material that can be satisfactorily molded and sufficiently contains α ″ Fe 16 N 2 .

本発明製造方法の一形態として、上記造粒工程では、酸素濃度が3000質量ppm以下の低酸素雰囲気下とし、{(上記バインダの融点)+5}℃以上の温度から室温にまで冷却して造粒を行う形態が挙げられる。なお、バインダにおける融点とは、以下のように求める。大気圧(1気圧≒0.1MPa)の状態で当該バインダの示差走査熱量曲線(DSC)を求め、図3に示すように熱量変化ピーク点における接線Lp1をとる。熱量変化ピーク値をYとするとき、接線Lp1に平行で、Yだけ離れた直線Lp2をとる。この直線Lp2に平行で、直線Lp2からピーク点の方向に(Y/2)だけ離れた直線Lp3をとる。DSCと直線Lp3との交点をとり、低温側の交点(図3では左側の交点)における接線Lp4をとる。そして、直線Lp2と接線Lp4との交点をとり、この交点の温度をオフセット温度TOpとする。 As one form of the production method of the present invention, in the granulation step, a low oxygen atmosphere with an oxygen concentration of 3000 ppm by mass or less is used, and the product is cooled from {(melting point of the binder) +5} ° C. to room temperature. The form which performs a grain is mentioned. In addition, melting | fusing point in a binder is calculated | required as follows. The differential scanning calorimetry curve (DSC) of the binder is obtained in the state of atmospheric pressure (1 atm.apprxeq.0.1 MPa), and a tangent L p1 at the peak of heat amount change is taken as shown in FIG. When the heat quantity change peak value is Y, a straight line L p2 parallel to the tangent L p1 and separated by Y is taken. The straight line L p2 in parallel, taking the direction of the peak point from the straight line L p2 the (Y / 2) apart by a straight line L p3. The intersection of the DSC and the straight line L p3 is taken, and the tangent L p4 at the intersection on the low temperature side (the intersection on the left side in FIG. 3) is taken. Then, an intersection point between the straight line L p2 and the tangent line L p4 is taken, and the temperature of this intersection point is set as an offset temperature T Op .

低酸素雰囲気下とすることで、酸化し易いα"Fe16N2の酸化を効果的に防止でき、酸化物の存在による磁気特性の低下を抑制できることから、上記形態は、磁気特性に優れる窒化鉄材を製造することができる。また、バインダの融点よりも高い温度とすることで原料粉末とバインダとを容易に混合でき、かつ、上記温度から室温に冷却することで、特定の大きさの造粒粉を形成し易いことから、上記形態は、造粒粉の製造性に優れる。 Since the oxidation of α "Fe 16 N 2 which is easily oxidized can be effectively prevented by using a low oxygen atmosphere, and the deterioration of the magnetic properties due to the presence of the oxide can be suppressed, the above form is a nitriding with excellent magnetic properties. Iron material can be produced, and the raw material powder and the binder can be easily mixed by setting the temperature higher than the melting point of the binder, and by cooling from the above temperature to room temperature, Since it is easy to form granule, the said form is excellent in the productivity of granulated powder.

本発明製造方法の一形態として、上記成形工程において上記磁場の印加は、高温超電導磁石を用いて行う形態が挙げられる。   As one form of this invention manufacturing method, the form which performs the application of the said magnetic field in the said formation process using a high temperature superconducting magnet is mentioned.

上記形態は、2T以上といった強磁場を大きな空間に対して安定して印加することができる。また、上記形態は、磁場の変動を高速で行えるため、工程時間を短縮したり、成形工程における鉄窒化物粒子の配向状態の変動に合わせて、適切な磁場強度を設定し易かったりするため、窒化鉄材の生産性を高められる。   In the above embodiment, a strong magnetic field of 2 T or more can be stably applied to a large space. In addition, since the above-mentioned form can change the magnetic field at high speed, the process time can be shortened, or it is easy to set an appropriate magnetic field strength in accordance with the change in the orientation state of the iron nitride particles in the molding process. Productivity of iron nitride materials can be increased.

本発明窒化鉄材の一形態として、上記成形体の保磁力が2.0kOe(160kA/m)以上、及び上記成形体の飽和磁化が2.0T以上の少なくとも一方を満たす形態が挙げられる。   As one form of the iron nitride material of the present invention, a form satisfying at least one of a coercive force of the molded body of 2.0 kOe (160 kA / m) or more and a saturation magnetization of the molded body of 2.0 T or more can be mentioned.

上記形態は、保磁力や飽和磁化が高いことから、永久磁石といった磁石の素材に好適に利用することができる。   Since the above form has a high coercive force and saturation magnetization, it can be suitably used for a magnet material such as a permanent magnet.

本発明窒化鉄材の一形態として、上記成形体において(202)面のX線回折のピークの積分強度をI202、(004)面のX線回折のピークの積分強度をI004、積分強度:I202に対する積分強度:I004の比をI004/I202とするとき、I004/I202>0.2を満たす形態が挙げられる。 As an embodiment of the iron nitride material of the present invention, in the molded body, the integrated intensity of the X-ray diffraction peak of the (202) plane is I 202 , the integrated intensity of the X-ray diffraction peak of the (004) plane is I 004 , the integrated intensity: Assuming that the ratio of integrated intensity to I 202 : I 004 is I 004 / I 202, there is a form that satisfies I 004 / I 202 > 0.2.

上記形態は、(004)面が配向した配向組織を有する、即ち、鉄窒化物の結晶磁気異方性の容易軸であるc軸が特定の方向に配向した組織を有することから、磁気特性に優れる。   The above-mentioned form has an oriented structure in which the (004) plane is oriented, i.e., the c-axis, which is the easy axis of crystalline magnetic anisotropy of iron nitride, has a texture oriented in a specific direction. Excellent.

本発明窒化鉄材は、α"Fe16N2を主成分とする鉄窒化物粒子の含有量が多い。本発明窒化鉄材の製造方法は、上記本発明窒化鉄材を生産性良く製造できる。 The iron nitride material of the present invention has a large content of iron nitride particles containing α ″ Fe 16 N 2 as a main component. The method of producing the iron nitride material of the present invention can produce the iron nitride material of the present invention with high productivity.

図1は、本発明窒化鉄材の製造方法を示す工程説明図である。FIG. 1 is a process explanatory view showing a method for producing an iron nitride material of the present invention. 図2は、バインダの分解温度を説明する説明図である。FIG. 2 is an explanatory diagram for explaining the decomposition temperature of the binder. 図3は、バインダの融点を説明する説明図である。FIG. 3 is an explanatory diagram for explaining the melting point of the binder.

以下、本発明をより詳細に説明する。
[窒化鉄材の製造方法]
(準備工程)
原料粉末として、α"Fe16N2を主成分とする鉄窒化物粒子からなる粉末を用意する。原料粉末に用いる鉄窒化物粒子は、最終的に得られる窒化鉄材を構成する粒子となる。即ち、本発明製造方法により得られる窒化鉄材を構成する鉄窒化物粒子は、原料粉末を構成する鉄窒化物粒子の成分・形状・大きさを実質的に維持する。そのため、本発明製造方法では、形状磁気異方性(特に、保磁力)による磁気特性の向上を期待して、上記鉄窒化物粒子として、その短軸の平均長さが100nm以下の柱状のものを利用する。
Hereinafter, the present invention will be described in more detail.
[Manufacturing method of iron nitride]
(Preparation process)
As the raw material powder, a powder made of iron nitride particles mainly containing α ″ Fe 16 N 2 is prepared. The iron nitride particles used for the raw material powder are particles constituting the finally obtained iron nitride material. In other words, the iron nitride particles constituting the iron nitride material obtained by the production method of the present invention substantially maintain the components, shapes and sizes of the iron nitride particles constituting the raw material powder. In order to improve the magnetic properties due to shape magnetic anisotropy (particularly, coercive force), as the iron nitride particles, columnar particles having an average minor axis of 100 nm or less are used.

短軸の長さがナノオーダーである鉄窒化物粒子は、代表的には、短軸の長さがナノオーダーである柱状の鉄粉(以下、ナノ鉄粉と呼ぶ)に窒化処理を施すことで得られ、公知の製造方法を利用することができる。ナノ鉄粉の製造には、例えば、共沈法、逆ミセル法、ゾルゲル法などの公知の方法を利用することができる。共沈法を利用した場合、ナノオーダーの酸化鉄(ヘマタイト:Fe2O3)を還元することでナノ鉄粉が得られ、逆ミセル法を利用した場合、鉄カルボニル:Fe(CO)5から合成することでナノ鉄粉が得られる。ナノ鉄粉は、実質的にα-Feから構成される。製造条件を調整することで柱状にしたり、ナノ鉄粉の短軸の長さやナノ鉄粉の長軸の長さを変化できる。前駆状態のナノオーダーの酸化鉄(以下、ナノ酸化鉄と呼ぶ)やナノオーダーの鉄(以下、ナノ鉄と呼ぶ)の初期結晶を生成させたり粒子サイズを成長させたりする際に、外部磁場や電場を印加すると、前駆状態であるナノ酸化鉄やナノ鉄の成長方向を制御することができる。また、前駆状態のナノ酸化鉄やナノ鉄の粒径は、反応時の温度を低くすると、或いは反応時間を短くすると、小さくなる傾向にある。従って、磁場や電場により成長方向を制御した状態で、反応温度や反応時間を調整することで、柱状にしたり、短軸の長さを短くしたり、長軸の長さを長くしたりすることができる。所望の大きさに結晶が成長した時点で、親水基を有するカップリング剤などを投入して、生成する酸化鉄や鉄の表層に存在する酸素-鉄結合の末端を修飾することで、成長を止めることできる。外部磁場や電場は、直流印加でもよいし、交流印加でもよい。親水基を有するカップリング剤は、例えば、シランカップリング剤、不飽和脂肪酸(オレイン酸、リノール酸など)などが挙げられる。 Iron nitride particles with a short axis length of nano-order are typically obtained by nitriding columnar iron powder (hereinafter referred to as nano-iron powder) with a short axis length of nano-order. And a known production method can be used. For the production of the nano iron powder, for example, a known method such as a coprecipitation method, a reverse micelle method or a sol-gel method can be used. When the coprecipitation method is used, nano iron powder can be obtained by reducing nano-order iron oxide (hematite: Fe 2 O 3 ), and when reverse micelle method is used, iron carbonyl: Fe (CO) 5 By synthesizing, nano iron powder can be obtained. Nano iron powder is substantially composed of α-Fe. It can be made columnar by adjusting the manufacturing conditions, or the length of the short axis of the nano iron powder and the length of the long axis of the nano iron powder can be changed. When an initial crystal of nano-order iron oxide in the precursor state (hereinafter referred to as nano-iron oxide) or nano-order iron (hereinafter referred to as nano-iron) is generated or the particle size is grown, an external magnetic field or When an electric field is applied, the growth direction of nano iron oxide or nano iron which is a precursor state can be controlled. In addition, the particle size of nano iron oxide or nano iron in the precursor state tends to decrease when the temperature during the reaction is lowered or when the reaction time is shortened. Therefore, by adjusting the reaction temperature and reaction time with the growth direction controlled by a magnetic field or electric field, the columnar shape, the length of the short axis can be shortened, or the length of the long axis can be lengthened. Can do. When a crystal grows to a desired size, a coupling agent having a hydrophilic group is added to modify the end of the oxygen-iron bond existing in the iron oxide or iron surface layer to be grown. You can stop. The external magnetic field and electric field may be applied with direct current or applied with alternating current. Examples of the coupling agent having a hydrophilic group include silane coupling agents and unsaturated fatty acids (oleic acid, linoleic acid, etc.).

