JP2006319246A - Film for electromagnetic wave shield and method for manufacturing the same - Google Patents

Film for electromagnetic wave shield and method for manufacturing the same Download PDF

Info

Publication number
JP2006319246A
JP2006319246A JP2005142493A JP2005142493A JP2006319246A JP 2006319246 A JP2006319246 A JP 2006319246A JP 2005142493 A JP2005142493 A JP 2005142493A JP 2005142493 A JP2005142493 A JP 2005142493A JP 2006319246 A JP2006319246 A JP 2006319246A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
film
wave shielding
layer structure
transparent plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005142493A
Other languages
Japanese (ja)
Inventor
Keishiyun Furuzono
圭俊 古園
Junichi Imaizumi
純一 今泉
Hiroaki Takahashi
宏明 高橋
Hajime Nakamura
一 中村
Kohei Horiuchi
浩平 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005142493A priority Critical patent/JP2006319246A/en
Publication of JP2006319246A publication Critical patent/JP2006319246A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a film for an electromagnetic wave shield and the resultant film for the electromagnetic wave shield, wherein there are no deformations such as an undulation, or a ripple-shaped lateral stripe, and a high flatness appears. <P>SOLUTION: In the method for manufacturing the film for the electromagnetic wave shield, a laminated body of a three-layer structure is composed of a metal foil 1, an ultraviolet curing resin layer 2, and a transparent plastic film 3. After an ultraviolet curing resin is coated on any one of the metal foil and the transparent plastic film, another constituent material is laminated to form the three-layer structure. Thereafter, ultraviolet rays are irradiated to cure a resin, and the laminated bodies of the three-layer structure are continuously manufactured. In this method, a substrate temperature in irradiating the ultraviolet rays is set at 40°C or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電磁波シールド用フィルムの製造方法及び電磁波シールド用フィルムに関する。更に詳しくは電磁波シールド用フィルムに用いる基材として、うねりや波紋状の横スジ等の変形がなく、高平坦性を示す基材の製造方法に関する。   The present invention relates to a method for producing an electromagnetic wave shielding film and an electromagnetic wave shielding film. More specifically, the present invention relates to a method for producing a substrate exhibiting high flatness without deformation such as undulation or ripple-like horizontal streaks as a substrate used for an electromagnetic wave shielding film.

近年のプラズマディスプレイパネル(以下PDPと略す)は、大型化、高解像度化、ハイコントラスト化等の改良がモデル変更毎に実施されている。一方で、PDPはその発光原理から電磁波を放射するという欠点がある。この電磁波は、周辺の電子機器へのノイズ混入の原因となる。欧米では、既に法規制がなされている。また日本では、欧米の法規制をもとにメーカーが自主規制を行っている。
これらの電磁波の遮蔽方法としては、機器筐体そのものを金属体にする、高導電体にしたり、回路基板と回路基板の間に金属板を挿入する、そしてケーブルに金属箔を巻付ける等の方法がある。
一方、ディスプレイ前面から放射される電磁波は、透明性を低下させることなく遮蔽する必要がある。この両者を高次に実現する手段としては、種々の方法が提案されているが、特許文献1に開示されるように、透明プラスチックフィルムと導電材料の間に接着剤を介して接着し、導電材料にケミカルエッチングプロセスにより幾何学図形(単純には網目形状)を形成させたシールドフィルムをディスプレイ前面に配する方法が最も良い特性が得られる事が分かっている。この製造方法及び材料は、フレキシブル印刷配線板の製造法に準じたものであり、設備・手法としてはほぼ確立された工法である。
しかしながら、PDP用途に用いる電磁波シールドフィルムは、汎用のフレキシブルプリント基板を含む配線板と比べるとサイズが非常に大きいばかりでなく、光透過性の確保と表示品質を確保するために、高透明な材料を用いなければならない。また、電磁波シールド層のパターン加工には、非常に微細な細線を欠陥無く全面に形成する必要があり、この製造工程において歩留り向上の障害となっており、価格低減の隘路となっている。また当然、画像の歪みは発生してはならず、この目的のため、電磁波シールド層にも高い平坦性が要求される。これに対応するために、特許文献2に記載されるように、金属箔上または透明プラスチックフィルム上のいずれかに紫外線硬化型樹脂を塗布した後、もう一方をラミネート法により貼り合わせた3層構造を形成し、その後に、紫外線を照射することにより樹脂を硬化させて連続的に基材を作製する工法が提案されている。
しかしながらこの工法は、紫外線を照射する時の基材の状態によっては、うねりや波紋状の横スジといった変形が発生し、平坦性が失われるという問題があった。
Recent plasma display panels (hereinafter abbreviated as PDPs) have been improved with each model change, such as an increase in size, resolution, and contrast. On the other hand, PDP has a drawback of emitting electromagnetic waves due to its light emission principle. This electromagnetic wave causes noise to be mixed into surrounding electronic devices. In Europe and America, laws and regulations have already been made. In Japan, manufacturers are self-regulating based on European and American laws and regulations.
These electromagnetic wave shielding methods include making the device housing itself a metal body, making it a high conductor, inserting a metal plate between the circuit board and the circuit board, and winding a metal foil around the cable. There is.
On the other hand, electromagnetic waves radiated from the front surface of the display need to be shielded without deteriorating transparency. Various methods have been proposed as means for realizing both of these higher orders, but as disclosed in Patent Document 1, a transparent plastic film and a conductive material are bonded via an adhesive, and conductive It has been found that the best properties can be obtained by placing a shield film with a geometrical figure (simply a mesh shape) formed on the material by a chemical etching process on the front of the display. This manufacturing method and material are based on the manufacturing method of a flexible printed wiring board, and are an established method as equipment and method.
However, the electromagnetic shielding film used for PDP is not only very large in size compared to a wiring board including a general-purpose flexible printed circuit board, but also a highly transparent material to ensure light transmission and display quality. Must be used. In addition, for pattern processing of the electromagnetic wave shielding layer, it is necessary to form very fine fine lines on the entire surface without any defects, which is an obstacle to yield improvement in this manufacturing process, and is a bottleneck for price reduction. Of course, image distortion should not occur, and for this purpose, the electromagnetic wave shielding layer is required to have high flatness. In order to cope with this, as described in Patent Document 2, a three-layer structure in which an ultraviolet curable resin is applied on either a metal foil or a transparent plastic film, and the other is bonded by a laminating method. A method of forming a base material continuously by curing the resin by irradiating with ultraviolet rays is proposed.
However, this method has a problem that, depending on the state of the base material when irradiated with ultraviolet rays, deformation such as waviness and ripple-like horizontal streaks occurs, and flatness is lost.

