JP2006317251A - Device for measuring magnetic material concentration - Google Patents

Device for measuring magnetic material concentration Download PDF

Info

Publication number
JP2006317251A
JP2006317251A JP2005139524A JP2005139524A JP2006317251A JP 2006317251 A JP2006317251 A JP 2006317251A JP 2005139524 A JP2005139524 A JP 2005139524A JP 2005139524 A JP2005139524 A JP 2005139524A JP 2006317251 A JP2006317251 A JP 2006317251A
Authority
JP
Japan
Prior art keywords
difference
frequency
magnetic substance
coil
substance concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005139524A
Other languages
Japanese (ja)
Other versions
JP4014605B2 (en
Inventor
Miki Fujii
幹 藤井
Shigeki Kagomiya
茂樹 籠宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiyo Electric Co Ltd
Diesel United Ltd
Original Assignee
Meiyo Electric Co Ltd
Diesel United Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiyo Electric Co Ltd, Diesel United Ltd filed Critical Meiyo Electric Co Ltd
Priority to JP2005139524A priority Critical patent/JP4014605B2/en
Publication of JP2006317251A publication Critical patent/JP2006317251A/en
Application granted granted Critical
Publication of JP4014605B2 publication Critical patent/JP4014605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform self-compensation of a zero point against a disturbance; to detect a magnetic material concentration continuously in a maintenance-free state; and to discharge easily and surely a solid material such as the magnetic material deposited near a coil. <P>SOLUTION: This device is provided with oscillation circuits 11, 12 equipped with coils 9, 10 wherein, when detecting a frequency by one oscillation circuit 11, 12 in the covered state by a rotator 7 so as not to be affected by a fluid 2, an oscillation frequency is detected by the other oscillation circuit 11, 12 in the uncovered state by the rotator 7 so as to be affected by the fluid; a superposing circuit 13 for determining the frequency difference between each frequency detected by both oscillation circuits 11, 12; an F/V converter 14 for determining the peak difference of the frequency difference from the frequency difference of the preceding time and the frequency difference of this time from the superposing circuit 13; and a signal processing circuit 15 for determining the magnetic material concentration from the peak difference determined by the F/V converter 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は磁性体濃度計測装置に関する。   The present invention relates to a magnetic substance concentration measuring apparatus.

例えば、ピストンのような往復動部品を有するエンジン等の原動機においては、ピストンとシリンダ等の摺動により、ピストン及びシリンダ等に磨耗が生じ、鉄粉等の磁性体が生じる。而して、このような磁性体が生じた際には、エンジンからの油が流通する配管に油と同伴して磁性体が流れるため、配管の流体中に含まれる磁性体の濃度を適宜測定し、機器の磨耗状況を正確に把握する必要がある。   For example, in a prime mover such as an engine having a reciprocating component such as a piston, the piston and the cylinder are worn by sliding between the piston and the cylinder, and a magnetic material such as iron powder is generated. Thus, when such a magnetic material is generated, the magnetic material flows along with the oil flowing through the piping from the engine, so the concentration of the magnetic material contained in the fluid in the piping is measured appropriately. Therefore, it is necessary to accurately grasp the wear state of the equipment.

油等の流体に同伴する磁性体の濃度を測定するようにした先行技術文献としては、特許文献1、2がある。特許文献1は、一定周波数の基準信号を出力する基準信号発生回路と、周波数を検出信号として出力する検出信号発生回路と、基準信号発生回路からの基準信号と検出信号発生回路からの検出信号の差の周波数信号を含む電気信号を出力する信号処理回路を備えており、周波数を含む電気信号の変化により磁性体の濃度を検出している。   Patent Documents 1 and 2 are prior art documents that measure the concentration of a magnetic substance accompanying a fluid such as oil. Patent Document 1 discloses a reference signal generation circuit that outputs a reference signal having a constant frequency, a detection signal generation circuit that outputs a frequency as a detection signal, a reference signal from the reference signal generation circuit, and a detection signal from the detection signal generation circuit. A signal processing circuit that outputs an electric signal including the difference frequency signal is provided, and the concentration of the magnetic substance is detected by a change in the electric signal including the frequency.

特許文献2では、使用ずみの潤滑剤の鉄含有量を継続的に監視し、許容磨耗量と比較される実測磨耗量を鉄含有量に基いて特定し、実測磨耗量が許容磨耗量を超えた場合には警報を発するようにしている。
登録実用新案第2579413号公報 特開2002−276323号公報
In Patent Document 2, the iron content of the used lubricant is continuously monitored, the actual wear amount to be compared with the allowable wear amount is specified based on the iron content, and the actual wear amount exceeds the allowable wear amount. In the event of an alarm, an alarm is issued.
Registered Utility Model No. 2579413 JP 2002-276323 A

特許文献1、2の技術では温度変化や振動が小さく安定した計測環境で、且つ、計測装置内への磁性体等の固形物の堆積を考慮する必要のない環境下での磁性体濃度の計測は可能である。しかし、機器から流出したドレン油等の流体中における磁性体濃度を高感度且つ連続的に計測するためには、機器の不規則な振動、急激な温度変化、流体中の固形物の堆積、不規則な電磁波ノイズ、不安定な流体流量等といった外乱に対しゼロ点を自己補償すると共に、磁性体等の固形物を排出する機能を有することが、磁性体濃度計測装置として必要である。   The techniques of Patent Documents 1 and 2 measure the concentration of magnetic material in a stable measurement environment with little change in temperature and vibration, and in the environment where there is no need to consider the accumulation of solid materials such as magnetic material in the measuring device. Is possible. However, in order to continuously and highly sensitively measure the magnetic substance concentration in a fluid such as drain oil that has flowed out of the device, irregular vibrations of the device, rapid temperature changes, solid deposits in the fluid, It is necessary for the magnetic substance concentration measuring device to have a function of self-compensating the zero point against disturbances such as regular electromagnetic noise and unstable fluid flow rate and discharging solid substances such as magnetic substances.