α"Fe16N2を主成分とする、とは、α"Fe16N2の含有量(純度)が80体積%以上であることをいう。鉄窒化物粒子中のα"Fe16N2の含有量が多いほど(純度が高いほど)、窒化鉄材中のα"Fe16N2の含有量が多くなることから、85体積%以上、更に90体積%以上が好ましい。鉄窒化物粒子は、不純物の含有を許容する。不純物はα-Feが挙げられる。α"Fe16N2の含有量を多くする(純度を高めるに)は、例えば、上述のようにして得られた前駆状態であるナノ鉄粉に窒化処理を施す際に、低温(150℃〜300℃程度)・長時間(10時間〜50時間程度)、かつ、窒素原子を窒素分子(N2)状態よりも反応性の高い状態(例えば、アンモニア(NH3)やプラズマ窒素状態)で反応させることが挙げられる。窒化鉄材中のα"Fe16N2の含有量の測定方法は、後述する。 “Having α ″ Fe 16 N 2 as a main component” means that the content (purity) of α ”Fe 16 N 2 is 80% by volume or more. As the content of α "Fe 16 N 2 in the iron nitride particles increases (the purity is higher), the content of α" Fe 16 N 2 in the iron nitride material increases. 90 volume% or more is preferable. The iron nitride particles allow the inclusion of impurities. Examples of the impurity include α-Fe. Increasing the content of α ”Fe 16 N 2 (in order to increase the purity), for example, when performing nitriding treatment on the nano-iron powder that is a precursor state obtained as described above, low temperature (150 ° C ~ Reacts in a state (for example, ammonia (NH 3 ) or plasma nitrogen state) where the nitrogen atom is more reactive than the nitrogen molecule (N 2 ) state (for example, about 300 ° C) for a long time (about 10 to 50 hours). A method for measuring the content of α ″ Fe 16 N 2 in the iron nitride material will be described later.

鉄窒化物粒子の短軸の平均長さは、短いほどアスペクト比が大きくなり易く、かつ鉄窒化物粒子全体が小さくなり易いことから、80nm以下、更に50nm以下、特に20nm以下が好ましい。また、短軸の平均長さは、10nm以上であると、アスペクト比が小さくなり過ぎず、いわゆる超常磁性状態となり難くなり、磁石特性の喪失を抑制できる。所望の短軸長さやアスペクト比の鉄窒化物粒子が得られるように上述のように製造条件を調整してナノ鉄粉を用意する。短軸の平均長さの測定方法は、後述する。   The average length of the minor axis of the iron nitride particles is preferably 80 nm or less, more preferably 50 nm or less, and particularly preferably 20 nm or less because the shorter the average aspect ratio becomes, the easier the aspect ratio becomes and the iron nitride particles as a whole tend to become small. Further, if the average length of the short axis is 10 nm or more, the aspect ratio does not become too small, so that it becomes difficult to be in a so-called superparamagnetic state, and loss of magnet characteristics can be suppressed. Nano iron powder is prepared by adjusting the manufacturing conditions as described above so that iron nitride particles having a desired minor axis length and aspect ratio can be obtained. A method for measuring the average length of the minor axis will be described later.

鉄窒化物粒子は、短軸が短くかつ長軸が長いほど、即ち、アスペクト比が大きいほど、形状磁気異方性により磁気特性に優れる。従って、アスペクト比は、2以上、更に2.2以上が好ましい。アスペクト比は、上述のように前駆状態のナノ酸化鉄やナノ鉄粉の初期結晶の生成時や粒子サイズの成長時に外部磁場や電場を印加し、この外部磁場の大きさや電場の大きさを調整することで制御することができる。外部磁場や電場を大きくすると、アスペクト比を大きくし易い。外部磁場や電場の大きさが一定である場合、反応温度や反応時間によって粒径が異なるものの、アスペクト比は概ね一定になる。   The iron nitride particles have better magnetic properties due to shape magnetic anisotropy as the minor axis is shorter and the major axis is longer, that is, the aspect ratio is larger. Accordingly, the aspect ratio is preferably 2 or more, and more preferably 2.2 or more. The aspect ratio is adjusted by applying an external magnetic field or electric field at the time of initial crystal generation of nano iron oxide or nano iron powder in the precursor state or growing the particle size as described above, and adjusting the magnitude of this external magnetic field or electric field. It can be controlled by doing. Increasing the external magnetic field or electric field makes it easier to increase the aspect ratio. When the magnitude of the external magnetic field or electric field is constant, the particle size varies depending on the reaction temperature and reaction time, but the aspect ratio is generally constant.

(造粒工程)
本発明製造方法では、上記原料粉末とバインダとを混合して造粒粉を形成することを特徴の一つとする。
(Granulation process)
One feature of the production method of the present invention is that the raw material powder and the binder are mixed to form a granulated powder.

バインダは、造粒から成形途中までの間、一時的に存在させ、成形時の加熱及び排気により除去する。このバインダは、成形型に投入するまでの造粒粉の流動性を確保すると共に、外部からの加熱を受けて温度上昇する過程で融解・液状化することで外部磁場による鉄窒化物粒子の移動や回転を容易にする機能を有する。そのため、バインダは、その分解温度がα"Fe16N2の分解温度よりも低く、α"Fe16N2と反応せず、造粒可能なものとする。特に、本発明製造方法では、分解温度+20℃以下の温度で揮発又はガスに分解することによって気化して除去可能なバインダを利用する。このような比較的低温でバインダが除去可能であることで、成形時の温度を低くできるため、バインダ自体の熱分解やα"Fe16N2の熱分解を効果的に防止できる。α"Fe16N2の分解温度が260℃程度であることから、バインダは、その分解温度が240℃以下、更に220℃以下のものが好ましい。分解温度が240℃以下のバインダとして、例えば、オレイン酸アミド、エルカ酸アミド、リシノール酸アミドなどの有機物が挙げられる。上述の仕様(分解温度など)を満たす市販のワックスなどを利用してもよい。 The binder is temporarily present from granulation to the middle of molding and is removed by heating and exhaust during molding. This binder ensures the fluidity of the granulated powder until it is put into the mold, and moves the iron nitride particles by an external magnetic field by melting and liquefying in the process of increasing the temperature due to external heating. And has a function to facilitate rotation. Therefore, the binder, the decomposition temperature alpha "Fe 16 N less than two of the decomposition temperature, alpha" does not react with the Fe 16 N 2, and capable granulated. In particular, the production method of the present invention utilizes a binder that can be vaporized and removed by volatilization or decomposition into gas at a decomposition temperature of + 20 ° C. or lower. Since the binder can be removed at such a relatively low temperature, the molding temperature can be lowered, so that thermal decomposition of the binder itself and α "Fe 16 N 2 can be effectively prevented. Α" Fe Since the decomposition temperature of 16 N 2 is about 260 ° C., the binder preferably has a decomposition temperature of 240 ° C. or lower, more preferably 220 ° C. or lower. Examples of the binder having a decomposition temperature of 240 ° C. or lower include organic substances such as oleic acid amide, erucic acid amide, and ricinoleic acid amide. Commercially available wax that satisfies the above specifications (decomposition temperature etc.) may be used.

