JP2006135060A - Superconductive magnet and its manufacturing method - Google Patents

Superconductive magnet and its manufacturing method Download PDF

Info

Publication number
JP2006135060A
JP2006135060A JP2004322146A JP2004322146A JP2006135060A JP 2006135060 A JP2006135060 A JP 2006135060A JP 2004322146 A JP2004322146 A JP 2004322146A JP 2004322146 A JP2004322146 A JP 2004322146A JP 2006135060 A JP2006135060 A JP 2006135060A
Authority
JP
Japan
Prior art keywords
superconducting
conductor
adhesive
interlayer sheet
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004322146A
Other languages
Japanese (ja)
Inventor
Takahiro Dobashi
隆博 土橋
Yoshihiko Hirano
嘉彦 平野
Tomofumi Origasa
朝文 折笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004322146A priority Critical patent/JP2006135060A/en
Publication of JP2006135060A publication Critical patent/JP2006135060A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive magnet wherein a superconductor is rigidly fixed at a specified position and which is superior in workability of manufacture and disassembly, and to provide its manufacturing method. <P>SOLUTION: This method is used to manufacture a superconductive magnet by winding plural layers of superconductor 3 around a winding frame 1 with an interlayer sheet 2 in-between. In this case, adhesive agents 5 and 6 are applied to the surfaces of the superconductor 3, the winding frame 1 and the interlayer sheet 2, and they are fused and are made integral with them, so that the superconductor 3 is adhered to the winding frame 1 or the interlayer 2 for fixation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、粒子加速器などに使用される超電導マグネットおよびその製造方法に関する。   The present invention relates to a superconducting magnet used for a particle accelerator and the like and a method for manufacturing the same.

粒子加速器などに使用される超電導マグネットにおいては、必要な精度の磁場を発生させるためにはコイル内の導体が精度良く設計通り配置されていることが必要であり、導体位置精度として±0.05mmが求められる例もある。また超電導マグネットの多くは極低温に冷却されて使用されるため、コイルは冷却に伴い発生する熱応力に対し剥離、割れ,過剰歪みなどの異常を発生しない構造を求められる。   Superconducting magnets used in particle accelerators, etc., require that the conductors in the coil be accurately arranged as designed in order to generate a magnetic field with the required accuracy. There is an example where is required. In addition, since many superconducting magnets are used after being cooled to a very low temperature, the coil is required to have a structure that does not cause any abnormalities such as peeling, cracking, and excessive strain with respect to the thermal stress generated by cooling.

コイルが高電流密度化、大型化するとそれに伴い発生磁場が大きくなるため、大きな電磁力が生じることになり構造的な支持固定が重要となる。コイルの固定が充分でないと、電磁力等の擾乱により導体が微少移動した際に超電導状態が破れるクエンチ現象が起きることがあり、機器の性能が発揮出来ないという事態が生じる。また、粒子加速器に使用される超電導マグネットの場合、放射線に曝されるので材料の耐放射線特性も求められる。   When the coil has a high current density and a large size, the generated magnetic field increases accordingly, so that a large electromagnetic force is generated and structural support and fixing are important. If the coil is not sufficiently fixed, a quench phenomenon may occur in which the superconducting state is broken when the conductor is slightly moved due to disturbance such as electromagnetic force, and the performance of the device cannot be exhibited. In addition, since the superconducting magnet used for the particle accelerator is exposed to radiation, the radiation resistance property of the material is also required.

一般的に大型の粒子加速器に使用される2極以上の超電導マグネットの場合、単線の超電導導体を何本か集合させそれを撚った後、ダイスにて台形状に成型したラザフォードタイプと呼ばれるケーブル導体を使用する。コイル成型する場合はこのケーブル導体を鞍形に巻線成型し、それをビームの貫通孔の周囲に集合させ必要な磁場を発生させるような構造としている(下記非特許文献1参照)。但しこれはケーブル導体が複数の単線を撚り線した導体のため、断面積が大きくなり必然的に大電流にて使用する超電導マグネットに適用さている。   In the case of a superconducting magnet with two or more poles generally used for large particle accelerators, a cable called Rutherford type is formed by gathering several single-conductor superconducting conductors, twisting them, and then forming them into a trapezoid shape with a die. Use a conductor. In the case of coil molding, the cable conductor is formed into a bowl shape and is assembled around the beam through-hole to generate a necessary magnetic field (see Non-Patent Document 1 below). However, since the cable conductor is a conductor in which a plurality of single wires are stranded, the cross-sectional area becomes large, and this is applied to a superconducting magnet that is inevitably used at a large current.

それに対し、上記とは別に、小電流にて使用される超電導マグネットの場合、丸線や角線の単線を使用するが、鞍型コイルを形成させ更に、導体位置精度を高めるため導体を整列させた巻線を効率的に行う方法は現在確立されていない。効率的ではないが単線の超電導線を位置精度良く巻線する方法として、ビーム貫通孔周囲の構造物に座標制御可能な巻線機で直接導体を接着固定しながら巻線していく方法がある。この巻線方法では接着材はアクリル系瞬間接着剤やエポキシ系加熱硬化樹脂が使用されている。さらにコイルの冷却時の熱応力や励磁に伴う電磁力の支持固定は巻線時の接着剤による接着強度に頼るか、コイル外周側からの機械的拘束に依存している。   On the other hand, apart from the above, in the case of a superconducting magnet used at a small current, a round wire or a single wire of a square wire is used, but a saddle coil is formed and the conductors are aligned to improve the conductor position accuracy. There is currently no established method for efficient winding. Although it is not efficient, as a method of winding a single superconducting wire with high positional accuracy, there is a method of winding while directly bonding and fixing the conductor to the structure around the beam through hole with a winding machine capable of coordinate control . In this winding method, an acrylic instantaneous adhesive or an epoxy thermosetting resin is used as the adhesive. Furthermore, the support and fixing of the electromagnetic force accompanying the thermal stress and excitation during cooling of the coil depend on the adhesive strength of the adhesive at the time of winding or depend on the mechanical constraint from the coil outer peripheral side.

上述の小電流にて使用される超電導マグネットは図7のようになっている。すなわち、ビーム貫通孔を構成する構造物1の周囲に層間シート2を挟みながら、超電導導体3が数値制御された巻線機により接着固定されながら巻線されコイルを構成している。図8は導体部を示した詳細断面図で、層間シート2と超電導導体3は、超電導導体3と層間シート2の間に塗布した瞬間接着剤9により接着固定されている。
「超電導工学」電気学会発行オーム社販売 1991年10月15日発行 第247頁
The superconducting magnet used with the above-mentioned small current is as shown in FIG. That is, a coil is formed by winding the superconducting conductor 3 while being bonded and fixed by a numerically controlled winding machine while sandwiching the interlayer sheet 2 around the structure 1 constituting the beam through hole. FIG. 8 is a detailed cross-sectional view showing a conductor portion. The interlayer sheet 2 and the superconducting conductor 3 are bonded and fixed by an instantaneous adhesive 9 applied between the superconducting conductor 3 and the interlayer sheet 2.
“Superconductivity Engineering” published by the Institute of Electrical Engineers, sold by Ohm, published on October 15, 1991, page 247

上述のように構成された超電導マグネットでは、下側層の超電導導体3が無い部分の上に上側層の超電導導体3が配置される場合は、上層導体の直下部が何もない空間10となるため、層間シート2が下層側に落込み、上層の導体位置精度が悪化する場合がある。また、瞬間接着剤9は点接触に近い状態で層間シート2と超電導導体3を接着しているため、接着強度が十分に確保出来ない問題がある。さらに超電導導体3の間は何も無い空間10となるため、コイル自体の構造体としての剛性が低く、熱応力や電磁力に耐えられないという問題がある。   In the superconducting magnet configured as described above, when the superconducting conductor 3 of the upper layer is disposed on the portion where the superconducting conductor 3 of the lower layer is not provided, the space 10 in which there is nothing directly below the upper conductor is formed. For this reason, the interlayer sheet 2 falls to the lower layer side, and the conductor position accuracy of the upper layer may deteriorate. Further, since the instantaneous adhesive 9 bonds the interlayer sheet 2 and the superconducting conductor 3 in a state close to point contact, there is a problem that sufficient adhesive strength cannot be secured. Furthermore, since there is no space 10 between the superconducting conductors 3, there is a problem that the rigidity of the coil itself as a structure is low and it cannot withstand thermal stress and electromagnetic force.

このように、多層のコイルの場合、巻き進めていく段階で下側層にて超電導導体3の配置が無い部分に層間シート2が落込むなどして、上層の導体位置精度が悪化するため、上層に巻き進む程、超電導導体3の位置精度が確保出来ないという問題がある。また電磁力が強大となった場合は、導体の支持巻線時の接着強度のみでは十分でなく、冷却による熱応力、励磁による電磁力に耐えられないという問題があり、多層化した大型のコイルを使用する超電導マグネットには適用することが出来ないという問題がある。   Thus, in the case of a multi-layer coil, the interlayer sheet 2 falls into a portion where the superconducting conductor 3 is not arranged in the lower layer in the stage of winding, and the conductor position accuracy of the upper layer deteriorates. There is a problem that the position accuracy of the superconducting conductor 3 cannot be ensured as the winding proceeds to the upper layer. In addition, when the electromagnetic force becomes strong, the adhesive strength at the time of the support winding of the conductor is not sufficient, and there is a problem that it cannot withstand the thermal stress due to cooling and the electromagnetic force due to excitation. There is a problem that it cannot be applied to a superconducting magnet that uses.

このようにビーム貫通孔周囲の構造物に座標制御可能な巻線機で直接超電導導体を接着固定しながら巻線していく方法を採用する場合、超電導導体の位置精度は巻線機の機械的制御精度により確保出来るものの、超電導導体固定のため瞬間接着剤を使用した場合は極低温において接着強度が低下し十分な強度が得られない。またエポキシ系の熱硬化型樹脂により接着固定した場合は極低温での強度は確保出来るものの一定の熱硬化時間が必要であり、巻線中接着剤の硬化を待つ時間が必要で巻線速度が著しく低下する。また、エポキシ樹脂系の熱硬化型接着剤では、架橋反応により強固な分子の網目構造が形成されることにより再加熱しても流動化しないため、巻線のやり直しなど修正が出来ない等の問題がある。
そこで本発明は、超電導導体が所定の位置に強固に固定されるとともに製作および分解の作業性のよい超電導マグネットおよびその製造方法を提供することを目的とする。
In this way, when adopting a method of winding while superimposing a superconducting conductor directly on the structure around the beam through-hole with a coordinate controllable winding machine, the position accuracy of the superconducting conductor is the mechanical property of the winding machine. Although it can be ensured by the control accuracy, when an instantaneous adhesive is used for fixing the superconducting conductor, the adhesive strength is lowered at a very low temperature, and sufficient strength cannot be obtained. In addition, when bonded and fixed with an epoxy-based thermosetting resin, the strength at extremely low temperatures can be secured, but a certain thermosetting time is required, and it is necessary to wait for the adhesive in the winding to cure, and the winding speed is low. It drops significantly. In addition, with epoxy resin thermosetting adhesives, a strong molecular network is formed by the cross-linking reaction, so it does not flow even when reheated. There is.
Accordingly, an object of the present invention is to provide a superconducting magnet in which a superconducting conductor is firmly fixed at a predetermined position and has good workability in manufacturing and disassembling, and a manufacturing method thereof.

請求項1の発明は、巻枠の周囲に層間シートを介在させて超電導導体を複数層に巻回する超電導マグネットの製造方法において、前記超電導導体の表面および前記巻枠の表面および前記層間シートの表面に接着剤を塗布し、前記接着剤を融着一体化させることにより前記超電導導体を前記巻枠または前記層間シートに接着固定する方法とする。   According to a first aspect of the present invention, there is provided a method of manufacturing a superconducting magnet in which a superconducting conductor is wound in a plurality of layers by interposing an interlayer sheet around a winding frame, the surface of the superconducting conductor, the surface of the winding frame, and the interlayer sheet. The superconductive conductor is bonded and fixed to the winding frame or the interlayer sheet by applying an adhesive to the surface and fusing and integrating the adhesive.

請求項5の発明は、巻枠と、前記巻枠の周囲に層間シートを介して複数層に巻回された超電導導体と、前記超電導導体相互間に配置されたダミー導体と、前記巻枠と前記層間シートと前記超電導導体と前記ダミー導体の少なくとも二者を相互に接着する接着剤とを備えている構成とする。   The invention of claim 5 includes a winding frame, a superconducting conductor wound around the winding frame in a plurality of layers via an interlayer sheet, a dummy conductor disposed between the superconducting conductors, and the winding frame. The interlayer sheet, the superconducting conductor, and the dummy conductor are provided with an adhesive that adheres at least two of them.

本発明によれば、超電導導体が所定の位置に強固に固定されるとともに製作および分解の作業性のよい超電導マグネットおよびその製造方法を提供することができる。   According to the present invention, it is possible to provide a superconducting magnet having a superconducting conductor firmly fixed at a predetermined position and having good workability in manufacturing and disassembling, and a manufacturing method thereof.

本発明の実施の形態を図1から図6を参照して説明する。
図1に示すように、巻枠であるビーム貫通孔構造物1の周囲に図示しない座標制御可能な巻線機により超電導導体3が巻き回される。超電導導体3と超電導導体3の隙間の空間にはダミー導体4が配置される。このダミー導体4として、コイルに使用しているものと同種類の超電導導体を短く切断したものを使用する。また図2に示すように、超電導導体3は層間シート2を挟み多層に巻線されている。超電導導体3は、図3に示すように、超電導導体3の上部から超音波振動子8を用いて超電導導体3を層間シート2に押圧振動させることにより、超電導導体3と層間シート2の間が振動摩擦により加熱され、層間シート2上に塗布した接着剤6と導体周囲に塗布した接着剤5が融着一体化することにより、超電導導体3が位置精度良く、強固に固定される。図4は、図3の接着工程を経て形成された上層および下層の2層から成るコイル部の拡大断面図であり、このコイル部は、導体3間の空間にはシリカフィラー入りのエポキシ樹脂からなる充填樹脂7が充填された構成となっている。なお、エポキシ樹脂は一般的なビスフェノールA型で図6の様な分子構造を有する。
An embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a superconducting conductor 3 is wound around a beam through-hole structure 1 which is a winding frame by a winding machine capable of coordinate control (not shown). A dummy conductor 4 is disposed in a space between the superconducting conductor 3 and the superconducting conductor 3. As this dummy conductor 4, a superconducting conductor of the same type as that used for the coil is cut short. As shown in FIG. 2, the superconducting conductor 3 is wound in multiple layers with the interlayer sheet 2 interposed therebetween. As shown in FIG. 3, the superconducting conductor 3 presses and vibrates the superconducting conductor 3 from the upper part of the superconducting conductor 3 to the interlayer sheet 2 using the ultrasonic vibrator 8. The superconducting conductor 3 is firmly fixed with high positional accuracy by fusing and integrating the adhesive 6 applied onto the interlayer sheet 2 and the adhesive 5 applied around the conductor, which are heated by vibration friction. FIG. 4 is an enlarged cross-sectional view of a coil portion composed of two layers, an upper layer and a lower layer, formed through the bonding process of FIG. 3, and this coil portion is formed from an epoxy resin containing a silica filler in the space between the conductors 3. The filling resin 7 is filled. The epoxy resin is a general bisphenol A type and has a molecular structure as shown in FIG.

実際の巻線時には超音波振動子8が超電導導体3の上を押圧しながら通過し、超電導導体3を層間シート2に接着固定していく巻線方法を取る。超電導導体3の周囲の接着剤5と層間シート2表面の接着剤6には図5に示す分子構造を持ったフェノキシ樹脂が用いられる。超電導導体3への接着剤の塗布に関しては特許第2597724号公報に記載されている方法と同様の方法が取られる。   In actual winding, the ultrasonic transducer 8 passes while pressing on the superconducting conductor 3, and a winding method is adopted in which the superconducting conductor 3 is bonded and fixed to the interlayer sheet 2. A phenoxy resin having a molecular structure shown in FIG. 5 is used for the adhesive 5 around the superconducting conductor 3 and the adhesive 6 on the surface of the interlayer sheet 2. Regarding the application of the adhesive to the superconducting conductor 3, the same method as that described in Japanese Patent No. 2597724 can be used.

上記のように構成された本実施の形態の超電導マグネットでは、超電導導体3の周囲及び層間シート2にフェノキシ樹脂からなる接着剤5,6が塗布してあり、超音波振動子8を使用して超電導導体3を層間シート2に押付けることにより発生する摩擦熱により接着剤5,6が融解する。超音波振動子8が押し当てられながら通過してゆくことによる融解・再凝固の過程でフェノキシ樹脂層が一体となることにより、超電導導体3が所定の位置に精度良く強固に固定されている。   In the superconducting magnet of the present embodiment configured as described above, adhesives 5 and 6 made of phenoxy resin are applied to the periphery of the superconducting conductor 3 and the interlayer sheet 2, and the ultrasonic vibrator 8 is used. The adhesives 5 and 6 are melted by the frictional heat generated by pressing the superconducting conductor 3 against the interlayer sheet 2. The superconducting conductor 3 is firmly fixed at a predetermined position with high accuracy by integrating the phenoxy resin layer in the process of melting and re-solidification by passing through the ultrasonic vibrator 8 while being pressed.

フェノキシ樹脂は熱可塑性のため、熱硬化型の樹脂と異なり再融解が可能なため、巻線の修正作業などが可能となり作業性を高めることが出来る。またフェノキシ樹脂の融解・再凝固は短時間で反応が収束するので巻線作業の高速化を図ることが出来る。またフェノキシ樹脂は接着強度が高く、極低温においても十分な接着強度を有するため、極低温に冷却することによる接着力の低下で、導体が剥離するようなことが起きない。   Since the phenoxy resin is thermoplastic, it can be remelted unlike a thermosetting resin, so that it is possible to correct the winding and improve workability. Moreover, the melting and re-solidification of the phenoxy resin converges in a short time, so that the winding work can be speeded up. Moreover, since the phenoxy resin has a high adhesive strength and has a sufficient adhesive strength even at an extremely low temperature, the conductor does not peel off due to a decrease in the adhesive strength caused by cooling to an extremely low temperature.

また超電導導体3間の大きな隙間には、同一寸法で同じ接着剤を塗布したダミー導体4を配置することにより、上層との間の層間スペーサ2が下層側に落ち込むことがなく、下層から上層へ巻き進めていく上での超電導導体3の位置精度を高くしている。また超電導導体3と同じ材質の導体をダミー導体4として配置することにより、コイル構造体としての剛性も高めている。なお、本実施の形態ではダミー導体4として超電導導体を使用したが、同等の断面寸法を有するGFRP(ガラス繊維強化プラスチック)のスペーサなどで代用することも出来る。   In addition, by placing a dummy conductor 4 having the same dimensions and the same adhesive applied in a large gap between the superconducting conductors 3, the interlayer spacer 2 between the upper layers does not fall to the lower layer side, and the lower layer to the upper layer. The position accuracy of the superconducting conductor 3 in increasing the winding is increased. Further, by arranging a conductor made of the same material as that of the superconducting conductor 3 as the dummy conductor 4, the rigidity as the coil structure is enhanced. Although a superconducting conductor is used as the dummy conductor 4 in the present embodiment, a GFRP (glass fiber reinforced plastic) spacer or the like having an equivalent cross-sectional dimension can be used instead.

最終的に超電導導体3間の空間はシリカフィラーによって熱収縮率を超電導導体3に近づけた充填樹脂7により充填され、冷却及び励磁に伴う熱応力及び大きな電磁力に耐える構造となっている。フェノキシ樹脂で接着固定された超電導導体3間の充填材としてエポキシ樹脂を使用する場合、フェノキシ樹脂とエポキシ樹脂は分子構造的に類似しているため、物性が類似しているため相性が良く、異種樹脂材料を複合的に用いた場合に界面で生じる剥離等の問題が起きることがない。そのため、超電導導体3の強固な位置固定が可能となる。また、エポキシ樹脂、フェノキシ樹脂とも高い耐放射線特性を持っている。   Finally, the space between the superconducting conductors 3 is filled with a filler resin 7 having a thermal contraction rate close to that of the superconducting conductors 3 by silica filler, and has a structure that can withstand the thermal stress and large electromagnetic force accompanying cooling and excitation. When an epoxy resin is used as a filler between the superconducting conductors 3 bonded and fixed with a phenoxy resin, the phenoxy resin and the epoxy resin are similar in molecular structure, so their physical properties are similar and the compatibility is good. When resin materials are used in combination, problems such as peeling that occur at the interface do not occur. Therefore, it is possible to firmly fix the superconducting conductor 3. In addition, both epoxy resin and phenoxy resin have high radiation resistance.

本実施の形態の超電導マグネットは図1,2,3,4に示したように超電導導体3の周囲とビーム貫通孔構造物1の外周及び層間シート2の表面にフェノキシ樹脂を塗布し、それを接着固定させることによりコイルを成型してゆくもので、巻線時の超電導導体3の位置精度を確保すると共に、作業性が良く、高い接着強度も得ることが出来る。   As shown in FIGS. 1, 2, 3 and 4, the superconducting magnet of the present embodiment is obtained by applying phenoxy resin to the periphery of the superconducting conductor 3, the outer periphery of the beam through-hole structure 1, and the surface of the interlayer sheet 2. The coil is formed by bonding and fixing, so that the positional accuracy of the superconducting conductor 3 during winding can be ensured, the workability is good, and high bonding strength can be obtained.

また超音波振動子8により超電導導体3を振動させることによって、超電導導体3と被接着物である層間シート2の間に起きる摩擦発熱を利用して接着剤5,6を融着させることにより、他の部分に熱影響を及ぼさない局所的な加熱接着が高速で可能となり、安定した超電導導体位置精度を確保でき、作業性も向上させることが出来る。   Further, by vibrating the superconducting conductor 3 with the ultrasonic vibrator 8, the adhesives 5 and 6 are fused by using the frictional heat generated between the superconducting conductor 3 and the interlayer sheet 2 that is the adherend. Local heating and adhesion that does not affect the other parts can be performed at high speed, and stable superconducting conductor position accuracy can be ensured and workability can be improved.

また超電導導体3の間の大きな空間には、同寸法で同一接着剤を施したダミー導体4を配置することにより、層間シート2が下層側に落込むことによる上層側導体の寸法精度の悪化を防ぎ、また導体が無い空間を少なくすることにより全体的なコイル構造体としての剛性も高めている。   Further, by disposing a dummy conductor 4 having the same size and the same adhesive in a large space between the superconducting conductors 3, the dimensional accuracy of the upper layer side conductor is deteriorated due to the interlayer sheet 2 dropping to the lower layer side. The rigidity as an overall coil structure is also improved by preventing and reducing the space without a conductor.

さらに、導体と導体の隙間をフィラー入りエポキシ樹脂の充填樹脂7で充填することにより、超電導導体3の位置固定及び熱応力と電磁力に対する固定を強固なものにしている。エポキシ樹脂はフェノキシ樹脂と分子構造的に類似しており。樹脂界面での剥離現象などが起きることがない。エポキシ樹脂、フェノキシ樹脂は放射線に対する耐力の高い材料であるので、コイル及び超電導マグネットとしての耐放射線能力は高いものとなっている。   Further, the gap between the conductors is filled with a filling resin 7 of an epoxy resin containing filler, thereby fixing the position of the superconducting conductor 3 and fixing against the thermal stress and electromagnetic force. Epoxy resin is similar in molecular structure to phenoxy resin. No peeling phenomenon at the resin interface occurs. Epoxy resins and phenoxy resins are materials with high resistance to radiation, and therefore have high radiation resistance as coils and superconducting magnets.

なお、以上の説明は鞍形コイルの超電導マグネットについて行ってきたが、本発明はソレノイド形等の超電導マグネットにも適用することができる。   Although the above description has been made with respect to a superconducting magnet of a saddle coil, the present invention can also be applied to a superconducting magnet of a solenoid type or the like.

本発明の実施の形態の超電導マグネットを示す斜視図。The perspective view which shows the superconducting magnet of embodiment of this invention. 本発明の実施の形態の超電導マグネットのコイル部の部分詳細断面図。The partial detail sectional view of the coil part of the superconducting magnet of an embodiment of the invention. 本発明の実施の形態の超電導マグネットの巻線時の超音波加熱による接着工程を示す概念図。The conceptual diagram which shows the adhesion process by the ultrasonic heating at the time of winding of the superconducting magnet of embodiment of this invention. 本発明の実施の形態の超電導マグネットのコイル部の接着剤及び充填樹脂の配置を示す部分詳細断面図。The fragmentary detailed sectional view which shows arrangement | positioning of the adhesive agent and filling resin of the coil part of the superconducting magnet of embodiment of this invention. 本発明の実施の形態の超電導マグネットにおいて接着剤として用いるフェノキシ樹脂の化学構造を示す図。The figure which shows the chemical structure of the phenoxy resin used as an adhesive agent in the superconducting magnet of embodiment of this invention. 本発明の実施の形態の超電導マグネットにおいて充填樹脂を構成するエポキシ樹脂の化学構造を示す図。The figure which shows the chemical structure of the epoxy resin which comprises filling resin in the superconducting magnet of embodiment of this invention. 従来の超電導マグネットを示す断面図。Sectional drawing which shows the conventional superconducting magnet. 従来の超電導マグネットのコイル部分の詳細断面図。Detailed sectional drawing of the coil part of the conventional superconducting magnet.

符号の説明Explanation of symbols

1…ビーム貫通孔構造物、2…層間シート、3…超電導導体、4…ダミー導体、5…導体周囲に塗布した接着剤、6…層間シート表面に塗布した接着剤、7…導体間に充填した樹脂、8…超音波振動子、9…瞬間接着剤、10…空間。

DESCRIPTION OF SYMBOLS 1 ... Beam through-hole structure, 2 ... Interlayer sheet, 3 ... Superconducting conductor, 4 ... Dummy conductor, 5 ... Adhesive apply | coated around the conductor, 6 ... Adhesive apply | coated to the interlayer sheet surface, 7 ... Filling between conductors Resin, 8 ... Ultrasonic vibrator, 9 ... Instant adhesive, 10 ... Space.

Claims (6)

巻枠の周囲に層間シートを介在させて超電導導体を複数層に巻回する超電導マグネットの製造方法において、前記超電導導体の表面および前記巻枠の表面および前記層間シートの表面に接着剤を塗布し、前記接着剤を融着一体化させることにより前記超電導導体を前記巻枠または前記層間シートに接着固定することを特徴とする超電導マグネットの製造方法。   In a method of manufacturing a superconducting magnet in which a superconducting conductor is wound in a plurality of layers with an interlayer sheet interposed around a winding frame, an adhesive is applied to the surface of the superconducting conductor, the surface of the winding frame, and the surface of the interlayer sheet. A method of manufacturing a superconducting magnet, wherein the superconducting conductor is bonded and fixed to the winding frame or the interlayer sheet by fusing and integrating the adhesive. 前記接着剤は熱可塑性樹脂からなることを特徴とする請求項1記載の超電導マグネットの製造方法。   The method of manufacturing a superconducting magnet according to claim 1, wherein the adhesive is made of a thermoplastic resin. 前記接着剤はフェノキシ樹脂からなることを特徴とする請求項1記載の超電導マグネットの製造方法。   The method of manufacturing a superconducting magnet according to claim 1, wherein the adhesive is made of phenoxy resin. 前記接着剤を融着させるための加熱手段として超音波振動を利用することを特徴とする請求項1記載の超電導マグネットの製造方法。   2. The method of manufacturing a superconducting magnet according to claim 1, wherein ultrasonic vibration is used as a heating means for fusing the adhesive. 巻枠と、前記巻枠の周囲に層間シートを介して複数層に巻回された超電導導体と、前記超電導導体相互間に配置されたダミー導体と、前記巻枠と前記層間シートと前記超電導導体と前記ダミー導体の少なくとも二者を相互に接着する接着剤とを備えていることを特徴とする超電導マグネット。   A winding frame, a superconducting conductor wound around the winding frame in a plurality of layers via an interlayer sheet, a dummy conductor disposed between the superconducting conductors, the winding frame, the interlayer sheet, and the superconducting conductor And a superconducting magnet comprising an adhesive for adhering at least two of the dummy conductors to each other. 前記超電導導体あるいは前記ダミー導体の相互間の隙間にフィラー入りのエポキシ樹脂が充填されていることを特徴する請求項5記載の超電導マグネット。

6. A superconducting magnet according to claim 5, wherein a gap between the superconducting conductor or the dummy conductor is filled with an epoxy resin containing a filler.

JP2004322146A 2004-11-05 2004-11-05 Superconductive magnet and its manufacturing method Pending JP2006135060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322146A JP2006135060A (en) 2004-11-05 2004-11-05 Superconductive magnet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004322146A JP2006135060A (en) 2004-11-05 2004-11-05 Superconductive magnet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006135060A true JP2006135060A (en) 2006-05-25

Family

ID=36728342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322146A Pending JP2006135060A (en) 2004-11-05 2004-11-05 Superconductive magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006135060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319189A (en) * 2005-05-13 2006-11-24 Toshiba Corp Superconducting magnet and its production method
JP2015065744A (en) * 2013-09-24 2015-04-09 株式会社荏原製作所 Canned motor and manufacturing method for can
WO2019189500A1 (en) * 2018-03-29 2019-10-03 株式会社日立製作所 Three-dimensional wound coil, and method for manufacturing three-dimensional wound coil
WO2021117838A1 (en) * 2019-12-13 2021-06-17 株式会社 東芝 Scanning coil, scanning magnet, and production method for scanning coil
JP2021150391A (en) * 2020-03-17 2021-09-27 株式会社東芝 Superconducting coil, superconducting device, and superconducting wire for superconducting coil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319189A (en) * 2005-05-13 2006-11-24 Toshiba Corp Superconducting magnet and its production method
JP4594794B2 (en) * 2005-05-13 2010-12-08 株式会社東芝 Manufacturing method of superconducting magnet
JP2015065744A (en) * 2013-09-24 2015-04-09 株式会社荏原製作所 Canned motor and manufacturing method for can
WO2019189500A1 (en) * 2018-03-29 2019-10-03 株式会社日立製作所 Three-dimensional wound coil, and method for manufacturing three-dimensional wound coil
WO2021117838A1 (en) * 2019-12-13 2021-06-17 株式会社 東芝 Scanning coil, scanning magnet, and production method for scanning coil
JP2021097062A (en) * 2019-12-13 2021-06-24 株式会社東芝 Scanning coil, scanning magnet, and manufacturing method of scanning coil
TWI748782B (en) * 2019-12-13 2021-12-01 日商東芝股份有限公司 Scanning coil, scanning magnet and manufacturing method of scanning coil
JP7297655B2 (en) 2019-12-13 2023-06-26 株式会社東芝 SCANNING COIL, SCANNING MAGNET, AND SCANNING COIL MANUFACTURING METHOD
JP2021150391A (en) * 2020-03-17 2021-09-27 株式会社東芝 Superconducting coil, superconducting device, and superconducting wire for superconducting coil
JP7332508B2 (en) 2020-03-17 2023-08-23 株式会社東芝 Superconducting coils and superconducting equipment
US11791080B2 (en) 2020-03-17 2023-10-17 Kabushiki Kaisha Toshiba Superconducting coil, superconducting device, and superconducting wire rod for superconducting coil

Similar Documents

Publication Publication Date Title
JP4735529B2 (en) Motor stator
JP4752744B2 (en) Superconducting coil
JP5221820B1 (en) Battery block and manufacturing method thereof
JP2014022693A (en) Superconducting coil and manufacturing method therefor
JP2015122484A (en) Coil, manufacturing method thereof, and reactor
JP6445165B2 (en) Superconducting coil and manufacturing method thereof
JP2006135060A (en) Superconductive magnet and its manufacturing method
JP6343142B2 (en) Coil with electronic components
JPH07161521A (en) Superconducting magnet and winding machine of self-fusion superconducting lead wire used for the magnet
JP3601533B2 (en) Induction heating device
JP2004047482A5 (en)
JP6490392B2 (en) Reactor
JPH11260625A (en) Superconducting magnet and its manufacture
JP4594794B2 (en) Manufacturing method of superconducting magnet
JP2015103587A (en) High temperature superconducting coil and method of manufacturing the high temperature superconducting coil
JP2010252466A (en) Electromagnetic coil
JP4824905B2 (en) Outermost layer tape gap winding wire
WO2019189500A1 (en) Three-dimensional wound coil, and method for manufacturing three-dimensional wound coil
JPH08107012A (en) Superconductive coil
JP7241930B2 (en) superconducting coil
CN110612585B (en) Electric reactor
JP2005340637A (en) Superconducting coil
JP2008147345A (en) Method of manufacturing reactor
JP2024039332A (en) Rotor of superconducting rotating electric machine and superconducting rotating electric machine
JP2000030930A (en) Superconducting coil and its manufacture

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105