しかしながら、特許文献1では、機器等の温度変化が大きい場合には、基準信号発生回路と検出信号発生回路に温度変化の相違が生じてゼロ点がシフトし、又、機器の不規則な振動によってもゼロ点はシフトし、更には、各部品の経時変化によってもゼロ点はシフトするが、ゼロ点を補正する手段を有しないため、その補正をすることができない。   However, in Patent Document 1, when the temperature change of a device or the like is large, a difference in temperature change occurs between the reference signal generation circuit and the detection signal generation circuit, the zero point shifts, and due to irregular vibration of the device The zero point is also shifted, and furthermore, the zero point is also shifted by the aging of each part. However, since there is no means for correcting the zero point, the zero point cannot be corrected.

又、各部品の経時変化によるゼロ点のシフトに対する補正手段を備えていないことから、長期間に亘ってのメンテナンスフリーでの連続的な磁性体濃度の検出が困難である。   In addition, since there is no correction means for shifting the zero point due to the aging of each part, it is difficult to detect the magnetic substance concentration continuously without maintenance over a long period of time.

更に、検出信号発生回路付近に磁性体等の固形物が溜まった場合、これを除去する手段を有しないため、検出精度が高くて正確な磁性体濃度の検出を行なうことができない。   Further, when a solid substance such as a magnetic substance accumulates in the vicinity of the detection signal generating circuit, since there is no means for removing the solid substance, the detection accuracy is high and the magnetic substance concentration cannot be detected accurately.

本発明は、上記実情に鑑み、各種の外乱に対しゼロ点を自己補償することができて、長期間に亘りメンテナンスフリーで連続的に磁性体濃度の検出を可能にすると共に、コイル付近に堆積した磁性体等の固形物を容易且つ確実に排出することができるようにした磁性体濃度計測装置を提供しようとするものである。   In view of the above circumstances, the present invention can self-compensate the zero point for various disturbances, enables maintenance-free continuous detection of the magnetic substance concentration over a long period of time, and deposits in the vicinity of the coil. It is an object of the present invention to provide a magnetic substance concentration measuring apparatus that can easily and surely discharge a solid substance such as a magnetic substance.

本発明の磁性体濃度計測装置は、一方の発振回路により、流体の流れを遮る遮蔽体をコイルに対向させて周波数を検出した場合には、他方の発振回路では、前記遮蔽体をコイルに対向させずに周波数を検出するようにした、二つの発振回路と、両発振回路で検出した周波数の差を求める手段と、該手段で求めた前回の周波数の差と今回の周波数の差から周波数の差のピークの差を求める手段と、該手段で求めた周波数の差のピークの差から磁性体濃度を求める手段を設けたものである。   In the magnetic substance concentration measuring device of the present invention, when the frequency is detected by making the shielding body that blocks the flow of the fluid face the coil with one oscillation circuit, the shielding body faces the coil in the other oscillation circuit. The frequency is detected from the difference between the previous frequency and the current frequency obtained by the two oscillation circuits and the means for obtaining the difference between the frequencies detected by the two oscillation circuits. Means for obtaining the difference between the difference peaks and means for obtaining the magnetic substance concentration from the difference in the frequency difference peaks obtained by the means are provided.

又、本発明の磁性体濃度計測装置は、一方の発振回路により、流体の流れを遮る遮蔽体をコイル内に位置させて周波数を検出した場合には、他方の発振回路では、前記遮蔽体をコイル内に位置させずに周波数を検出するようにした、二つの発振回路と、両発振回路で検出した周波数の差を求める手段と、該手段で求めた前回の周波数の差と今回の周波数の差から周波数の差のピークの差を求める手段と、該手段で求めた周波数の差のピークの差から磁性体濃度を求める手段を設けたものである。   Further, in the magnetic substance concentration measuring apparatus of the present invention, when the frequency is detected by positioning the shielding body that blocks the flow of fluid in the coil by one oscillation circuit, the other oscillation circuit causes the shielding body to Two oscillation circuits that detect the frequency without being located in the coil, means for obtaining the difference between the frequencies detected by both oscillation circuits, the difference between the previous frequency obtained by the means and the current frequency Means for obtaining a peak difference of the frequency difference from the difference and means for obtaining the magnetic substance concentration from the difference of the peak of the frequency difference obtained by the means are provided.

本発明の磁性体濃度計測装置においては、遮蔽体は流体流通空間内に設置された偏心している回転体であり、又、遮蔽体は流体流通空間内に設置された直進体であり、更に、遮蔽体は非磁性体であり、遮蔽体の駆動源は電磁力を利用しない手段であり、遮蔽体の駆動により、流体流通空間内にコイルに近接して堆積している固形物を排出するよう構成されている。   In the magnetic substance concentration measuring apparatus of the present invention, the shield is an eccentric rotating body installed in the fluid circulation space, and the shield is a rectilinear body installed in the fluid circulation space, The shielding body is a non-magnetic body, and the driving source of the shielding body is a means that does not use electromagnetic force. By driving the shielding body, solid matter deposited in the vicinity of the coil in the fluid circulation space is discharged. It is configured.

本発明においては、一方の発振回路により、遮蔽体をコイルに対向させるか、或はコイル内に位置させて周波数が検出されると共に、他方の発振回路では、遮蔽体をコイルに対向させずに、或は遮蔽体をコイル内に位置させずに周波数が検出され、次いで、周波数の差が求められ、続いて、前回の周波数の差と今回の周波数の差から周波数の差のピークの差が求められ、周波数の差のピークの差から磁性体濃度が求められる。   In the present invention, the frequency is detected with one oscillating circuit facing the coil, or positioned in the coil, and the other oscillating circuit does not face the coil with the shielding. Alternatively, the frequency is detected without positioning the shield in the coil, and then the frequency difference is obtained. Subsequently, the difference between the previous frequency difference and the current frequency difference is the peak difference of the frequency difference. The magnetic substance concentration is obtained from the peak difference of the frequency difference.