造粒にあたり、バインダを溶融又は軟化状態とすると、原料粉末を構成する鉄窒化物粒子と当該バインダとを均一的に混合し易く、鉄窒化物粒子の全周を覆うように当該バインダが存在する造粒粉を形成することができる。従って、原料粉末とバインダとの混合は、当該バインダの融点以上、好ましくは融点+5℃以上の温度で行うことが好ましい。混合時の温度は、低過ぎると、(1)原料粉末とバインダとを混合し難く造粒し難い、(2)バインダが原料粉末に均一的に付着せず、原料粉末のすべりが悪くなって成形性に劣る造粒粉が形成される、(3)すべりが悪いことで原料粉末の成形型への充填率の低下を招く、といった恐れがある。一方、混合時の温度は、高過ぎると、造粒中にバインダが混合設備中に付着や堆積などしてバインダが低減するため、(融点+5)℃〜(融点+15)℃程度が好ましい。バインダの融点は90℃以下が好ましい。融点が低いことで、バインダを溶融又は軟化状態にし易い。そのため、比較的低温でバインダと原料粉末とを均一的に混合でき、造粒工程の作業性に優れる上に、バインダが均一的に存在する造粒粉を形成できる。この造粒粉は、原料粉末の酸化を防止できると共に、原料粉末のすべりを良好にでき、成形性に優れる。   In granulation, when the binder is in a molten or softened state, the iron nitride particles constituting the raw material powder and the binder are easily mixed uniformly, and the binder exists so as to cover the entire circumference of the iron nitride particles. Granulated powder can be formed. Therefore, it is preferable to mix the raw material powder and the binder at a temperature equal to or higher than the melting point of the binder, preferably higher than the melting point + 5 ° C. If the temperature at the time of mixing is too low, (1) the raw material powder and the binder are difficult to mix and granulate, (2) the binder does not adhere uniformly to the raw material powder, and the raw material powder does not slide well. There is a possibility that a granulated powder having inferior formability is formed, and (3) that the slippage is poor, leading to a decrease in the filling rate of the raw material powder into the mold. On the other hand, if the temperature at the time of mixing is too high, the binder is reduced due to adhesion or deposition in the mixing equipment during granulation. Therefore, the melting point is preferably about (melting point + 5) ° C. to (melting point + 15) ° C. The melting point of the binder is preferably 90 ° C. or less. Since the melting point is low, the binder can be easily melted or softened. Therefore, the binder and the raw material powder can be mixed uniformly at a relatively low temperature, and the workability of the granulation process is excellent, and a granulated powder in which the binder exists uniformly can be formed. This granulated powder can prevent the oxidation of the raw material powder, can improve the sliding of the raw material powder, and is excellent in moldability.

十分に混合したら、原料粉末とバインダとの混合物を室温まで冷却して、当該バインダを固化させて造粒粉を形成する。造粒粉はその平均粒径が1μm以上となるように形成する。平均粒径は、1μm未満であると流動性が著しく低く、また、飛散性を有するため、成形型への充填性に劣る。平均粒径が大きいほど造粒粉を製造し易い上に成形性にも優れることから、平均粒径は、5μm以上、更に10μm以上が好ましい。但し、造粒粉が大き過ぎると、バインダが過剰になったり、バインダ成分の残存により充填率を低下させたりすることから、平均粒径は100μm以下が好ましい。上述のようにバインダを溶融させてから冷却することで、平均粒径1μm以上の造粒粉を製造し易い。平均粒径の測定方法は、後述する。   When sufficiently mixed, the mixture of the raw material powder and the binder is cooled to room temperature, and the binder is solidified to form granulated powder. The granulated powder is formed so that the average particle size is 1 μm or more. If the average particle size is less than 1 μm, the fluidity is remarkably low, and since it has scattering properties, it is inferior in the filling property to the mold. The larger the average particle size, the easier it is to produce the granulated powder and the better the moldability, so the average particle size is preferably 5 μm or more, more preferably 10 μm or more. However, if the granulated powder is too large, the binder becomes excessive or the filling rate is lowered due to the remaining binder component, so the average particle size is preferably 100 μm or less. As described above, it is easy to produce granulated powder having an average particle diameter of 1 μm or more by melting the binder and then cooling it. A method for measuring the average particle diameter will be described later.

α"Fe16N2を主成分とする鉄窒化物粒子は、酸化し易く、酸化すると、配向性の低下や、生成された酸化物の存在による窒化鉄材の磁気特性の低下を招く。そのため、造粒工程は、低酸素雰囲気とすることが好ましい。具体的には、酸素濃度が3000質量ppm以下、更に2500質量ppm以下、特に2000質量ppm以下が好ましい。造粒工程の具体的な雰囲気は、例えば、Ar(アルゴン)やHe(ヘリウム)などの希ガス雰囲気やN2(窒素)などの不活性雰囲気が挙げられる。 Iron nitride particles containing α "Fe 16 N 2 as a main component are easy to oxidize, and when oxidized, the orientation deteriorates and the magnetic properties of the iron nitride material deteriorate due to the presence of the generated oxide. The granulation step is preferably performed in a low oxygen atmosphere, specifically, the oxygen concentration is preferably 3000 ppm by mass or less, more preferably 2500 ppm by mass or less, and particularly preferably 2000 ppm by mass or less. Examples thereof include a rare gas atmosphere such as Ar (argon) and He (helium) and an inert atmosphere such as N 2 (nitrogen).

上述のようにバインダにより鉄窒化物粒子の全周を覆った造粒粉とすると、当該バインダを鉄窒化物粒子の酸化防止層として機能させることもできる。   When the granulated powder covers the entire circumference of the iron nitride particles with the binder as described above, the binder can also function as an oxidation-preventing layer for the iron nitride particles.

バインダの含有量は、適宜選択することができるが、多過ぎると、除去時間が長くなったり、残存して鉄窒化物粒子の充填率の低下を招いたりする。従って、バインダの含有量は、原料粉末と当該バインダとの混合物の全体に対して、0.5質量%〜5質量%が好ましい。   The binder content can be selected as appropriate. However, if the content is too large, the removal time becomes longer, or the residual content causes a decrease in the filling rate of the iron nitride particles. Therefore, the content of the binder is preferably 0.5% by mass to 5% by mass with respect to the entire mixture of the raw material powder and the binder.

(成形工程)
本発明製造方法では、上記造粒粉を加圧成形するにあたり、加熱及び排気すると共に、強磁場を印加することを特徴の一つとする。
(Molding process)
One feature of the production method of the present invention is that when the granulated powder is pressure-formed, it is heated and exhausted and a strong magnetic field is applied.

{加熱}
成形時の加熱は、主として、造粒粉中のバインダを溶融・気化(揮発)するために行う。従って、この工程の加熱温度(最終到達温度)は、バインダの分解温度近傍が好ましく、分解温度±20℃とする。この加熱温度が(分解温度−20)℃未満では、バインダを十分に溶融できず、鉄窒化物粒子の移動や回転を阻害して配向し難くしたり、十分に気化できず、当該バインダが残存して鉄窒化物粒子の充填率の低下を招いたりする。加熱温度が高いほどバインダを溶融・気化し易く、確実に除去できるが、(分解温度+20)℃超となると、例えば、揮発させる目的のバインダにおいて意図しない分解が進行して、バインダの構成成分(例えば、C(炭素)など)が残渣として成形体内部に残ったり、α"Fe16N2が分解したりすることで窒化鉄材の磁気特性の低下を招く。造粒粉の加熱は、外熱を与える他、成形型を所定の温度に加熱することで実現できる。また、造粒粉をバインダの融点以下の温度で予熱すると、造粒粉自体の昇温時間を短縮することができ、生産性の向上を図ることができる。
{heating}
Heating at the time of molding is performed mainly for melting and vaporizing (volatilizing) the binder in the granulated powder. Therefore, the heating temperature (final temperature reached) in this step is preferably in the vicinity of the binder decomposition temperature, and is set to the decomposition temperature ± 20 ° C. If this heating temperature is less than (decomposition temperature −20) ° C., the binder cannot be sufficiently melted, the movement and rotation of the iron nitride particles are hindered to make it difficult to be oriented, and the binder cannot be sufficiently vaporized, and the binder remains. As a result, the filling rate of iron nitride particles is reduced. The higher the heating temperature, the easier it is to melt and vaporize the binder, and it can be removed reliably. For example, C (carbon) or the like remains in the molded body as a residue, or α "Fe 16 N 2 decomposes, resulting in a decrease in the magnetic properties of the iron nitride material. In addition, it can be realized by heating the molding die to a predetermined temperature, and if the granulated powder is preheated at a temperature lower than the melting point of the binder, the temperature rise time of the granulated powder itself can be shortened and production can be performed. It is possible to improve the performance.

{排気}
成形時の排気は、主として、上記加熱により気化したバインダを外部に除去するために行う。具体的には、0.9気圧(91.2kPa)以下となるように排気する。つまり、成形は、減圧雰囲気で行う。雰囲気の圧力が0.9気圧超では、十分に脱気できず、バインダが残存して鉄窒化物粒子の充填率の低下を招く。雰囲気の圧力が低いほど、排気を十分に行えて、バインダを排出し易く、かつ、雰囲気中の酸素濃度も低減できることから、0.8気圧(81.1kPa)以下がより好ましい。成形時、雰囲気中の酸素濃度が低いことで、バインダが除去されて鉄窒化物粒子が露出された状態になっても、当該粒子の酸化を抑制することができる。
{exhaust}
Exhaust during molding is performed mainly to remove the binder vaporized by the heating to the outside. Specifically, exhaust is performed so that the pressure becomes 0.9 atm (91.2 kPa) or less. That is, the molding is performed in a reduced pressure atmosphere. When the atmospheric pressure exceeds 0.9 atm, sufficient degassing cannot be performed, and the binder remains, resulting in a decrease in the filling rate of the iron nitride particles. The lower the pressure of the atmosphere, the more the exhaust can be performed, the binder can be easily discharged, and the oxygen concentration in the atmosphere can be reduced. Therefore, 0.8 atm (81.1 kPa) or less is more preferable. At the time of molding, when the oxygen concentration in the atmosphere is low, even if the binder is removed and the iron nitride particles are exposed, the oxidation of the particles can be suppressed.

