JP2006319189A - Superconducting magnet and its production method - Google Patents

Superconducting magnet and its production method Download PDF

Info

Publication number
JP2006319189A
JP2006319189A JP2005141332A JP2005141332A JP2006319189A JP 2006319189 A JP2006319189 A JP 2006319189A JP 2005141332 A JP2005141332 A JP 2005141332A JP 2005141332 A JP2005141332 A JP 2005141332A JP 2006319189 A JP2006319189 A JP 2006319189A
Authority
JP
Japan
Prior art keywords
resin
agent layer
fusing
self
interlayer sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005141332A
Other languages
Japanese (ja)
Other versions
JP4594794B2 (en
Inventor
Yoshihiko Hirano
嘉彦 平野
Tomofumi Origasa
朝文 折笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005141332A priority Critical patent/JP4594794B2/en
Publication of JP2006319189A publication Critical patent/JP2006319189A/en
Application granted granted Critical
Publication of JP4594794B2 publication Critical patent/JP4594794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting magnet, having high precision for coil profile where ample bonding strength is attained between a spool or an interlayer sheet and a superconductor in a short time, and to provide its production method. <P>SOLUTION: The superconducting magnet comprises an interlayer sheet 3 of fiber-reinforced resin, produced by cleaning a roughened surface with organic agent and then forming a fusing agent layer 4 of self-fusing resin on the surface, and a superconductor 2 having the fusing agent layer 4 of self-fusing resin on the surface. The superconductor 2 is wound around a spool, in a plurality of layers with the interlayer sheet 3 interposed in-between, and the fusing agent layers of the interlayer sheet 3 and the superconductor 2 are fused with each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粒子加速器、核磁気共鳴撮像装置などに用いる超電導マグネットおよびその製造方法に関する。   The present invention relates to a superconducting magnet used for a particle accelerator, a nuclear magnetic resonance imaging apparatus, and the like, and a method for manufacturing the same.

粒子加速器などに使用される超電導マグネットにおいては、必要な強度の磁場を発生させるためにコイルが高電流密度化、大型化する傾向にある。発生磁場が大きくなるのに伴って大きな電磁力が生じることになり構造的な支持固定が重要となる。コイルの固定が十分でないと、電磁力等の擾乱により導体が微少移動した際に超電導状態が破れるクエンチ現象が起きることがあり、機器の性能が発揮できないという事態が生じる。   In a superconducting magnet used for a particle accelerator or the like, a coil tends to have a high current density and a large size in order to generate a magnetic field having a necessary strength. As the generated magnetic field increases, a large electromagnetic force is generated, and structural support and fixing are important. If the coil is not sufficiently fixed, a quench phenomenon may occur in which the superconducting state is broken when the conductor is slightly moved due to disturbance such as electromagnetic force, and the performance of the device cannot be exhibited.

一般的に大型の粒子加速器に使用される2極以上の超電導マグネットの場合、単線の超電導導体を何本か集合させそれを撚った後、ダイスにて台形状に成型したラザフォードタイプと呼ばれるケーブル導体を使用する。コイル成型する場合はこのケーブル導体を鞍形に巻線成型し、それをビームの貫通孔の周囲に集合させ必要な磁場を発生させるような構造としている(下記非特許文献1参照)。ただしこれはケーブル導体が複数の単線を撚り線した導体のため、断面積が大きくなり必然的に大電流にて使用する超電導マグネットに適用さている。   In the case of a superconducting magnet with two or more poles generally used for large particle accelerators, a cable called Rutherford type is formed by gathering several single-conductor superconducting conductors, twisting them, and then forming them into a trapezoid shape with a die. Use a conductor. In the case of coil molding, the cable conductor is formed into a bowl shape and is assembled around the beam through-hole to generate a necessary magnetic field (see Non-Patent Document 1 below). However, since the cable conductor is a conductor in which a plurality of single wires are stranded, the cross-sectional area becomes large and it is applied to a superconducting magnet that is inevitably used at a large current.

一方、小電流にて使用される超電導マグネットの場合、丸線や角線の単線を使用するが、鞍形コイルを形成させ、更に、導体位置精度を高めるため導体を整列させた巻線を効率的に行う方法は現在確立されていない。ただし効率的ではないが、単線の超電導線を位置精度良く巻線する方法として、ビーム貫通孔周囲の構造物に座標制御可能な巻線機で直接超電導線を接着固定しながら巻線していく方法がある。この巻線方法では、アクリル系瞬間接着剤やエポキシ系加熱硬化樹脂が接着剤として使用されている。   On the other hand, in the case of a superconducting magnet used at a small current, a round wire or a single wire of a square wire is used. However, it is more efficient to form a saddle coil and to further improve the conductor positioning accuracy. There is currently no established way to do this. However, although it is not efficient, as a method of winding a single superconducting wire with high positional accuracy, the superconducting wire is directly bonded and fixed to the structure around the beam through-hole with a winding machine capable of coordinate control. There is a way. In this winding method, an acrylic instantaneous adhesive or an epoxy thermosetting resin is used as an adhesive.

また、巻線機上で直接導体を接着固定する方法ではないが、例えば、下記特許文献1には、円筒状の巻枠に、自己融着材で被覆した導体を、張力を加えながら巻き付けて円筒状にし、後で加熱することによってコイルを形成する方法が開示されている。
「超電導工学」オーム社 1991年発行 特許第2597724号公報
In addition, although it is not a method of directly bonding and fixing a conductor on a winding machine, for example, in Patent Document 1 below, a conductor covered with a self-bonding material is wound around a cylindrical winding frame while applying tension. A method of forming a coil by making it cylindrical and later heating is disclosed.
"Superconducting Engineering", published by Ohmsha 1991 Japanese Patent No. 2597724

上記の、ビーム貫通孔周囲の構造物に座標制御可能な巻線機で直接超電導導体を接着固定しながら巻線していく方法を採用する場合、超電導導体の位置精度は巻線機の機械的制御精度により確保できるものの、超電導導体固定のため瞬間接着剤を使用した場合は、極低温において接着強度が低下し十分な強度が得られない。またエポキシ系の熱硬化型樹脂により接着固定した場合は極低温での強度は確保できるものの一定の熱硬化時間が必要であり、巻線中、接着剤が硬化するまでの時間、巻線作業が停滞するため、巻線作業速度が著しく低下する。これは、作製した導体コイルを繊維強化樹脂などの層間シートで覆った後、その上に更にコイルを形成していく多層のコイルの場合でも同様である。   When adopting the above-mentioned method of winding the superconducting conductor while directly bonding and fixing it to the structure around the beam through-hole with a winding machine capable of coordinate control, the position accuracy of the superconducting conductor is the mechanical property of the winding machine. Although it can be ensured by the control accuracy, when an instantaneous adhesive is used for fixing the superconducting conductor, the adhesive strength decreases at a very low temperature, and sufficient strength cannot be obtained. In addition, when bonded and fixed with an epoxy-based thermosetting resin, the strength at extremely low temperatures can be ensured, but a certain thermosetting time is required. Due to the stagnation, the winding work speed is significantly reduced. This is the same even in the case of a multi-layer coil in which a coil is further formed on the conductor coil that has been produced by covering it with an interlayer sheet such as a fiber reinforced resin.

また、上記特許文献1に記載されているような、円筒状の巻枠に自己融着材が塗布された導体に張力を加えながら巻き付けて円筒状コイルを形成し、後で加熱することによってコイルを形成する方法では、連続的にコイルを形成できるため、速い巻線作業速度が得られる。しかし、後の加熱融着工程で十分な接着性を得るためには、張力をかけながら巻枠に導体を巻き付けることが必要である。このため、コイル形状が円筒状のソレノイドコイルのような、巻付け時に張力をかけることが可能な形状に限定されて、鞍形コイルなどは製造が困難である。また、多層化コイルの場合、張力をかけて導体を巻き付けていくと、層間シートが落込むなどにより、上層の導体位置精度が悪化するため、上層に巻き進む程、導体の位置精度が確保できないという問題がある。   Further, as described in Patent Document 1, a cylindrical coil is formed by winding a conductor in which a self-bonding material is applied to a cylindrical winding frame while applying tension, and then heating the coil. In the method of forming the coil, since the coil can be continuously formed, a high winding working speed can be obtained. However, in order to obtain sufficient adhesion in the subsequent heat-sealing step, it is necessary to wind the conductor around the winding frame while applying tension. For this reason, the coil shape is limited to a shape that can be tensioned during winding, such as a cylindrical solenoid coil, and a saddle-shaped coil or the like is difficult to manufacture. In addition, in the case of a multi-layered coil, if the conductor is wound with tension, the conductor position accuracy of the upper layer deteriorates due to dropping of the interlayer sheet, etc., so that the conductor position accuracy cannot be ensured as the winding proceeds to the upper layer. There is a problem.

例えば、図6はコイル部を示す詳細断面図で、層間シート3と超電導導体2は、超電導導体2と層間シート3の間に塗布した瞬間接着剤6により接着固定されている。このように構成された超電導マグネットでは、下側層の導体がない部分の上に上側層の導体が配置される場合は、上層導体の直下部が何もない空間となるため、層間シート3が下層側に落込み、上層の導体位置精度が悪化する場合がある。また、張力をかけずに接着した場合、瞬間接着剤6は点接触に近い状態で層間シート3と超電導導体2を接着しているため、接着強度が十分に確保出来ない問題がある。   For example, FIG. 6 is a detailed cross-sectional view showing a coil portion, and the interlayer sheet 3 and the superconducting conductor 2 are bonded and fixed by an instantaneous adhesive 6 applied between the superconducting conductor 2 and the interlayer sheet 3. In the superconducting magnet configured as described above, when the upper layer conductor is disposed on the portion without the lower layer conductor, the space immediately below the upper layer conductor becomes a space, so that the interlayer sheet 3 is It may fall into the lower layer side and the upper layer conductor position accuracy may deteriorate. In addition, when the adhesive is applied without applying tension, there is a problem that the adhesive strength cannot be sufficiently secured because the instantaneous adhesive 6 adheres the interlayer sheet 3 and the superconducting conductor 2 in a state close to point contact.

そこで本発明は、短時間で巻枠あるいは層間シートと超電導導体の間に十分な接着強さが得られ、かつ、コイル形状精度のよい超電導マグネットおよびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a superconducting magnet having a sufficient adhesive strength between a winding frame or an interlayer sheet and a superconducting conductor in a short time and having a good coil shape accuracy, and a method for manufacturing the same.

上記課題を解決するために、本発明の請求項1は、繊維強化樹脂からなり表面を荒らして有機溶剤で洗浄した後に自己融着性樹脂からなる融着剤層を表面に形成した巻枠と、自己融着性樹脂からなる融着剤層を表面に有し前記巻枠に巻回された超電導導体とを備え、前記巻枠の融着剤層と前記超電導導体の融着剤層が融着されている構成とする。   In order to solve the above-mentioned problem, claim 1 of the present invention comprises a reel formed of a fiber reinforced resin and having a surface formed with a fusing agent layer made of a self-fusing resin after roughening the surface and washing with an organic solvent. And a superconducting conductor wound around the reel having a fusing layer made of a self-fusing resin, the fuser layer of the reel and the fusing agent layer of the superconducting conductor being fused. It is assumed that it is worn.

また請求項2は、繊維強化樹脂からなり表面を荒らして有機溶剤で洗浄した後に自己融着性樹脂からなる融着剤層を表面に形成した層間シートと、自己融着性樹脂からなる融着剤層を表面に有する超電導導体とを備え、巻枠の周囲に前記層間シートを介在させて前記超電導導体を複数層巻回してなり、前記層間シートの融着剤層と前記超電導導体の融着剤層が融着されている構成とする。   Further, the present invention provides an interlayer sheet comprising a fiber reinforced resin, the surface of which is roughened and cleaned with an organic solvent, and a fusion agent layer comprising a self-fusing resin formed on the surface, and a fusion comprising a self-fusing resin. A superconducting conductor having an agent layer on its surface, and a plurality of layers of the superconducting conductor are wound around the winding frame with the interlayer sheet interposed therebetween, and the fusion agent layer of the interlayer sheet and the superconducting conductor are fused. The agent layer is fused.

本発明によれば、短時間で巻枠あるいは層間シートと超電導導体の間に十分な接着強さが得られ、かつ、コイル形状精度のよい超電導マグネットおよびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, sufficient adhesive strength can be obtained between a winding frame or an interlayer sheet, and a superconducting conductor in a short time, and a superconducting magnet with a sufficient coil shape accuracy and its manufacturing method can be provided.

本発明の実施の形態を図1から図5を参照して説明する。
図1に示すように、巻枠であるビーム貫通孔周囲構造物1の周囲に、図示しない座標制御可能な巻線機により超電導導体2が巻回される。図2に示すように、超電導導体2は層間シート3を挟み多層に巻線されている。また図3に示すように、超電導導体2は超電導導体2の上部から超音波振動子5を用いて超電導導体2を層間シート3に加圧振動させることにより、超電導導体2と層間シート3の間が振動摩擦により加熱される。なお、ビーム貫通孔周囲構造物1と層間シート3の表面は粗面加工されており、その上に自己融着性樹脂からなる融着剤層4が設けられている。超電導導体2の表面にも融着剤層4が設けられている。融着剤層4を構成する自己融着性樹脂としてはフェノキシ樹脂を用いる。
An embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a superconducting conductor 2 is wound around a beam through-hole surrounding structure 1, which is a winding frame, by a winding machine capable of coordinate control (not shown). As shown in FIG. 2, the superconducting conductor 2 is wound in multiple layers with an interlayer sheet 3 interposed therebetween. Also, as shown in FIG. 3, the superconducting conductor 2 is formed between the superconducting conductor 2 and the interlayer sheet 3 by pressurizing and vibrating the superconducting conductor 2 to the interlayer sheet 3 from above the superconducting conductor 2 using the ultrasonic vibrator 5. Is heated by vibrational friction. In addition, the surface of the beam through-hole surrounding structure 1 and the interlayer sheet 3 is roughened, and a fusing agent layer 4 made of a self-fusing resin is provided thereon. A fusing agent layer 4 is also provided on the surface of the superconducting conductor 2. A phenoxy resin is used as the self-fusing resin constituting the fusing agent layer 4.

上記のように構成された超電導マグネットでは、超電導導体2の周囲および層間シート3にフェノキシ樹脂からなる融着剤層4を塗布しておき、超音波振動子5を超電導導体2に押し付けた状態で加圧振動させることにより発生する摩擦熱で融着剤層4を融解させるようにし、しかも超音波振動子5を超電導導体2に押し当てながら矢印方向に通過させててゆくことによる融解・再凝固の過程で融着剤層4が一体化し、超電導導体2が所定の位置に精度良く強固に固定される。融着剤層4を形成するフェノキシ樹脂は熱可塑性であるため、熱硬化型の樹脂と異なり再融解が可能であり、巻線の修正作業などが可能となり作業性を高めることができる。またフェノキシ樹脂の融解・再凝固は短時間で反応が収束するので巻線作業の高速化を図ることができる。またフェノキシ樹脂は接着強度が高く、極低温においても十分な接着強度を有するため、極低温に冷却することによる接着力の低下で、導体が剥離するようなことが起きない。   In the superconducting magnet configured as described above, the adhesive layer 4 made of phenoxy resin is applied to the periphery of the superconducting conductor 2 and the interlayer sheet 3, and the ultrasonic transducer 5 is pressed against the superconducting conductor 2. Melting and resolidification by melting the fusing agent layer 4 with frictional heat generated by applying pressure vibration and passing the ultrasonic transducer 5 in the direction of the arrow while pressing it against the superconducting conductor 2. In this process, the fusing agent layer 4 is integrated, and the superconducting conductor 2 is fixed firmly and accurately at a predetermined position. Since the phenoxy resin forming the fusing agent layer 4 is thermoplastic, it can be re-melted unlike a thermosetting resin, so that the work of correcting the winding can be performed and workability can be improved. Moreover, the melting and re-solidification of the phenoxy resin converges in a short time, so that the winding work can be speeded up. Moreover, since the phenoxy resin has a high adhesive strength and has a sufficient adhesive strength even at an extremely low temperature, the conductor does not peel off due to a decrease in the adhesive strength caused by cooling to an extremely low temperature.

上記のように、本実施の形態の超電導マグネットおよびその製造方法は、中央に貫通孔を有し貫通孔の周囲に超電導導体を巻回した貫通孔内に発生する磁場を利用するようにした超電導マグネットにおいて、超電導導体2を貫通孔周囲の巻枠である構造物1に融着固定しながら巻線していくことによりコイルを形成させる超電導コイル製造方法で、超電導導体2の表面を自己融着性樹脂からなる融着剤層4で被覆すると共に、構造物1には、予め用意した、表面を荒らして有機溶剤で洗浄した後に融着剤層4で被覆した繊維強化樹脂を使用する。また、作製した導体コイルを繊維強化樹脂の層間シート3で覆った後、その上に更に超電導導体2を融着固定しながら巻回していくことによりコイルを形成させる超電導マグネットの製造方法で、超電導導体2の表面を融着剤層4で被覆すると共に、層間シート3には、予め用意した、表面を荒らして有機溶剤で洗浄した後に融着剤層4で被覆した繊維強化樹脂を使用する。   As described above, the superconducting magnet and the manufacturing method thereof according to the present embodiment use a magnetic field generated in a through hole having a through hole in the center and a superconducting conductor wound around the through hole. A superconducting coil manufacturing method in which a coil is formed by winding a superconducting conductor 2 on a structure 1 that is a winding frame around a through-hole in a magnet, and the surface of the superconducting conductor 2 is self-fused. The structure 1 is coated with a fiber reinforced resin that is prepared in advance and is coated with the adhesive layer 4 after roughening the surface and washing it with an organic solvent. Further, after the produced conductor coil is covered with the fiber reinforced resin interlayer sheet 3, the superconducting conductor 2 is wound on the superconducting conductor 2 while being fused and fixed thereon to form a coil. The surface of the conductor 2 is covered with the fusing agent layer 4, and a fiber reinforced resin prepared in advance and coated with the fusing agent layer 4 after roughening the surface and washing with an organic solvent is used for the interlayer sheet 3.

超電導導体2の表面のみを融着剤層4で被覆した場合、構造物1との接着力を高めるためには、超電導導体2の表面の融着剤層4を変形させ、構造物1の表面に密着させる必要がある。そのためには、張力あるいは超電導導体2に対して垂直な圧力が必要である。   When only the surface of the superconducting conductor 2 is covered with the fusing agent layer 4, in order to increase the adhesive strength with the structure 1, the fusing agent layer 4 on the surface of the superconducting conductor 2 is deformed to change the surface of the structure 1. It is necessary to adhere to. For this purpose, tension or pressure perpendicular to the superconducting conductor 2 is required.

本実施の形態では、融着剤層4が超電導導体2と構造物1の両方の表面に塗布されているため、高い張力や圧力がなくても、接触させるだけで双方を接着することができ、加熱することによって、双方の一体化を進めて高い接着力を得ることができる。これにより、超電導導体2を貫通孔周囲の構造物1に融着固定しながら巻線していくことによりコイルを形成する速度を高めることができ、大型コイルの製造が容易となる。また、高い張力や圧力がなくても超電導導体2と構造物1を固定することができるため、張力や圧力をかけ難いコイル形状を作製することも可能となる。   In the present embodiment, since the bonding agent layer 4 is applied to both surfaces of the superconducting conductor 2 and the structure 1, even if there is no high tension or pressure, both can be bonded by simply contacting them. By heating, both can be integrated and high adhesive strength can be obtained. As a result, the speed of forming the coil can be increased by winding the superconducting conductor 2 while being fused and fixed to the structure 1 around the through-hole, thereby facilitating the manufacture of a large coil. In addition, since the superconducting conductor 2 and the structure 1 can be fixed without high tension or pressure, it is possible to produce a coil shape that is difficult to apply tension or pressure.

繊維強化樹脂はガラスファイバ等の繊維を使用しているため機械的強度が高く、薄く加工した場合はしなやかに曲げることができる。超電導マグネットでは、動作時に発生する電磁力に耐えるため、構造物1には機械的強度が必要である。一方、多層コイルの場合に使用する層間シート3は、構造物1の曲面に合わせて曲げる必要がある。繊維強化樹脂、特に絶縁性を有するガラス繊維強化樹脂はこのような要求を満たすことができ、本実施の形態の超電導マグネットにおける構造物1および層間シート3として適している。   Since fiber reinforced resin uses fibers such as glass fiber, it has high mechanical strength and can be bent flexibly when processed thinly. In the superconducting magnet, the structure 1 needs to have mechanical strength in order to withstand electromagnetic force generated during operation. On the other hand, the interlayer sheet 3 used in the case of a multilayer coil needs to be bent according to the curved surface of the structure 1. A fiber reinforced resin, in particular a glass fiber reinforced resin having insulating properties, can satisfy such a requirement, and is suitable as the structure 1 and the interlayer sheet 3 in the superconducting magnet of the present embodiment.

構造物1および層間シート3として繊維強化樹脂を使用する場合、繊維強化樹脂と融着剤層4の接着性を確保することが重要である。接着性を向上させる方法としては色々な方法があるが、調査実験の結果、繊維強化樹脂表面をサンドペーパーやサンドブラストなどで荒らした後、溶剤で洗浄し、その後融着剤層4を形成する方法が最もガラス繊維強化樹脂と融着剤層4の密着性を高められることを見出した。   When using a fiber reinforced resin as the structure 1 and the interlayer sheet 3, it is important to ensure adhesion between the fiber reinforced resin and the fusing agent layer 4. There are various methods for improving the adhesiveness. As a result of the investigation experiment, the surface of the fiber reinforced resin is roughened with sandpaper or sandblast, washed with a solvent, and then the fusion agent layer 4 is formed. Has found that the adhesion between the glass fiber reinforced resin and the fusing agent layer 4 can be enhanced most.

例として、各種条件で作製したガラス繊維強化樹脂と融着剤層4の密着性評価結果を図4に示す。ガラス繊維強化樹脂の表面処理としては、サンドブラストによる粗面化、接着性を高めるプライマー剤(シラン処理系)の塗布、溶剤洗浄を選び、これら方法を組み合わせてガラス繊維強化樹脂表面の処理を実施した。融着剤としてフェノキシ樹脂を使用し、フェノキシ樹脂ワニスを塗布して厚さ約50μmの融着剤層を形成した。このようにして作製した試料に対して、テープ付着試験を実施した。   As an example, the adhesion evaluation result of the glass fiber reinforced resin and the fusing agent layer 4 produced on various conditions is shown in FIG. As the surface treatment of glass fiber reinforced resin, surface roughening by sandblasting, application of primer agent (silane treatment system) to improve adhesion, and solvent cleaning were selected, and the glass fiber reinforced resin surface was treated by combining these methods. . A phenoxy resin was used as a fusing agent, and a phenoxy resin varnish was applied to form a fusing agent layer having a thickness of about 50 μm. A tape adhesion test was performed on the sample thus prepared.

テープ付着試験とは、評価対象となる塗膜に対して、カッターナイフで碁盤目状に切れ込みを入れ、切込み部にセロハンテープを丸みのある棒などでこすって十分貼り付けた後、テープの一端を45°程度の角度で強く引き剥がし、その時の塗膜剥離度合いで塗膜と基材との接着力を評価する方法である。代表的な規格としては、JIS K5400 8.5.2碁盤目試験やISO4624 Pull-off Adhesion Testがある。本評価試験では、10mm角の大きさに1mm間隔で碁盤目状に切込みを入れ、テープをはがした後の剥離面積率で評価した。図4に示すとおり、ブラストによる表面荒らしと溶剤洗浄という組合せで最も良好な結果が得られた。このように、予め作製した、表面を荒らして有機溶剤で洗浄した後、融着剤層を形成した繊維強化樹脂を使用することにより、作業工程上の煩雑さを軽減し、接着性のばらつきを低減して品質の安定を図ることができる。   The tape adhesion test is a cross-cut cut with a cutter knife for the coating film to be evaluated, and the cellophane tape is rubbed with a round stick etc. Is strongly peeled off at an angle of about 45 °, and the adhesive strength between the coating film and the substrate is evaluated by the degree of coating film peeling at that time. Typical standards include JIS K5400 8.5.2 cross-cut test and ISO4624 Pull-off Adhesion Test. In this evaluation test, a 10 mm square size was cut in a grid pattern at 1 mm intervals, and the peeled area ratio after peeling the tape was evaluated. As shown in FIG. 4, the best results were obtained by the combination of surface roughening by blasting and solvent cleaning. In this way, by using a fiber reinforced resin that has been prepared in advance, roughened the surface, washed with an organic solvent, and then formed with a fusing agent layer, the complexity of the work process is reduced, and the adhesiveness variation is reduced. The quality can be reduced to stabilize the quality.

また、本実施の形態の超電導マグネットおよびその製造方法は、構造物1および層間シート3を構成する繊維強化樹脂の表面に溶剤に溶かした自己融着性樹脂を塗布、乾燥させて融着剤層4を形成する。この方法では、溶剤による自己融着性樹脂の希釈率と溶剤に溶かした自己融着性樹脂の塗り回数を調整することにより、大掛かりな装置を使用せずに、任意の厚さの融着剤層4を形成することが容易にできる。特に溶剤希釈率を高めることにより、数μm〜数十μmの薄い樹脂層を作製することも可能である。   In addition, the superconducting magnet and the manufacturing method thereof according to the present embodiment apply a self-fusible resin dissolved in a solvent to the surface of the fiber reinforced resin constituting the structure 1 and the interlayer sheet 3 and dry it to form a fusion agent layer. 4 is formed. In this method, by adjusting the dilution ratio of the self-fusing resin with the solvent and the number of times of application of the self-fusing resin dissolved in the solvent, a fusing agent of any thickness can be used without using a large-scale apparatus. The layer 4 can be easily formed. In particular, by increasing the solvent dilution ratio, it is possible to produce a thin resin layer of several μm to several tens of μm.

また、本実施の形態の超電導マグネットおよびその製造方法は、構造物1および層間シート3を構成する繊維強化樹脂の表面に自己融着性樹脂のフィルムを貼り付けて加熱、加圧して融着剤層4を形成するようにしてもよい。適当な厚さをもつフィルムが得られれば、予め厚さの定まったフィルムを貼り付けることにより、構造物1および層間シート3の表面に均一な厚さの融着剤層4を作製することができる。また、大面積を一度に処理することができ、短時間で融着剤層4をもつ構造物1および層間シート3を作製することができる。   Further, the superconducting magnet and the manufacturing method thereof according to the present embodiment are prepared by attaching a self-adhesive resin film to the surface of the fiber reinforced resin constituting the structure 1 and the interlayer sheet 3 and heating and pressurizing the adhesive. The layer 4 may be formed. If a film having an appropriate thickness is obtained, a film having a predetermined thickness can be applied to produce the fusing agent layer 4 having a uniform thickness on the surface of the structure 1 and the interlayer sheet 3. it can. Moreover, a large area can be processed at once, and the structure 1 and the interlayer sheet 3 having the fusing agent layer 4 can be produced in a short time.

また、本実施の形態の超電導マグネットおよびその製造方法は、自己融着性樹脂粉体で繊維強化樹脂の表面を覆い、加熱、溶融することで融着剤層4を形成するようにしてもよい。予め加熱しておいた繊維強化樹脂に自己融着性樹脂粉末を散布して固着させる、静電気を利用して樹脂粉末を付着させるなどした後、加熱、溶融することにより自己融着性樹脂を溶融させて繊維強化樹脂の表面に融着剤層4を形成する。この方法では、繊維強化樹脂の表面に粉体が重なって付着するため、一度の作業で100μm単位の厚い融着剤層4を形成することができる。   Further, in the superconducting magnet and the manufacturing method thereof according to the present embodiment, the surface of the fiber reinforced resin may be covered with the self-bonding resin powder, and heated and melted to form the bonding agent layer 4. . After self-adhesive resin powder is sprayed and fixed on fiber reinforced resin that has been heated in advance, the resin powder is adhered using static electricity, and then heated and melted to melt the self-adhesive resin. The fusing agent layer 4 is formed on the surface of the fiber reinforced resin. In this method, since the powder overlaps and adheres to the surface of the fiber reinforced resin, it is possible to form a thick adhesive layer 4 having a thickness of 100 μm by a single operation.

また、本実施の形態の超電導マグネットおよびその製造方法は、中央に貫通孔を有し貫通孔の周囲に超電導導体2を巻回したコイルが貫通孔内に発生する磁場を利用する超電導マグネットにおいて、超電導導体2を貫通孔周囲の構造物1に融着固定しながら巻線していくことによりコイルを形成させる超電導コイル製造方法で、構造物1および層間シート3を構成する繊維強化樹脂の表面に形成する融着剤層4の厚さを10μm〜100μmとする。   Further, the superconducting magnet and the manufacturing method thereof according to the present embodiment are a superconducting magnet that uses a magnetic field generated in the through-hole by a coil having a through-hole in the center and wound with the superconducting conductor 2 around the through-hole. A superconducting coil manufacturing method in which a coil is formed by winding a superconducting conductor 2 while being fused and fixed to a structure 1 around a through-hole. On the surface of the fiber reinforced resin constituting the structure 1 and the interlayer sheet 3 The thickness of the fusion agent layer 4 to be formed is set to 10 μm to 100 μm.

融着剤層が薄い場合は、繊維強化樹脂と超電導導体の接着にかかわる樹脂の絶対量が少なくなり、塗り斑などの影響も受けやすくなるため、接着強さが低下する。融着剤層の厚さと接着強さの関係を図5に示す。表面をサンドブラストし、有機溶剤で洗浄した繊維強化樹脂表面に、溶剤で希釈したフェノキシ樹脂を塗り、塗り回数を変えることによって樹脂層厚の異なる試料を作製し、作製した繊維強化樹脂試料にフェノキシ樹脂を15μm厚で被覆した超電導線を融着した。このとき、繊維強化樹脂と超電導線を融着した長さは30mmで統一した。そして、繊維強化樹脂側の端と超電導線の端を引っ張り、接着がはがれた時の値を接着強さとして読み取った。図5に示されるように、厚さ5μmでは著しく強度が低く、安定した接着性を得るためには10μm以上の厚さが必要であるといえる。   When the fusing agent layer is thin, the absolute amount of the resin involved in the adhesion between the fiber reinforced resin and the superconducting conductor is reduced, and it is easy to be affected by smears, so the adhesive strength is reduced. FIG. 5 shows the relationship between the thickness of the adhesive layer and the adhesive strength. The surface of the fiber reinforced resin, which has been sandblasted and washed with an organic solvent, is coated with a phenoxy resin diluted with a solvent, and samples with different resin layer thicknesses are prepared by changing the number of coatings. A superconducting wire coated with a thickness of 15 μm was fused. At this time, the fusion length of the fiber reinforced resin and the superconducting wire was unified at 30 mm. Then, the end of the fiber reinforced resin side and the end of the superconducting wire were pulled, and the value when the adhesion was peeled was read as the adhesive strength. As shown in FIG. 5, when the thickness is 5 μm, the strength is remarkably low, and it can be said that a thickness of 10 μm or more is necessary to obtain stable adhesion.

一方、融着剤層が厚い場合は、前述のような精度が求められるため、コイルの寸法精度を保つのが困難になる。更に、多層コイルでは、予め融着剤層を設けた層間シートを下層に沿って曲げて固定するため、融着剤層が厚いと融着剤層に余分な応力が発生し、場合によっては曲げに追随できずに融着剤層が割れてしまう可能性がある。以上の事項を考慮して検討した結果、繊維強化樹脂表面に設ける融着剤層の厚さは、100μm以下にすることが好ましいことがわかった。従って、繊維強化樹脂表面に設ける融着剤層の厚さは10μm以上、100μm以下が適切な値である。   On the other hand, when the fusing agent layer is thick, the accuracy as described above is required, so that it is difficult to maintain the dimensional accuracy of the coil. Furthermore, in a multilayer coil, an interlayer sheet provided with a pre-adhesive layer is bent and fixed along the lower layer. Therefore, if the adhesive layer is thick, excessive stress is generated in the adhesive layer, and in some cases bending occurs. There is a possibility that the fusing agent layer may break without being able to follow. As a result of considering the above matters, it has been found that the thickness of the fusion agent layer provided on the surface of the fiber reinforced resin is preferably 100 μm or less. Accordingly, an appropriate value is 10 μm or more and 100 μm or less for the thickness of the fusing agent layer provided on the surface of the fiber reinforced resin.

また、本実施の形態の超電導マグネットおよびその製造方法は、融着剤層4を構成する自己融着性樹脂として、フェノキシ樹脂、エポキシ樹脂、熱可塑性ポリイミド樹脂あるいはポリアミド樹脂を使用する。本実施の形態で使用する自己融着性樹脂としては、溶剤で希釈可能であったり、樹脂フィルムが作製できるものであったり、粉体化が可能であることが望ましい。そのような観点から見た場合、自己融着性樹脂としては、フェノキシ樹脂、エポキシ樹脂、熱可塑性ポリイミド樹脂、ポリアミド樹脂が適している。   In addition, the superconducting magnet and the manufacturing method thereof according to the present embodiment use a phenoxy resin, an epoxy resin, a thermoplastic polyimide resin, or a polyamide resin as the self-fusing resin constituting the fusing agent layer 4. The self-bonding resin used in this embodiment is desirably dilutable with a solvent, capable of producing a resin film, or powderable. From this point of view, phenoxy resin, epoxy resin, thermoplastic polyimide resin, and polyamide resin are suitable as the self-bonding resin.

また、本実施の形態の超電導マグネットおよびその製造方法は、超電導導体2と構造物1および層間シート3を超音波融着で融着することを特徴とする。融着させる方法としては、コイル製造時に超電導導体を曲げていく必要などから、局所的、かつ連続的に、超電導導体2と構造物1および層間シート3表面の融着剤を加熱できる方法が好ましい方法である。超音波融着法は、超音波振動させた物体とその物体が接触している物体の間で衝撃により発熱を生じさせ、それによって融着させる方法であり、局所的かつ連続的に加熱・融着を実現できるため、本実施の形態のコイル製造において、最も優れた特性の得られる融着方法である。   In addition, the superconducting magnet and the manufacturing method thereof according to the present embodiment are characterized in that superconducting conductor 2, structure 1, and interlayer sheet 3 are fused by ultrasonic fusion. As a method for fusing, a method capable of heating the fusing agent on the surface of the superconducting conductor 2, the structure 1, and the interlayer sheet 3 locally and continuously is preferable because the superconducting conductor needs to be bent at the time of manufacturing the coil. Is the method. The ultrasonic fusion method is a method in which heat is generated by impact between an object that is ultrasonically vibrated and an object that is in contact with the object, and is thus fused. Since it is possible to realize the adhesion, this is a fusion method that can obtain the most excellent characteristics in the coil production of the present embodiment.

以上のように、本実施の形態は超電導導体2の周囲とビーム貫通孔周囲構造物1の外周および層間シート3の表面にフェノキシ樹脂等の自己融着性樹脂を塗布し、それを融着固定させることによりコイルを成型してゆくもので、巻線時の超電導導体2の位置精度を確保すると共に、作業性が良く、接着強度も確保することができる。また超音波振動子5により超電導導体2を振動させることによって、超電導導体2と被接着物である層間シート3の間に起きる摩擦発熱を利用して融着剤4を融着させることにより、他の部分に熱影響を及ぼさない局所的な加熱融着が高速で可能となり、安定した超電導導体位置精度を確保でき、作業性も向上させることができる。   As described above, in the present embodiment, a self-fusing resin such as phenoxy resin is applied to the periphery of the superconducting conductor 2, the outer periphery of the structure 1 around the beam through-hole, and the surface of the interlayer sheet 3, and then fusion-fixed. Thus, the coil is molded, and the positional accuracy of the superconducting conductor 2 at the time of winding can be ensured, the workability can be improved, and the adhesive strength can be secured. Further, the superconducting conductor 2 is vibrated by the ultrasonic vibrator 5, and the fusing agent 4 is fused by utilizing the frictional heat generated between the superconducting conductor 2 and the interlayer sheet 3 to be bonded. This makes it possible to perform local heat-sealing at a high speed without exerting a thermal effect on this portion, to ensure stable superconducting conductor position accuracy, and to improve workability.

なお、構造物1の表面の融着剤層4を構成する自己融着性樹脂と層間シート3の表面の融着剤層4を構成する自己融着性樹脂と超電導導体2の表面の融着剤層4を構成する自己融着性樹脂は多くの場合同じであるが、作業性、接着強さ等が得られれば異なってもよい。また以上の説明は鞍形コイルの超電導マグネットについて行ってきたが、本発明はソレノイド形等の超電導マグネットにも適用することができる。   The self-bonding resin constituting the fusing agent layer 4 on the surface of the structure 1 and the self-fusing resin constituting the fusing agent layer 4 on the surface of the interlayer sheet 3 and the surface of the superconducting conductor 2 are fused. The self-bonding resin constituting the agent layer 4 is the same in many cases, but may be different as long as workability, adhesive strength and the like are obtained. Further, the above description has been made with respect to the superconducting magnet of the saddle coil, but the present invention can also be applied to a superconducting magnet of a solenoid type or the like.

本発明の実施の形態の超電導マグネットを示す斜視図。The perspective view which shows the superconducting magnet of embodiment of this invention. 本発明の実施の形態の超電導マグネットの巻線部詳細断面図。FIG. 3 is a detailed cross-sectional view of a winding portion of the superconducting magnet according to the embodiment of the present invention. 本発明の実施の形態の超電導マグネットの製造方法における超音波加熱による融着工程を示す図。The figure which shows the melt | fusion process by the ultrasonic heating in the manufacturing method of the superconducting magnet of embodiment of this invention. 繊維強化樹脂の表面処理と融着剤層の密着性評価試験の結果を示し、本発明の実施の形態の超電導マグネットの作用効果を説明する表。The table | surface which shows the result of the surface treatment of fiber reinforced resin, and the adhesive evaluation test of a binder layer, and demonstrates the effect of the superconducting magnet of embodiment of this invention. 融着剤層の厚さと繊維強化樹脂の接着強さの評価試験結果を示し、本発明の実施の形態の超電導マグネットの作用効果を説明する表。The table | surface which shows the evaluation test result of the thickness of a binder layer, and the adhesive strength of a fiber reinforced resin, and demonstrates the effect of the superconducting magnet of embodiment of this invention. 従来の超電導マグネットの巻線部詳細断面図。Detailed sectional view of a winding portion of a conventional superconducting magnet.

符号の説明Explanation of symbols

1…ビーム貫通孔周囲構造物、2…超電導導体、3…層間シート、4…融着剤層、5…超音波振動子、6…瞬間接着剤。
DESCRIPTION OF SYMBOLS 1 ... Beam through-hole surrounding structure, 2 ... Superconducting conductor, 3 ... Interlayer sheet, 4 ... Fusing agent layer, 5 ... Ultrasonic vibrator, 6 ... Instant adhesive.

Claims (8)

繊維強化樹脂からなり表面を荒らして有機溶剤で洗浄した後に自己融着性樹脂からなる融着剤層を表面に形成した巻枠と、自己融着性樹脂からなる融着剤層を表面に有し前記巻枠に巻回された超電導導体とを備え、前記巻枠の融着剤層と前記超電導導体の融着剤層が融着されていることを特徴とする超電導マグネット。   A winding frame made of a fiber-reinforced resin, roughened on the surface, washed with an organic solvent, and then formed with a fusing agent layer made of a self-fusing resin on the surface, and a fusing agent layer made of a self-fusing resin on the surface. And a superconducting conductor wound around the winding frame, wherein the fusing agent layer of the winding frame and the fusing agent layer of the superconducting conductor are fused. 繊維強化樹脂からなり表面を荒らして有機溶剤で洗浄した後に自己融着性樹脂からなる融着剤層を表面に形成した層間シートと、自己融着性樹脂からなる融着剤層を表面に有する超電導導体とを備え、巻枠の周囲に前記層間シートを介在させて前記超電導導体を複数層巻回してなり、前記層間シートの融着剤層と前記超電導導体の融着剤層が融着されていることを特徴とする超電導マグネット。   Interlayer sheet made of fiber reinforced resin, roughened on the surface and washed with an organic solvent, and then formed on the surface with an adhesive sheet made of self-fusible resin, and a fuser layer made of self-fusible resin on the surface A superconducting conductor, and a plurality of layers of the superconducting conductor are wound around the winding frame with the interlayer sheet interposed therebetween, and the fusion agent layer of the interlayer sheet and the fusion agent layer of the superconducting conductor are fused. A superconducting magnet characterized by 前記巻枠の融着剤層の厚さおよび前記層間シートの融着剤層の厚さは10μm〜100μmであることを特徴とする請求項1または2記載の超電導マグネット。   The superconducting magnet according to claim 1 or 2, wherein the thickness of the fusing agent layer of the winding frame and the thickness of the fusing agent layer of the interlayer sheet are 10 µm to 100 µm. 前記巻枠の融着剤層を構成する自己融着性樹脂と前記層間シートの融着剤層を構成する自己融着性樹脂と前記超電導導体の融着剤層を構成する自己融着性樹脂は、フェノキシ樹脂、エポキシ樹脂、熱可塑性ポリイミド樹脂、ポリアミド樹脂のいずれかであることを特徴とする請求項1または2記載の超電導マグネット。   Self-fusible resin constituting the fusible layer of the reel, self-fusing resin constituting the fusible layer of the interlayer sheet, and self-fusing resin constituting the fusible agent layer of the superconducting conductor The superconducting magnet according to claim 1 or 2, which is any one of phenoxy resin, epoxy resin, thermoplastic polyimide resin, and polyamide resin. 前記巻枠の融着剤層または前記層間シートの融着剤層は、溶剤に溶かした自己融着性樹脂を繊維強化樹脂表面に塗布、乾燥させて形成することを特徴とする請求項1または2記載の超電導マグネットの製造方法。   2. The fusing agent layer of the winding frame or the fusing agent layer of the interlayer sheet is formed by applying a self-fusing resin dissolved in a solvent to the surface of a fiber reinforced resin and drying it. 2. A method for producing a superconducting magnet according to 2. 前記巻枠の融着剤層または前記層間シートの融着剤層は、繊維強化樹脂表面に自己融着性樹脂フィルムを貼り付けて加熱、加圧して形成することを特徴とする請求項1または2記載の超電導マグネットの製造方法。   The fusion agent layer of the winding frame or the fusion agent layer of the interlayer sheet is formed by attaching a self-adhesive resin film to the surface of a fiber reinforced resin and heating and pressing. 2. A method for producing a superconducting magnet according to 2. 前記巻枠の融着剤層または前記層間シートの融着剤層は、自己融着性樹脂粉体で繊維強化樹脂表面を覆い、加熱、溶融することによって形成することを特徴とする請求項1または2記載の超電導マグネットの製造方法。   2. The fusing agent layer of the winding frame or the fusing agent layer of the interlayer sheet is formed by covering the surface of the fiber reinforced resin with a self-fusing resin powder, heating and melting. Or the manufacturing method of the superconducting magnet of 2. 前記超電導導体の融着剤層と前記巻枠の融着剤層または前記層間シートの融着剤層を超音波融着で融着することを特徴とする請求項1または2記載の超電導マグネットの製造方法。

The superconducting magnet according to claim 1 or 2, wherein the superconducting conductor fusion agent layer and the winding frame fusion agent layer or the interlayer sheet fusion agent layer are fused together by ultrasonic fusion. Production method.

JP2005141332A 2005-05-13 2005-05-13 Manufacturing method of superconducting magnet Active JP4594794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005141332A JP4594794B2 (en) 2005-05-13 2005-05-13 Manufacturing method of superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005141332A JP4594794B2 (en) 2005-05-13 2005-05-13 Manufacturing method of superconducting magnet

Publications (2)

Publication Number Publication Date
JP2006319189A true JP2006319189A (en) 2006-11-24
JP4594794B2 JP4594794B2 (en) 2010-12-08

Family

ID=37539578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005141332A Active JP4594794B2 (en) 2005-05-13 2005-05-13 Manufacturing method of superconducting magnet

Country Status (1)

Country Link
JP (1) JP4594794B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150391A (en) * 2020-03-17 2021-09-27 株式会社東芝 Superconducting coil, superconducting device, and superconducting wire for superconducting coil

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193411A (en) * 1985-02-21 1986-08-27 Hitachi Ltd Thin insulator and manufacture thereof and resin molded coil employing this thin insulator
JPH0391903A (en) * 1989-09-05 1991-04-17 Toshiba Corp Superconducting electromagnet
JPH07161521A (en) * 1993-12-09 1995-06-23 Toshiba Corp Superconducting magnet and winding machine of self-fusion superconducting lead wire used for the magnet
JPH07192912A (en) * 1993-12-27 1995-07-28 Toshiba Corp Superconducting coil and diagnostic method of stability thereof
JPH08316023A (en) * 1995-05-18 1996-11-29 Toshiba Corp Superconducting coil and its manufacture
JPH11260625A (en) * 1998-03-16 1999-09-24 Toshiba Corp Superconducting magnet and its manufacture
JPH11307359A (en) * 1998-04-22 1999-11-05 Hitachi Ltd High voltage transformer and ignition transformer using the same
JP2000030930A (en) * 1998-07-15 2000-01-28 Toshiba Corp Superconducting coil and its manufacture
JP2003219530A (en) * 2002-01-16 2003-07-31 Sumitomo Wiring Syst Ltd Method and structure for connecting shield wire to ground wire, and ultrasonic welding device for connection
WO2004060658A1 (en) * 2002-12-27 2004-07-22 Toray Industries, Inc. Layered product, electromagnetic-shielding molded object, and processes for producing these
JP2006135060A (en) * 2004-11-05 2006-05-25 Toshiba Corp Superconductive magnet and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193411A (en) * 1985-02-21 1986-08-27 Hitachi Ltd Thin insulator and manufacture thereof and resin molded coil employing this thin insulator
JPH0391903A (en) * 1989-09-05 1991-04-17 Toshiba Corp Superconducting electromagnet
JPH07161521A (en) * 1993-12-09 1995-06-23 Toshiba Corp Superconducting magnet and winding machine of self-fusion superconducting lead wire used for the magnet
JPH07192912A (en) * 1993-12-27 1995-07-28 Toshiba Corp Superconducting coil and diagnostic method of stability thereof
JPH08316023A (en) * 1995-05-18 1996-11-29 Toshiba Corp Superconducting coil and its manufacture
JPH11260625A (en) * 1998-03-16 1999-09-24 Toshiba Corp Superconducting magnet and its manufacture
JPH11307359A (en) * 1998-04-22 1999-11-05 Hitachi Ltd High voltage transformer and ignition transformer using the same
JP2000030930A (en) * 1998-07-15 2000-01-28 Toshiba Corp Superconducting coil and its manufacture
JP2003219530A (en) * 2002-01-16 2003-07-31 Sumitomo Wiring Syst Ltd Method and structure for connecting shield wire to ground wire, and ultrasonic welding device for connection
WO2004060658A1 (en) * 2002-12-27 2004-07-22 Toray Industries, Inc. Layered product, electromagnetic-shielding molded object, and processes for producing these
JP2006135060A (en) * 2004-11-05 2006-05-25 Toshiba Corp Superconductive magnet and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150391A (en) * 2020-03-17 2021-09-27 株式会社東芝 Superconducting coil, superconducting device, and superconducting wire for superconducting coil
JP7332508B2 (en) 2020-03-17 2023-08-23 株式会社東芝 Superconducting coils and superconducting equipment
US11791080B2 (en) 2020-03-17 2023-10-17 Kabushiki Kaisha Toshiba Superconducting coil, superconducting device, and superconducting wire rod for superconducting coil

Also Published As

Publication number Publication date
JP4594794B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP5925069B2 (en) Adhesion method, adhesive instrument, and structure manufacturing method
JP4418508B2 (en) Opto-electric hybrid film and electronic device storing it
JP2006287924A (en) Diaphragm for planar speaker and planar speaker
JP2014022693A (en) Superconducting coil and manufacturing method therefor
JP2008186724A (en) Collective conductor and its manufacturing method
JPWO2001051580A1 (en) POROUS ADHESIVE SHEET, SEMICONDUCTOR WAFER WITH POROUS ADHESIVE SHEET USING THE SAME, AND PROCESS FOR PRODUCING THEM
JP4594794B2 (en) Manufacturing method of superconducting magnet
JP2007018732A (en) Wire, coil, stator coil, rotor coil, transformer and manufacturing method of wire
JP2008218064A (en) Grounding bar member, its manufacturing method, and coaxial flat cable
US5954909A (en) Direct adhesive process
JPH1195047A (en) Manufacture of metallic end sleeve for flexible fiber optical guide
JP2006135060A (en) Superconductive magnet and its manufacturing method
JP6355914B2 (en) Superconducting coil and method of manufacturing the superconducting coil
JPH11260625A (en) Superconducting magnet and its manufacture
JP5100455B2 (en) Manufacturing method of spiral coil with sheet, spiral winding device, and manufacturing apparatus of spiral coil with sheet
JP2006339836A (en) Process for manufacturing acoustic vibration board
JP2017536681A (en) Flat cable
JP4824905B2 (en) Outermost layer tape gap winding wire
JP2020038961A (en) Coil component and electronic apparatus
KR200328855Y1 (en) Conductive Hot Melt Adhesive Film
JP2010251567A (en) Electromagnetic shielded tube
JP2010135157A (en) Induction heating cooker
WO2021187095A1 (en) Pseudo sheet structure, sheet conductive member, and sensor device
JP2005197388A (en) Coil and its manufacturing method
JP6907593B2 (en) A joint between a conductor pattern formed on a film substrate and a coaxial cable and a method for manufacturing the same.

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4594794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3