本発明の請求項1〜7記載の磁性体濃度計測装置によれば、下記のごとき種々の優れた効果を奏し得る。
I)前回の周波数の差と今回の周波数の差のピークの差を計測することにより、磁気ノイズ、電磁波ノイズ、温度変化、電気的なノイズ等の外乱の影響を受けた二つの計測結果の差をとることになるため、外乱が相殺され、自動的にゼロ点が補正され、従って、ゼロ点がシフトした場合にも、自己補正することができる。
II)遮蔽体を回転若しくは、往復直進動することにより、流体流通空間内においてコイルに近接している磁性体等の固形物の堆積を排除することができる。
III)以上から外乱がある厳しい環境下でも連続して高精度に磁性体濃度の計測を行なうことができる。
According to the magnetic substance concentration measuring apparatus according to claims 1 to 7 of the present invention, various excellent effects can be obtained as follows.
I) By measuring the peak difference between the previous frequency difference and the current frequency difference, the difference between the two measurement results affected by disturbances such as magnetic noise, electromagnetic wave noise, temperature change, and electrical noise. Therefore, the disturbance is canceled out and the zero point is automatically corrected. Therefore, even when the zero point is shifted, self-correction can be performed.
II) By rotating or reciprocating linearly moving the shield, it is possible to eliminate the accumulation of solid substances such as a magnetic substance that is close to the coil in the fluid circulation space.
III) As described above, the magnetic substance concentration can be continuously measured with high accuracy even in a severe environment with disturbance.

以下、本発明の実施の形態を添付図面を参照して説明する。
図1〜図10は本発明を実施する形態の第一例である。図1において、1はエンジン等の原動機からのドレン油2が流通する管路、3は管路1の中途部から分岐した管路、4は管路3の下端部に設けられた、磁性体濃度を検出するための左右に区画された二つの室、5は室4の下端部に接続されて管路1における管路3の接続部よりもドレン油流れ方向下流側に接続された管路である。而して、室4は側面形状が円筒状で、管路3,5は室4の外周に対し接線方向へ向くよう設けられている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIGS. 1-10 is the 1st example of the form which implements this invention. In FIG. 1, 1 is a conduit through which drain oil 2 from a prime mover such as an engine flows, 3 is a conduit branched from a middle portion of the conduit 1, and 4 is a magnetic body provided at the lower end of the conduit 3. Two chambers 5 and 5 for detecting the concentration are connected to the lower end of the chamber 4 and connected to the downstream side in the drain oil flow direction of the connecting portion of the conduit 3 in the conduit 1. It is. Thus, the chamber 4 has a cylindrical shape on the side surface, and the ducts 3 and 5 are provided so as to face the tangential direction with respect to the outer periphery of the chamber 4.

各室4には、図2に示すように、円筒の軸線方向へ各室4を貫通して駆動可能な軸6が設けられていると共に、各室4内には軸6に固設された回転体7が収納されている。軸6及び回転体7は非磁性体であり、回転体7は軸6に対し偏心している。又、軸6及び回転体7の回転には、空気圧、油圧、超音波を用いたモータ等、電磁力を利用しない駆動源を用いる。このように、電磁力を利用しない駆動源を用いるのは、電動モータのような電磁力を利用した駆動源を用いると、後述のコイルに影響を与え、磁性体濃度の検出精度が低下するためである。   As shown in FIG. 2, each chamber 4 is provided with a shaft 6 that can be driven through the chamber 4 in the axial direction of the cylinder, and is fixed to the shaft 6 in each chamber 4. The rotating body 7 is accommodated. The shaft 6 and the rotating body 7 are nonmagnetic materials, and the rotating body 7 is eccentric with respect to the shaft 6. For the rotation of the shaft 6 and the rotating body 7, a driving source that does not use electromagnetic force, such as a motor using air pressure, hydraulic pressure, or ultrasonic waves, is used. As described above, the reason why the drive source that does not use electromagnetic force is used is that if a drive source that uses electromagnetic force such as an electric motor is used, the coil described later is affected, and the detection accuracy of the magnetic substance concentration is lowered. It is.

左右の室4の間に形成された空隙部8には、軸6を基準として、上下にコイル9,10が配置されており、各コイル9,10には、発振回路11,12が接続されている。   In the gap 8 formed between the left and right chambers 4, coils 9 and 10 are arranged on the top and bottom with respect to the shaft 6, and oscillation circuits 11 and 12 are connected to the coils 9 and 10. ing.

回転体7とコイル9,10とは、回転体7が回転して、図1、図2に実線で示すように、軸6に対する偏心量の大きい側が下方に位置する場合は、回転体7はコイル10に対向し、且つ、コイル9に対向しない状態となり、又、回転体7が回転して、図1、図2に仮想線で示すように、軸6に対する偏心量の大きい側が上方に位置する場合は、回転体7はコイル9に対向し、且つ、コイル10に対向しない状態となるよう形成されている。而して、室4内の回転体7が位置する側においては、流体2は回転体7により流れを阻止されるようになっており、室4内の流体2は回転体7の位置しない部分を流通するようになっている。   The rotating body 7 and the coils 9 and 10 are such that when the rotating body 7 rotates and the side with a large amount of eccentricity with respect to the shaft 6 is positioned downward as shown by the solid line in FIGS. It faces the coil 10 and does not face the coil 9, and the rotating body 7 rotates, and the side with a large eccentricity with respect to the shaft 6 is positioned upward as shown by the phantom lines in FIGS. 1 and 2. In this case, the rotating body 7 is formed to face the coil 9 and not to face the coil 10. Thus, on the side where the rotating body 7 is located in the chamber 4, the fluid 2 is prevented from flowing by the rotating body 7, and the fluid 2 in the chamber 4 is a portion where the rotating body 7 is not located. Has been distributed.