特開平10‐41682号公報JP-A-10-41682 特許第3388682号公報Japanese Patent No. 3388682

本発明は、かかる点に鑑み、うねりや波紋状の横スジ等の変形がなく、高平坦性を示す電磁波シールド用フィルムの製造方法及びそれにより得られた電磁波シールド用フィルムを提供することを目的とする。   In view of the above, the present invention has an object to provide a method for producing an electromagnetic wave shielding film exhibiting high flatness without deformation such as undulation and ripple-like horizontal stripes, and an electromagnetic wave shielding film obtained thereby. And

本発明は、(1)金属箔、紫外線硬化型樹脂層、透明プラスチックフィルムから構成される3層構造の積層体であり、金属箔上または透明プラスチックフィルム上のいずれかに紫外線硬化型樹脂を塗布した後、もう一方の構成材をラミネートして3層構造を形成し、その後、紫外線を照射して樹脂を硬化させ3層構造の積層体を連続的に作製する方法において、紫外線照射時の基材温度を40℃以下とすることを特徴とした電磁波シールド用フィルムの製造方法に関する。
また、本発明は、(2) 金属箔上または透明プラスチックフィルム上のいずれかに紫外線硬化型樹脂を塗布した後、もう一方の構成材をラミネートして3層構造を形成し、その後、紫外線を照射して樹脂を硬化させ3層構造の積層体を連続的に作製する方法において、3層構造の積層体を搬送支持する支持部材間の面から紫外線照射装置の反対方向に撓ませて押し込み長さが50mm以上となるようにして紫外線照射をすることを特徴とする上記(1)に記載の電磁波シールド用フィルムの製造方法に関する。
また、本発明は、(3) 上記(1)または上記(2)に記載の電磁波シールド用フィルムの製造方法により得られた3層構造の積層体の透明プラスチックフィルム面側に光源を映すと歪みがなく、かつ、波紋状の横スジの発生のない電磁波シールド用フィルムに関する。
The present invention is (1) a laminate having a three-layer structure composed of a metal foil, an ultraviolet curable resin layer, and a transparent plastic film, and an ultraviolet curable resin is applied on either the metal foil or the transparent plastic film. After that, in the method of laminating the other constituent material to form a three-layer structure and then curing the resin by irradiating with ultraviolet rays to continuously produce a three-layer laminate, The present invention relates to a method for producing an electromagnetic wave shielding film, wherein the material temperature is 40 ° C. or lower.
In the present invention, (2) after applying an ultraviolet curable resin on either a metal foil or a transparent plastic film, the other constituent material is laminated to form a three-layer structure. In a method of continuously producing a three-layered laminate by irradiating and curing the resin, it is bent in the direction opposite to the ultraviolet irradiation device from the surface between the supporting members that convey and support the three-layered laminate. The present invention relates to the method for producing an electromagnetic wave shielding film as described in (1) above, wherein the ultraviolet ray is irradiated so that the thickness is 50 mm or more.
Moreover, this invention is (3) distortion when a light source is projected on the transparent plastic film surface side of the laminated body of the 3 layer structure obtained by the manufacturing method of the film for electromagnetic wave shields as described in said (1) or (2). The present invention relates to an electromagnetic wave shielding film that is free of ripples and has no ripple-like horizontal stripes.