{磁場印加}
成形時の磁場の印加は、主として、鉄窒化物粒子の結晶方位を一定の方向に配向させるために行う。具体的には、2T以上の強磁場を印加する。このような強磁場は、高温超電導磁石を用いることで安定して形成することができる。また、高温超電導磁石は、例えば、予備印加状態から最大磁場への到達時間が短いなど、磁場の変動を高速で行える。低温超電導磁石を用いた場合、磁場変動速度は、一般に、1T当たり5分〜10分程度であるのに対し、高温超電導磁石では、例えば、1T当たり10秒以内と非常に短時間で行える。このように高温超電導磁石を利用すると、所望の強磁場を短時間で得られることから、成形工程の時間を短縮できる。工程時間の短縮化により、成形体を構成する粒子内の結晶粒の成長を抑制して粗粒化を低減できることから、保磁力が大きな窒化鉄材が得られ易い。また、磁場変動速度が速いため、成形型に造粒粉を充填するときや成形体を取り出すときに磁場の印加を停止(OFF)したり、充填後に磁場の印加を開始(ON)したり、といった磁場の印加の制御も速やかに行える。このように高温超電導磁石を利用すると、窒化鉄材の生産性にも優れる。高温超電導磁石は、代表的には、酸化物超電導体により構成された超電導コイルを例えば、冷凍機による伝導冷却で冷却して使用される(動作温度はおよそ-260℃以上)。上記磁場の大きさが2T未満では、鉄窒化物粒子の結晶方位を一方向に配向させることが難しく、配向性の低下を招く。上記磁場の大きさは、大きいほど配向性を高められ、最終的に磁気特性に優れる窒化鉄材が得られることから、2.2T以上、更に3T以上が好ましい。この磁場の印加方向は、上記造粒粉を成形するときの成形方向(圧縮方向)と同じであることが好ましい。
{Magnetic field applied}
The application of the magnetic field at the time of molding is mainly performed in order to orient the crystal orientation of the iron nitride particles in a certain direction. Specifically, a strong magnetic field of 2T or more is applied. Such a strong magnetic field can be stably formed by using a high-temperature superconducting magnet. In addition, the high-temperature superconducting magnet can change the magnetic field at high speed, for example, the arrival time from the pre-applied state to the maximum magnetic field is short. When a low-temperature superconducting magnet is used, the magnetic field fluctuation speed is generally about 5 to 10 minutes per 1T, whereas with a high-temperature superconducting magnet, it can be performed in a very short time, for example, within 10 seconds per 1T. When the high-temperature superconducting magnet is used in this way, a desired strong magnetic field can be obtained in a short time, and therefore the time for the molding process can be shortened. By shortening the process time, it is possible to reduce the coarsening by suppressing the growth of crystal grains in the particles constituting the molded body, and thus it is easy to obtain an iron nitride material having a large coercive force. In addition, because the magnetic field fluctuation speed is fast, when applying the granulated powder to the mold or taking out the compact, stop applying the magnetic field (OFF), start applying the magnetic field after filling (ON), It is possible to quickly control the application of the magnetic field. When the high-temperature superconducting magnet is used in this way, the productivity of the iron nitride material is excellent. A high-temperature superconducting magnet is typically used by cooling a superconducting coil composed of an oxide superconductor, for example, by conducting cooling with a refrigerator (operating temperature is about −260 ° C. or more). If the magnitude of the magnetic field is less than 2T, it is difficult to orient the crystal orientation of the iron nitride particles in one direction, leading to a decrease in orientation. As the magnitude of the magnetic field is increased, the orientation is improved and an iron nitride material having excellent magnetic properties is finally obtained. Therefore, it is preferably 2.2 T or more, and more preferably 3 T or more. The application direction of the magnetic field is preferably the same as the forming direction (compression direction) when forming the granulated powder.

造粒粉を成形型に充填する際には、上述の特定の強磁場を印加していない状態とすると、成形型内に造粒粉が偏って充填されることなどを防止し易く好ましい。一方、造粒粉を成形型(好ましくは上述の加熱温度に加熱された状態にあるもの)に充填した後には、造粒粉の温度が上昇してバインダが溶融状態になるまでの間、例えば、10秒〜15秒程度の非常に短時間の間に上記特定の強磁場にすることが望まれる。高温超電導磁石は、強磁場を急速に励磁可能な高温超電導コイルを具える電磁石であり、この要求に十分に対応できることから、造粒粉を成形型に充填した後、高温超電導磁石を用いて上記特定の磁場を印加することが好ましい。   When filling the granulated powder into the mold, it is preferable that the above-described specific strong magnetic field is not applied to easily prevent the granulated powder from being charged unevenly in the mold. On the other hand, after filling the granulated powder into a mold (preferably in a state heated to the above heating temperature), until the temperature of the granulated powder rises and the binder is in a molten state, for example, It is desired to make the above-mentioned specific strong magnetic field within a very short time of about 10 seconds to 15 seconds. A high-temperature superconducting magnet is an electromagnet having a high-temperature superconducting coil that can rapidly excite a strong magnetic field, and can sufficiently meet this requirement. Therefore, after filling granulated powder into a mold, the above-mentioned high-temperature superconducting magnet is used. It is preferable to apply a specific magnetic field.

{加圧}
成形時の加圧は、主として、鉄窒化物粒子の高密度化のために行う。成形圧力は、1ton/cm2以上が好ましく、1ton/cm2〜3ton/cm2程度が利用し易い。加圧により、鉄窒化物粒子間に存在するバインダも排出し易い。バインダの除去が十分に進行した後に、10ton/cm2程度まで成形圧力を増して、更に高密度化を行ってもよい。
{Pressurization}
The pressurization at the time of molding is mainly performed to increase the density of the iron nitride particles. The molding pressure is preferably 1 ton / cm 2 or more, and about 1 ton / cm 2 to 3 ton / cm 2 is easy to use. By pressurization, the binder existing between the iron nitride particles is easily discharged. After sufficiently removing the binder, the molding pressure may be increased to about 10 ton / cm 2 to further increase the density.

[窒化鉄材]
本発明窒化鉄材は、α"Fe16N2を主成分とする複数の鉄窒化物粒子から構成された成形体からなるものである。従って、本発明窒化鉄材は、鉄窒化物粒子の粉末粒界を確認することができる。
[Iron nitride]
The iron nitride material of the present invention consists of a molded body composed of a plurality of iron nitride particles mainly composed of α "Fe 16 N 2. Therefore, the iron nitride material of the present invention is a powder particle of iron nitride particles. The world can be confirmed.

本発明窒化鉄材を構成する鉄窒化物粒子は、上述した原料粉末と同様に、柱状で、その短軸の平均長さが100nm以下とする。短軸の平均長さは、80nm以下、更に50nm以下、特に20nm以下が好ましい。ここで、結晶粒径が10nm以上である場合、結晶粒界が多いほど、つまり結晶粒のサイズが小さいほど、保磁力が大きくなる。長軸に対して相対的に短軸の長さが短いほど、つまり、アスペクト比が大きいほど、鉄窒化物粒子内が単結晶化し易く、結果として結晶粒のサイズが小さいことと同義になるため、保磁力を大きくすることができる。この鉄窒化物粒子のアスペクト比は、2以上、更に2.2以上が好ましい。   The iron nitride particles constituting the iron nitride material of the present invention are columnar, and the average length of the minor axis is 100 nm or less, like the raw material powder described above. The average length of the short axis is preferably 80 nm or less, more preferably 50 nm or less, and particularly preferably 20 nm or less. Here, when the crystal grain size is 10 nm or more, the coercive force increases as the crystal grain boundary increases, that is, as the crystal grain size decreases. Since the shorter the length of the minor axis relative to the major axis, that is, the larger the aspect ratio, the easier it is to crystallize the inside of the iron nitride particles, resulting in the same meaning as the smaller crystal size. The coercive force can be increased. The aspect ratio of the iron nitride particles is preferably 2 or more, and more preferably 2.2 or more.

本発明窒化鉄材を構成する鉄窒化物粒子中のα"Fe16N2の含有量(純度)は、上述した原料粉末と同様に、80体積%以上とし、85体積%以上、更に90体積%以上が好ましい。α"Fe16N2の含有量が多いことで、配向性を高められ、その結果、保磁力の向上や飽和磁化の向上といった磁気特性の向上が望める。 The content (purity) of α ”Fe 16 N 2 in the iron nitride particles constituting the iron nitride material of the present invention is 80% by volume or more, 85% by volume or more, and further 90% by volume, like the raw material powder described above. The above is preferable. Since the content of α ″ Fe 16 N 2 is large, the orientation can be improved, and as a result, improvement of magnetic properties such as improvement of coercive force and improvement of saturation magnetization can be expected.

そして、本発明窒化鉄材は、上記鉄窒化物粒子の含有量が85体積%以上であることを特徴の一つとする。本発明窒化鉄材は、従来の磁気記録媒体のように結合剤や支持フィルムを具えておらず、かつバインダを除去することで、鉄窒化物粒子の含有量が多い。上述した成形時の加熱温度や雰囲気の圧力を調整することで、鉄窒化物粒子の含有量が90体積%以上である窒化鉄材とすることができる。   The iron nitride material of the present invention is characterized in that the content of the iron nitride particles is 85% by volume or more. The iron nitride material of the present invention does not include a binder or a support film unlike conventional magnetic recording media, and has a high content of iron nitride particles by removing the binder. By adjusting the heating temperature at the time of molding and the pressure of the atmosphere described above, an iron nitride material in which the content of iron nitride particles is 90% by volume or more can be obtained.

本発明窒化鉄材は、鉄窒化物粒子の含有量が多く、好ましくは配向性が高いことで、磁気特性に優れる。具体的には、保磁力が2kOe(160kA/m)以上を満たす形態、飽和磁化が2.0T以上を満たす形態、保磁力:2kOe(160kA/m)以上及び飽和磁化:2.0T以上の双方を満たす形態が挙げられる。このように磁気特性に優れることから、本発明窒化鉄材は、永久磁石の素材に好適に利用することができる。   The iron nitride material of the present invention has a high content of iron nitride particles, preferably high orientation, and thus has excellent magnetic properties. Specifically, the coercive force satisfies 2 kOe (160 kA / m) or higher, the saturation magnetization satisfies 2.0 T or higher, the coercive force: 2 kOe (160 kA / m) or higher, and the saturation magnetization: 2.0 T or higher. A form is mentioned. Thus, since it is excellent in a magnetic characteristic, this invention iron nitride material can be utilized suitably for the raw material of a permanent magnet.