発振回路11,12からの周波数f1、f2の発振波W1、W2は夫々、重ね合わせ回路13へ与えられるようになっており、重ね合わせ回路13では、発振波W1、W2を重ね合わせることにより発信周波数f1、f2の差|f1−f2|(発振波W1、W2の共振現象によるうなりの周期)を得ると共に、うなりの周期を変換して得られた矩形波W3のデータ信号D1を出力するようになっている。而して、コイル9,10、発振回路11,12、重ね合わせ回路13により、ヘテロダイン発振回路が形成されている。   The oscillation waves W1 and W2 having the frequencies f1 and f2 from the oscillation circuits 11 and 12 are respectively supplied to the superposition circuit 13. The superposition circuit 13 transmits the oscillation waves by superimposing the oscillation waves W1 and W2. The difference between the frequencies f1 and f2 | f1-f2 | (the beat period due to the resonance phenomenon of the oscillation waves W1 and W2) is obtained, and the data signal D1 of the rectangular wave W3 obtained by converting the beat period is output. It has become. Thus, the coils 9, 10, the oscillation circuits 11, 12, and the superposition circuit 13 form a heterodyne oscillation circuit.

重ね合わせ回路13からの矩形波W3のデータ信号D1は周波数を電圧信号に変換するF/Vコンバータ(周波数−電圧変換器)14に与え得るようになっており、F/Vコンバータ14で平滑化されて、周波数に対応した直流電圧に変換されるようになっている。又、F/Vコンバータ14では、回転体7がコイル9に対向した状態の場合の直流電圧と、回転体7がコイル10に対向した状態の場合の直流電圧とのピークの差電圧信号Δfを求め、その差電圧信号Δfを検出値D2として信号処理回路15へ与え得るようになっている。更に、信号処理回路15では差信号データの検出値D2から磁性体濃度を求め得るようになっている。   The data signal D1 of the rectangular wave W3 from the superposition circuit 13 can be given to an F / V converter (frequency-voltage converter) 14 that converts a frequency into a voltage signal, and is smoothed by the F / V converter 14. Thus, it is converted into a DC voltage corresponding to the frequency. In the F / V converter 14, the peak difference voltage signal Δf between the DC voltage when the rotating body 7 faces the coil 9 and the DC voltage when the rotating body 7 faces the coil 10 is obtained. The difference voltage signal Δf can be obtained and supplied to the signal processing circuit 15 as the detection value D2. Further, the signal processing circuit 15 can obtain the magnetic substance concentration from the detected value D2 of the difference signal data.

次に、上記した実施の形態の作動を図3〜図10をも参照しつつ説明する。
原動機から排出されて管路1を送給されたドレン油2の一部は、管路1から管路3へ導入され、室4を経て管路5から管路1へ戻り、管路3へ導入されなかったドレン油2と合流して下流へ送給される。而して、ドレン油2中に含まれている磁性体の濃度を測定する場合には、回転体7は図示してない駆動源により軸6を介して回転しており、このため、コイル9,10は一定時間間隔で交互に左右の回転体7と対向した状態となり、回転体7に対向したコイル9,10は磁性体の影響を受けない状態になり、回転体7に対向しないコイル10,9は磁性体の影響を受ける状態となる。又、回転体7の回転により、コイル9,10の近傍に堆積していた磁性体等の固形物は排除されてドレン油と2と共に下流の管路5へ送給される。
Next, the operation of the above-described embodiment will be described with reference to FIGS.
Part of the drain oil 2 discharged from the prime mover and fed to the pipeline 1 is introduced from the pipeline 1 to the pipeline 3, returns to the pipeline 1 from the pipeline 5 through the chamber 4, and enters the pipeline 3. It joins with the drain oil 2 that has not been introduced and is fed downstream. Thus, when measuring the concentration of the magnetic substance contained in the drain oil 2, the rotating body 7 is rotated via the shaft 6 by a driving source (not shown). , 10 are alternately opposed to the left and right rotating bodies 7 at regular intervals, and the coils 9, 10 facing the rotating body 7 are not affected by the magnetic body, and the coils 10 not facing the rotating body 7. , 9 are affected by the magnetic material. Further, by the rotation of the rotating body 7, the solid matter such as a magnetic body deposited in the vicinity of the coils 9 and 10 is removed and fed together with the drain oil 2 and the downstream pipe 5.

図1、図2の実線に示すように、回転体7がコイル10に対向し、コイル9に対向しない状態になると、ドレン油2は、室4内をコイル9の近傍位置を経て流れるため、ドレン油2中に含まれている磁性体の影響はコイル9から発振回路11へ与えられ、発振回路11からは、磁性体の影響を含むと共に、磁気ノイズ、電磁波ノイズ、温度変化、電気的なノイズ等の外乱を含んだ周波数f1の発振波W1が発振されて重ね合わせ回路13へ与えられる(図3参照)。又、同時に、発振回路12からは、磁性体の影響を含まず、磁気ノイズ、電磁波ノイズ、温度変化、電気的なノイズ等の外乱を含んだ周波数f2の発振波W2が発振されて重ね合わせ回路13へ与えられる(図4参照)。   1 and 2, when the rotating body 7 faces the coil 10 and does not face the coil 9, the drain oil 2 flows in the chamber 4 through the vicinity of the coil 9. The influence of the magnetic substance contained in the drain oil 2 is given from the coil 9 to the oscillation circuit 11, and from the oscillation circuit 11, the influence of the magnetic substance is included, and magnetic noise, electromagnetic wave noise, temperature change, electrical An oscillation wave W1 having a frequency f1 including disturbances such as noise is oscillated and applied to the superposition circuit 13 (see FIG. 3). At the same time, the oscillation circuit 12 oscillates an oscillation wave W2 having a frequency f2 that does not include the influence of a magnetic substance and includes disturbances such as magnetic noise, electromagnetic wave noise, temperature change, and electrical noise, and is a superposition circuit. 13 (see FIG. 4).