本発明の電磁波シールド用フィルムの製造方法は、うねりや波紋状の横スジ等の変形がなく、高平坦性を示すフィルムの製造が可能となり、結果として高品質な電磁波シールドフィルムを高歩留で生産できるフィルムを提供できる。また、それにより得られた電磁波シールド用フィルムを用い電磁波シールドフィルムを作製することで、シールド性に優れた高品質の画像を提供することができる。   The method for producing an electromagnetic wave shielding film of the present invention is capable of producing a film exhibiting high flatness without deformation such as undulations and ripples of horizontal stripes. As a result, a high quality electromagnetic wave shielding film can be produced at a high yield. A film that can be produced can be provided. Moreover, the high quality image excellent in shielding property can be provided by producing an electromagnetic wave shielding film using the film for electromagnetic wave shielding obtained by it.

以下に本発明を詳細に説明する。
本発明によって得られる電磁波シールド用フィルム(基材)の構成を図1に、また、電磁波シールド用フィルム(基材)の製造装置の概要を図2に示した。
以下の説明は、本基材を生産するための材料及び製造装置の順に説明する。
The present invention is described in detail below.
The structure of the electromagnetic wave shielding film (base material) obtained by the present invention is shown in FIG. 1, and the outline of the production apparatus for the electromagnetic wave shielding film (base material) is shown in FIG.
The following description will be given in the order of materials and manufacturing equipment for producing the substrate.

本発明で使用する紫外線硬化型樹脂層(接着剤)は紫外線で硬化する樹脂であり、その樹脂系としてはアクリル樹脂、エポキシ樹脂、ポリエステル樹脂等をベースポリマーとして、ラジカル重合性あるいはカチオン重合性官能基を付与させたものが用いられる。
ラジカル重合性官能基として、アクリロイル基、メタクリロイル基、ビニル基、アリル基などが挙げられる。カチオン重合性官能基としては、グリシジル基が好適に用いられる。
放射線が紫外線の場合、光増感剤あるいは光開始剤として、ベンゾフェノン系、アントラキノン系、ベンゾイン系、スルホニウム塩、ジアゾニウム塩、オニウム塩等の公知の材料を使用する事が可能である。
これらの接着剤を構成する樹脂のガラス転移点(以下、Tgと略す)は、40℃以上が好ましい。その理由は、エッチング工程での着色防止のためであり、この層のTgが低いと、エッチング工程で用いられる高温度処理液によって軟化し、その液の色が付着してしまうからである。
これらの樹脂の25℃における溶液粘度は、1000〜5000mPa・sが好ましく、1500〜2500mPa・sであれば更に好ましい。この粘度範囲を超えると、搬送途中での樹脂の流れ、樹脂への気泡混入等の問題が発生するため好ましくない。
The ultraviolet curable resin layer (adhesive) used in the present invention is a resin curable by ultraviolet rays, and its resin system is based on an acrylic resin, an epoxy resin, a polyester resin, etc. as a base polymer, and a radical polymerizable or cationic polymerizable functional group. The thing to which group was provided is used.
Examples of the radical polymerizable functional group include acryloyl group, methacryloyl group, vinyl group, and allyl group. As the cationic polymerizable functional group, a glycidyl group is preferably used.
When the radiation is ultraviolet light, known materials such as benzophenone, anthraquinone, benzoin, sulfonium salt, diazonium salt, onium salt can be used as a photosensitizer or photoinitiator.
The glass transition point (hereinafter abbreviated as Tg) of the resin constituting these adhesives is preferably 40 ° C. or higher. The reason is to prevent coloring in the etching process. If the Tg of this layer is low, the layer is softened by the high-temperature treatment liquid used in the etching process, and the color of the liquid adheres.
The solution viscosity at 25 ° C. of these resins is preferably 1000 to 5000 mPa · s, and more preferably 1500 to 2500 mPa · s. Exceeding this viscosity range is not preferable because problems such as resin flow during transport and mixing of bubbles into the resin occur.

本発明で用いる金属箔は、銅、ニッケル、アルミニウム等の金属箔であれば品種を制限するものではないが、価格、細線加工性、生産性を考慮した場合、銅箔が最も好ましい。また銅箔の厚みは特に制限されるものではないが、9〜20μmが好ましい。   The metal foil used in the present invention is not limited as long as it is a metal foil made of copper, nickel, aluminum or the like, but copper foil is most preferable in view of price, fine wire workability, and productivity. The thickness of the copper foil is not particularly limited, but is preferably 9 to 20 μm.

本発明で用いる本用途に適した透明プラスチックフィルムは、アクリル、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリエステル等があるが、それらは単層であっても2層以上でも良い。中でも、透明性、フィルムの平滑性、取り扱い性、価格等からポリエステルフィルム(以下、PETと略す)が最適である。ここでの透明とは、可視光線(380〜780nm)平均透過率87%以上のものを言う。また、前述の波長範囲において特定の波長における透過率が87%以下であってもかまわない。厚さは25〜250μmが好ましく、50〜150μmがより好ましい。   The transparent plastic film suitable for this application used in the present invention includes acrylic, polycarbonate, polyethylene, polypropylene, polyester and the like, and these may be a single layer or two or more layers. Among them, a polyester film (hereinafter abbreviated as PET) is most suitable from the viewpoint of transparency, film smoothness, handleability, price, and the like. The term “transparent” as used herein means that having a visible light (380 to 780 nm) average transmittance of 87% or more. Moreover, the transmittance | permeability in a specific wavelength in the above-mentioned wavelength range may be 87% or less. The thickness is preferably 25 to 250 μm, and more preferably 50 to 150 μm.

電磁波シールド用フィルムである3層構造の積層体(基材)に用いる接着剤層(紫外線硬化型樹脂層)の形成方法としては、ロールコータ、ダイコータ、グラビアコータ、ドクターブレード等があるが、これらに制限されるものではなく、公知の方法を用いて行うことができる。   Examples of the method for forming an adhesive layer (ultraviolet curable resin layer) used for a three-layer laminate (base material) that is an electromagnetic wave shielding film include a roll coater, a die coater, a gravure coater, and a doctor blade. It can restrict | limit using a well-known method.

本発明における電磁波シールド用フィルム(基材)は、金属箔、紫外線硬化型樹脂層(接着剤層)、透明プラスチックフィルムの異なる材質(特に、収縮率)の3層構造からなるため、紫外線照射時の紫外線ランプからの輻射熱により、基材の変形、すなわちうねりや波紋状の横スジ等の変形が生じ易い。そのため、紫外線照射時に基材を40℃以下に保つ工夫が必要である。本基材作製時の冷却方式としては、基材表面へのエアー吹き付け、そのエアー温度、紫外線照射炉内の空冷設備、搬送ロールの水冷化、特定波長域を透過するランプフィルタの導入等がある。また、これらの方式を2方式以上同時に用いてもかまわない。   The electromagnetic wave shielding film (base material) in the present invention has a three-layer structure of different materials (particularly, shrinkage) of metal foil, an ultraviolet curable resin layer (adhesive layer), and a transparent plastic film. Due to the radiant heat from the ultraviolet lamp, deformation of the substrate, that is, deformation such as undulation or ripple-like horizontal stripes is likely to occur. Therefore, the device which keeps a base material at 40 degrees C or less at the time of ultraviolet irradiation is required. Cooling methods used in the production of the base material include air blowing on the surface of the base material, air temperature, air cooling equipment in the ultraviolet irradiation furnace, water cooling of the transport roll, introduction of a lamp filter that transmits a specific wavelength range, etc. . Two or more of these methods may be used simultaneously.

電磁波シールド用フィルム(基材)の製造工程としては、接着剤塗布、ラミネート、紫外線硬化を連続して行う。そのため、接着剤の硬化収縮、紫外線照射時の紫外線ランプからの輻射熱、基材搬送時の張力(金属箔あるいは透明プラスチックフィルムの巻出張力、基材の巻取張力)の影響を鋭敏に受け、波紋状の横スジ等の変形が非常に生じ易い。そこで、紫外線照射時に基材を押し込み、接着剤のフロー性抑制と幅方向に対する応力緩和を行い、基材の平滑性を保つ工夫が必要である。ここで基材を「押込む(押し込み)」とは、基材を流れ方向に対し、垂直方向に抱き角度を設ける事である。方式としては、紫外線照射時において、基材表面へのエアー吹き付け、搬送ロールの千鳥化等があるが、特に制限されるものではない。また、これらの方式を2方式以上同時に用いてもかまわない。押し込み量は50mm以上にすれば好ましく、50〜100mmにすれば更に好ましい。本発明では、3層構造の積層体を搬送支持する支持部材間の面から紫外線照射装置の反対方向に撓ませて図3に示したように押し込み長さbが50mm以上となるようにして紫外線照射をする。図3の支持部材間の3層構造の積層体を撓ませるように搬送速度を調整し、押し込み量を50mm以上とすることもできる。   As a manufacturing process of the electromagnetic wave shielding film (base material), adhesive coating, laminating, and ultraviolet curing are continuously performed. Therefore, it is sensitively affected by the curing shrinkage of the adhesive, the radiant heat from the UV lamp during UV irradiation, and the tension during transport of the substrate (the unwinding tension of the metal foil or transparent plastic film, the winding tension of the substrate), Deformations such as ripple-like horizontal streaks are very likely to occur. Therefore, it is necessary to devise a technique for keeping the smoothness of the base material by pressing the base material at the time of ultraviolet irradiation to suppress the flowability of the adhesive and relieving the stress in the width direction. Here, “pushing in” (pushing in) the base material means that the base material is held in a direction perpendicular to the flow direction. Examples of the method include, but are not particularly limited to, air blowing to the substrate surface and staggering of the transport roll during ultraviolet irradiation. Two or more of these methods may be used simultaneously. The pushing amount is preferably 50 mm or more, more preferably 50 to 100 mm. In the present invention, the ultraviolet light is bent so that the pushing length b becomes 50 mm or more as shown in FIG. 3 by bending in the opposite direction of the ultraviolet irradiation device from the surface between the support members that convey and support the three-layer structure. Irradiate. It is also possible to adjust the conveyance speed so as to bend the three-layer structure between the support members in FIG.

以下、実施例により本発明を具体的に説明する。電磁波シールド用フィルム(基材)製造条件を表1に、その結果を表2に示した。また、基材製造時の概要図を図3に示した。
(実施例1)
透明プラスチックフィルムとして、厚さ125μmのポリエチレンテレフタレート(東洋紡績株式会社製、A−4100、以下PETフィルムと略す)、金属箔として厚さ10μmの電解銅箔(日本電解株式会社製、PBR−10A、以下銅箔と略す)、紫外線硬化型樹脂(接着剤)として紫外線硬化型樹脂(日立化成工業株式会社製、ヒタロイド7851、以下接着剤と略す)を選定した。
まずPETフィルムに接着剤を塗布した後、銅箔を接着剤面にラミネートした。その後、紫外線照射(メタルハライドランプ、1600mJ/cm)により硬化させ、3層構造の電磁波シールド用フィルム(基材)を作製した。この紫外線照射時の基材の押し込み長さを50mm、基材が受ける温度を35℃とした。基材が受ける温度は、基材表面へのエアー吹き付けと特定波長域を透過するランプフィルタの導入により制御した。なお、接着剤層の厚みは20μmとした。ラミネート条件は下記の通り。
ラミネート温度:25℃、ラミネート圧力:0.05MPa
ライン速度:5m/分
Hereinafter, the present invention will be described specifically by way of examples. The production conditions for the electromagnetic wave shielding film (base material) are shown in Table 1, and the results are shown in Table 2. Moreover, the schematic diagram at the time of base-material manufacture was shown in FIG.
Example 1
As a transparent plastic film, a polyethylene terephthalate having a thickness of 125 μm (A-4100, manufactured by Toyobo Co., Ltd., hereinafter abbreviated as a PET film), an electrolytic copper foil having a thickness of 10 μm as a metal foil (manufactured by Nippon Electrolytic Co., Ltd., PBR-10A, Hereinafter, an ultraviolet curable resin (Hitaloid 7851, manufactured by Hitachi Chemical Co., Ltd., hereinafter abbreviated as an adhesive) was selected as the ultraviolet curable resin (adhesive).
First, an adhesive was applied to the PET film, and then a copper foil was laminated on the adhesive surface. Thereafter, the film was cured by ultraviolet irradiation (metal halide lamp, 1600 mJ / cm 2 ) to produce a three-layer electromagnetic shielding film (base material). The indentation length of the base material during the ultraviolet irradiation was 50 mm, and the temperature received by the base material was 35 ° C. The temperature received by the substrate was controlled by blowing air onto the substrate surface and introducing a lamp filter that transmitted a specific wavelength range. The thickness of the adhesive layer was 20 μm. Lamination conditions are as follows.
Laminating temperature: 25 ° C., laminating pressure: 0.05 MPa
Line speed: 5m / min

(実施例2)
紫外線照射時の基材の押し込み長さを基材表面へのエアー吹き付けにより60mmとし、基材が受ける温度を38℃とした以外は、実施例1と同様にして3層構造の電磁波シールド用フィルム(基材)を作製した。
(Example 2)
Film for electromagnetic wave shielding with a three-layer structure in the same manner as in Example 1 except that the indentation length of the base material during ultraviolet irradiation was 60 mm by air blowing onto the base material surface and the temperature received by the base material was 38 ° C. (Substrate) was produced.

(実施例3)
紫外線照射時の基材の押し込み長さを基材表面へのエアー吹き付けにより70mmとし、基材が受ける温度を40℃とした以外は、実施例1と同様にして3層構造の電磁波シールド用フィルム(基材)を作製した。
(Example 3)
Film for electromagnetic wave shielding with a three-layer structure in the same manner as in Example 1 except that the indentation length of the base material at the time of ultraviolet irradiation was set to 70 mm by air blowing to the surface of the base material, and the temperature received by the base material was 40 ° C. (Substrate) was produced.

(比較例1)
紫外線照射時の基材の押し込み長さを基材表面へのエアー吹き付けにより50mmとし、基材が受ける温度を42℃とした以外は、実施例1と同様にして3層構造の電磁波シールド用フィルム(基材)を作製した。
(Comparative Example 1)
Film for electromagnetic wave shielding with a three-layer structure in the same manner as in Example 1 except that the indentation length of the base material upon irradiation with ultraviolet rays was 50 mm by air blowing onto the surface of the base material, and the temperature received by the base material was 42 ° C. (Substrate) was produced.

(比較例2)
紫外線照射時の基材の押し込み長さを基材表面へのエアー吹き付けにより50mmとし、基材が受ける温度を45℃とした以外は、実施例1と同様にして3層構造の電磁波シールド用フィルム(基材)を作製した。
(Comparative Example 2)
Film for electromagnetic wave shielding with a three-layer structure in the same manner as in Example 1 except that the indentation length of the substrate at the time of ultraviolet irradiation was 50 mm by air blowing onto the substrate surface and the temperature received by the substrate was 45 ° C. (Substrate) was produced.

(比較例3)
紫外線照射時の基材の押し込み長さを0mm、基材が受ける温度を25℃とした以外は、実施例1と同様にして3層構造の電磁波シールド用フィルム(基材)を作製した。
(Comparative Example 3)
A three-layer electromagnetic shielding film (base material) was produced in the same manner as in Example 1 except that the indentation length of the base material during ultraviolet irradiation was 0 mm and the temperature received by the base material was 25 ° C.

(比較例4)
紫外線照射時の基材の押し込み長さを0mm、基材が受ける温度を50℃とした以外は、実施例1と同様にして3層構造の電磁波シールド用フィルム(基材)を作製した。
(Comparative Example 4)
A three-layer electromagnetic shielding film (base material) was produced in the same manner as in Example 1 except that the indentation length of the base material during ultraviolet irradiation was 0 mm and the temperature received by the base material was 50 ° C.

以上のようにして得られた結果を表1、表2に示した。
なお、基材の押し込み長さ測定、うねり評価、波紋状の横スジ評価の測定方法を下記に示した。
The results obtained as described above are shown in Tables 1 and 2.
In addition, the measurement method of the indentation length measurement of a base material, waviness evaluation, and ripple-like horizontal stripe evaluation was shown below.

(試験方法)
[基材の押し込み長さ測定]
図3に示した基材製造時の概要図にて説明する。基材の押し込み長さは、基材−放射線照射装置間距離aに対し、放射線照射装置側に押し込んだ長さbを計測した。
[うねり評価]
作製した3層構造の電磁波シールド用フィルムのPET面側に光源として蛍光灯を写し、その歪み度合いを目視して下記の評価基準により評価した。評価基準は下記のとおり。
○: 歪みなく蛍光灯が映し出される
△: 1箇所蛍光灯が歪んで写し出される
×: 2〜5箇所蛍光灯が歪んで写し出される
××: 全面に6箇所以上で蛍光灯が歪んで映し出される
[波紋状の横スジ評価]
作製した3層構造の電磁波シールド用フィルムの金属箔面側の端部に図4に示した波紋状の横スジの最大長さを測定した。
(Test method)
[Measurement of indentation length of substrate]
This will be described with reference to the schematic diagram at the time of manufacturing the substrate shown in FIG. The indentation length of the substrate was measured by measuring the length b of indentation toward the radiation irradiation device side with respect to the distance a between the substrate and the radiation irradiation device.
[Swell evaluation]
A fluorescent lamp was copied as a light source on the PET surface side of the produced electromagnetic wave shielding film having a three-layer structure, and the degree of distortion was visually observed and evaluated according to the following evaluation criteria. The evaluation criteria are as follows.
○: Fluorescent lamp is projected without distortion △: One fluorescent lamp is distorted and projected ×: Two to five fluorescent lamps are distorted and projected XX: Fluorescent lamp is projected distorted at six or more locations on the entire surface [ Evaluation of ripples on horizontal stripes]
The maximum length of the ripple-shaped horizontal streaks shown in FIG. 4 was measured at the end of the prepared three-layer electromagnetic shielding film on the metal foil surface side.

Figure 2006319246
Figure 2006319246

Figure 2006319246
Figure 2006319246

実施例1〜3に示したように、紫外線照射時の基材温度を40℃以下とすることにより、うねりや波紋状の横スジ等の変形がなく、高平坦性を示す電磁波シールド用フィルムが得られる。これに対し、比較例1、2、4で示したように基材温度が40℃を超えて高い状態で紫外線を照射すると、うねりや波紋状の横スジ等が発生する。また、紫外線照射時の基材温度が40℃以下であっても、基材の押し込み長さが50mm以上でない場合、うねり防止には効果があるが、横スジが発生してしまう。
本発明で得られた電磁波シールド用フィルム(基材)の製造方法は、うねりや波紋状の横スジ等の変形がなく、高平坦性を示す基材を製造可能となり、結果として高品質な電磁波シールドフィルムを高歩留で生産できる製造方法、基材を提供できる。
As shown in Examples 1 to 3, by setting the substrate temperature at the time of ultraviolet irradiation to 40 ° C. or less, there is no deformation such as undulation or ripple-like horizontal streaks, and an electromagnetic shielding film exhibiting high flatness is obtained. can get. On the other hand, as shown in Comparative Examples 1, 2, and 4, when the substrate temperature is higher than 40 ° C. and the ultraviolet rays are irradiated, undulations, ripple-like horizontal stripes, and the like are generated. Further, even when the substrate temperature at the time of ultraviolet irradiation is 40 ° C. or less, if the indentation length of the substrate is not 50 mm or more, it is effective in preventing undulation, but a horizontal stripe is generated.
The method for producing an electromagnetic wave shielding film (base material) obtained in the present invention is capable of producing a base material exhibiting high flatness without deformation such as undulation or ripple-like horizontal streaks, resulting in high-quality electromagnetic waves. It is possible to provide a manufacturing method and a base material capable of producing a shield film at a high yield.

本発明の3層構造の積層体である電磁波シールド用フィルムの構成を示す模式図。The schematic diagram which shows the structure of the film for electromagnetic wave shields which is a laminated body of the 3 layer structure of this invention. 電磁波シールド用フィルム(基材)製造装置の概要図。The schematic diagram of the electromagnetic wave shielding film (base material) manufacturing apparatus. 電磁波シールド用フィルム(基材)製造時の概要図。The schematic diagram at the time of the film for electromagnetic wave shielding (base material) manufacture. 波紋状の横スジの評価方法の説明図。Explanatory drawing of the evaluation method of a ripple-shaped horizontal stripe.

符号の説明Explanation of symbols

1 金属箔
2 紫外線硬化型樹脂
3 透明プラスチックフィルム
4 被ラミネート材の巻き出し装置
4’被ラミネート材の巻き出し装置
5 ラミネート前の接着剤(樹脂)塗布装置
6 ラミネートロール
7 放射線(紫外線)照射装置
8 巻き取り装置


DESCRIPTION OF SYMBOLS 1 Metal foil 2 Ultraviolet curable resin 3 Transparent plastic film 4 Unwinding apparatus of a to-be-laminated material 4 'Unwinding apparatus of to-be-laminated material 5 Adhesive (resin) coating apparatus before lamination 6 Laminating roll 7 Radiation (ultraviolet) irradiation apparatus 8 Winding device


Claims (3)

金属箔、紫外線硬化型樹脂層、透明プラスチックフィルムから構成される3層構造の積層体であり、金属箔上または透明プラスチックフィルム上のいずれかに紫外線硬化型樹脂を塗布した後、もう一方の構成材をラミネートして3層構造を形成し、その後、紫外線を照射して樹脂を硬化させ3層構造の積層体を連続的に作製する方法において、紫外線照射時の基材温度を40℃以下とすることを特徴とした電磁波シールド用フィルムの製造方法。 It is a three-layer laminate composed of a metal foil, an ultraviolet curable resin layer, and a transparent plastic film. After coating the ultraviolet curable resin on either the metal foil or the transparent plastic film, the other structure In a method of laminating materials to form a three-layer structure, and subsequently irradiating ultraviolet rays to cure the resin to continuously produce a three-layer laminate, the substrate temperature during ultraviolet irradiation is 40 ° C. or lower. A method for producing an electromagnetic wave shielding film characterized by comprising: 金属箔上または透明プラスチックフィルム上のいずれかに紫外線硬化型樹脂を塗布した後、もう一方の構成材をラミネートして3層構造を形成し、その後、紫外線を照射して樹脂を硬化させ3層構造の積層体を連続的に作製する方法において、3層構造の積層体を搬送支持する支持部材間の面から紫外線照射装置の反対方向に撓ませて押し込み長さが50mm以上となるようにして紫外線照射をすることを特徴とする請求項1に記載の電磁波シールド用フィルムの製造方法。 After applying an ultraviolet curable resin on either a metal foil or a transparent plastic film, the other component is laminated to form a three-layer structure, and then the resin is cured by irradiating ultraviolet rays to form a three-layer structure. In a method of continuously producing a laminated body having a structure, the indentation length is set to be 50 mm or more by bending in a direction opposite to the ultraviolet irradiation device from a surface between support members that convey and support the laminated body having a three-layer structure. The method for producing an electromagnetic wave shielding film according to claim 1, wherein ultraviolet irradiation is performed. 請求項1または請求項2に記載の電磁波シールド用フィルムの製造方法により得られた3層構造の積層体の透明プラスチックフィルム面側に光源を映すと歪みがなく、かつ、波紋状の横スジの発生のない電磁波シールド用フィルム。



When the light source is projected on the transparent plastic film surface side of the three-layered laminate obtained by the method for producing an electromagnetic wave shielding film according to claim 1 or 2, there is no distortion, and ripples of horizontal stripes Film for electromagnetic wave shielding without generation.



JP2005142493A 2005-05-16 2005-05-16 Film for electromagnetic wave shield and method for manufacturing the same Pending JP2006319246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142493A JP2006319246A (en) 2005-05-16 2005-05-16 Film for electromagnetic wave shield and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142493A JP2006319246A (en) 2005-05-16 2005-05-16 Film for electromagnetic wave shield and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006319246A true JP2006319246A (en) 2006-11-24

Family

ID=37539620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142493A Pending JP2006319246A (en) 2005-05-16 2005-05-16 Film for electromagnetic wave shield and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006319246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256757A (en) * 2009-04-28 2010-11-11 Sumitomo Chemical Co Ltd Method of manufacturing optical display panel
WO2016140244A1 (en) * 2015-03-02 2016-09-09 デクセリアルズ株式会社 Method for manufacturing shield tape, and shield tape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256757A (en) * 2009-04-28 2010-11-11 Sumitomo Chemical Co Ltd Method of manufacturing optical display panel
WO2016140244A1 (en) * 2015-03-02 2016-09-09 デクセリアルズ株式会社 Method for manufacturing shield tape, and shield tape
JP2016167593A (en) * 2015-03-02 2016-09-15 デクセリアルズ株式会社 Method of manufacturing shield tape and shield tape

Similar Documents

Publication Publication Date Title
KR101290500B1 (en) Light transmitting conductive film, light transmitting electromagnetic shield film, optical filter and method for manufaturing display filter
TWI236023B (en) Electromagnetic shielding sheet, front plate for display, and method for producing electromagnetic shielding sheet
US8177954B2 (en) Plating processing method, light-transmitting conductive film and electromagnetic wave-shielding film
US20090020712A1 (en) Plating processing method, light transmitting conductive film and electromagnetic wave shielding film
JP2009094467A (en) Image display device, moire preventing film, optical filter, plasma display filter, and image display panel
JP4266288B2 (en) Electromagnetic wave shielding sheet manufacturing method and electromagnetic wave shielding sheet
JP2007096111A (en) Composite filter for display and its manufacturing method
JP2010205961A (en) Method of manufacturing filter for display
CN101006543B (en) PDP filter and manufacturing method thereof using a fully etched electromagnetic interference film
JP2007048789A (en) Method of manufacturing composite filter for display
KR100939223B1 (en) An EMI film, a front filter using the same and manufacturing method thereof
JP2010147235A (en) Electromagnetic wave shield sheet, and method of manufacturing electromagnetic wave shield sheet
JP2006319246A (en) Film for electromagnetic wave shield and method for manufacturing the same
JP5043732B2 (en) OPTICAL FILM FOR DISPLAY, OPTICAL SHEET FOR DISPLAY, DISPLAY DEVICE, AND METHOD FOR PRODUCING OPTICAL FILM FOR DISPLAY
KR102482178B1 (en) Black structure and self-luminous image display device having the same
JP2003103696A (en) Plate for forming irregularity, its manufacturing method, electromagnetic wave shielding material using the same, its manufacturing method, and electromagnetic wave shielding component and electromagnetic wave shield display which use the electromagnetic wave shielding component
JP2010044128A (en) Filter for display
JP2005191443A (en) Lamination for anti-magnetic wave shield
JP2003046293A (en) Method for manufacturing electromagnetic wave shielding material, magnetic wave shielding material obtained by the same, electromagnetic wave shielding formation using the same and electromagnetic wave shielding display
JP2010041003A (en) Optical filter for display and method of manufacturing the same
JP2008176088A (en) Filter for display
JP2009088071A (en) Electromagnetic shielding material and manufacturing method thereof, and filter for display
JP2002076685A (en) Electromagnetic wave shielding sheet and manufacturing method thereof
JP2006319247A (en) Electromagnetic wave shield film, shield filter, and manufacturing method thereof
JP2004039981A (en) Emi shield film and manufacturing method therefor