本発明窒化鉄材は、上述のように特定の強磁場を印加して製造されることから、代表的には、配向組織を有する。具体的には、本発明窒化鉄材にX線回折を行ったとき、(202)面の積分強度:I202に対する(004)面の積分強度:I004の比:I004/I202が0.2超である(I004/I202>0.2)。製造条件によっては、I004/I202≧0.4、更にI004/I202≧0.6を満たす形態とすることができる。(004)面が配向している、即ち、α"Fe16N2の磁化容易軸であるc軸が配向した組織であることで、本発明窒化鉄材は、磁気特性に優れる。X線回折は、窒化鉄材を構成する成形体において、磁場の印加方向を法線とする面(表面でも断面でもよい)について行う。上記成形体の表面が酸化などしている場合には、表面の酸化層などを除去してからX線回折を行うことが好ましい。 Since the iron nitride material of the present invention is manufactured by applying a specific strong magnetic field as described above, it typically has an oriented structure. Specifically, when the present invention iron nitride was subjected to X-ray diffraction integrated intensity of (202) plane: integrated intensity of for I 202 (004) plane ratio of I 004: I 004 / I 202 is more than 0.2 (I 004 / I 202 > 0.2). Depending on the manufacturing conditions, it is possible to have a configuration satisfying I 004 / I 202 ≧ 0.4 and further I 004 / I 202 ≧ 0.6. The (004) plane is oriented, that is, the iron nitride material of the present invention is excellent in magnetic properties because the c-axis which is the axis of easy magnetization of α ″ Fe 16 N 2 is oriented. In the molded body constituting the iron nitride material, the surface (which may be a surface or a cross section) whose normal is the direction of application of the magnetic field is performed.If the surface of the molded body is oxidized, the surface oxide layer, etc. It is preferable to perform X-ray diffraction after removing.

以下、試験例を挙げて、本発明のより具体的な実施形態を説明する。
[試験例1]
α"Fe16N2を主成分とする鉄窒化物粒子からなる原料粉末とバインダとを混合して造粒粉を作製し、この造粒粉を加圧成形して窒化鉄材を作製し、磁気特性を調べた。この試験では、特に、鉄窒化物粒子の大きさ、造粒粉の大きさ、成形条件(温度、雰囲気の圧力、印加磁場)の影響を調べた。
Hereinafter, more specific embodiments of the present invention will be described with reference to test examples.
[Test Example 1]
A raw material powder composed of iron nitride particles containing α "Fe 16 N 2 as a main component and a binder are mixed to produce a granulated powder, and this granulated powder is molded by pressing to produce an iron nitride material. In this test, in particular, the influence of the size of the iron nitride particles, the size of the granulated powder, and the molding conditions (temperature, atmospheric pressure, applied magnetic field) were investigated.

窒化鉄材は、図1に示すように準備工程:原料粉末の作製→造粒工程:造粒粉の作製→成形工程:窒化鉄材の成形という手順で作製した。   As shown in FIG. 1, the iron nitride material was prepared in the order of preparation step: production of raw material powder → granulation step: production of granulated powder → molding step: molding of iron nitride material.

(準備工程)
共沈法に準じて、塩化鉄(II)と水酸化ナトリウムとをpH≒8〜9の状態になるように投入制御して、種々の大きさのナノFe2O3粉末を作製し、水素還元を行ってα-Feからなる柱状のナノ鉄粉を作製した。このナノ鉄粉にアンモニア雰囲気下で窒化処理を行って(アンモニア気流中、200℃×24Hr(低温・長時間))、原料粉末を得た。各試料に用いるナノFe2O3粉末は、反応容器の外側に電磁石を配置して一定の外部磁場(0.1T)を印加しながら合成を行って作製した。この合成にあたり、反応時間(30分〜180分)・反応温度(60℃〜90℃)を調整することで、ナノFe2O3粉末の粒子サイズを適宜変化させた。なお、水素還元前後の粉末、窒化処理前後の粉末の大きさを調べたところ、粒子サイズの増加は実質的に認められなかった。つまり、ナノFe2O3粉末と、ナノ鉄粉と、窒化処理後に得られた原料粉末とはいずれも粒子サイズが実質的に同じであった。
(Preparation process)
According to the coprecipitation method, iron (II) chloride and sodium hydroxide were charged and controlled so that the pH was about 8 to 9, and nano-Fe 2 O 3 powders of various sizes were prepared, and hydrogen Reduction was performed to produce columnar nano iron powder made of α-Fe. The nano iron powder was subjected to nitriding treatment in an ammonia atmosphere (in an ammonia stream, 200 ° C. × 24 Hr (low temperature, long time)) to obtain a raw material powder. The nano Fe 2 O 3 powder used for each sample was prepared by placing an electromagnet outside the reaction vessel and applying a constant external magnetic field (0.1 T). In this synthesis, the particle size of the nano Fe 2 O 3 powder was appropriately changed by adjusting the reaction time (30 minutes to 180 minutes) and the reaction temperature (60 ° C. to 90 ° C.). In addition, when the sizes of the powder before and after the hydrogen reduction and the powder before and after the nitriding treatment were examined, an increase in the particle size was not substantially observed. That is, the nano Fe 2 O 3 powder, the nano iron powder, and the raw material powder obtained after the nitriding treatment all have substantially the same particle size.

得られた各原料粉末を調べたところ、鉄窒化物粒子中のα"Fe16N2の含有量が90体積%であり、α"Fe16N2を主成分(80体積%以上)とする複数の鉄窒化物粒子からなることを確認した。α"Fe16N2の含有量は、鉄窒化物粒子を透過型電子顕微鏡:TEMによってフォーカスして電子線回折を行い、α"Fe16N2結晶における電子線回折強度とその他の成分(α-Fe,Fe3N,Fe4Nなど)における電子線回折強度との比を計測する。この電子線回折強度の比から鉄窒化物粒子内のα"Fe16N2の体積比率を測定することができる。なお、鉄窒化物粒子の成分は、メスバウアースペクトル分析や、サイズが大きい場合、X線回折などでも測定することができる。 When the obtained raw material powders were examined, the content of α "Fe 16 N 2 in the iron nitride particles was 90% by volume, and α" Fe 16 N 2 was the main component (80% by volume or more). It was confirmed to be composed of a plurality of iron nitride particles. The content of α "Fe 16 N 2 is determined by performing electron beam diffraction by focusing iron nitride particles on a transmission electron microscope: TEM. Electron diffraction intensity and other components in α" Fe 16 N 2 crystals (α -Fe, Fe 3 N, Fe 4 N, etc.) and the ratio to the electron diffraction intensity are measured. The volume ratio of α "Fe 16 N 2 in iron nitride particles can be measured from this ratio of electron diffraction intensity. The components of iron nitride particles can be measured by Mossbauer spectrum analysis or when the size is large. It can also be measured by X-ray diffraction.

得られた鉄窒化物粒子を透過型電子顕微鏡:TEMにより観察したところ、いずれも柱状であった。この観察像を用いて短軸の平均長さを測定した。ここでは、上記観察像を画像処理し、視野中に存在する各鉄窒化物粒子について、長軸方向の中心位置において長軸と直交する短軸の長さを測定し、この短軸の長さを当該粒子の短軸の長さとし、50個以上の鉄窒化物粒子の短軸の長さの平均を短軸の平均長さとする。その結果を表1に示す。Fe2O3粉末の大きさに応じて短軸の平均長さが異なっており、試料No.101〜103は、Fe2O3粉末が大きなものを利用したことで、短軸の平均長さが大きくなった。また、長軸の長さも測定して、アスペクト比(長軸の長さ/短軸の長さ)を求めたところ、いずれの試料も2.2であった。 When the obtained iron nitride particles were observed with a transmission electron microscope: TEM, all were columnar. The average length of the short axis was measured using this observation image. Here, the observation image is image-processed, and for each iron nitride particle present in the field of view, the length of the minor axis perpendicular to the major axis is measured at the center position in the major axis direction. Is the short axis length of the particles, and the average of the short axis lengths of 50 or more iron nitride particles is the average short axis length. The results are shown in Table 1. Depending on the size of the Fe 2 O 3 powder, the average length of the short axis is different, and sample Nos. 101 to 103 were obtained by using a large Fe 2 O 3 powder. Became larger. Also, the length of the major axis was measured to determine the aspect ratio (length of major axis / length of minor axis), and all samples were 2.2.

(造粒工程)
バインダとして、オレイン酸アミド(融点:75℃、分解温度:220℃)からなる市販のワックスを用意した。バインダの含有量が原料粉末と当該バインダとの混合物に対して1.0質量%となるようにバインダの添加量を調整した。そして、酸素濃度が2000質量ppmの窒素雰囲気下で、表1に示す温度にまで加熱した状態で原料粉末とバインダとを混合し、十分に混合した後、室温まで1℃/分程度の冷却速度で冷却して混練して、造粒粉を形成した。試料No.1-11,1-12,111〜113は、冷却速度をその他の試料よりも速くして、造粒粉の平均粒径を異ならせた。造粒粉の平均粒径は以下のようにして測定した。ガラス板上に十分な量の造粒粉を分散し、ガラス板上の造粒粉の投影像を光学顕微鏡によって撮影し、得られた像中に存在する50個以上の造粒粉について、各造粒粉のフェレー径(ここでは、垂直フェレー径と平行フェレー径との平均値)を求め、50個以上の造粒粉のフェレー径の平均を平均粒径とした。その結果を表1に示す。なお、造粒粉は、篩分級や風力分級などを用いて分級することができる。
(Granulation process)
A commercially available wax made of oleic amide (melting point: 75 ° C., decomposition temperature: 220 ° C.) was prepared as the binder. The amount of binder added was adjusted so that the binder content was 1.0 mass% with respect to the mixture of the raw material powder and the binder. Then, under a nitrogen atmosphere with an oxygen concentration of 2000 mass ppm, the raw material powder and the binder are mixed while being heated to the temperature shown in Table 1, and after thoroughly mixing, a cooling rate of about 1 ° C / min to room temperature The mixture was cooled and kneaded to form granulated powder. Sample Nos. 1-11, 1-12, 111 to 113 were made different in average particle size of the granulated powder by making the cooling rate faster than other samples. The average particle size of the granulated powder was measured as follows. A sufficient amount of granulated powder is dispersed on the glass plate, and a projected image of the granulated powder on the glass plate is taken with an optical microscope. About 50 or more granulated powders present in the obtained image, The ferret diameter of the granulated powder (here, the average value of the vertical ferret diameter and the parallel ferret diameter) was determined, and the average of the ferret diameters of 50 or more granulated powders was defined as the average particle diameter. The results are shown in Table 1. The granulated powder can be classified using sieve classification, air classification, or the like.