重ね合わせ回路13では、周波数f1、f2の発振波W1、W2が重ね合わされることにより周波数f1、f2の差|f1−f2|(両者の発振波の共振現象によるうなりの周期)の波形W3(図5参照)が得られると共に、うなりの周期を変換して矩形波W4(図6参照)が得られ、矩形波W4はF/Vコンバータ14へ与えられて平滑され、周波数の差|f1−f2|に対応した直流信号V(図7参照)に変換される。なお、周波数の差|f1−f2|が大きいほど、電圧は高くなる。   In the superposition circuit 13, the oscillation waves W 1 and W 2 having the frequencies f 1 and f 2 are superposed to each other, whereby the difference between the frequencies f 1 and f 2 | f 1 −f 2 | (the period of beat due to the resonance phenomenon of both oscillation waves) 5) is obtained, and the period of beat is converted to obtain a rectangular wave W4 (see FIG. 6). The rectangular wave W4 is supplied to the F / V converter 14 and smoothed, and the frequency difference | f1− It is converted into a DC signal V (see FIG. 7) corresponding to f2 |. Note that the voltage increases as the frequency difference | f1-f2 | increases.

同様に、回転体7が回転して、図1、図2の仮想線で示すように、回転体7がコイル9に対向し、コイル10に対向しない状態になると、ドレン油2は、室4内をコイル10の近傍位置を経て流れるため、ドレン油2中に含まれている磁性体の影響はコイル10から発振回路12へ与えられ、発振回路12からは、磁性体の影響を含むと共に、磁気ノイズ、電磁波ノイズ、温度変化、電気的なノイズ等の外乱を含んだ周波数f2の発振波W2が発振されて重ね合わせ回路13へ与えられる(図4参照)。又、同時に、発振回路11からは、磁性体の影響を含まず、磁気ノイズ、電磁波ノイズ、温度変化、電気的なノイズ等の外乱を含んだ周波数f1の発振波W1が発振されて重ね合わせ回路13へ与えられる(図3参照)。   Similarly, when the rotating body 7 rotates and the rotating body 7 faces the coil 9 and does not face the coil 10 as shown by the phantom lines in FIGS. 1 and 2, the drain oil 2 flows into the chamber 4. Since it flows through the position near the coil 10 inside, the influence of the magnetic substance contained in the drain oil 2 is given from the coil 10 to the oscillation circuit 12, and from the oscillation circuit 12, the influence of the magnetic substance is included. An oscillation wave W2 having a frequency f2 including disturbances such as magnetic noise, electromagnetic wave noise, temperature change, and electrical noise is oscillated and applied to the superposition circuit 13 (see FIG. 4). At the same time, the oscillation circuit 11 oscillates an oscillating wave W1 having a frequency f1 that does not include the influence of a magnetic substance and includes disturbances such as magnetic noise, electromagnetic wave noise, temperature change, and electrical noise. 13 (see FIG. 3).

重ね合わせ回路13では、前記の場合と同様にして、周波数f1、f2の発振波W1、W2が重ね合わされることにより周波数f1、f2の差|f1−f2|(発振波W1、W2の共振現象によるうなりの周期)の波形W3(図5参照)が得られると共に、うなりの周期を変換して矩形波W4(図6参照)が得られ、矩形波W4はF/Vコンバータ14へ与えられて平滑され、周波数の差|f1−f2|に対応した直流信号V(図7参照)に変換される。   In the superposition circuit 13, the difference between the frequencies f 1 and f 2 | f 1 −f 2 | Waveform W3 (see FIG. 5) is obtained, and the beat cycle is converted to obtain a rectangular wave W4 (see FIG. 6). The rectangular wave W4 is given to the F / V converter 14. Smoothed and converted to a DC signal V (see FIG. 7) corresponding to the frequency difference | f1-f2 |.

又、F/Vコンバータ14では、回転体7がコイル10に対向していたときの周波数f1、f2の差|f1−f2|と、回転体7がコイル9に対向していたときの周波数f1、f2の差|f1−f2|の差であるピークの差である変動分|f1−f2|−|f1−f2|=Δf(図8参照)が求められ、この変動分Δfが直流電圧信号に変換され、検出値D2として信号処理回路15へ与えられる。なお、|f1−f2|−|f1−f2|の、前の絶対値記号内の|f1−f2|と、後の絶対値記号内の|f1−f2|は、回転体7対向するコイル9,10が異なるため、具体的な数値としては異なるものとなる。   In the F / V converter 14, the difference | f 1 −f 2 | between the frequencies f 1 and f 2 when the rotating body 7 faces the coil 10 and the frequency f 1 when the rotating body 7 faces the coil 9. , F2 difference | f1−f2 | is obtained as a difference in peak | f1−f2 | − | f1−f2 | = Δf (see FIG. 8). And is supplied to the signal processing circuit 15 as the detection value D2. Note that | f1-f2 | in the previous absolute value symbol of | f1-f2 |-| f1-f2 | and | f1-f2 | in the subsequent absolute value symbol are the coil 9 facing the rotating body 7. , 10 are different from each other, and the specific numerical values are different.

図8の図表は、横軸である時間軸を短縮して表示してあり、上の点線イは回転体7がコイル9に対向しているときの周波数の差|f1−f2|を示し、下の点線ロは回転体7がコイル10に対向しているときの周波数の差|f1−f2|を示している。又、X1、X2、X3・・・Xnは、回転体7がコイル9に対向しているときの周波数の差|f1−f2|のピークを示し、Y1、Y2、Y3・・・Ynは回転体7がコイル10に対向しているときの周波数の差|f1−f2|のピークを示している。   The chart of FIG. 8 is shown by shortening the time axis which is the horizontal axis, and the upper dotted line A indicates the frequency difference | f1-f2 | when the rotating body 7 faces the coil 9. The lower dotted line B shows the frequency difference | f1-f2 | when the rotating body 7 faces the coil 10. Further, X1, X2, X3... Xn indicate peaks of the frequency difference | f1-f2 | when the rotating body 7 faces the coil 9, and Y1, Y2, Y3. The peak of the frequency difference | f1−f2 | when the body 7 faces the coil 10 is shown.

更に、検出値D2と磁性体濃度との関係は予め明らかになっているため(図9参照)、信号処理回路15においては検出値D2を基に磁性体濃度C(図10参照)が求められ、この磁性体濃度Cは図示してない磁性体濃度表示器に送られ表示される。図10のグラフに示す磁性体濃度Cは、経時的変化が少ない場合を示している。   Further, since the relationship between the detection value D2 and the magnetic substance concentration has been clarified in advance (see FIG. 9), the signal processing circuit 15 obtains the magnetic substance concentration C (see FIG. 10) based on the detection value D2. The magnetic substance concentration C is sent to and displayed on a magnetic substance concentration display (not shown). The magnetic substance concentration C shown in the graph of FIG. 10 shows a case where the change with time is small.

本図示例では、回転体7を回転させて交互に回転体7をコイル9,10に対向させると共に、コイル10,9に対向させないようにしているため、検出流体であるドレン油2を交互にコイル10,9に近接させることができ、従って、周波数f1,f2の差|f1−f2|が大小を繰り返す。その結果、周波数f1,f2の差|f1−f2|の変化をピークの差(図8の変動分Δf)として計測することにより、磁気ノイズ、電磁波ノイズ、温度変化、電気的なノイズ等の外乱の影響を受けた二つの計測結果の差をとることになるため、外乱が相殺され、自動的にゼロ点が補正される(自己補正)。従って、ゼロ点がシフトした場合にも、自己補正することができる。又、回転体7を回転させることにより、コイル9,10近傍の磁性体等の固形物の堆積を排除することができる。これにより、上記したような外乱がある厳しい環境下でも連続して高精度に磁性体濃度の計測を行なうことができ、原動機等の機器のドレン油の磁性体の濃度の計測が可能となる。   In the illustrated example, the rotating body 7 is rotated so that the rotating body 7 is alternately opposed to the coils 9 and 10 and is not opposed to the coils 10 and 9. Therefore, the difference | f1-f2 | between the frequencies f1 and f2 repeats the magnitude. As a result, disturbances such as magnetic noise, electromagnetic wave noise, temperature change, and electrical noise are measured by measuring a change in the difference | f1-f2 | between the frequencies f1 and f2 as a peak difference (variation Δf in FIG. 8). Thus, the difference between the two measurement results that are affected by is compensated for the disturbance, and the zero point is automatically corrected (self-correction). Therefore, even when the zero point is shifted, self-correction can be performed. Further, by rotating the rotating body 7, it is possible to eliminate the accumulation of solid substances such as magnetic bodies in the vicinity of the coils 9 and 10. Thereby, the magnetic substance concentration can be continuously measured with high accuracy even in a severe environment with the above-mentioned disturbance, and the concentration of the magnetic substance of the drain oil of the equipment such as the prime mover can be measured.

図11、図12は本発明を実施する形態の第二例である。本図示例においては、管路3,5の軸線の延長線は、室4の中心を通るようになっており、且つ、回転体7は1個である以外は図1、図2に示す実施例と同一の構成である。図中、図1、図2に示す符号と同一の符号のものは、同一の符号が付してある。而して、斯かる構成としても、図1、図2に示す場合と同様にして磁性体濃度を求めることができ、図1、図2の例と同様の作用効果を奏することができる。   11 and 12 show a second example of an embodiment for carrying out the present invention. In the illustrated example, the extension of the axis of the pipes 3 and 5 passes through the center of the chamber 4 and the embodiment shown in FIGS. 1 and 2 except that the number of the rotating bodies 7 is one. The configuration is the same as the example. In the figure, the same reference numerals as those shown in FIGS. 1 and 2 are given the same reference numerals. Thus, even with such a configuration, the magnetic substance concentration can be obtained in the same manner as in the case shown in FIGS. 1 and 2, and the same operational effects as in the examples of FIGS. 1 and 2 can be obtained.

図13は本発明を実施する形態の第三例である。実施の形態の第一例、第二例においては、回転体7を回転させることにより、ドレン油2に含まれている磁性体の影響を受けるコイル9,10と受けないコイル10,9を交互に選択する場合について説明したが、本図示例においては、流体圧シリンダのようなアクチュエータ16により、外周にコイル9,10が巻付けられている管路18の内部に対し直進体17を昇降させ、直進体17により、磁性体の影響を受けるコイル9,10と受けないコイル10,9を交互に選択するようにしている。   FIG. 13 shows a third example of an embodiment for carrying out the present invention. In the first example and the second example of the embodiment, by rotating the rotating body 7, the coils 9 and 10 which are affected by the magnetic body contained in the drain oil 2 and the coils 10 and 9 which are not received are alternately arranged. In the illustrated example, the linearly moving body 17 is moved up and down with respect to the inside of the pipe line 18 around which the coils 9 and 10 are wound by the actuator 16 such as a fluid pressure cylinder. The coils 9 and 10 that are affected by the magnetic material and the coils 10 and 9 that are not affected are alternately selected by the rectilinear body 17.

図中、19は管路18へ導入するためのドレン油2が送給される管路、20は管路19からのドレン油2が導入されると共に、管路19及び管路18が連通するよう、直進体17が上昇する退避空隙20aを備えたケーシング、21は継手22を介して接続されて管路18から排出されたドレン油2を排出するための管路である。又、磁性体濃度計測のための回路は、実施の形態の第一例、第二例と同じであり、図中、図1、図2、図11、図12に示す符号と同一のものには同一の符号が付してある。   In the figure, 19 is a pipeline through which drain oil 2 to be introduced into the pipeline 18 is fed, 20 is introduced with drain oil 2 from the pipeline 19, and the pipeline 19 and the pipeline 18 communicate with each other. As described above, a casing 21 having a retracting gap 20a in which the rectilinear body 17 ascends is a conduit for discharging the drain oil 2 that is connected through the joint 22 and discharged from the conduit 18. In addition, the circuit for measuring the magnetic substance concentration is the same as the first example and the second example of the embodiment, and in the figure, the same reference numerals as shown in FIGS. 1, 2, 11, and 12 are used. Are given the same reference numerals.

本図示例において、コイル9に磁性体の影響を与えず、コイル10に磁性体の影響を与える場合には、直進体17はコイル9内に挿入されたごとき状態にする。又、コイル10に磁性体の影響を与えず、コイル9に磁性体の影響を与える場合には、直進体17はコイル10内に挿入されたごとき状態とする。而して、本図示例においても、実施の形態の第一例及び第二例と同様にして磁性体濃度の計測を行なうことができ、同様の作用効果を奏することができる。   In the illustrated example, when the coil 9 is not affected by the magnetic material and the coil 10 is affected by the magnetic material, the rectilinear body 17 is brought into a state of being inserted into the coil 9. When the magnetic material is not affected to the coil 10 and the magnetic material is affected to the coil 9, the linearly moving body 17 is in a state as inserted into the coil 10. Thus, also in the illustrated example, the magnetic substance concentration can be measured in the same manner as in the first and second examples of the embodiment, and the same effect can be obtained.

なお、本発明の磁性体濃度計測装置においては、回転体7は連続的に回転させても、或はコイル9,10に対向する位置で停止するよう間歇的に回転させても実施可能であること、直進体17はコイル9,10位置で停止しないよう連続的に往復直進動させても、或はコイル9,10の位置で停止するよう、間歇的に往復直進動させても実施し得ること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In the magnetic substance concentration measuring device of the present invention, the rotating body 7 can be continuously rotated or intermittently rotated so as to stop at a position facing the coils 9 and 10. In addition, the rectilinear body 17 may be continuously reciprocated so as not to stop at the positions of the coils 9 and 10 or may be intermittently reciprocated so as to stop at the positions of the coils 9 and 10. Of course, various changes can be made without departing from the scope of the present invention.

本発明の磁性体濃度計測装置の実施の形態の第一例の側断面図である。It is a sectional side view of the 1st example of embodiment of the magnetic substance concentration measuring apparatus of this invention. 図1のII−II方向矢視図である。It is an II-II direction arrow line view of FIG. 周波数f1の発振波を示す図表である。It is a chart which shows the oscillation wave of frequency f1. 周波数f2の発振波を示す図表である。It is a chart which shows the oscillation wave of frequency f2. 周波数f1、f2の発振波を重ね合わせて得られた波形を示す図表である。It is a graph which shows the waveform obtained by superimposing the oscillation wave of frequency f1, f2. 図5の波形を変換して得られた矩形波を示す図表である。6 is a chart showing a rectangular wave obtained by converting the waveform of FIG. 5. 矩形波を平滑化して得られた周波数の差を直流信号に変換した図表である。It is the chart which converted the difference of the frequency obtained by smoothing a rectangular wave into a direct current signal. 回転体が対向するコイルの違いにより得られた周波数の差のピークの差を示す図表である。It is a graph which shows the difference of the peak of the difference of the frequency obtained by the difference of the coil which a rotary body opposes. 検出値と磁性体濃度との関係を示す図表である。It is a graph which shows the relationship between a detected value and a magnetic body density | concentration. 磁性体濃度の経時的な変化の状態を示す図表である。It is a graph which shows the state of a change with time of a magnetic body concentration. 本発明の磁性体濃度計測装置の実施の形態の第二例の側断面図である。It is a sectional side view of the 2nd example of an embodiment of a magnetic substance concentration measuring device of the present invention. 図11のXII−XII方向矢視図である。It is a XII-XII direction arrow directional view of FIG. 本発明の磁性体濃度計測装置の実施の形態の第三例の側断面図である。It is a sectional side view of the 3rd example of embodiment of the magnetic substance concentration measuring apparatus of this invention.

符号の説明Explanation of symbols

4 室(流体流通空間)
5 管路(流体流通空間)
7 回転体(遮蔽体)
9 コイル
10 コイル
11 発振回路
12 発振回路
13 重ね合わせ回路(手段)
14 F/Vコンバータ(手段)
15 信号処理回路(手段)
17 直進体(遮蔽体)
18 管路(流体流通空間)
C 磁性体濃度
f1 周波数
f2 周波数
Δf 変動分(周波数の差のピークの差)
4 rooms (fluid distribution space)
5 pipeline (fluid distribution space)
7 Rotating body (shield)
9 Coil 10 Coil 11 Oscillation circuit 12 Oscillation circuit 13 Overlay circuit (means)
14 F / V converter (means)
15 Signal processing circuit (means)
17 Straight body (shield)
18 Pipeline (fluid distribution space)
C Magnetic substance concentration f1 Frequency f2 Frequency Δf Fluctuation (Frequency difference peak difference)

Claims (7)

一方の発振回路により、流体の流れを遮る遮蔽体をコイルに対向させて周波数を検出した場合には、他方の発振回路では、前記遮蔽体をコイルに対向させずに周波数を検出するようにした、二つの発振回路と、両発振回路で検出した周波数の差を求める手段と、該手段で求めた前回の周波数の差と今回の周波数の差から周波数の差のピークの差を求める手段と、該手段で求めた周波数の差のピークの差から磁性体濃度を求める手段を設けたことを特徴とする磁性体濃度計測装置。   In one oscillation circuit, when the frequency is detected by making the shield that blocks the flow of fluid face the coil, the other oscillation circuit detects the frequency without making the shield face the coil. , Two oscillation circuits, a means for obtaining a difference between the frequencies detected by both oscillation circuits, a means for obtaining a difference between the previous frequency difference obtained by the means and a difference between the current frequency and a peak difference of the frequency difference; A magnetic substance concentration measuring apparatus comprising means for obtaining a magnetic substance concentration from a difference in peak of a frequency difference obtained by said means. 一方の発振回路により、流体の流れを遮る遮蔽体をコイル内に位置させて周波数を検出した場合には、他方の発振回路では、前記遮蔽体をコイル内に位置させずに周波数を検出するようにした、二つの発振回路と、両発振回路で検出した周波数の差を求める手段と、該手段で求めた前回の周波数の差と今回の周波数の差から周波数の差のピークの差を求める手段と、該手段で求めた周波数の差のピークの差から磁性体濃度を求める手段を設けたことを特徴とする磁性体濃度計測装置。   When one of the oscillation circuits detects a frequency by positioning a shield that blocks the flow of fluid in the coil, the other oscillation circuit detects the frequency without positioning the shield in the coil. The two oscillation circuits, means for obtaining the difference between the frequencies detected by the two oscillation circuits, and means for obtaining the peak difference of the frequency difference from the previous frequency difference obtained by the means and the current frequency difference And a magnetic substance concentration measuring device comprising means for obtaining a magnetic substance concentration from a difference in peaks of frequency differences obtained by the means. 遮蔽体は流体流通空間内に設置された偏心している回転体である請求項1記載の磁性体濃度計測装置。   The magnetic substance concentration measuring apparatus according to claim 1, wherein the shield is an eccentric rotating body installed in the fluid circulation space. 遮蔽体は流体流通空間内に設置された直進体である請求項2記載の磁性体濃度計測装置。   3. The magnetic substance concentration measuring apparatus according to claim 2, wherein the shield is a straight body installed in the fluid circulation space. 遮蔽体は非磁性体である請求項1乃至4の何れかに記載の磁性体濃度計測装置。   The magnetic substance concentration measuring apparatus according to claim 1, wherein the shield is a non-magnetic substance. 遮蔽体の駆動源は電磁力を利用しない手段である請求項1乃至5の何れかに記載の磁性体濃度計測装置。   6. The magnetic substance concentration measuring apparatus according to claim 1, wherein the driving source of the shield is a means that does not use electromagnetic force. 遮蔽体の駆動により、流体流通空間内にコイルに近接して堆積している固形物を排出するよう構成した請求項1乃至6の何れかに記載の磁性体濃度計測装置。   The magnetic substance concentration measuring device according to any one of claims 1 to 6, wherein solid substances deposited close to the coil in the fluid circulation space are discharged by driving the shield.
JP2005139524A 2005-05-12 2005-05-12 Magnetic substance concentration measuring device Active JP4014605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139524A JP4014605B2 (en) 2005-05-12 2005-05-12 Magnetic substance concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139524A JP4014605B2 (en) 2005-05-12 2005-05-12 Magnetic substance concentration measuring device

Publications (2)

Publication Number Publication Date
JP2006317251A true JP2006317251A (en) 2006-11-24
JP4014605B2 JP4014605B2 (en) 2007-11-28

Family

ID=37538062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139524A Active JP4014605B2 (en) 2005-05-12 2005-05-12 Magnetic substance concentration measuring device

Country Status (1)

Country Link
JP (1) JP4014605B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2015062A1 (en) * 2006-04-28 2009-01-14 Diesel United, Ltd. Conductive material concentration measuring device and magnetic material concentration measuring material
CN102331389A (en) * 2010-11-30 2012-01-25 蒋伟平 High-sensitivity oil abrasive grain on-line monitoring sensor
CN102331390A (en) * 2010-11-30 2012-01-25 蒋伟平 Flowing oil metal particle on-line monitoring sensor
JP2012132887A (en) * 2010-12-24 2012-07-12 Diesel United:Kk Conducting foreign body detection apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866086B (en) * 2010-11-30 2017-04-12 浙江中欣动力测控技术有限公司 On-line monitoring sensor of metal particles in flowing oil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2015062A1 (en) * 2006-04-28 2009-01-14 Diesel United, Ltd. Conductive material concentration measuring device and magnetic material concentration measuring material
EP2015062A4 (en) * 2006-04-28 2010-04-21 Diesel United Ltd Conductive material concentration measuring device and magnetic material concentration measuring material
US8037740B2 (en) 2006-04-28 2011-10-18 Diesel United, Ltd. Conductive material concentration measuring device and magnetic material concentration measuring device
CN102331389A (en) * 2010-11-30 2012-01-25 蒋伟平 High-sensitivity oil abrasive grain on-line monitoring sensor
CN102331390A (en) * 2010-11-30 2012-01-25 蒋伟平 Flowing oil metal particle on-line monitoring sensor
JP2012132887A (en) * 2010-12-24 2012-07-12 Diesel United:Kk Conducting foreign body detection apparatus

Also Published As

Publication number Publication date
JP4014605B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
Ren et al. Inductive debris sensor using one energizing coil with multiple sensing coils for sensitivity improvement and high throughput
JP4014605B2 (en) Magnetic substance concentration measuring device
JP5399413B2 (en) Flangeless magnetic flow meter with integrated retaining ring, valve seat, and liner protector
JP4669495B2 (en) Control method of Coriolis type mass flow measuring device
US9964435B2 (en) Dynamic characteristic measurement device of centrifugal rotation machine, and centrifugal rotation machine
CN102652253B (en) Method for operating a coriolis mass flow rate meter and coriolis mass flow rate meter
KR101650732B1 (en) A vibrating densitometer including an improved vibrating member
CN106796130B (en) Magnetic flowmeter with automatic in-situ self-cleaning function
JP2011080814A (en) Device and method for detecting deterioration of lubricant for machine tool
CN110063023A (en) Method for monitoring the operation of rotating electric machine
JP2000503770A (en) Mass flow meter
CN102175304B (en) Multi-dimensional vibration sensor
JP2012154916A (en) Sensor assembly and methods of measuring proximity of machine component to sensor
BRPI1104829A2 (en) microwave sensor array and power systems
JP3682460B1 (en) Athletic institution
US11326919B2 (en) Coriolis mass flow meter having a central vibration sensor and method for determining the viscosity of the medium using Coriolis mass flow meter
JP2012127962A (en) Sensor assembly and method for measuring proximity of machine component to emitter
RU2693740C1 (en) Eddy current meter
Benra et al. Measurement of flow induced rotor oscillations in a single-blade centrifugal pump
JP6452558B2 (en) Method and apparatus for measuring thinning of outer surface of buried pipe, etc.
JPH07260743A (en) Flaw detector
Kenull et al. Formation of self‐excited vibrations in wet rotor motors and their influence on the motor current
OKUBO et al. Magnetic Fluid Flows in a Rotating Magnetic Field (Shape of Free Surface and Circulation Velocity)
RU2354941C1 (en) Device to measure rotary shaft axial force and rpm
JP6777452B2 (en) Conductor concentration measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4014605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250