(成形工程)
得られた各造粒粉を用いて、表1に示す条件で、成形圧力を1ton/cm2として加圧成形した。具体的には、成形型に造粒粉を充填した後、成形型内の圧力が表1に示す大きさの減圧雰囲気(表1に示す圧力の大気雰囲気)となるように脱気ポンプにより排気しながら、表1に示す温度に加熱した状態で保持し、かつ、表1に示す磁場を印加して、加圧成形を行った。試料No.132は、大気圧(1気圧≒101.3kPa)とし、排気を行わなかった。磁場の印加は、高温超電導磁石を用いて行い、磁場の印加方向は、加圧方向と同じ方向とした。
(Molding process)
Each of the obtained granulated powders was subjected to pressure molding under the conditions shown in Table 1 with a molding pressure of 1 ton / cm 2 . Specifically, after filling the mold with the granulated powder, the deaeration pump exhausts so that the pressure in the mold becomes a reduced pressure atmosphere of the size shown in Table 1 (atmosphere atmosphere of the pressure shown in Table 1). While maintaining the state heated to the temperature shown in Table 1, and applying the magnetic field shown in Table 1, pressure molding was performed. Sample No. 132 was at atmospheric pressure (1 atm≈101.3 kPa) and was not evacuated. The application of the magnetic field was performed using a high-temperature superconducting magnet, and the application direction of the magnetic field was the same as the pressing direction.

十分に加圧した後、成形体(直径φ10mm×高さ10mmの円柱体)を成形型から取り出した。試料No.111は、成形できず、成形体が得られなかった。得られた成形体をX線回折により調べたところ、α"Fe16N2を主成分とする複数の鉄窒化物粒子からなることを確認した。なお、成形体の成分は、その他、EDX(エネルギー分散型X線分光法)装置などを利用して測定することができる。また、各成形体中の鉄窒化物粒子の含有量(体積%)を調べた。その結果を表1に示す。鉄窒化物粒子の含有量は、以下のようにして測定した。得られた成形体について、成形時の加圧方向に垂直な面(ここでは、円柱状の成形体の円形面(平面))、及び上記加圧方向に平行な面(ここでは、円柱状の成形体の円周面(曲面))をそれぞれ、粒子が脱落したり変形などしないように研磨した後、光学顕微鏡などで研磨面を観察する。各観察像について、観察像中の空隙の割合(%):(空隙の面積/観察像の面積)×100を求め、上記垂直な面における空隙率をP1、上記平行な面における空隙率をP2とするとき、(P1)×(P2)×(P2)を成形体の空隙率(%)とし、成形体の体積(100%)から成形体の空隙率を除いたものを鉄窒化物粒子の含有量とした。 After sufficiently pressurizing, the molded body (a cylindrical body having a diameter of 10 mm × height of 10 mm) was taken out from the mold. Sample No. 111 could not be molded and a molded body could not be obtained. The obtained molded body was examined by X-ray diffraction, and it was confirmed that the molded body was composed of a plurality of iron nitride particles mainly composed of α ”Fe 16 N 2 . It can be measured by using an energy dispersive X-ray spectroscopy apparatus, etc. Further, the content (volume%) of iron nitride particles in each compact was examined, and the results are shown in Table 1. The content of iron nitride particles was measured as follows: About the obtained molded body, a plane perpendicular to the pressing direction during molding (here, a circular plane (plane) of a cylindrical molded body) The surface parallel to the pressing direction (here, the circumferential surface (curved surface) of the cylindrical molded body) is polished so that the particles do not fall off or deform, and then polished with an optical microscope or the like. For each observation image, the ratio of the voids in the observation image (%): (the area of the void / the area of the observation image) × 100 When P1 is the porosity on the flat surface and P2 is the porosity on the parallel plane, (P1) x (P2) x (P2) is the porosity of the molded body (%) and the volume of the molded body (100% ) From which the porosity of the compact was removed was taken as the content of iron nitride particles.

得られた成形体(窒化鉄材)の飽和磁化(T)及び保磁力(kOe)を調べた。その結果を表1に示す。ここでは、成形体の円柱の軸方向(=磁場の印加方向=成形時の加圧方向)の飽和磁化(T)及び保磁力(kOe)をBHトレーサ(理研電子株式会社製DCBHトレーサ)を用いて調べた。   Saturation magnetization (T) and coercivity (kOe) of the obtained compact (iron nitride material) were investigated. The results are shown in Table 1. Here, the saturation magnetization (T) and coercive force (kOe) in the axial direction of the cylinder of the compact (= the direction of application of the magnetic field = the pressurizing direction during molding) are measured using a BH tracer (DCBH tracer manufactured by Riken Denshi Co., Ltd.). I investigated.

また、成形体(窒化鉄材)の断面をとり、この断面についてX線回折を行い、(202)面のピークの積分強度:I202、(004)面のピークの積分強度:I004を調べ、積分強度:I202に対する積分強度:I004の比:I004/I202を求めた。その結果を表1に示す。ここでは、断面は、成形時の加圧方向に垂直な方向の面とした。 Also, take a cross section of the compact (iron nitride material), perform X-ray diffraction on this cross section, examine the (202) plane peak integrated intensity: I 202 , (004) plane peak integrated intensity: I 004 , integrated intensity: integrated intensity for I 202: the ratio of I 004: was obtained I 004 / I 202. The results are shown in Table 1. Here, the cross section was a surface in a direction perpendicular to the pressing direction during molding.

Figure 2012253248
Figure 2012253248

表1に示すように、原料粉末として、α"Fe16N2を主成分(80体積%以上)とし、短軸の平均長さが100nm以下の柱状の鉄窒化物粒子からなる粉末を用い、原料粉末とバインダとを混合して1μm以上の造粒粉とし、この造粒粉を特定の条件(加熱温度:バインダの分解温度±20℃、雰囲気圧力:0.9気圧以下に排気、印加磁場:2T以上)で加圧成形することで、鉄窒化物粒子の含有量が85体積%以上である窒化鉄材が得られることが分かる。また、得られた窒化鉄材は、飽和磁化が2T以上や保磁力が2kOe以上を満たし、磁気特性に優れることが分かる。特に、製造条件などを調整することで、飽和磁化:2T以上、かつ保磁力:2kOe以上を満たす窒化鉄材が得られることが分かる。更に、得られた窒化鉄材は、c軸方向に沿って配向した組織となり易く、I004/I202>0.2を満たすことが分かる。なお、得られた窒化鉄材を構成する鉄窒化物粒子のアスペクト比や純度は、原料粉末の値を実質的に維持していることを確認した。 As shown in Table 1, as a raw material powder, α ”Fe 16 N 2 as a main component (80% by volume or more), a powder composed of columnar iron nitride particles having an average short axis length of 100 nm or less, The raw material powder and binder are mixed to form granulated powder of 1 μm or more, and this granulated powder is subjected to specific conditions (heating temperature: binder decomposition temperature ± 20 ° C, atmospheric pressure: 0.9 atmospheres or less, applied magnetic field: 2T From the above, it can be seen that an iron nitride material having an iron nitride particle content of 85% by volume or more can be obtained by press molding.The obtained iron nitride material has a saturation magnetization of 2 T or more and a coercive force. In particular, it is found that an iron nitride material satisfying saturation magnetization: 2T or more and coercive force: 2 kOe or more can be obtained by adjusting the manufacturing conditions and the like. The obtained iron nitride material tends to have a structure oriented along the c-axis direction and satisfies I 004 / I 202 > 0.2. It was confirmed that the aspect ratio and purity of the iron nitride particles constituting the obtained iron nitride material substantially maintained the value of the raw material powder.

一方、短軸の平均長さが100nm超の原料粉末を用いると、保磁力が低く、磁気特性に劣ることが分かる。或いは、平均粒径が1μm未満の造粒粉を用いると、成形できなかったり、鉄窒化物粒子の含有量が少なく、充填性に劣ることが分かる。或いは、成形時の加熱温度が低過ぎる場合や排気が不十分で雰囲気の圧力が大き過ぎる場合、鉄窒化物粒子の含有量が少なく、充填性に劣ることが分かる。或いは、成形時の加熱温度が高過ぎる場合や磁場が小さ過ぎる場合、配向性が低下したり、保磁力が低く、磁気特性に劣ることが分かる。   On the other hand, it can be seen that when a raw material powder having an average minor axis length of more than 100 nm is used, the coercive force is low and the magnetic properties are poor. Alternatively, it can be seen that when granulated powder having an average particle size of less than 1 μm is used, it cannot be molded, or the content of iron nitride particles is small and the filling property is poor. Or when the heating temperature at the time of shaping | molding is too low, or exhaust_gas | exhaustion is inadequate and the pressure of atmosphere is too large, it turns out that content of an iron nitride particle is small and it is inferior to a filling property. Or when the heating temperature at the time of shaping | molding is too high, or a magnetic field is too small, it turns out that orientation falls, coercive force is low, and it is inferior to a magnetic characteristic.

[試験例2]
試験例1と同様の工程で窒化鉄材を作製し、磁気特性を調べた。この試験では、特に、鉄窒化物粒子のアスペクト比の大きさ、鉄窒化物粒子の純度、バインダの材質、造粒工程の条件(温度、酸素濃度)の影響を調べた。
[Test Example 2]
An iron nitride material was produced in the same process as in Test Example 1, and the magnetic properties were examined. In this test, in particular, the influence of the size of the iron nitride particles, the purity of the iron nitride particles, the binder material, and the conditions of the granulation process (temperature, oxygen concentration) were investigated.

(準備工程)
試験例1と同様にして作製したα-Feからなる柱状のナノ鉄粉に、試験例1と同様の条件のアンモニア雰囲気下で窒化処理を行って、原料粉末を得た。試料No.2-1〜2-3,2-5は、ナノFe2O3粉末の合成時において印加磁場を変化させることで、アスペクト比を変化させた。試料No.2-11〜2-14は、窒化処理時の処理時間を他の試料よりも短くした。
(Preparation process)
A columnar nano iron powder made of α-Fe produced in the same manner as in Test Example 1 was subjected to nitriding treatment in an ammonia atmosphere under the same conditions as in Test Example 1 to obtain a raw material powder. In Sample Nos. 2-1 to 2-3 and 2-5, the aspect ratio was changed by changing the applied magnetic field during the synthesis of the nano-Fe 2 O 3 powder. In Sample Nos. 2-11 to 2-14, the treatment time during the nitriding treatment was shorter than that of the other samples.

得られた各原料粉末をX線回折により調べたところ、α"Fe16N2を主成分(80体積%以上)とする複数の鉄窒化物粒子からなることを確認した。各鉄窒化物粒子中のα"Fe16N2の含有量(体積%)を表2に示す。試料No.2-11〜2-14は、窒化処理の処理時間が短いものを利用したことで、α"Fe16N2の含有量が少なかった。 When the obtained raw material powders were examined by X-ray diffraction, they were confirmed to be composed of a plurality of iron nitride particles containing α ″ Fe 16 N 2 as a main component (80% by volume or more). Table 2 shows the content (volume%) of α ″ Fe 16 N 2 therein. Samples Nos. 2-11 to 2-14 were used with a short nitriding treatment time, so that the content of α "Fe 16 N 2 was small.

得られた鉄窒化物粒子を透過型電子顕微鏡:TEMにより観察したところ、いずれも柱状であり、試験例1と同様にして短軸の平均長さを測定したところ、50nmであった。また、各試料のアスペクト比を表2に示す。試料No.2-1〜2-3は、印加磁場を試料No.2-4(0.1T)よりも小さくすることでアスペクト比が小さく、試料No.2-5は印加磁場を試料No.2-4(0.1T)よりも大きくすることでアスペクト比が大きかった。   When the obtained iron nitride particles were observed with a transmission electron microscope: TEM, all were columnar, and the average length of the minor axis was measured in the same manner as in Test Example 1. As a result, it was 50 nm. Table 2 shows the aspect ratio of each sample. Sample Nos. 2-1 to 2-3 have a smaller aspect ratio by making the applied magnetic field smaller than that of sample No. 2-4 (0.1T). The aspect ratio was large by making it larger than -4 (0.1T).

(造粒工程)
バインダとして、表1に示すものを用いた。表1に「オレイン酸アミド」と記載される試料は、試験例1と同じバインダを利用した。エルカ酸アミド(融点:85℃、分解温度:240℃)、エチレンビスステアリン酸アミド(融点:115℃、分解温度:250℃)はいずれも市販のワックスである。各バインダの含有量は、試験例1と同様に1質量%とした。そして、表2に示す酸素濃度の窒素雰囲気下で、表2に示す温度にまで加熱した状態で原料粉末とバインダとを混合し、十分に混合した後、室温まで1℃/分程度の冷却速度で冷却して混練して、平均粒径10μmの造粒粉を形成した。平均粒径の測定は、試験例1と同様にして行った。
(Granulation process)
The binder shown in Table 1 was used. The sample described as “oleic amide” in Table 1 utilized the same binder as in Test Example 1. Erucamide (melting point: 85 ° C., decomposition temperature: 240 ° C.) and ethylenebisstearic acid amide (melting point: 115 ° C., decomposition temperature: 250 ° C.) are all commercially available waxes. The content of each binder was 1% by mass as in Test Example 1. Then, in a nitrogen atmosphere with the oxygen concentration shown in Table 2, the raw material powder and the binder are mixed in a state heated to the temperature shown in Table 2, and after thoroughly mixing, a cooling rate of about 1 ° C / min to room temperature The mixture was cooled and kneaded to form granulated powder having an average particle size of 10 μm. The average particle size was measured in the same manner as in Test Example 1.

(成形工程)
得られた各造粒粉を試験例1と同様に加圧成形して、試験例1と同様の形状・サイズの成形体を作製した。この試験では、成形条件を、加熱温度:表1に示す温度、雰囲気圧力:0.8気圧に排気、印加磁場:3T、成形圧力:1ton/cm2とした。磁場の印加は、高温超電導磁石を用いて行い、磁場の印加方向は、加圧方向と同じ方向とした。
(Molding process)
Each obtained granulated powder was subjected to pressure molding in the same manner as in Test Example 1 to produce a molded body having the same shape and size as in Test Example 1. In this test, the molding conditions were as follows: heating temperature: temperature shown in Table 1, atmospheric pressure: exhausted to 0.8 atm, applied magnetic field: 3 T, molding pressure: 1 ton / cm 2 . The application of the magnetic field was performed using a high-temperature superconducting magnet, and the application direction of the magnetic field was the same as the pressing direction.

十分に加圧した後、成形体を成形型から取り出し、得られた成形体をX線回折により調べたところ、α"Fe16N2を主成分とする複数の鉄窒化物粒子からなることを確認した。試験例1と同様にして、各成形体中の鉄窒化物粒子の含有量(体積%)を調べた。その結果を表2に示す。 After sufficiently pressurizing, the molded body was taken out from the mold, and the obtained molded body was examined by X-ray diffraction. As a result, it was found that the molded body was composed of a plurality of iron nitride particles mainly containing α "Fe 16 N 2. The content (volume%) of iron nitride particles in each molded body was examined in the same manner as in Test Example 1. The results are shown in Table 2.

得られた成形体(窒化鉄材)について、試験例1と同様にして、飽和磁化(T)、保磁力(kOe)、I004/I202を調べた。その結果を表2に示す。 With respect to the obtained molded body (iron nitride material), saturation magnetization (T), coercive force (kOe), and I 004 / I 202 were examined in the same manner as in Test Example 1. The results are shown in Table 2.

Figure 2012253248
Figure 2012253248

表2に示すように、アスペクト比が2以上の原料粉末を用いたり、α"Fe16N2の含有量(純度)が高い原料粉末を用いたり、分解温度が240℃以下のバインダを用いたりすることで、磁気特性により優れる窒化鉄材が得られることが分かる。また、造粒工程において、酸素濃度を3000質量ppm以下、特に2000質量ppm以下にすると、磁気特性により優れる窒化鉄材が得られることが分かる。なお、得られた窒化鉄材を構成する鉄窒化物粒子の短軸の平均長さやアスペクト比、純度は、原料粉末の値を実質的に維持していることを確認した。 As shown in Table 2, raw material powder with an aspect ratio of 2 or higher, raw material powder with high α "Fe 16 N 2 content (purity), or binder with decomposition temperature of 240 ° C or lower It can be seen that an iron nitride material superior in magnetic properties can be obtained, and that an iron nitride material superior in magnetic properties can be obtained if the oxygen concentration is 3000 mass ppm or less, particularly 2000 mass ppm or less in the granulation step. In addition, it was confirmed that the average length, aspect ratio, and purity of the short axis of the iron nitride particles constituting the obtained iron nitride material substantially maintained the value of the raw material powder.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能である。例えば、バインダの混合量などを適宜変更することができる。   Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the mixing amount of the binder can be appropriately changed.

本発明窒化鉄材は、永久磁石、例えば、各種のモータ、特に、ハイブリッド自動車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータに用いられる永久磁石の素材に好適に利用することができる。その他、本発明窒化鉄材は、磁性体相の表皮深さが磁性体相の幅に近くなる周波数領域(テラヘルツ領域)までの電磁波干渉・吸収材にも使用できると期待される。本発明窒化鉄材の製造方法は、上記本発明窒化鉄材の製造に好適に利用することができる。   The iron nitride material of the present invention can be suitably used as a permanent magnet, for example, a material of a permanent magnet used in various motors, in particular, a high-speed motor provided in a hybrid vehicle (HEV) or a hard disk drive (HDD). . In addition, the iron nitride material of the present invention is expected to be usable for electromagnetic wave interference / absorption materials up to a frequency region (terahertz region) in which the skin depth of the magnetic phase is close to the width of the magnetic phase. The manufacturing method of the iron nitride material of the present invention can be suitably used for manufacturing the iron nitride material of the present invention.

Claims (10)

α"Fe16N2を主成分とし、短軸の平均長さが100nm以下である柱状の鉄窒化物粒子からなる原料粉末を準備する準備工程と、
前記原料粉末と、α"Fe16N2の分解温度よりも低い分解温度を有するバインダとを混合して、平均粒径1μm以上の造粒粉を形成する造粒工程と、
前記造粒粉を成形型に充填した後、加圧成形して成形体を形成する成形工程とを具え、
前記成形工程では、前記成形型内を0.9気圧以下に排気しながら、{(前記バインダの分解温度)−20}℃以上{(前記バインダの分解温度)+20}℃以下の温度に加熱した状態で、かつ、2T以上の磁場を印加した状態で加圧成形することを特徴とする窒化鉄材の製造方法。
a preparation step of preparing a raw material powder composed of columnar iron nitride particles having α ”Fe 16 N 2 as a main component and having an average minor axis length of 100 nm or less;
Mixing the raw material powder and a binder having a decomposition temperature lower than the decomposition temperature of α "Fe 16 N 2 to form a granulated powder having an average particle size of 1 μm or more,
After filling the granulated powder into a molding die, comprising a molding step of forming a molded body by pressure molding,
In the molding step, while evacuating the inside of the mold to 0.9 atm or less, while being heated to a temperature of {(decomposition temperature of the binder) −20} ° C. or more {(decomposition temperature of the binder) +20} ° C. or less. And a method of producing an iron nitride material, wherein pressure forming is performed in a state where a magnetic field of 2 T or more is applied.
前記鉄窒化物粒子におけるα"Fe16N2の含有量が85体積%以上であることを特徴とする請求項1に記載の窒化鉄材の製造方法。 2. The method for producing an iron nitride material according to claim 1, wherein the content of α ″ Fe 16 N 2 in the iron nitride particles is 85% by volume or more. 前記鉄窒化物粒子における短軸の長さに対する長軸の長さの比をアスペクト比とするとき、前記アスペクト比が2以上であることを特徴とする請求項1又は2に記載の窒化鉄材の製造方法。   The iron nitride material according to claim 1 or 2, wherein the aspect ratio is 2 or more when the ratio of the length of the major axis to the length of the minor axis in the iron nitride particles is an aspect ratio. Production method. 前記バインダの分解温度が240℃以下であることを特徴とする請求項1〜3のいずれか1項に記載の窒化鉄材の製造方法。   The method for producing an iron nitride material according to any one of claims 1 to 3, wherein a decomposition temperature of the binder is 240 ° C or lower. 前記造粒工程では、酸素濃度が3000質量ppm以下の低酸素雰囲気下とし、{(前記バインダの融点)+5}℃以上の温度から室温にまで冷却して造粒を行うことを特徴とする請求項1〜4のいずれか1項に記載の窒化鉄材の製造方法。   The granulation step is performed in a low oxygen atmosphere with an oxygen concentration of 3000 ppm by mass or less, and granulated by cooling from a temperature of {(melting point of the binder) +5} ° C. to room temperature. Item 5. The method for producing an iron nitride material according to any one of Items 1 to 4. 前記成形工程において前記磁場の印加は、高温超電導磁石を用いて行うことを特徴とする請求項1〜5のいずれか1項に記載の窒化鉄材の製造方法。   6. The method of manufacturing an iron nitride material according to claim 1, wherein the magnetic field is applied in the forming step using a high-temperature superconducting magnet. 請求項1〜6のいずれか1項に記載の窒化鉄材の製造方法により得られた窒化鉄材であり、
α"Fe16N2を主成分とする複数の鉄窒化物粒子から構成された成形体からなり、
前記成形体における前記鉄窒化物粒子の含有量が85体積%以上であることを特徴とする窒化鉄材。
An iron nitride material obtained by the iron nitride material manufacturing method according to any one of claims 1 to 6,
It consists of a molded body composed of a plurality of iron nitride particles containing α "Fe 16 N 2 as the main component,
The iron nitride material, wherein the content of the iron nitride particles in the molded body is 85% by volume or more.
α"Fe16N2を主成分とする複数の鉄窒化物粒子から構成される成形体からなり、
前記鉄窒化物粒子は、柱状であり、短軸の平均長さが100nm以下であり、
前記成形体における前記鉄窒化物粒子の含有量が85体積%以上であることを特徴とする窒化鉄材。
It consists of a molded body composed of a plurality of iron nitride particles mainly composed of α "Fe 16 N 2 ,
The iron nitride particles are columnar, the average length of the minor axis is 100 nm or less,
The iron nitride material, wherein the content of the iron nitride particles in the molded body is 85% by volume or more.
前記成形体の保磁力が2.0kOe以上、及び前記成形体の飽和磁化が2.0T以上の少なくとも一方を満たすことを特徴とする請求項7又は8に記載の窒化鉄材。   9. The iron nitride material according to claim 7, wherein a coercive force of the molded body satisfies at least one of 2.0 kOe or more and a saturation magnetization of the molded body of 2.0 T or more. 前記成形体において(202)面のX線回折のピークの積分強度をI202、(004)面のX線回折のピークの積分強度をI004、積分強度:I202に対する積分強度:I004の比をI004/I202とするとき、I004/I202>0.2を満たすことを特徴とする請求項7〜9のいずれか1項に記載の窒化鉄材。 The integrated intensity of the peaks of the X-ray diffraction of the molded article (202) plane I 202, the integrated intensity of the peaks of the X-ray diffraction of the (004) plane I 004, integrated intensity: integrated intensity for I 202: the I 004 10. The iron nitride material according to claim 7, wherein when the ratio is I 004 / I 202 , I 004 / I 202 > 0.2 is satisfied.
JP2011125800A 2011-06-03 2011-06-03 Iron nitride material and manufacturing method thereof Expired - Fee Related JP5769069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011125800A JP5769069B2 (en) 2011-06-03 2011-06-03 Iron nitride material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011125800A JP5769069B2 (en) 2011-06-03 2011-06-03 Iron nitride material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012253248A true JP2012253248A (en) 2012-12-20
JP5769069B2 JP5769069B2 (en) 2015-08-26

Family

ID=47525783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125800A Expired - Fee Related JP5769069B2 (en) 2011-06-03 2011-06-03 Iron nitride material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5769069B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019050A (en) * 2013-06-12 2015-01-29 Tdk株式会社 Iron nitride magnetic powder and magnet using the same
JP2016146388A (en) * 2015-02-06 2016-08-12 Tdk株式会社 Iron nitride magnetic powder and bond magnet including same
JP2018509756A (en) * 2015-01-26 2018-04-05 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Applied magnetic field synthesis and processing of iron nitride magnetic materials
JP2020126901A (en) * 2019-02-01 2020-08-20 大陽日酸株式会社 Ferromagnetic powder, composition, molded product, and method for manufacturing ferromagnetic powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225204A (en) * 1990-12-26 1992-08-14 Nkk Corp Dust core
JP2006319349A (en) * 2006-06-08 2006-11-24 Dowa Mining Co Ltd Magnetic material and its manufacturing method
WO2010067592A1 (en) * 2008-12-12 2010-06-17 愛知製鋼株式会社 Rare earth-based bonded magnet
WO2011049080A1 (en) * 2009-10-22 2011-04-28 戸田工業株式会社 Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225204A (en) * 1990-12-26 1992-08-14 Nkk Corp Dust core
JP2006319349A (en) * 2006-06-08 2006-11-24 Dowa Mining Co Ltd Magnetic material and its manufacturing method
WO2010067592A1 (en) * 2008-12-12 2010-06-17 愛知製鋼株式会社 Rare earth-based bonded magnet
WO2011049080A1 (en) * 2009-10-22 2011-04-28 戸田工業株式会社 Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet
JP2011091215A (en) * 2009-10-22 2011-05-06 Toda Kogyo Corp Ferromagnetic particle powder and manufacturing method thereof, and anisotropic magnet and bonded magnet
EP2492927A1 (en) * 2009-10-22 2012-08-29 Toda Kogyo Corporation Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet
US20120244356A1 (en) * 2009-10-22 2012-09-27 Migaku Takahashi Ferromagnetic particles and process for producing the same, anisotropic magnet and bonded magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019050A (en) * 2013-06-12 2015-01-29 Tdk株式会社 Iron nitride magnetic powder and magnet using the same
JP2018509756A (en) * 2015-01-26 2018-04-05 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Applied magnetic field synthesis and processing of iron nitride magnetic materials
EP3251130B1 (en) * 2015-01-26 2020-07-15 Regents of the University of Minnesota Iron nitride magnetic materials
JP2020145452A (en) * 2015-01-26 2020-09-10 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Applied magnetic field synthesis and processing of iron nitride magnetic material
US20210265111A1 (en) * 2015-01-26 2021-08-26 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US11302472B2 (en) 2015-01-26 2022-04-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
JP7262783B2 (en) 2015-01-26 2023-04-24 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Applied Magnetic Field Synthesis and Processing of Iron Nitride Magnetic Materials
JP7385313B2 (en) 2015-01-26 2023-11-22 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Applied magnetic field formation and processing of iron nitride magnetic materials
JP2016146388A (en) * 2015-02-06 2016-08-12 Tdk株式会社 Iron nitride magnetic powder and bond magnet including same
JP2020126901A (en) * 2019-02-01 2020-08-20 大陽日酸株式会社 Ferromagnetic powder, composition, molded product, and method for manufacturing ferromagnetic powder

Also Published As

Publication number Publication date
JP5769069B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP3871219B2 (en) Method for producing anisotropic magnet powder
JP5572673B2 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
JP3452254B2 (en) Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
JP5831866B2 (en) Ferromagnetic particle powder and method for producing the same, anisotropic magnet, bonded magnet, and compacted magnet
JP5708454B2 (en) Alcohol solution and sintered magnet
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
WO2006043348A1 (en) Method for producing rare earth permanent magnet material
JPWO2008065903A1 (en) R-Fe-B fine crystal high-density magnet and method for producing the same
CN108352250B (en) Method for modifying grain boundary of Nd-Fe-B magnet, and grain boundary modified body treated by the method
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP2018127716A (en) Rare-earth-iron-nitrogen based magnetic powder and method for producing the same
JP2013102122A (en) Magnetic member and manufacturing method for magnetic member
JP5769069B2 (en) Iron nitride material and manufacturing method thereof
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP4730545B2 (en) Method for producing rare earth permanent magnet material
US20230245807A1 (en) Rare earth-iron-nitrogen-based magnetic powder, compound for bonded magnet, bonded magnet, and method for producing rare earth-iron-nitrogen-based magnetic powder
JP2016076549A (en) Method of manufacturing rare earth magnet
JP5613856B1 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
CN114600205A (en) Sm-Fe-N based rare earth magnet, process for producing the same, and rare earth magnet powder
JP5742733B2 (en) Rare earth magnet manufacturing method
JP2012199423A (en) Production method of anisotropic magnetic powder and anisotropic bond magnet
US8480818B2 (en) Permanent magnet and manufacturing method thereof
JP6179709B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
JP5103428B2 (en) Rare earth sintered magnet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150611

R150 Certificate of patent or registration of utility model

Ref document number: 5769069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees