JP2006312578A - Graphite material and its manufacturing method, negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell and lithium ion secondary cell - Google Patents

Graphite material and its manufacturing method, negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell and lithium ion secondary cell Download PDF

Info

Publication number
JP2006312578A
JP2006312578A JP2005246034A JP2005246034A JP2006312578A JP 2006312578 A JP2006312578 A JP 2006312578A JP 2005246034 A JP2005246034 A JP 2005246034A JP 2005246034 A JP2005246034 A JP 2005246034A JP 2006312578 A JP2006312578 A JP 2006312578A
Authority
JP
Japan
Prior art keywords
graphite
graphite material
precursor
negative electrode
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005246034A
Other languages
Japanese (ja)
Other versions
JP4751138B2 (en
Inventor
Kunihiko Eguchi
邦彦 江口
Makiko Ijiri
真樹子 井尻
Katsuhiro Nagayama
勝博 長山
Hitomi Hatano
仁美 羽多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Publication of JP2006312578A publication Critical patent/JP2006312578A/en
Application granted granted Critical
Publication of JP4751138B2 publication Critical patent/JP4751138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a graphite material capable of obtaining a high discharging capacity and a high initial charging and discharging efficiency as a negative electrode material for a lithium ion secondary cell and further capable of obtaining excellent rapid charging and discharging characteristic and cycle characteristic, further to provide a manufacturing method of the graphite material, the negative electrode material for the lithium ion secondary cell containing the graphite material, a negative electrode for the lithium ion secondary cell containing the negative electrode material and the lithium ion secondary cell using the negative electrode. <P>SOLUTION: In the manufacturing method of the graphite material, the graphite material having bump of ≥1 μm height on the surface, a graphite precursor and a metallic compound are mixed in a liquid phase, then the mixture is heated at ≥1,500°C to graphitize. The negative electrode material for the lithium ion secondary cell contains the graphite material. The negative electrode contains the negative electrode material. The lithium ion secondary cell uses the negative electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、黒鉛質材料とその製造方法、該黒鉛質材料を含有するリチウムイオン二次電池用負極材料、該負極材料を含む負極、さらには該負極を用いたリチウムイオン二次電池に関する。   The present invention relates to a graphite material and a production method thereof, a negative electrode material for a lithium ion secondary battery containing the graphite material, a negative electrode including the negative electrode material, and a lithium ion secondary battery using the negative electrode.

近年、電子機器の小型化あるいは高性能化に伴い、電池の高エネルギー密度化に対する要望はますます高まっている。特に、リチウムイオン二次電池は、他の二次電池に比べて高電圧化が可能であり、エネルギー密度を高められるため注目されている。リチウムイオン二次電池は、負極、正極および非水電解質を主たる構成要素とする。非水電解質から生じるリチウムイオンは、放電過程および充電過程で負極と正極との間を移動し、二次電池となる。通常、上記のリチウムイオン二次電池の負極材料には炭素材料が使用される。このような炭素材料として、特に、充放電特性に優れ、高い放電容量と電位平坦性とを示す黒鉛(特許文献1)が有望視されている。   In recent years, with the miniaturization or high performance of electronic devices, there is an increasing demand for higher energy density of batteries. In particular, lithium ion secondary batteries are attracting attention because they are capable of higher voltages than other secondary batteries and can increase energy density. A lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components. Lithium ions generated from the non-aqueous electrolyte move between the negative electrode and the positive electrode during the discharge process and the charge process to form a secondary battery. Usually, a carbon material is used for the negative electrode material of the lithium ion secondary battery. As such a carbon material, graphite (Patent Document 1) that is excellent in charge / discharge characteristics and exhibits high discharge capacity and potential flatness is particularly promising.

負極材料として使用される黒鉛(黒鉛質粒子)としては、天然黒鉛、人造黒鉛などの黒鉛粒子、さらにはタール、ピッチを原料としたメソフェーズピッチやメソフェーズ小球体を熱処理して得られるバルクメソフェーズ黒鉛質粒子やメソフェーズ小球体黒鉛質粒子、粒子状や繊維状のメソフェーズピッチを酸化不融化した後に熱処理して得られるメソフェーズ黒鉛質粒子やメソフェーズ黒鉛質繊維、天然黒鉛や人造黒鉛をタール、ピッチなどで被覆した後に熱処理して得られる複合黒鉛質粒子などが挙げられる。   The graphite (graphite particles) used as the negative electrode material includes bulk graphite particles such as natural graphite and artificial graphite, as well as bulk mesophase graphite obtained by heat treatment of mesophase pitch and mesophase spherules made from tar and pitch. Particles, mesophase small spherical graphite particles, mesophase graphite particles and mesophase graphite fibers obtained by heat-treating particulate or fibrous mesophase pitch after oxidation infusibilization, natural graphite and artificial graphite are coated with tar, pitch, etc. And composite graphite particles obtained by heat treatment.

さらに、急速充放電特性やサイクル特性の向上を目的として、上記黒鉛質粒子に導電助材を配合、複合することが検討されている。例えば、球状粒子よりなる黒鉛材料と炭素繊維とからなる複合炭素材(特許文献2)、メソフェーズ小球体黒鉛質粒子に気相成長炭素繊維を3〜30質量%混合したもの(特許文献3、4)、球状黒鉛または鱗片状黒鉛に繊維状黒鉛を含有させたもの(特許文献5)、炭素材料の表面に分散させた金属触媒により、気相成長炭素繊維または炭素ナノチューブを生成させ、その炭素材料をそのまま負極活物質として使用するもの(特許文献6)、メソフェーズ小球体などの母粒子にアモルファスカーボンからなる子粒子を機械力を加えて一体化したもの(特許文献7)が挙げられる。   Furthermore, for the purpose of improving rapid charge / discharge characteristics and cycle characteristics, it has been studied to mix and combine a conductive additive with the graphite particles. For example, a composite carbon material composed of a graphite material composed of spherical particles and carbon fibers (Patent Document 2), a mesophase small spherical graphite particle mixed with 3 to 30% by mass of vapor grown carbon fiber (Patent Documents 3 and 4) ), Spherical graphite or scaly graphite containing fibrous graphite (Patent Document 5), and a metal catalyst dispersed on the surface of the carbon material to produce vapor-grown carbon fiber or carbon nanotube, and the carbon material Are used as negative electrode active materials as they are (Patent Document 6), and mesophase spherules and other mother particles are made by integrating mechanical particles of amorphous carbon by applying mechanical force (Patent Document 7).

前記従来のリチウムイオン二次電池用負極材料は、リチウムイオン二次電池の放電容量や初期充放電効率を大きく劣化させることなく、急速充放電特性やサイクル特性をそれなりに向上させることができるが、下記のような課題も有している。   The negative electrode material for the conventional lithium ion secondary battery can improve the rapid charge / discharge characteristics and cycle characteristics as it is without greatly degrading the discharge capacity and initial charge / discharge efficiency of the lithium ion secondary battery, It also has the following problems.

特許文献2〜5に記載された、黒鉛質粒子に気相成長炭素繊維を混合、または球状黒鉛もしくは鱗片状黒鉛に繊維状黒鉛を混合しただけの負極材料の場合、黒鉛化した気相成長炭素繊維自体の放電容量や初期充放電効率が、母体のメソフェーズ黒鉛よりも低いため、負極材料としての放電容量や初期充放電効率が低下する問題がある。また気相成長炭素繊維が母体のメソフェーズ黒鉛と接触する機会が少なく、導電性の向上に寄与しないものが多い。その結果、急速充放電特性やサイクル特性の改良効果が充分なレベルにあるとは言えない。さらに、気相成長炭素繊維は比較的高価であり、3〜20質量%という多量の混合を必要とすることから、コストアップの問題もある。加えて、負極を製造する場合、一般に、負極材料、溶媒、結合剤を混合して負極合剤ペーストを調製し、これを集電体に塗布する方法が採られるが、気相成長炭素繊維の混合量が多いため、負極合剤ペーストの粘度が不安定になるなどの問題もある。   In the case of a negative electrode material described in Patent Documents 2 to 5, in which vapor-grown carbon fibers are mixed with graphite particles, or in which only fibrous graphite is mixed with spherical graphite or scaly graphite, graphitized vapor-grown carbon Since the discharge capacity and initial charge / discharge efficiency of the fiber itself are lower than that of the base mesophase graphite, there is a problem that the discharge capacity and the initial charge / discharge efficiency as the negative electrode material are lowered. In addition, there are few opportunities for vapor-grown carbon fibers to come into contact with the base mesophase graphite, and many of them do not contribute to improvement of conductivity. As a result, it cannot be said that the effect of improving rapid charge / discharge characteristics and cycle characteristics is at a sufficient level. Furthermore, the vapor grown carbon fiber is relatively expensive and requires a large amount of mixing of 3 to 20% by mass, which causes a problem of cost increase. In addition, when manufacturing a negative electrode, generally, a method of preparing a negative electrode mixture paste by mixing a negative electrode material, a solvent and a binder and applying this to a current collector is adopted. Since the mixing amount is large, there is a problem that the viscosity of the negative electrode mixture paste becomes unstable.

特許文献6に記載された、炭素材料の表面に気相成長炭素繊維またはカーボンナノチューブを生成させた負極材料の場合、黒鉛質材料に直接または非晶質炭素前駆体とともに、金属触媒をドーピングし、該触媒を起点にしてカーボンナノチューブを形成することにより、黒鉛質材料間の導電性を改善している。しかし、形成されたカーボンナノチューブは、黒鉛質材料の基材または表面の非晶質炭素膜の表面に存在する触媒金属から成長しているため、黒鉛質材料から脱離または破損しやすく、充放電効率やサイクル特性の向上効果が小さくなることがある。また得られる負極材料中に触媒金属が残存するため、電池特性に悪影響を及ぼすことがある。さらに、製造工程が煩雑で、かつ収率が低く、工業的にはコストアップの問題がある。   In the case of the negative electrode material in which vapor-grown carbon fibers or carbon nanotubes are generated on the surface of the carbon material described in Patent Document 6, the metal material is doped with the graphite catalyst directly or together with the amorphous carbon precursor, By forming carbon nanotubes starting from the catalyst, the conductivity between the graphite materials is improved. However, the formed carbon nanotubes are grown from the catalytic metal existing on the surface of the graphite material substrate or the surface of the amorphous carbon film, so that they are easily detached or damaged from the graphite material, and charge / discharge The effect of improving efficiency and cycle characteristics may be reduced. In addition, since the catalyst metal remains in the obtained negative electrode material, the battery characteristics may be adversely affected. Further, the manufacturing process is complicated and the yield is low, and there is a problem of cost increase industrially.

特許文献7に記載された、メソフェーズ小球体などの母粒子にアモルファスカーボンなどからなる子粒子をメカノケミカル処理によって付着させ、一体化した負極材料の場合、平均粒子径が100nm以下と小さいアモルファスカーボンなどを表面に付着させることによって、負極材料の比表面積を増加させ、電解液に接する比表面積を大きくすることで反応性を高めることを意図している。しかし、メカノケミカル処理によって母粒子に付着可能な子粒子の平均粒子径が100nm以下であっても、形成された複合粒子の子粒子は、負極合剤ペーストを調製する際の攪拌力によって、脱離しやすいものであり、また、この方法では、平均粒子径が100nm(=0.1μm)超の子粒子を付着させることは困難であり、付着した場合も容易に脱離してしまうことから、急速放電特性への効果が小さくかつ不安定である。   In the case of an integrated negative electrode material in which child particles made of amorphous carbon or the like are attached to mother particles such as mesophase small spheres described in Patent Document 7 by mechanochemical treatment, amorphous carbon having a small average particle diameter of 100 nm or less, etc. It is intended to increase the reactivity by increasing the specific surface area of the negative electrode material by increasing the specific surface area in contact with the electrolytic solution. However, even if the average particle diameter of the child particles that can adhere to the mother particles by mechanochemical treatment is 100 nm or less, the formed child particles of the composite particles are removed by the stirring force when preparing the negative electrode mixture paste. In this method, it is difficult to attach the child particles having an average particle diameter of more than 100 nm (= 0.1 μm). The effect on the discharge characteristics is small and unstable.

特許文献8には、炭素原料を、金属化合物の溶液で含浸したのち、炭化と黒鉛化を引続いて行って負極用黒鉛を製造する方法が記載されている。この製造方法は、該金属化合物の金属が有する黒鉛化の促進作用を利用したものであり、結晶性の低い部分の黒鉛化が促進され、容量を向上させる点に特徴がある。しかし、負極用黒鉛の黒鉛化度を高めるだけで、導電性や反応性を高める作用は、前述の従来技術と同程度に不十分であり、近年の高水準の急速充放電特性やサイクル特性の要求を満足できない。
特公昭62−23433号公報 特開平4−237971号公報 特開平6−111818号公報 特開平11−176442号公報 特開平9−213372号公報 特開2001−196064号公報 特開平11−265716号公報 特開平10−255770号公報
Patent Document 8 describes a method of producing graphite for negative electrode by impregnating a carbon raw material with a solution of a metal compound and subsequently performing carbonization and graphitization. This production method utilizes the graphitization-promoting action of the metal of the metal compound, and is characterized in that the graphitization of the portion having low crystallinity is promoted and the capacity is improved. However, simply increasing the graphitization degree of the graphite for negative electrode, the effect of increasing the conductivity and reactivity is not as good as the above-mentioned prior art, and the high-level rapid charge / discharge characteristics and cycle characteristics in recent years are not sufficient. The request cannot be satisfied.
Japanese Examined Patent Publication No. 62-23433 JP-A-4-237971 JP-A-6-111818 Japanese Patent Laid-Open No. 11-176442 JP-A-9-213372 JP 2001-196064 A JP-A-11-265716 JP 10-255770 A

本発明は、上記のような状況に鑑みてなされたものであり、リチウムイオン二次電池用負極材料として、高い放電容量および高い初期充放電効率が得られ、さらに優れた急速充放電特性および優れたサイクル特性が得られ、加えて、工業的観点からも簡便かつ安価に製造することが可能な黒鉛質材料を提供することを目的とする。また、その黒鉛質材料の製造方法と、その黒鉛質材料を用いてなるリチウムイオン二次電池用負極材料、その負極材料を含有する負極、およびその負極を用いたリチウムイオン二次電池を提供することが目的である。   The present invention has been made in view of the above situation, and as a negative electrode material for a lithium ion secondary battery, high discharge capacity and high initial charge / discharge efficiency are obtained, and further excellent rapid charge / discharge characteristics and excellent Another object of the present invention is to provide a graphitic material that can be produced easily and inexpensively from an industrial point of view. Also provided are a method for producing the graphite material, a negative electrode material for a lithium ion secondary battery using the graphite material, a negative electrode containing the negative electrode material, and a lithium ion secondary battery using the negative electrode. Is the purpose.

本発明は、表面に高さ1μm以上の隆起を有することを特徴とする黒鉛質材料である。   The present invention is a graphitic material characterized by having a bulge having a height of 1 μm or more on the surface.

このような本発明の黒鉛質材料において、前記隆起の高さhと基底長gとの比(h/g)の平均値が0.1〜15であることが好ましい。   In such a graphite material of the present invention, the average value of the ratio (h / g) between the height h of the ridge and the base length g is preferably 0.1 to 15.

また、前記黒鉛質材料の平均粒子径が1〜100μmであることが好ましい。   Moreover, it is preferable that the average particle diameter of the said graphite material is 1-100 micrometers.

また、前記隆起の数が2〜20個/100μmであることが好ましい。 Further, it is preferable that the number of said raised is 2-20 / 100 [mu] m 2.

また、前記黒鉛質材料がメソフェーズ小球体の黒鉛化物であることが好ましい。   Moreover, it is preferable that the graphite material is a graphitized product of mesophase spherules.

また、本発明は、炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属材料を、非溶液状態で黒鉛質材料の前駆体に接触させて前記金属材料を前記前駆体に点在させ、1500℃以上の温度で加熱する、黒鉛質材料の製造方法である。
ここで、「炭素と反応する性質」は、炭素と炭化物を形成する性質であることが好ましい。
また、「前記金属材料を前記前駆体に点在させ」るとは、「前記金属材料を分散して前記前駆体に付着させ」ることを意味する。
In addition, the present invention provides a metal material having at least one of a property of reacting with carbon and a property of dissolving carbon in contact with a precursor of a graphite material in a non-solution state, thereby bringing the metal material into the precursor. It is a method for producing a graphite material, which is scattered in the body and heated at a temperature of 1500 ° C. or higher.
Here, “the property of reacting with carbon” is preferably a property of forming a carbide with carbon.
Further, “to make the metal material interspersed with the precursor” means “to disperse the metal material and attach it to the precursor”.

このような本発明の黒鉛質材料の製造方法において、前記金属材料が粉末状であることが好ましい。   In such a method for producing a graphite material of the present invention, the metal material is preferably in the form of powder.

また、前記金属材料と前記前駆体とを分散媒中で混合した後、前記分散媒を除去して、前記金属材料を前記前駆体に点在させることが好ましい。   Moreover, it is preferable that after mixing the metal material and the precursor in a dispersion medium, the dispersion medium is removed, and the metal material is interspersed in the precursor.

また、前記金属材料を、PVD(Physical Vapor Deposition)法またはCVD(Chemical Vapor Deposition)法により前記前駆体に点在させることが好ましい。   In addition, the metal material is preferably interspersed with the precursor by a PVD (Physical Vapor Deposition) method or a CVD (Chemical Vapor Deposition) method.

また、前記前駆体が、その表面の少なくとも一部に光学的等方性の結晶構造を有することが好ましい。   The precursor preferably has an optically isotropic crystal structure on at least a part of its surface.

また、本発明は、炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属材料と、黒鉛化後に少なくとも一部に光学的等方性の結晶構造を形成する炭素源物質とを混合し、得られた混合物を、黒鉛質材料の前駆体に付着させ、1500℃以上の温度で加熱する、黒鉛質材料の製造方法である。   The present invention also provides a metal material having at least one of a property of reacting with carbon and a property of dissolving carbon, and a carbon source that forms an optically isotropic crystal structure at least partially after graphitization. This is a method for producing a graphite material, in which a substance is mixed and the obtained mixture is attached to a precursor of a graphite material and heated at a temperature of 1500 ° C. or higher.

このような本発明の黒鉛質材料の製造方法において、前記加熱温度が、1500〜3300℃であることが好ましい。   In such a method for producing a graphite material of the present invention, the heating temperature is preferably 1500 to 3300 ° C.

また、前記前駆体がメソフェーズ小球体であることが好ましい。   The precursor is preferably a mesophase microsphere.

また、本発明は、上記のいずれかに記載の黒鉛質材料を含むリチウムイオン二次電池用負極材料である。   Moreover, this invention is a negative electrode material for lithium ion secondary batteries containing the graphite material in any one of said.

また、本発明は、前記リチウムイオン二次電池用負極材料を含有するリチウムイオン二次電池用負極である。   Moreover, this invention is a negative electrode for lithium ion secondary batteries containing the said negative electrode material for lithium ion secondary batteries.

さらに、本発明は、前記リチウムイオン二次電池用負極を用いたリチウムイオン二次電池である。   Furthermore, this invention is a lithium ion secondary battery using the said negative electrode for lithium ion secondary batteries.

本発明の黒鉛質材料を負極材料として用いてなるリチウムイオン二次電池は、高い急速充電率、急速放電率を有し、初期充放電効率およびサイクル特性にも優れ、かつ放電容量にも優れるばかりでなく、黒鉛質材料自体の製造コストも低い。
そのため、本発明の負極材料を用いてなるリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有効である。
The lithium ion secondary battery using the graphite material of the present invention as a negative electrode material has a high rapid charge rate and rapid discharge rate, excellent initial charge / discharge efficiency and cycle characteristics, and excellent discharge capacity. In addition, the manufacturing cost of the graphite material itself is low.
Therefore, the lithium ion secondary battery using the negative electrode material of the present invention satisfies the recent demand for higher energy density of the battery, and is effective in reducing the size and performance of the mounted device.

以下、本発明をより具体的に説明する。
リチウムイオン二次電池は、通常、非水電解質、負極および正極を主たる電池構成要素とし、これら要素が、例えば、電池缶内に封入されている。負極および正極はそれぞれリチウムイオンの担持体として作用する。充電時にはリチウムイオンが負極中に吸蔵され、放電時には負極からリチウムイオンが離脱する電池機構によっている。
Hereinafter, the present invention will be described more specifically.
A lithium ion secondary battery usually has a non-aqueous electrolyte, a negative electrode, and a positive electrode as main battery components, and these components are enclosed in, for example, a battery can. The negative electrode and the positive electrode each act as a lithium ion carrier. The battery mechanism is such that lithium ions are occluded in the negative electrode during charging, and lithium ions are released from the negative electrode during discharging.

(黒鉛質材料)
本発明の黒鉛質材料は、[図1]に示すように、母材1の表面2に隆起3を有している。隆起3は、黒鉛質材料の母材1の表面2から盛上がった状態にあり、隆起3は母材1と同質で一体的に形成され、隆起3と母材1の間に界面、境界線は存在しないことが好ましい。隆起3は半球状ないし球状、頭部が球形の円柱状などの稜線が実質的に存在しない球面体や曲面体であることが多いが、これに限定されない。ただし、隆起3の形状は、半球状ないし球状の比率が高いほど、特に球状の比率が高いほど好ましい。このような形状にすることにより、リチウムイオン二次電池の負極材料に用いたときに、黒鉛質材料同士の接点が増大し、かつ形成される空間の大きさが適度であって、電解質(以下、電解質溶液も電解質と呼ぶ)が浸透しやすい。隆起3は、黒鉛質材料の母材1の表面に、黒鉛化の際に通常生じる、波状の連続したしわ4とは異なり、個別に点在していることが好ましい。隆起3は、しわ4の上に存在しても差し支えない。
なお、本発明でいう母材とは、図1からもわかるように、黒鉛質材料の1個を個別に見た場合、隆起、しわおよび/または付着物(メソフェーズ小球体を製造する際に表面に付着した異種物質(煤など)や黒鉛化の際に融着した微粉(同一の黒鉛前駆体に由来))などとみなせる部分を仮定的に除去した部分である。
(Graphite material)
As shown in FIG. 1, the graphite material of the present invention has a ridge 3 on the surface 2 of the base material 1. The protuberance 3 is in a state of rising from the surface 2 of the base material 1 of the graphite material, and the protuberance 3 is integrally formed with the same material as the base material 1, and an interface and a boundary line are formed between the protuberance 3 and the base material 1. Is preferably absent. The ridge 3 is often a spherical body or a curved body having substantially no ridge line, such as a hemispherical shape or a spherical shape, and a cylindrical shape having a spherical head portion, but is not limited thereto. However, the shape of the bulge 3 is more preferable as the ratio of hemisphere or sphere is higher, and particularly as the ratio of sphere is higher. By adopting such a shape, when used as a negative electrode material for a lithium ion secondary battery, the number of contacts between the graphite materials increases, and the size of the formed space is moderate, and the electrolyte (hereinafter referred to as the electrolyte) Electrolyte solutions are also called electrolytes). Unlike the wavy continuous wrinkles 4 that usually occur during graphitization, the ridges 3 are preferably scattered individually on the surface of the base material 1 of the graphite material. The ridges 3 can be present on the wrinkles 4.
In addition, as can be seen from FIG. 1, the base material in the present invention refers to a bulge, wrinkle, and / or deposit (when a mesophase microsphere is manufactured, This is a portion where parts that can be regarded as foreign substances adhering to (such as soot) and fine powder fused during graphitization (derived from the same graphite precursor) are assumed and removed.

隆起の高さは、個々の隆起の基底からの最高点までの高さhとして1μm以上である。このような高さの隆起を有することにより、リチウムイオン二次電池の負極材料に用いたときに、黒鉛質材料同士の接点が増大し、かつ形成される空間の大きさが適度であって、後述するように電池特性の向上効果が大きくなるものと推定される。隆起の高さは、好ましくは2〜15μm、より好ましくは3〜10μmである。また、隆起の基底長gに対する、該基底からの最高点までの高さhの比(h/g)の平均値として0.1〜15、好ましくは0.10〜15、より好ましくは0.2〜5、さらにより好ましくは0.5〜3であると、さらに前述した効果が大となり、電池特性がさらに向上する。隆起の基底長gとは、該隆起の断面を観察したときの、該隆起の最下部の母材と接する長さである。該基底長gは1〜10μmであることが好ましい。なお、隆起の高さh、基底長gおよびh/gは、走査型電子顕微鏡による断面観察により100個の隆起を測定した値の平均値である。特にh/gは、各隆起について求めたh/gの100個分の平均値である。
図4に、隆起を有する黒鉛質材料の断面模式図を示す。図中にはh、gを示した。
The height of the ridge is 1 μm or more as the height h from the base of each ridge to the highest point. By having a ridge of such a height, when used as a negative electrode material of a lithium ion secondary battery, the contact between graphite materials increases, and the size of the formed space is moderate, As will be described later, it is estimated that the effect of improving battery characteristics is increased. The height of the ridge is preferably 2 to 15 μm, more preferably 3 to 10 μm. Further, the average value of the ratio (h / g) of the height h from the base to the base length g of the bulge is 0.1 to 15, preferably 0.10 to 15, more preferably 0.8. When it is 2 to 5, and more preferably 0.5 to 3, the above-described effect is further increased, and the battery characteristics are further improved. The base length g of the bulge is a length in contact with the base material at the bottom of the bulge when the cross section of the bulge is observed. The base length g is preferably 1 to 10 μm. The height h of the bumps, the base length g, and h / g are average values of values obtained by measuring 100 bumps by cross-sectional observation using a scanning electron microscope. In particular, h / g is an average value of 100 h / g values obtained for each ridge.
In FIG. 4, the cross-sectional schematic diagram of the graphite material which has a protrusion is shown. In the figure, h and g are shown.

この隆起は、黒鉛質材料の表面に点在することが好ましい。   The bumps are preferably scattered on the surface of the graphite material.

黒鉛質材料の隆起の数は、特に制限されないが、表面の100μm2 あたり2個〜20個の密度範囲であることが好ましい。隆起は、黒鉛質材料の表面に偏在することなく、このような密度範囲で点在することが好ましい。 The number of the bulges of the graphite material is not particularly limited, but is preferably in a density range of 2 to 20 per 100 μm 2 of the surface. The bumps are preferably scattered in such a density range without being unevenly distributed on the surface of the graphite material.

母材の大きさは、平均粒子径で1〜100μmであり、2〜45μmがより好ましい。母体の大きさがこのような範囲であれば、黒鉛質材料の平均粒子径と隆起の高さの比率が好ましい範囲となり、リチウムイオン二次電池の負極材料に用いたときに電池特性、特に、急速充放電特性やサイクル特性の向上効果が大きくなる。
なお、ここでいう平均粒子径とは、走査型電子顕微鏡による断面観察により、粒子の最大長軸長およびそれに直交する軸の長さとを測定し、この平均値を当該粒子の粒子径とし、さらにこの粒子径を100個の粒子について測定した平均値である。
The magnitude | size of a base material is 1-100 micrometers in an average particle diameter, and 2-45 micrometers is more preferable. If the size of the matrix is in such a range, the ratio of the average particle diameter of the graphite material and the height of the ridges is a preferred range, battery characteristics when used as a negative electrode material for lithium ion secondary batteries, in particular, The effect of improving rapid charge / discharge characteristics and cycle characteristics is increased.
In addition, the average particle diameter here is the maximum major axis length of the particle and the length of the axis orthogonal to the particle length by cross-sectional observation with a scanning electron microscope, and this average value is defined as the particle diameter of the particle. This particle diameter is an average value measured for 100 particles.

本発明の黒鉛質材料の平均粒子径は、体積換算の平均粒子径で1〜100μm、特に3〜50μmであることが好ましい。1μm未満では、これを用いてなるリチウムイオン二次電池の初期充放電効率が低下するおそれがあり、100μm超では、急速充放電特性およびサイクル特性が低下するおそれがある。体積換算の平均粒子径とは、レーザー回折式粒度分布計により粒度分布の累積度数が体積百分率で50%となる粒子径である。
以下、特に断りがなく、単に「平均粒子径」と記したものは、全てこのような方法で測定した場合における粒子径を意味するものとする。
黒鉛質材料の平均粒子径dと隆起の高さhとの比率の好ましい範囲は、h/d=0.05〜0.3である。このような範囲であれば、黒鉛質材料同士の接触と、形成される空間の確保が両立でき、電池特性の向上に有効である。
The average particle diameter of the graphite material of the present invention is preferably 1 to 100 μm, particularly preferably 3 to 50 μm, in terms of volume average particle diameter. If it is less than 1 μm, the initial charge / discharge efficiency of a lithium ion secondary battery using the same may be reduced, and if it exceeds 100 μm, rapid charge / discharge characteristics and cycle characteristics may be deteriorated. The average particle diameter in terms of volume is a particle diameter at which the cumulative frequency of particle size distribution is 50% by volume by a laser diffraction particle size distribution meter.
Hereinafter, there is no notice in particular, and what is simply described as “average particle diameter” means the particle diameter when measured by such a method.
A preferable range of the ratio between the average particle diameter d of the graphite material and the height h of the bulge is h / d = 0.05 to 0.3. Within such a range, contact between the graphite materials and securing of the space to be formed can both be achieved, which is effective in improving battery characteristics.

本発明の黒鉛質材料の形状は特に制限されないが、粒状、塊状、球状、楕円体状、板状、繊維状、フィルム状、鱗片状などのいずれであってもよいが、アスペクト比が3以下であることが好ましく、2以下であることがより好ましい。球状に近いこと、すなわち、アスペクト比が1に近い球状、粒状であることが特に好ましい。アスペクト比が3以下であると、これを用いてなるリチウムイオン二次電池の急速充放電特性およびサイクル特性が向上する。それは、負極を形成したとき、黒鉛質材料が一方向に配列することなく、かつ電解質が内部に浸透しやすくなるためである。ここで、アスペクト比とは、黒鉛質材料の最大長軸長とそれに直交する軸の長さとの比を表し、走査型電子顕微鏡による断面観察により、複数(50個以上)の黒鉛質材料について各々計測した比の平均値である。   The shape of the graphite material of the present invention is not particularly limited, and may be any of granular, massive, spherical, ellipsoidal, plate-like, fibrous, film-like, scale-like, etc., but the aspect ratio is 3 or less It is preferable that it is 2 or less. It is particularly preferable that the shape is close to a sphere, that is, a sphere or a particle having an aspect ratio close to 1. When the aspect ratio is 3 or less, the rapid charge / discharge characteristics and cycle characteristics of a lithium ion secondary battery using the aspect ratio are improved. This is because when the negative electrode is formed, the graphite material does not align in one direction and the electrolyte easily penetrates into the inside. Here, the aspect ratio represents the ratio between the maximum long axis length of the graphite material and the length of the axis perpendicular thereto, and each of a plurality (50 or more) of graphite materials is observed by cross-sectional observation using a scanning electron microscope. It is the average value of the measured ratio.

本発明の黒鉛質材料は、具体的には、メソフェーズ小球体やメソフェーズ焼成体(バルクメソフェーズ)、メソフェーズ繊維などのメソフェーズ系炭素質材料、石油コークス、ニードルコークス、生コークス、グリーンコークス、ピッチコークスなどのコークス系炭素質材料などを黒鉛化した物(黒鉛化物)が例示される。本発明の黒鉛質材料は、メソフェーズ小球体、メソフェーズ焼成体、メソフェーズ繊維などのメソフェーズ系炭素質材料の黒鉛化物が好ましく、上記範囲のアスペクト比が得られるメソフェーズ小球体の黒鉛化物が特に好ましい。また、本発明の黒鉛質材料は、上記黒鉛化物以外の炭素質材料や金属、有機物、無機質との複合体、積層体、混合体、被覆体であっても差し支えない。   Specific examples of the graphite material of the present invention include mesophase microspheres, mesophase fired bodies (bulk mesophase), mesophase carbonaceous materials such as mesophase fibers, petroleum coke, needle coke, green coke, green coke, pitch coke, and the like. An example is a graphitized product (graphitized product) of a coke-based carbonaceous material. The graphitic material of the present invention is preferably a graphitized material of mesophase carbonaceous material such as mesophase spherules, mesophase fired bodies, and mesophase fibers, and particularly preferably a mesophase spherulitic graphitized material having an aspect ratio in the above range. Further, the graphitic material of the present invention may be a carbonaceous material other than the above graphitized material, a composite of metal, organic matter, or inorganic material, a laminate, a mixture, or a covering.

本発明の黒鉛質材料は、X線広角回折における(002)面の平均格子面間隔d002 が0.34nm以下、特に0.337nm以下、さらには0.3365nm以下であることが好ましい。これは、結晶性が高いことを意味し、リチウムイオン二次電池の負極材料として用いたときに、高い放電容量が得られ、かつ、高い導電性が得られるからである。本発明において、隆起は母材と一体化したものであり、母材と分離して結晶性を評価することは困難であるが、隆起のみを母材から削り落として測定したときに、その格子面間隔d002は0.34nm以下であることが好ましい。
ここで、X線広角回折における(002)面の平均格子面間隔d002 とは、X線としてCuKα線を用い、高純度シリコンを標準物質に使用して黒鉛質材料粒子の(002)面の回折ピークを測定し、そのピークの位置から算出する。算出方法は、学振法(日本学術振興会第17委員会が定めた測定法)に従うものであり、具体的には、「炭素繊維」[ 大谷杉郎、733−742頁(1986年3月)、近代編集社]に記載された方法によって測定された値である。
Graphitic material of the present invention, the X-ray wide angle diffraction (002) an average lattice spacing d 002 of face 0.34nm or less, particularly 0.337nm or less, and further preferably not larger than 0.3365 nm. This means that the crystallinity is high, and when used as a negative electrode material of a lithium ion secondary battery, a high discharge capacity is obtained and a high conductivity is obtained. In the present invention, the ridge is integrated with the base material, and it is difficult to evaluate the crystallinity by separating from the base material. it is preferable surface spacing d 002 is less 0.34 nm.
Here, the average lattice spacing d 002 of (002) plane in X-ray wide angle diffraction is CuKα ray as X-ray, high purity silicon is used as a standard substance, and (002) plane of graphitic material particles is used. A diffraction peak is measured and calculated from the position of the peak. The calculation method follows the Japan Science and Technology Act (measurement method defined by the 17th Committee of the Japan Society for the Promotion of Science). Specifically, “Carbon Fiber” [Sugirou Otani, pages 733-742 (March 1986) ), Modern Editorial Company].

本発明の黒鉛質材料は、隆起を有しない黒鉛質材料に比べ、比表面積が大きく、その値は0.5〜20m2 /gであることが好ましく、特に1〜10m2 /gであることが好ましい。20m2/gを超えると、負極合剤ペーストの粘度調整が不安定になったり、バインダーによる結着力が低下することがある。0.5m2 /g未満であると、隆起の数が少ないか、または隆起の大きさが足りないものとなり、本発明が期待する効果が得られないことがある。比表面積は、窒素ガスの吸着によるBET法により求めた。 It graphitic material of the present invention, compared with the graphite material having no bumps, large specific surface area, its value is preferably from 0.5 to 20 m 2 / g, particularly 1 to 10 m 2 / g Is preferred. If it exceeds 20 m 2 / g, the viscosity adjustment of the negative electrode mixture paste may become unstable, or the binding force by the binder may be reduced. If it is less than 0.5 m 2 / g, the number of ridges is small or the size of the ridges is insufficient, and the effect expected by the present invention may not be obtained. The specific surface area was determined by the BET method by adsorption of nitrogen gas.

本発明の黒鉛質材料の隆起は母材と一体化しているため、従来技術のような微粒子を機械力で付与・埋設した複合粒子や、微粒子を接着成分を介して付着した複合粒子に比べ、外部から機械力が加わっても、隆起が脱落しにくい。また、本発明の隆起は従来技術の複合粒子のものに比べ大きく、黒鉛質材料間の接点を多くでき、かつ電解質が浸透する空隙を確保できる。これらの特徴があいまって、後述するように、リチウムイオン二次電池用負極としての電池特性の向上に寄与するものと思われる。   Since the bulge of the graphite material of the present invention is integrated with the base material, compared to composite particles in which fine particles are applied and embedded by mechanical force as in the prior art, or composite particles in which the fine particles are attached via an adhesive component, Even if mechanical force is applied from the outside, the bumps are difficult to fall off. Further, the bulge of the present invention is larger than that of the composite particles of the prior art, so that the number of contacts between the graphite materials can be increased, and a void through which the electrolyte permeates can be secured. Together, these characteristics are considered to contribute to the improvement of battery characteristics as a negative electrode for a lithium ion secondary battery, as will be described later.

本発明の黒鉛質材料は、本発明の目的を損なわない範囲で、異種の黒鉛質材料、非晶質ハードカーボンなどの炭素質材料、有機物、金属、金属化合物などを混合しても、内包しても、被覆しても、または積層してもよい。また、本発明の黒鉛質材料は、液相、気相、固相における各種化学的処理、熱処理、物理的処理、酸化処理などを施されてもよい。   The graphite material of the present invention can be included even if it mixes different types of graphite materials, carbonaceous materials such as amorphous hard carbon, organic substances, metals, metal compounds, etc., as long as the object of the present invention is not impaired. Alternatively, it may be coated or laminated. In addition, the graphite material of the present invention may be subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, physical treatment, oxidation treatment, and the like.

本発明の黒鉛質材料を負極材料として用いた場合に、急速充放電特性、サイクル特性などが改良されるメカニズムについては明らかではないが、次のように推定される。すなわち、隆起が該黒鉛質材料(母材)と一体化されており、負極を形成したときに、隆起が脱落することがなく、該黒鉛質材料同士の接点が増加するため、抵抗が減り、導電性が向上する。導電性の向上によって、黒鉛質材料の利用率が高くなり、放電容量が増大する。該隆起は、黒鉛化度の高い母材と同質であるため、軟らかく、したがって、充填したときに、嵩密度が大きくなり、体積あたりの放電容量が増大し、高いエネルギー密度が得られる。また、脱落しない該隆起によって形成された隙間が大きいため、電解質が十分に浸透し、電解質の保持量が多くなって、リチウムイオンの拡散性が向上し、急速放電率が向上する。また、隆起があるため、比表面積が大きくなり、リチウムイオンが出入りするサイトが増えることも急速放電率、急速充電率の向上に寄与する。さらに、バインダーとの結着力が大きくなるので、繰返し充放電によっても、黒鉛質材料同士の接触が保持され、サイクル特性にも優れる。   When the graphite material of the present invention is used as a negative electrode material, the mechanism by which rapid charge / discharge characteristics, cycle characteristics, and the like are improved is not clear, but is estimated as follows. That is, the bulge is integrated with the graphite material (base material), and when the negative electrode is formed, the bulge does not fall off, and the contact between the graphitic materials increases, so the resistance decreases, The conductivity is improved. By improving the conductivity, the utilization rate of the graphite material is increased, and the discharge capacity is increased. Since the ridge is the same quality as the base material having a high degree of graphitization, it is soft. Therefore, when filled, the bulk density increases, the discharge capacity per volume increases, and a high energy density is obtained. In addition, since the gap formed by the bulge that does not fall off is large, the electrolyte sufficiently permeates, the amount of electrolyte retained increases, the diffusibility of lithium ions improves, and the rapid discharge rate improves. Further, since there is a bulge, the specific surface area increases and the number of sites where lithium ions enter and exit also contributes to the improvement of the rapid discharge rate and the rapid charge rate. Further, since the binding force with the binder is increased, the contact between the graphite materials is maintained even by repeated charge and discharge, and the cycle characteristics are excellent.

(黒鉛質材料の製造)
本発明の黒鉛質材料は、表面に隆起を有する黒鉛質材料を製造し得る方法であれば、いかなる方法によって製造されても差し支えない。ただし、隆起に相当する微粒子部分を、黒鉛質材料(母材)に機械的エネルギーを付与して埋設したり、接着成分を介して付着させる方法によって得た黒鉛質材料は、本発明の効果を十分に発現することができないので、除外される。本発明の代表的な製造方法を以下に示す。
(Manufacture of graphite materials)
The graphite material of the present invention can be produced by any method as long as it can produce a graphite material having a bulge on the surface. However, the graphite material obtained by embedding the fine particle portion corresponding to the ridge by applying mechanical energy to the graphite material (base material) or attaching it through an adhesive component is effective for the present invention. Excluded because it cannot be fully expressed. A typical production method of the present invention is shown below.

工程(1):黒鉛質前駆体を、粉砕、分級などにより所望の形状、大きさにあらかじめ調整する。
工程(2):調整後の黒鉛質前駆体の外表面に、炭素と炭化物を形成、および/または、炭素を溶解することができる金属材料(金属および/または金属化合物)を分散して付着させる。
工程(3):工程(2)で得られた、金属材料が外表面に付着した黒鉛質前駆体を、1500℃以上の温度で加熱し黒鉛化して、黒鉛質材料を得る。
Step (1): The graphite precursor is preliminarily adjusted to a desired shape and size by pulverization, classification or the like.
Step (2): Disperse and attach a metal material (metal and / or metal compound) capable of forming carbon and carbide and / or dissolving carbon on the outer surface of the adjusted graphite precursor. .
Step (3): The graphite precursor obtained by attaching the metal material to the outer surface obtained in the step (2) is heated and graphitized at a temperature of 1500 ° C. or higher to obtain a graphite material.

次に、前記各工程について詳述する。
工程(1):本発明の黒鉛質材料の原料は、その種類は特定されるものではないが、1500℃以上の温度で熱処理したときに容易に黒鉛化する黒鉛質前駆体が好ましい。黒鉛質前駆体としては、フリーカーボンを含有する石油系または石炭系のタールまたはピッチ類を不活性ガス雰囲気下350〜450℃の温度で熱処理してメソフェーズ小球体を生成させた熱処理生成物から、マトリックスを除去して得られるメソフェーズ小球体、メソフェーズ焼成体、メソフェーズ繊維などのメソフェーズ系炭素質材料、石油コークス、ニードルコークス、生コークス、グリーンコークス、ピッチコークスなどのコークス系炭素質材料などが例示される。メソフェーズ小球体、メソフェーズ焼成体、メソフェーズ繊維などのメソフェーズ系炭素質材料が好ましく、好ましいアスペクト比の黒鉛質材料を得るためには、メソフェーズ小球体が特に好ましい。
また、本発明の黒鉛質材料の原料は、1500℃以上の温度での熱処理で溶融しないように、予め予備熱処理したものを用いることが好ましい。該予備熱処理の最終温度は1500℃未満であり、800℃未満であることが好ましい。予備熱処理後に、予め、黒鉛化後の黒鉛質材料の形状、大きさに調整しておくことが好ましく、例えば、平均粒子径が1〜100μmのメソフェーズ小球体を800℃以下の温度で予備熱処理して、そのまま、または粉砕して、より平均粒子径が小さい塊状の粒子に調製することが好ましい。粉砕、分級の方法は特に限定されない。また、予備熱処理は、複数回行うことができる。
なお、本発明の黒鉛質材料は、黒鉛質前駆体でなくても、上述のように、メソフェーズ系炭素質材料やコークス系炭素材料などを黒鉛化した物(黒鉛化物)を用いて製造することもできる。
Next, each step will be described in detail.
Step (1): The raw material of the graphite material of the present invention is not specified, but a graphite precursor that is easily graphitized when heat-treated at a temperature of 1500 ° C. or higher is preferable. As a graphite precursor, from a heat treatment product in which a petroleum-based or coal-based tar or pitch containing free carbon is heat-treated at a temperature of 350 to 450 ° C. in an inert gas atmosphere to generate mesophase microspheres, Examples include mesophase microspheres obtained by removing the matrix, mesophase fired bodies, mesophase carbonaceous materials such as mesophase fibers, and coke carbonaceous materials such as petroleum coke, needle coke, raw coke, green coke, and pitch coke. The Mesophase carbonaceous materials such as mesophase spherules, mesophase fired bodies, and mesophase fibers are preferred, and mesophase spherules are particularly preferred in order to obtain a graphite material having a preferred aspect ratio.
Moreover, it is preferable to use the raw material of the graphite material of the present invention that has been preheated in advance so as not to be melted by heat treatment at a temperature of 1500 ° C. or higher. The final temperature of the preliminary heat treatment is less than 1500 ° C, preferably less than 800 ° C. It is preferable to adjust the shape and size of the graphitized material after graphitization after preliminary heat treatment. For example, mesophase spherules having an average particle diameter of 1 to 100 μm are preheated at a temperature of 800 ° C. or lower. Thus, it is preferable to prepare agglomerated particles having a smaller average particle diameter as they are or by pulverization. The method of pulverization and classification is not particularly limited. Further, the preliminary heat treatment can be performed a plurality of times.
The graphite material of the present invention may be manufactured using a graphitized material (graphitized material) of a mesophase-based carbonaceous material or a coke-based carbon material, as described above, even if it is not a graphite precursor. You can also.

黒鉛質材料の原料として好ましい形態である黒鉛質前駆体について説明する。
黒鉛質前駆体は、その表面の少なくとも一部に、光学的等方性の結晶構造(光学的等方性相)を有するものが好ましい。光学的等方性相の有無は、黒鉛質前駆体の断面を偏光顕微鏡で観察することによって判別できる。
A graphite precursor which is a preferred form as a raw material for the graphite material will be described.
The graphite precursor preferably has an optically isotropic crystal structure (optical isotropic phase) on at least a part of its surface. The presence or absence of the optically isotropic phase can be determined by observing the cross section of the graphite precursor with a polarizing microscope.

なお、光学的等方性相を有する黒鉛質前駆体を1500℃以上の温度で加熱すると、光学的等方性相の部分が多結晶性結晶構造を形成する。
ここで、多結晶性結晶構造は、結晶子の大きさが10〜100nmである結晶組織と定義する。また、結晶子の大きさとは、透過電子顕微鏡で結晶子の断面を観察した場合に、表面に露出している部分の長さと定義する。結晶子のより好ましい大きさは30〜80nm、さらに好ましい大きさは30〜60nmである。
When a graphite precursor having an optically isotropic phase is heated at a temperature of 1500 ° C. or higher, the portion of the optically isotropic phase forms a polycrystalline crystal structure.
Here, the polycrystalline crystal structure is defined as a crystal structure having a crystallite size of 10 to 100 nm. The size of the crystallite is defined as the length of the portion exposed on the surface when the cross section of the crystallite is observed with a transmission electron microscope. A more preferable size of the crystallite is 30 to 80 nm, and a more preferable size is 30 to 60 nm.

結晶子の大きさの測定方法の具体例を示す。まず、前記黒鉛質前駆体を黒鉛ルツボに入れ、非酸化性雰囲気下3000℃で6時間加熱し、黒鉛質前駆体を黒鉛化したもの(黒鉛化物)を得る。次に、この黒鉛化物を樹脂で支持し、集束イオンビーム加工などにより薄膜化する。そして、5以上の結晶子を無作為に選定して透過顕微鏡で観察し、上記に定義した結晶子の大きさを計測する。
なお、同様な方法で得た黒鉛質材料の表面を、走査型電子顕微鏡によって観察することによっても、結晶子の大きさを測定することができる。
A specific example of a method for measuring the crystallite size will be described. First, the graphite precursor is placed in a graphite crucible and heated at 3000 ° C. for 6 hours in a non-oxidizing atmosphere to obtain a graphitized graphite precursor (graphitized product). Next, this graphitized material is supported by a resin and thinned by focused ion beam processing or the like. Then, five or more crystallites are randomly selected and observed with a transmission microscope, and the size of the crystallite defined above is measured.
Note that the size of the crystallites can also be measured by observing the surface of the graphite material obtained by the same method with a scanning electron microscope.

本発明の黒鉛質材料を得るうえで、黒鉛質前駆体の粒子は、その全てが光学的等方性相であってもよいが、リチウムイオン二次電池用負極材料として高い放電容量を得るうえでは、黒鉛質前駆体の粒子の内部は光学的異方性の結晶構造(光学的異方性相)からなり、外部(該粒子の表面)は光学的等方性相であることが好ましい。   In obtaining the graphite material of the present invention, all of the graphite precursor particles may be in an optically isotropic phase, but as a negative electrode material for a lithium ion secondary battery, a high discharge capacity is obtained. Then, it is preferable that the inside of the particle | grains of a graphite precursor consists of an optically anisotropic crystal structure (optically anisotropic phase), and the exterior (surface of this particle | grain) is an optically isotropic phase.

この場合の光学的等方性相は、黒鉛質前駆体の粒子表面の一部あるいは全部に、薄膜状に配置していることが好ましく、特に該粒子表面の全面積の30%以上を覆っていることが好ましい。さらに、薄膜状の光学的等方性相が光学的異方性相と一体化しているものが特に好ましい。ここで、「一体化」とは、等方性相と異方性相の境界に隙間がなく徐々に相が変化した、いわゆる傾斜組成的な状態であることを意味する。   In this case, the optically isotropic phase is preferably arranged in a thin film on part or all of the particle surface of the graphite precursor, and particularly covers 30% or more of the total area of the particle surface. Preferably it is. Furthermore, it is particularly preferable that the thin film optically isotropic phase is integrated with the optically anisotropic phase. Here, “integrated” means a so-called gradient composition state in which there is no gap at the boundary between the isotropic phase and the anisotropic phase, and the phase gradually changes.

さらに、この薄膜状の光学的等方性相の厚みは3μm以下、好ましくは1μm以下、さらに好ましくは0.5μm以下である。光学的等方性相の厚みが厚すぎると放電容量の低下を招くことがある。また、下限は0.01μmであることが好ましい。0.01μm未満の場合は、本発明の黒鉛質材料の特徴である隆起の生成が不十分となる傾向がある。   Further, the thickness of the thin film optically isotropic phase is 3 μm or less, preferably 1 μm or less, more preferably 0.5 μm or less. If the thickness of the optically isotropic phase is too thick, the discharge capacity may be reduced. The lower limit is preferably 0.01 μm. When the thickness is less than 0.01 μm, there is a tendency that the formation of ridges, which is a feature of the graphite material of the present invention, is insufficient.

このような黒鉛質前駆体は、光学的等方性相を有する炭素材料を黒鉛質前駆体の表面に被覆して得ることもできるが、光学的等方性相と光学的異方性相とが一体化したメソフェーズ小球体が、黒鉛質前駆体として最適である。   Such a graphite precursor can also be obtained by coating the surface of a graphite precursor with a carbon material having an optically isotropic phase, but the optically isotropic phase and the optically anisotropic phase Mesophase spherules integrated with are optimal as a graphite precursor.

また、光学的等方性相を示す炭素源物質を黒鉛質前駆体の表面に付着させてもよい。該炭素源物質は、1500℃以上の温度(例えば黒鉛化後)で光学的等方性相を示すものであればよく、例えば、フェノール樹脂、フルフリルアルコール樹脂などの樹脂類、酸素架橋石油ピッチなどの光学的等方性ピッチなどが例示される。炭素源物質を付着させる黒鉛質前駆体は、必ずしも光学的等方性の結晶構造を必要としない。   Further, a carbon source material exhibiting an optically isotropic phase may be attached to the surface of the graphite precursor. The carbon source material only needs to exhibit an optically isotropic phase at a temperature of 1500 ° C. or higher (for example, after graphitization). For example, resins such as phenol resin and furfuryl alcohol resin, oxygen-crosslinked petroleum pitch An optical isotropic pitch such as is exemplified. The graphite precursor to which the carbon source material is attached does not necessarily require an optically isotropic crystal structure.

工程(2):工程(1)で得られた黒鉛質前駆体の外表面に、該黒鉛質前駆体に含有されている炭素と炭化物を形成、および/または、該炭素を溶解することができる金属材料(金属および/または金属化合物)を分散して付着させる。   Step (2): Carbon and carbides contained in the graphite precursor can be formed and / or dissolved in the outer surface of the graphite precursor obtained in step (1). A metal material (metal and / or metal compound) is dispersed and adhered.

この黒鉛質前駆体に含有されている炭素と炭化物を形成、および/または該炭素を溶解することができる金属としては、Na、Kなどのアルカリ金属、Mg、Caなどのアルカリ土類金属、Ti、V、Cr、Mn、Fe、Co、Ni、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Hf、Ta、W、Re、Os、Ir、Ptなどの遷移金属、Al、Geなどの金属、B、Siなどの半金属が例示される。   Metals that can form and / or dissolve carbides with carbon contained in the graphite precursor include alkali metals such as Na and K, alkaline earth metals such as Mg and Ca, Ti , V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt and other transition metals, Al, Ge, etc. Metals, semi-metals such as B and Si are exemplified.

また、この黒鉛質前駆体に含有されている炭素と炭化物を形成、および/または該炭素を溶解することができる金属化合物としては、これら金属の化合物、つまり、水酸化物、酸化物、窒化物、塩化物、硫化物などが例示される。
このような金属、金属化合物は、単独で用いてもよいし、2以上を混合して用いてもよい。金属と金属化合物とを、混合して用いてもよい。
Further, as a metal compound capable of forming and / or dissolving carbon and carbon contained in the graphite precursor, compounds of these metals, that is, hydroxides, oxides, nitrides , Chloride, sulfide and the like.
Such metals and metal compounds may be used alone or in combination of two or more. A metal and a metal compound may be mixed and used.

これらの中でも、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、およびこれらの金属化合物からなる群から選択される少なくとも1つであることが好ましい。これらの金属および/または金属化合物は、黒鉛質前駆体と炭化反応するまで安定で、かつ、後述する工程(3)の黒鉛化処理において、その全部が蒸発し、さらに炭素が溶解しやすい金属であるからである。   Among these, at least one selected from the group consisting of Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and these metal compounds is preferable. These metals and / or metal compounds are stable until they carbonize with the graphite precursor, and in the graphitization treatment in the step (3) described later, all of them are evaporated and carbon is easily dissolved. Because there is.

工程(2)においては、該黒鉛質材料の前駆体の外表面に、このような金属材料を点在させる。その場合、該金属材料を非溶液状態で該前駆体に接触させる。該金属材料を溶液状態で該前駆体に接触させた場合、該金属材料が該前駆体に膜状に広がり、点在せず、隆起が生じないか、生じても過小な隆起にしかならないからである。該非溶液状態の代表例として、該金属化合物の固相状態および/または気相状態が挙げられる。また、該金属化合物を溶融して液相状態で該前駆体に点在させることもできる。
要するに、該非溶液状態と規定するのは、該金属材料の溶液のみを用いて該前駆体に接触させることを排除するためである。例えば、該金属化合物の一部が溶媒に溶けても不溶部分を利用する限り本発明の非溶液状態に相当する。金属化合物の飽和溶液を調整したのちに、化学的な操作で金属化合物の不溶体を析出させた懸濁液を用いた場合も本発明の非溶液状態に相当する。さらに、金属化合物の飽和溶液にさらに金属化合物を加えた懸濁液を用いた場合も、その懸濁部分は非溶液状態に相当し、本発明の技術範囲に入る。
In the step (2), such a metal material is scattered on the outer surface of the precursor of the graphite material. In that case, the metal material is brought into contact with the precursor in a non-solution state. When the metal material is brought into contact with the precursor in a solution state, the metal material spreads in the form of a film on the precursor and is not scattered, and no bulge is generated, or even if it occurs, there is only a small bulge. It is. A typical example of the non-solution state is a solid phase state and / or a gas phase state of the metal compound. Further, the metal compound can be melted and scattered in the precursor in a liquid phase state.
In short, the non-solution state is defined in order to exclude contact with the precursor using only the solution of the metal material. For example, even if a part of the metal compound is dissolved in the solvent, it corresponds to the non-solution state of the present invention as long as the insoluble part is used. The case of using a suspension in which an insoluble material of a metal compound is precipitated by a chemical operation after adjusting a saturated solution of the metal compound corresponds to the non-solution state of the present invention. Further, when a suspension obtained by adding a metal compound to a saturated solution of a metal compound is used, the suspended portion corresponds to a non-solution state and falls within the technical scope of the present invention.

また、ここでいう「外表面」とは、黒鉛質前駆体が多孔質である場合に粒子内部の空隙の表面を含まず、粒子の外側の表面、すなわち複数の黒鉛質前駆体同士が接触することができる表面を意味する。   In addition, the “outer surface” referred to here does not include the surface of the void inside the particle when the graphite precursor is porous, and the outer surface of the particle, that is, the plurality of graphite precursors are in contact with each other. Means a surface that can.

この付着させた金属材料の大きさは、5μm以下であることが好ましく、0.01〜5μmであることがより好ましく、0.01〜1μmであることがさらに好ましい。5μm超の場合には、本発明の黒鉛質材料の特徴である隆起が過大となる場合があり、好適な基底長の範囲を超えたり、隆起が脱落したり、隆起が生成しない場合がある。また、0.01μm未満の場合には、隆起が生成しない、あるいは過小となり、本発明の効果が得られない場合がある。
ここで、付着させた金属材料の大きさとは、黒鉛質前駆体と接している金属材料について、走査型電子顕微鏡を用いて50個以上の金属材料のそれぞれの長軸長を測定し、その測定値を平均したものである。
The size of the deposited metal material is preferably 5 μm or less, more preferably 0.01 to 5 μm, and still more preferably 0.01 to 1 μm. If it exceeds 5 μm, the ridges that are characteristic of the graphite material of the present invention may be excessive, and may exceed the range of the preferred base length, the ridges may fall off, or ridges may not be generated. On the other hand, when the thickness is less than 0.01 μm, the ridge is not generated or is too small, and the effect of the present invention may not be obtained.
Here, the size of the deposited metal material is the measurement of the major axis length of each of 50 or more metal materials using a scanning electron microscope for the metal material in contact with the graphite precursor. It is the average of the values.

また、この金属の付着量、または金属化合物の付着量における金属の量は金属量換算で、黒鉛質前駆体に対して0.1〜30質量%であり、0.5〜15質量%が好ましく、1〜10質量%がさらに好ましい。0.1質量%未満では、本発明の効果が十分に得られない場合がある。一方、30質量%を超えると、本発明の効果が飽和する傾向があり、さらに、後述する工程(3)において加熱に用いる加熱炉等の内部で、大量の金属材料が蒸発し、炉内の温度の低い部分に金属材料が堆積するなどの作業上の問題を引き起こすことがある。
なお、この金属材料(金属および/または金属材料)の付着量は、ICP発光分光分析などの方法で測定することができる。
Further, the amount of metal in the metal adhesion amount or the metal compound adhesion amount is 0.1 to 30% by mass, preferably 0.5 to 15% by mass with respect to the graphite precursor in terms of metal amount. 1-10 mass% is further more preferable. If it is less than 0.1% by mass, the effects of the present invention may not be sufficiently obtained. On the other hand, if it exceeds 30% by mass, the effect of the present invention tends to be saturated, and further, a large amount of metal material evaporates inside the heating furnace used for heating in the step (3) described later, It may cause operational problems such as deposition of metal material at low temperature parts.
The adhesion amount of the metal material (metal and / or metal material) can be measured by a method such as ICP emission spectroscopic analysis.

黒鉛質前駆体の外表面に、このような金属材料を分散して付着させる方法の具体例を挙げると、
(a)前記黒鉛質前駆体と、前記金属材料とを分散媒体中で混合した後、該分散媒体を除去する方法、
(b)前記黒鉛質前駆体と、前記金属材料であって粉末状のものとを混合する方法、
(c)前記黒鉛質前駆体と、前記炭素源物質(黒鉛化後に少なくとも一部に光学的等方性の結晶構造を有する)と前記金属材料とを分散媒体中で混合した後、該分散媒体を除去する方法、
(d)該金属材料が分散した該炭素源物質(黒鉛化後に少なくとも一部に光学的等方性の結晶構造を有する)の溶融物を該黒鉛質前駆体の外表面に付着させる方法、
(e)前記金属材料を、PVD(Physical Vapor Deposition)法あるいはCVD(Chemical Vapor Deposition)法により、前記黒鉛質前駆体の外表面に付着させる方法、
が好適である。
As a specific example of a method for dispersing and attaching such a metal material to the outer surface of the graphite precursor,
(A) a method of removing the dispersion medium after mixing the graphite precursor and the metal material in the dispersion medium;
(B) A method of mixing the graphite precursor and the powdered metal material,
(C) After mixing the graphite precursor, the carbon source material (having an optically isotropic crystal structure at least partially after graphitization) and the metal material in a dispersion medium, the dispersion medium How to remove,
(D) a method of adhering a melt of the carbon source material (at least partially having an optically isotropic crystal structure after graphitization) in which the metal material is dispersed to the outer surface of the graphite precursor;
(E) a method of attaching the metal material to the outer surface of the graphite precursor by a PVD (Physical Vapor Deposition) method or a CVD (Chemical Vapor Deposition) method;
Is preferred.

(a)の方法において分散媒体は、少なくとも該金属材料を溶解しないか、あるいは溶解しても溶解度が低いものが好ましい。本発明の方法では金属材料が分散されていることが好ましい。また、該金属材料のみならず該前駆体も溶解しない分散媒がより好ましい。このような分散媒を例示すれば、水、アルコール、ケトンなどの水性の分散媒体が好ましく、特に水が好ましい。理由は、有機溶剤系の分散媒体よりも乾燥除去時の環境への影響が小さく、安全上、コスト上も有利なためである。   In the method (a), it is preferable that the dispersion medium does not dissolve at least the metal material or has low solubility even when dissolved. In the method of the present invention, the metal material is preferably dispersed. Further, a dispersion medium in which not only the metal material but also the precursor is not dissolved is more preferable. As an example of such a dispersion medium, an aqueous dispersion medium such as water, alcohol, and ketone is preferable, and water is particularly preferable. The reason is that the influence on the environment at the time of drying and removal is smaller than that of an organic solvent-based dispersion medium, which is advantageous in terms of safety and cost.

このような分散媒体に投入する金属材料(金属および/または金属化合物)の平均粒子径は5μm以下であることが好ましく、1μm以下であることがより好ましい。平均粒子径が5μm超であると、得られる黒鉛質材料の隆起の生成数が少なくなったり、半球状ないし球状に制御することが困難になる傾向がある。   The average particle diameter of the metal material (metal and / or metal compound) put into such a dispersion medium is preferably 5 μm or less, and more preferably 1 μm or less. If the average particle diameter is more than 5 μm, the number of bulges of the resulting graphite material tends to be reduced, and it tends to be difficult to control to a hemispherical or spherical shape.

(a)の方法においては、まず、前記黒鉛質前駆体と、前記金属材料とを分散媒体中で混合する。前記黒鉛質前駆体と、前記金属材料とを分散媒体に投入する順番は限定されない。まず、このような金属材料の粉末を分散媒体に分散させ、次に、ここに黒鉛質前駆体を投入してもよい。
また、金属材料を分散させた分散媒体がコロイド状となっていることが好ましい。ここで、コロイド状ではなく、金属材料が分散媒体に溶解し(例えば、特開平10−255770号公報)、後述する混合、分離操作の後に、黒鉛前駆体の外表面に金属材料が膜状に形成された場合には、隆起が生成しない、または過小となり、本発明の黒鉛質粒子が得られないことがある。
In the method (a), first, the graphite precursor and the metal material are mixed in a dispersion medium. The order in which the graphite precursor and the metal material are introduced into a dispersion medium is not limited. First, the powder of such a metal material may be dispersed in a dispersion medium, and then a graphite precursor may be added thereto.
The dispersion medium in which the metal material is dispersed is preferably colloidal. Here, the metal material is not colloidal but dissolved in the dispersion medium (for example, Japanese Patent Laid-Open No. 10-255770), and after the mixing and separation operations described later, the metal material is formed into a film on the outer surface of the graphite precursor. When formed, the bulge is not generated or is too small, and the graphite particles of the present invention may not be obtained.

このような分散媒体中で、前記黒鉛質前駆体と、前記金属材料とを混合する。
混合は、攪拌装置を用いて、前記黒鉛質前駆体と前記金属材料とが均一に分散するまで行うことが好ましい。混合の際に、減圧操作や超音波処理を施して気泡を除き、金属材料と黒鉛質前駆体との接触を促進することが好ましい。
In such a dispersion medium, the graphite precursor and the metal material are mixed.
The mixing is preferably performed using a stirrer until the graphite precursor and the metal material are uniformly dispersed. During mixing, it is preferable to remove bubbles by applying a pressure reducing operation or ultrasonic treatment to promote contact between the metal material and the graphite precursor.

混合の後は、前記分散媒体を除去する。
この方法に制限はなく、加熱、減圧などの方法を適宜採用できる。例えば、前記金属材料および前記黒鉛質前駆体を含む分散媒体を1500℃未満の温度に加熱する方法が挙げられる。また、工程(3)において1500℃以上の温度で加熱する場合における昇温過程において、この分離操作を行ってもよい。
After mixing, the dispersion medium is removed.
There is no restriction | limiting in this method, Methods, such as a heating and pressure reduction, can be employ | adopted suitably. For example, a method of heating the dispersion medium containing the metal material and the graphite precursor to a temperature of less than 1500 ° C. can be mentioned. Moreover, you may perform this isolation | separation operation in the temperature rising process in the case of heating at the temperature of 1500 degreeC or more in a process (3).

(b)の方法では、前記黒鉛質前駆体と、前記金属材料であって粉末状のものとを混合する。ここで、金属材料は平均粒子径が0.01〜5μmであることが好ましく、0.01〜1μmであることがさらに好ましい。5μm超の場合には、本発明の黒鉛質材料の特徴である隆起が過大となる場合があり、好適な基底長の範囲を超えたり、隆起が脱落したり、隆起が生成しない場合がある。また、0.01μm未満の場合には、隆起が生成しない、あるいは過小となり、本発明の効果が得られない場合がある。   In the method (b), the graphite precursor and the metal material in powder form are mixed. Here, the metal material preferably has an average particle size of 0.01 to 5 μm, and more preferably 0.01 to 1 μm. If it exceeds 5 μm, the ridges that are characteristic of the graphite material of the present invention may be excessive, and may exceed the range of the preferred base length, the ridges may fall off, or ridges may not be generated. On the other hand, when the thickness is less than 0.01 μm, the bulge is not generated or is too small, and the effect of the present invention may not be obtained.

混合は、機械式(攪拌式)、回転式、風力式などの公知の各種混合機を使用することが好ましい。このような方法によれば、粉末状の金属材料の凝集物を生じないように均一に分散させながら、粉末状の金属材料が黒鉛質前駆体の外表面に点在するように分散して付着させることができる。   The mixing is preferably performed using various known mixers such as a mechanical type (stirring type), a rotary type, and a wind type. According to such a method, the powdered metal material is dispersed and adhered so as to be scattered on the outer surface of the graphite precursor while being uniformly dispersed so as not to generate agglomerates of the powdered metal material. Can be made.

また、前記黒鉛質前駆体と前記金属材料とを合わせて粉砕し、混合を兼ねてもよい。   Further, the graphite precursor and the metal material may be pulverized and mixed together.

(c)の方法は、前記(a)の方法において、前記金属材料の分散媒体を調整する際に、光学的等方性相の結晶構造を形成する炭素源物質を分散または溶解しておくものである。
光学的等方性相を示す炭素源物質としては、前記のようにフェノール樹脂などの樹脂類が例示されるが、樹脂類は重合反応や架橋反応が進行する前の前駆体の状態であってもよい。
In the method (c), in the method (a), the carbon source material that forms the crystal structure of the optically isotropic phase is dispersed or dissolved when adjusting the dispersion medium of the metal material. It is.
Examples of the carbon source material exhibiting an optically isotropic phase include resins such as phenol resins as described above, and the resins are in a state of a precursor before the polymerization reaction or the crosslinking reaction proceeds. Also good.

(d)の方法は、平均粒子径0.01μm以上、5μm以下の金属材料の粉末を、光学的等方性相の結晶構造を形成する炭素源物質の溶融体に混合し、この溶融混合物を黒鉛前駆体に付着させるものである。金属材料の粉末と炭素源物質の混合および該混合物と黒鉛前駆体との混合操作では、加圧ニーダー、二本ロールなどの各種混練機が使用できる。溶融体への金属粉末の混合と黒鉛前駆体への付着は順次行っても、同時に行ってもよい。   In the method (d), a powder of a metal material having an average particle diameter of 0.01 μm or more and 5 μm or less is mixed with a melt of a carbon source material that forms a crystal structure of an optically isotropic phase, and this molten mixture is mixed. It is attached to the graphite precursor. Various kneaders such as a pressure kneader and a two-roll can be used for mixing the metal material powder and the carbon source substance and mixing the mixture and the graphite precursor. Mixing of the metal powder to the melt and adhesion to the graphite precursor may be performed sequentially or simultaneously.

(e)の方法は、前記金属材料を、前記黒鉛質前駆体の外表面に、PVD法あるいはCVD法により付着させる。このような方法の好ましい例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、分子線エピタキシー法などのPVD法や、常圧CVD法、減圧CVD法、プラズマCVD法、MO(Magneto-Optic)CVD法、光CVD法などのCVD法が挙げられる。   In the method (e), the metal material is attached to the outer surface of the graphite precursor by a PVD method or a CVD method. Preferred examples of such methods include PVD methods such as vacuum deposition, sputtering, ion plating, molecular beam epitaxy, atmospheric pressure CVD, reduced pressure CVD, plasma CVD, MO (Magneto-Optic) ) CVD methods such as CVD and photo-CVD.

これらのなかでもスパッタリング法が好ましい。スパッタリング法としては、直流スパックリング法、マグネトロレスパッタリング法、高周波スパッタリング法、反応性スパックリング法、バイアススパッタリング法、イオンビームスパッタリング法などが例示される。   Of these, the sputtering method is preferable. Examples of the sputtering method include a direct current spaccling method, a magnetron sputtering method, a high frequency sputtering method, a reactive spackling method, a bias sputtering method, and an ion beam sputtering method.

このスパッタリング法は、カソード側に金属のターゲットを設置し、一般に1〜10−2Pa程度の不活性ガス雰囲気中で電極間にグロー放電を起こし、不活性ガスをイオン化させ、ターゲットの金属を叩き出して、アノード側に設置した黒鉛質前駆体に該金属を被覆する方法が、代表例として挙げられる。
金属の代わりに金属化合物を用いてもよいし、複数の種類の金属を同時用いて黒鉛質前駆体の外表面に合金を形成してもよいし、金属と金属化合物とを混合してターゲットとして用いてもよい。さらに、2種類以上のターゲットを用いて、スパッタリングを2回以上行い、複数の金属および/または金属化合物を順に付着させてもよい。
また、不活性ガスの代わりに反応性ガスを用いてもよい。
In this sputtering method, a metal target is set on the cathode side, and generally a glow discharge is generated between the electrodes in an inert gas atmosphere of about 1 to 10 −2 Pa to ionize the inert gas and strike the target metal. A typical example is a method in which the metal is coated on a graphite precursor placed on the anode side.
A metal compound may be used in place of the metal, an alloy may be formed on the outer surface of the graphite precursor using a plurality of types of metals simultaneously, or the target may be mixed with the metal and the metal compound. It may be used. Furthermore, sputtering may be performed twice or more using two or more types of targets, and a plurality of metals and / or metal compounds may be attached in order.
A reactive gas may be used instead of the inert gas.

この場合、黒鉛質前駆体を機械的に攪拌する、超音波などの振動を与える、またはガスを流通させることによって、黒鉛質前駆体に動きを与え、黒鉛質前駆体の外表面に金属を分散して付着させることが好ましい。   In this case, mechanically agitating the graphite precursor, applying vibrations such as ultrasonic waves, or moving gas to move the graphite precursor and disperse the metal on the outer surface of the graphite precursor It is preferable to make it adhere.

本発明において、黒鉛質前駆体の外表面に、前記金属材料を分散して付着させる方法は、上記の(a)〜(e)に限定されず、例えば、金属材料を黒鉛質前駆体の外表面に融着させる方法などであってもよい。   In the present invention, the method of dispersing and attaching the metal material to the outer surface of the graphite precursor is not limited to the above (a) to (e). For example, the metal material is attached to the outside of the graphite precursor. A method of fusing to the surface may be used.

なお、前記金属材料を前記黒鉛質前駆体の外表面に付着させた後に、炭素材料の被覆、ガス処理、酸化処理などの各種化学的処理や、機械的エネルギーの付与などの物理的処理を施してもよい。   After the metal material is attached to the outer surface of the graphite precursor, various chemical treatments such as carbon material coating, gas treatment and oxidation treatment, and physical treatment such as application of mechanical energy are performed. May be.

工程(3):黒鉛化方法としては、アチュソン炉などの公知の高温炉を用いて、1500℃以上、3300℃以下の温度で加熱する方法が採用できる。これにより、金属材料は蒸発または昇華して、得られる黒鉛質材料に残存することがない。加熱温度は好ましくは2500℃以上、3300℃以下、さらに好ましくは2800℃〜3300℃である。1500℃未満では、黒鉛化できないほか、金属材料が残存して、負極に用いた場合に、放電容量が不足する。3300℃超の場合は、黒鉛質材料が一部昇華することがあり、収率が低下するので好ましくない。黒鉛化は非酸化性雰囲気で行うことが好ましい。黒鉛化に要する時間は一概に言えないが、1〜20時間程度である。
得られた黒鉛質材料は、必要に応じて解砕、粉砕し、分級により粒度調整して、負極材料として使用される。
Step (3): As a graphitization method, a method of heating at a temperature of 1500 ° C. or more and 3300 ° C. or less using a known high-temperature furnace such as an Acheson furnace can be adopted. As a result, the metal material does not evaporate or sublime and remain in the obtained graphite material. The heating temperature is preferably 2500 ° C. or higher and 3300 ° C. or lower, more preferably 2800 ° C. to 3300 ° C. If it is less than 1500 degreeC, it cannot graphitize and a metal material remains, and when it is used for a negative electrode, discharge capacity is insufficient. If it exceeds 3300 ° C., the graphite material may partially sublime, which is not preferable because the yield decreases. Graphitization is preferably performed in a non-oxidizing atmosphere. Although the time required for graphitization cannot be generally stated, it is about 1 to 20 hours.
The obtained graphite material is crushed and pulverized as necessary, and the particle size is adjusted by classification and used as a negative electrode material.

上記のような方法で、黒鉛質材料の前駆体に、該金属材料を点在させ、加熱することによって本発明の黒鉛質材料が得られる。このメカニズムは明確ではないが、粒状あるいは球状の該金属材料が外表面に点在している該前駆体を黒鉛化処理(すなわち1500℃以上に加熱)する過程で、母材と一体化した隆起が生成するものと考えられる。金属材料はこの加熱過程で蒸発して逸散するようであり、最終生成物である本発明の黒鉛質材料中には実質的に残存しない。以下にさらにメカニズムを推測する。温度が比較的に低い黒鉛化処理の前段階で、該金属化合物が該前駆体の炭素と反応し金属炭化物を生成する。その際に、該金属化合物は該前駆体から炭素の供給を受けて、一旦、該金属炭化物の隆起が生成する。しかし、黒鉛化処理温度が、該金属炭化物を形成している金属の沸点近傍に上昇すると、該金属炭化物と化学平衡状態にある炭素と金属から金属の蒸散が起きはじめる。その後、昇温に伴い、化学平衡は逆反応に有利に進行し、最終的には該金属の全てが蒸散し、母材と同じ黒鉛化隆起が残存する。黒鉛化処理では約3000℃まで昇温されるが、例えば、該金属化合物を形成する金属が鉄の場合は、2800℃近傍で鉄の蒸散が始まると推測する。したがって、本発明の母材は、通常、工程(1)で用いられた黒鉛質材料の前駆体の黒鉛化処理後の残存部がその大部分を占めることになる。   By the above method, the graphite material of the present invention can be obtained by interspersing the metal material with the precursor of the graphite material and heating. Although this mechanism is not clear, a bump that is integrated with the base material in the process of graphitizing (ie, heating to 1500 ° C. or higher) the precursor in which the granular or spherical metal material is scattered on the outer surface Is considered to be generated. The metal material seems to evaporate and dissipate in this heating process, and does not substantially remain in the final product, the graphite material of the present invention. The mechanism is further estimated below. The metal compound reacts with the precursor carbon to form a metal carbide at a stage prior to the graphitization treatment at a relatively low temperature. At that time, the metal compound is supplied with carbon from the precursor, and the metal carbide bumps are once generated. However, when the graphitization temperature rises to the vicinity of the boiling point of the metal forming the metal carbide, transpiration of the metal starts from carbon and metal in a chemical equilibrium state with the metal carbide. Thereafter, as the temperature rises, the chemical equilibrium proceeds favorably for the reverse reaction. Eventually, all of the metal evaporates, and the same graphitized bump as the base material remains. In the graphitization treatment, the temperature is raised to about 3000 ° C. For example, when the metal forming the metal compound is iron, it is estimated that the transpiration of iron starts near 2800 ° C. Accordingly, in the base material of the present invention, the remaining portion after the graphitization treatment of the precursor of the graphite material used in the step (1) usually occupies the majority.

従って、金属あるいは金属化合物は、黒鉛質前駆体の外表面に分散して付着させることが好ましいと考えられる。また、金属または金属化合物は炭化物を形成することができるものを用いることが好ましいと考えられる。   Accordingly, it is considered that the metal or metal compound is preferably dispersed and adhered to the outer surface of the graphite precursor. Further, it is considered preferable to use a metal or a metal compound that can form a carbide.

(リチウムイオン二次電池)
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素とし、正極および負極はそれぞれリチウムイオンの担持体からなり、充電時には、リチウムイオンが負極中に吸蔵され、放電時には負極から離脱する電池機構によっている。
本発明のリチウムイオン二次電池は、負極材料として本発明の黒鉛質材料を含有すること以外は特に限定されず、他の電池構成要素については一般的なリチウムイオン二次電池の要素に準じる。
以下、負極、正極、電解質などについて説明する。
(Lithium ion secondary battery)
A lithium ion secondary battery usually has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main battery components. Each of the positive electrode and the negative electrode is composed of a lithium ion carrier, and during charging, lithium ions are occluded in the negative electrode and discharged. It depends on the battery mechanism that is detached from the negative electrode.
The lithium ion secondary battery of the present invention is not particularly limited except that it contains the graphite material of the present invention as a negative electrode material, and other battery components conform to the elements of a general lithium ion secondary battery.
Hereinafter, the negative electrode, the positive electrode, the electrolyte, and the like will be described.

(負極)
リチウムイオン二次電池用の負極の作製は、本発明の黒鉛質材料の電池特性を充分に引き出し、かつ賦型性が高く、化学的、電気化学的に安定な負極を得ることができる成型方法であればいずれによってもよいが、本発明の黒鉛質材料と結合剤を溶剤および/または分散媒(以後、単に溶剤とも称す)中で混合して、ペースト化し、得られた負極合剤ペーストを集電材に塗布した後、溶剤を除去し、プレスなどにより固化および/または賦形する方法によるのが一般的である。すなわち、まず、本発明の黒鉛質材料を分級などにより所望の粒度に調整し、結合剤と混合して得た組成物を溶剤に分散させ、ペースト状にして負極合剤を調製する。
(Negative electrode)
The production of a negative electrode for a lithium ion secondary battery is a molding method that can sufficiently bring out the battery characteristics of the graphite material of the present invention, and can provide a chemically and electrochemically stable negative electrode with high moldability. The graphite material of the present invention and the binder are mixed in a solvent and / or a dispersion medium (hereinafter also simply referred to as a solvent) to form a paste, and the obtained negative electrode mixture paste is used as a paste. Generally, after applying to the current collector, the solvent is removed, and solidification and / or shaping is performed by pressing or the like. That is, first, the graphite material of the present invention is adjusted to a desired particle size by classification or the like, and a composition obtained by mixing with a binder is dispersed in a solvent to prepare a negative electrode mixture in the form of a paste.

より具体的には、本発明の黒鉛質材料と、例えば、カルボキシメチルセルロース、スチレン−ブタジエンゴムなどの結合剤を、水、アルコールなどの溶剤中で混合して得たスラリー、またはポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末を、イソピロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、負極合剤ペーストを調製する。該ペーストを、集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。負極合剤層の膜厚は10〜200μm、好ましくは30〜100μmである。   More specifically, a slurry obtained by mixing the graphite material of the present invention and a binder such as carboxymethyl cellulose and styrene-butadiene rubber in a solvent such as water or alcohol, or polytetrafluoroethylene, A slurry obtained by mixing a fluororesin powder such as polyvinylidene fluoride with a solvent such as isopropyl alcohol, N-methylpyrrolidone, dimethylformamide, etc., using a known stirrer, mixer, kneader, kneader, etc. A negative electrode mixture paste is prepared by stirring and mixing. When the paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded is obtained. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 30 to 100 μm.

また、負極合剤層は、本発明の黒鉛質材料と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成型して作製することもできる。ただし、乾式混合では、十分な負極の強度を得るために多くの結合剤を必要とし、結合剤が過多の場合は、リチウムイオン二次電池の放電容量や急速充放電効率が低下することがある。   The negative electrode mixture layer can also be produced by dry-mixing the graphite material of the present invention and resin powders such as polyethylene and polyvinyl alcohol and hot pressing in a mold. However, dry mixing requires a large amount of binder to obtain sufficient strength of the negative electrode, and if the binder is excessive, the discharge capacity and rapid charge / discharge efficiency of the lithium ion secondary battery may be reduced. .

負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電材との接着強度をさらに高めることができる。
負極に用いる集電材の形状は、特に限定されないが、箔状、メッシュ、エキスパンドメタルなどの網状物などが好ましい。集電材の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電材の厚みは、箔状の場合は好ましくは5〜20μmである。
After the negative electrode mixture layer is formed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased by press bonding such as pressurization.
The shape of the current collector used for the negative electrode is not particularly limited, but is preferably a foil, a mesh, a net-like material such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. The thickness of the current collector is preferably 5 to 20 μm in the case of a foil.

(正極)
正極は、例えば正極材料と結合剤および導電剤よりなる正極合剤を集電材の表面に塗布することにより形成される。正極の材料(正極活物質)は、充分量のリチウムを吸蔵/離脱し得るものを選択するのが好ましく、リチウムと遷移金属の複合カルコゲン化物、なかでもリチウムと遷移金属の複合酸化物(リチウム含有遷移金属酸化物とも称す)が好ましい。該複合酸化物は、リチウムと2種類以上の遷移金属を固溶したものであってもよい。
リチウム含有遷移金属酸化物は、具体的には、LiM1 1-X2 X2 (式中Xは0≦X≦1の範囲の数値であり、M1、M2 は少なくとも一種の遷移金属元素である)またはLiM1 2-Y2 Y4 (式中Yは0≦Y≦2の範囲の数値であり、M1 、M2 は少なくとも一種の遷移金属元素である)で示される。Mで示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどである。好ましい具体例は、LiCoO2、LiNiO2 、LiMnO2 、LiNi0.9 Co0.12、LiNi0.5 Co0.52 などである。
(Positive electrode)
The positive electrode is formed, for example, by applying a positive electrode mixture comprising a positive electrode material, a binder and a conductive agent to the surface of the current collector. It is preferable to select a positive electrode material (positive electrode active material) that can occlude / release a sufficient amount of lithium. A composite chalcogenide of lithium and transition metal, in particular, a composite oxide of lithium and transition metal (lithium-containing) (Also referred to as transition metal oxide) is preferred. The composite oxide may be a solid solution of lithium and two or more transition metals.
Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 X O 2 (where X is a numerical value in the range of 0 ≦ X ≦ 1, and M 1 and M 2 are at least one kind of transition. A metal element) or LiM 1 2-Y M 2 Y O 4 (where Y is a numerical value in the range of 0 ≦ Y ≦ 2 and M 1 and M 2 are at least one transition metal element) It is. Transition metal elements represented by M are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, and the like. Preferred examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 and the like.

リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭素塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤などの各種添加剤を適宜に使用することができる。
The lithium-containing transition metal oxide is obtained by, for example, using lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, mixing these starting materials, and firing at a temperature of 600 to 1000 ° C. in an oxygen atmosphere. Obtainable.
The positive electrode active material may be used alone or in combination of two or more. For example, a carbon salt such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent, can be used suitably.

正極は、正極材料、結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電材の両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛化物など公知のものが使用される。
集電材の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電材の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは10〜40μmのものが好適である。
The positive electrode is manufactured by applying a positive electrode mixture made of a positive electrode material, a binder, and a conductive agent for imparting conductivity to the positive electrode on both surfaces of the current collector to form a positive electrode mixture layer. As the binder, the same one as that used for producing the negative electrode can be used. As the conductive agent, known ones such as graphitized materials are used.
The shape of the current collector is not particularly limited, and a foil or mesh or net-like material such as expanded metal is used. The material of the current collector is aluminum, stainless steel, nickel or the like. The thickness is preferably 10 to 40 μm.

正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電材に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。   Similarly to the negative electrode, the positive electrode mixture may be dispersed in a solvent to form a paste, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After the layer is formed, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

(電解質)
本発明に用いられる電解質としては、溶媒と電解質塩からなる有機系電解質や、高分子化合物と電解質塩とからなるポリマー電解質などが用いられる。電解質塩としては、例えば、LiPF6 、LiBF4 、LiAsF6、LiClO4 、LiB(C654 、LiCl、LiBr、LiCF3SO3 、LiCH3 SO3 、LiN(CF3 SO22 、LiC(CF3 SO23 、LiN(CF3CH2 OSO22 、LiN(CF3 CF2OSO22 、LiN(HCF2 CF2 CH2OSO22 、LiN[(CF32 CHOSO22 、LiB[C63 (CF324、LiAlCl4 、LiSiF6 などのリチウム塩を用いることができる。特にLiPF6 、LiBF4が酸化安定性の点から好ましい。
有機系電解質中の電解質塩濃度は0.1〜5mol /lが好ましく、0.5〜3.0mol/l がより好ましい。
(Electrolytes)
As the electrolyte used in the present invention, an organic electrolyte composed of a solvent and an electrolyte salt, a polymer electrolyte composed of a polymer compound and an electrolyte salt, and the like are used. Examples of the electrolyte salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2. LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN [(CF 3 ) 2 CHOSO 2 ] 2 , LiB [C 6 H 3 (CF 3 ) 2 ] 4 , LiAlCl 4 , LiSiF 6 and other lithium salts can be used. In particular, LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.
The electrolyte salt concentration in the organic electrolyte is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 3.0 mol / l.

有機系電解質の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1 −または1,2 −ジメトキシエタン、1,2 −ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1 ,3−ジオキソラン、4 −メチル−1 ,3 −ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。   Examples of organic electrolyte solvents include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran. , Γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane , Dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethylorthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl Sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as dimethyl sulfite.

非水電解質をポリマー電解質とする場合には、可塑剤(非水溶媒)でゲル化されたマトリクス高分子化合物を含むが、このマトリクス高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエーテル系樹脂、ポリメタクリレート系樹脂、ポリアクリレート系樹脂、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂などを単独、もしくは混合して用いることができる。 これらの中で、酸化還元安定性の観点などから、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂を用いることが好ましい。
ポリマー電解質中の溶媒の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。該範囲であると、導電率が高く、機械的強度が強く、フィルム化しやすい。
When a non-aqueous electrolyte is used as a polymer electrolyte, it includes a matrix polymer compound gelled with a plasticizer (non-aqueous solvent). Examples of the matrix polymer compound include ethers such as polyethylene oxide and cross-linked products thereof. Resin, polymethacrylate resin, polyacrylate resin, fluorine resin such as polyvinylidene fluoride and vinylidene fluoride-hexafluoropropylene copolymer can be used alone or in combination. Among these, from the viewpoint of oxidation-reduction stability, it is preferable to use a fluorine-based resin such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer.
10-90 mass% is preferable and, as for the ratio of the solvent in a polymer electrolyte, 30-80 mass% is more preferable. Within this range, the electrical conductivity is high, the mechanical strength is strong, and a film is easily formed.

ポリマー電解質の作製は特に限定されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して溶融・溶解する方法が挙げられる。また、混合用有機溶媒に、高分子化合物、リチウム塩、および非水溶媒を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒を混合し、紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、ポリマーを得る方法などを挙げることができる。   The production of the polymer electrolyte is not particularly limited, and examples thereof include a method in which a polymer compound constituting a matrix, a lithium salt, and a nonaqueous solvent (plasticizer) are mixed and heated to melt and dissolve. Also, after dissolving the polymer compound, lithium salt, and non-aqueous solvent in the mixing organic solvent, the method of evaporating the mixing organic solvent, mixing the polymerizable monomer, lithium salt and non-aqueous solvent, ultraviolet rays, Examples thereof include a method of polymerizing a polymerizable monomer by irradiation with an electron beam or a molecular beam to obtain a polymer.

本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
セパレータは特に限定されるものではないが、例えば織布、不織布、合成樹脂製微多孔膜などが挙げられる。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
本発明のリチウムイオン二次電池においては、ゲル電解質を用いることも可能である。
In the lithium ion secondary battery of the present invention, a separator can also be used.
Although a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. A synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.
In the lithium ion secondary battery of the present invention, a gel electrolyte can also be used.

ポリマー電解質を用いたリチウムイオン二次電池は、一般にポリマー電池と呼ばれ、本発明の黒鉛質材料を用いてなる負極と、正極およびポリマー電解質から構成される。例えば、負極、ポリマー電解質、正極の順に積層し、電池外装材内に収容することで作製される。なお、これに加えて、さらに、負極と正極の外側にポリマー電解質を配するようにしてもよい。   A lithium ion secondary battery using a polymer electrolyte is generally referred to as a polymer battery, and includes a negative electrode using the graphite material of the present invention, a positive electrode, and a polymer electrolyte. For example, the negative electrode, the polymer electrolyte, and the positive electrode are laminated in this order, and are housed in a battery outer packaging material. In addition to this, a polymer electrolyte may be further arranged outside the negative electrode and the positive electrode.

さらに、本発明のリチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解質電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。ポリマー電解質を用いたポリマー電池の場合には、ラミネートフィルムに封入した構造とすることもできる。   Furthermore, the structure of the lithium ion secondary battery of the present invention is arbitrary, and the shape and form thereof are not particularly limited, and can be arbitrarily selected from a cylindrical shape, a square shape, a coin shape, a button shape, and the like. Can do. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to include means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharge occurs. In the case of a polymer battery using a polymer electrolyte, a structure enclosed in a laminate film can also be used.

次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例および比較例では、図2に示すような構成の評価用のボタン型二次電池を作製して評価した。該電池は、本発明の目的に基づき、公知の方法に準じて作製することができる。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. Further, in the following Examples and Comparative Examples, a button type secondary battery for evaluation having a configuration as shown in FIG. 2 was produced and evaluated. The battery can be produced according to a known method based on the object of the present invention.

なお以下の実施例および比較例において、黒鉛質前駆体および黒鉛質材料の物性は以下の方法により測定した。
黒鉛質前駆体および黒鉛質材料のアスペクト比は、走査型電子顕微鏡観察にて、その形状を確認できる倍率により100個について計測した平均値である。
黒鉛質前駆体および黒鉛質材料の体積換算の平均粒子径は、レーザー回折式粒度分布計により測定した粒度分布の累積度数が体積百分率で50%となる粒子径である。
黒鉛質材料の格子面間隔d002 は、前述したX線回折法により求めた。
黒鉛質材料の比表面積は、窒素ガス吸着によるBET法により求めた。
黒鉛質材料の隆起の高さhおよび基底長gを、走査型電子顕微鏡による断面観察にて、その形状を確認できる倍率により100個の隆起を計測し、高さh、基底長gおよび高さhと基底長gの比h/gの平均値を求めた。h/gの平均値は、各隆起について求めたh/gの100個分の平均値とした。
ここでいう「確認できる倍率」は、通常、3000倍程度である。なお、本願でいう該基底とは、該当する隆起が母材と接する仮想平断面であり、該基底長(g)とは該仮想平断面の外周上の2点を結んだ最長の仮想直線である。また、該隆起の高さ(h)とは、該基底(該仮想平断面)からの最高の垂直高さである。
In the following Examples and Comparative Examples, the physical properties of the graphite precursor and the graphite material were measured by the following methods.
The aspect ratio of the graphite precursor and the graphite material is an average value measured for 100 pieces with a magnification by which the shape can be confirmed by observation with a scanning electron microscope.
The average particle diameter in terms of volume of the graphite precursor and the graphite material is a particle diameter at which the cumulative frequency of the particle size distribution measured by a laser diffraction particle size distribution meter is 50% by volume.
The lattice spacing d 002 of the graphite material was determined by the X-ray diffraction method described above.
The specific surface area of the graphite material was determined by the BET method using nitrogen gas adsorption.
The height h and the base length g and the height h and the base length g of the graphite material are measured by a magnification capable of confirming the shape by cross-sectional observation with a scanning electron microscope. The average value of the ratio h / g of h to the base length g was determined. The average value of h / g was the average value of 100 h / g values obtained for each ridge.
The “magnification that can be confirmed” here is usually about 3000 times. The base referred to in the present application is a virtual flat section in which the corresponding ridge contacts the base material, and the base length (g) is the longest virtual straight line connecting two points on the outer periphery of the virtual flat section. is there. Further, the height (h) of the bulge is the highest vertical height from the base (the virtual plane section).

また、黒鉛質材料の隆起の個数は、走査型電子顕微鏡による観察にて、10μm角の視野に存在する隆起の個数を10視野において計測し平均値を求めた。   The number of bumps of the graphite material was obtained by measuring the number of bumps existing in a 10 μm square field in 10 fields of view by observation with a scanning electron microscope, and obtaining an average value.

〔実施例1〕
(黒鉛質前駆体の調製)
コールタールピッチを熱処理してなるメソフェーズ小球体(JFEケミカル(株)製、平均粒子径25μm)を窒素雰囲気下600℃で3時間焼成して、球状の黒鉛質前駆体を調製した。アスペクト比は1.2であった。
このような方法で調整した黒鉛質前駆体を黒鉛質前駆体(1)とする。
[Example 1]
(Preparation of graphite precursor)
Mesophase microspheres (manufactured by JFE Chemical Co., Ltd., average particle size 25 μm) obtained by heat treatment of coal tar pitch were fired at 600 ° C. for 3 hours in a nitrogen atmosphere to prepare a spherical graphite precursor. The aspect ratio was 1.2.
The graphite precursor prepared by such a method is defined as a graphite precursor (1).

なお、この黒鉛質前駆体(1)を偏光顕微鏡で観察した結果、表面に薄膜状の光学的等方性相を有しており、内部は光学的異方性相を有していた。また、この黒鉛質前駆体をこのまま非酸化性雰囲気下3000℃で6時間加熱して、該黒鉛質前駆体を黒鉛化したもの(黒鉛化物)について、表面の結晶構造を分析した。   In addition, as a result of observing this graphite precursor (1) with a polarizing microscope, it had a thin film-like optical isotropic phase on the surface, and the inside had an optically anisotropic phase. Further, the graphite precursor was heated at 3000 ° C. for 6 hours in a non-oxidizing atmosphere as it was, and the surface crystal structure of the graphite precursor graphitized (graphitized product) was analyzed.

分析にあたっては、これを樹脂で支持し、集束イオンビーム加工装置(FB2000、株式会社日立製作所製)で厚さが約0.1μmの薄膜を作成した。次に、この黒鉛化物の表面近傍の領域(1μm×1μm)のうちの10箇所に、透過電子顕微鏡(HF2000、株式会社日立製作所製およびJEM2010F、日本電子株式会社製)を用いて電子ビームを照射し(加圧電圧は150〜200kV、電子ビーム径は数十nm)、電子回折を行い、結晶性と結晶子の大きさを測定した。その結果、10箇所のうち8箇所で多結晶の性質が認められ、多結晶の結晶組織を有することが判明した。また、結晶子の大きさは60nm(平均値を10nm単位に四捨五入した値)であった。   In the analysis, this was supported by a resin, and a thin film having a thickness of about 0.1 μm was formed using a focused ion beam processing apparatus (FB2000, manufactured by Hitachi, Ltd.). Next, an electron beam is irradiated to 10 places in the region (1 μm × 1 μm) near the surface of the graphitized material using a transmission electron microscope (HF2000, manufactured by Hitachi, Ltd. and JEM2010F, manufactured by JEOL Ltd.). (Pressurized voltage is 150 to 200 kV, electron beam diameter is several tens of nm), electron diffraction was performed, and crystallinity and crystallite size were measured. As a result, polycrystalline properties were recognized in 8 out of 10 locations, and it was proved to have a polycrystalline crystalline structure. The crystallite size was 60 nm (average value rounded to the nearest 10 nm).

なお、結晶子の大きさは、透過電子顕微鏡で結晶子の断面を観察し、表面に露出している部分の長さを測定したものである。   In addition, the size of the crystallite is obtained by observing a cross section of the crystallite with a transmission electron microscope and measuring the length of the portion exposed on the surface.

(黒鉛質材料の調製)
鉄に換算して5質量%の濃度に相当する塩化第二鉄水溶液(酸性)100質量部に、黒鉛質前駆体(1)の100質量部を加え、水酸化ナトリウム水溶液を添加してpH7まで中和した。得られた中性分散液は水酸化鉄:[FeO(OH)]の懸濁液に前駆体(1)が分散されていた。引続き、100℃に加熱して水を除去し、その後、150℃で5時間真空乾燥して水を完全に除去した。
(Preparation of graphite material)
To 100 parts by mass of ferric chloride aqueous solution (acidic) corresponding to a concentration of 5% by mass in terms of iron, 100 parts by mass of the graphite precursor (1) is added, and sodium hydroxide aqueous solution is added until pH 7 Neutralized. In the obtained neutral dispersion, the precursor (1) was dispersed in a suspension of iron hydroxide: [FeO (OH)]. Subsequently, the mixture was heated to 100 ° C. to remove water, and then vacuum-dried at 150 ° C. for 5 hours to completely remove water.

このようにして得られた、水酸化鉄が表面に点在した黒鉛質前駆体を、以下では「水酸化鉄点在黒鉛質前駆体」ともいう。   The graphite precursor having iron hydroxide scattered on the surface thus obtained is also referred to as “iron hydroxide-spotted graphite precursor” below.

乾燥したあと、該水酸化鉄点在黒鉛質前駆体の外観を走査型電子顕微鏡で観察したところ、粒状および針状の水酸化鉄が点在して付着していた。また、この水酸化鉄点在黒鉛質前駆体の表面に付着している鉄化合物50個について、最大長を計測したところ、平均値で0.5μmであった。   After drying, the appearance of the iron hydroxide interspersed graphite precursor was observed with a scanning electron microscope. As a result, granular and acicular iron hydroxides were scattered and adhered. Moreover, when the maximum length was measured about 50 iron compounds adhering to the surface of this iron hydroxide interspersed graphite precursor, it was 0.5 micrometer in average value.

また、水酸化鉄点在黒鉛質前駆体を非酸化性雰囲気下3000℃で6時間加熱し、黒鉛質材料を得た(黒鉛質材料(1)とする)。この黒鉛質材料の平均粒子径は24μmであり、粒状の黒鉛質材料の表面に半球状ないし球状の隆起を6個/100μm2 有する構造であった([図1])。隆起の高さhは3.5μm、基底長gは3.0μmであり、h/gは1.2であった。黒鉛質材料のアスペクト比は1.2、比表面積は3.1m2/g、格子面間隔d002 は0.3356nmであった。表1に、黒鉛質前駆体、黒鉛質材料、隆起の特性などを示した。 Moreover, the iron hydroxide interspersed graphite precursor was heated at 3000 ° C. for 6 hours in a non-oxidizing atmosphere to obtain a graphite material (referred to as graphite material (1)). This graphite material had an average particle diameter of 24 μm, and had a structure having 6 hemispherical or spherical ridges / 100 μm 2 on the surface of the granular graphite material ([FIG. 1]). The height h of the ridge was 3.5 μm, the base length g was 3.0 μm, and h / g was 1.2. The aspect ratio of the graphite material was 1.2, the specific surface area was 3.1 m 2 / g, and the lattice spacing d 002 was 0.3356 nm. Table 1 shows the characteristics of the graphite precursor, the graphite material, the protuberance, and the like.

なお、得られた黒鉛質材料(1)について、ICP発光分光分析装置を用いて含有元素を分析したが、鉄は検出されなかった。また、前記水酸化鉄点在黒鉛質前駆体を非酸化雰囲気下1490℃で4時間加熱したものについて、X線回折分析により含有化合物を同定したところ、FeCが検出された。これより、鉄化合物を付着させた黒鉛前駆体(1)を加熱して黒鉛化する過程において、鉄の炭化物が生成していることが確認された。 In addition, although the contained element was analyzed about the obtained graphite material (1) using the ICP emission-spectral-spectroscopy apparatus, iron was not detected. Further, when the contained compound was identified by X-ray diffraction analysis of the iron hydroxide interspersed graphite precursor heated at 1490 ° C. for 4 hours in a non-oxidizing atmosphere, Fe 3 C was detected. From this, it was confirmed that iron carbide was generated in the process of heating and graphitizing the graphite precursor (1) to which the iron compound was adhered.

(負極合剤ペーストの調製)
黒鉛質材料(1)の98質量部、結合剤としてのカルボキシメチルセルロース1質量部、およびスチレン−ブタジエンゴム1質量部を水に入れ、攪拌して負極合剤ペーストを調製した。
(Preparation of negative electrode mixture paste)
98 parts by mass of the graphite material (1), 1 part by mass of carboxymethyl cellulose as a binder, and 1 part by mass of styrene-butadiene rubber were put in water and stirred to prepare a negative electrode mixture paste.

(作用電極の作製)
前記負極合剤ペーストを、銅箔上に均一な厚さで塗布し、さらに真空中で90℃で分散媒の水を蒸発させて乾燥した。次に、この銅箔上に塗布された負極合剤をローラープレスによって加圧し、さらに直径15.5mmの円形状に打抜くことで、銅箔からなる集電材(厚み16μm)に密着した負極合剤層(厚み60μm)からなる作用電極12を作製した。
(Production of working electrode)
The negative electrode mixture paste was applied to a copper foil with a uniform thickness, and further dried by evaporating the water of the dispersion medium at 90 ° C. in vacuum. Next, the negative electrode mixture applied on the copper foil is pressed by a roller press, and further punched into a circular shape having a diameter of 15.5 mm, thereby adhering to the current collector made of copper foil (thickness 16 μm). A working electrode 12 composed of an agent layer (thickness 60 μm) was produced.

(対極の作製)
リチウム金属箔を、ニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電材と、該集電材に密着したリチウム金属箔(厚み0.5μm)からなる対極を作製した。
(Production of counter electrode)
Press the lithium metal foil against the nickel net and punch it into a circular shape with a diameter of 15.5 mm to produce a current collector made of nickel net and a counter electrode consisting of a lithium metal foil (thickness 0.5 μm) in close contact with the current collector did.

(電解質・セパレータ)
エチレンカーボネート33vol%−メチルエチルカーボネート67vol%の混合溶媒に、LiPF6 を1mol/dm3 となる濃度で溶解させ、非水電解液を調製した。得られた非水電解質をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解質が含浸されたセパレータを作製した。
(Electrolyte / Separator)
Ethylene carbonate 33 vol% - methyl ethyl carbonate 67Vol% of the mixed solvent, dissolved at a concentration of a 1 mol / dm 3 of LiPF6, was prepared a non-aqueous electrolyte solution. The obtained non-aqueous electrolyte was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolyte.

(評価電池の作製)
評価電池として図2に示すボタン型二次電池を作製した。
集電材17bに密着した作用電極12と集電材17aに密着した対極14との間に、電解質を含浸させたセパレータ15を挟んで、積層した。その後、作用電極集電材17b側が外装カップ11内に、対極集電材17a側が外装缶13内に収容されるように、外装カップ11と外装缶13とを合わせた。その際、外装カップ11と外装缶13との周縁部に絶縁ガスケット16を介在させ、両周縁部をかしめて密閉した。
(Production of evaluation battery)
A button-type secondary battery shown in FIG. 2 was produced as an evaluation battery.
The working electrode 12 in close contact with the current collector 17b and the counter electrode 14 in close contact with the current collector 17a were stacked with a separator 15 impregnated with electrolyte interposed therebetween. Thereafter, the exterior cup 11 and the exterior can 13 were combined so that the working electrode current collector 17 b side was accommodated in the exterior cup 11 and the counter electrode current collector 17 a side was accommodated in the exterior can 13. In that case, the insulating gasket 16 was interposed in the peripheral part of the exterior cup 11 and the exterior can 13, and both peripheral parts were crimped and sealed.

前記のように作製された評価電池について、25℃の温度下で以下に示すような充放電試験を行い、放電容量、初期充放電効率、急速充電率、急速放電率およびサイクル特性を評価した。評価結果を表2に示した。
(放電容量、初期充放電効率)
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。その後、120分間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。これを第1サイクルとした。次式(I)から初期充放電効率を計算した。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)
×100 (I)
なおこの試験では、リチウムイオンを黒鉛質材料に吸蔵する過程を充電、負極材料から離脱する過程を放電とした。
The evaluation battery produced as described above was subjected to a charge / discharge test as shown below at a temperature of 25 ° C. to evaluate the discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge rate, and cycle characteristics. The evaluation results are shown in Table 2.
(Discharge capacity, initial charge / discharge efficiency)
After 0.9 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The charging capacity was determined from the amount of electricity applied during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity was obtained from the energization amount during this period. This was the first cycle. The initial charge / discharge efficiency was calculated from the following formula (I).
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity)
× 100 (I)
In this test, the process of occluding lithium ions in the graphite material was charged, and the process of detaching from the negative electrode material was discharge.

(急速充電率)
引き続き、第2サイクルにて高速充電を行なった。
電流値を第1サイクルの4倍の3.6mAとして、回路電圧が0mVに達するまで定電流充電を行い、充電容量を求め、次式(II)から急速充電率を計算した。
急速充電率=(第2サイクルにおける定電流充電容量/第1サイクルにおける
放電容量)×100 (II)
(Rapid charge rate)
Subsequently, high-speed charging was performed in the second cycle.
The current value was set to 3.6 mA, which is four times the first cycle, constant current charging was performed until the circuit voltage reached 0 mV, the charge capacity was obtained, and the rapid charge rate was calculated from the following formula (II).
Rapid charge rate = (constant current charge capacity in the second cycle / in the first cycle
Discharge capacity) x 100 (II)

(急速放電率)
前記第2サイクルの定電流充電に引き続き、第2サイクルにて、高速放電を行った。第1サイクルと同様にして定電圧充電に切替え、満充電した後、電流値を第1サイクルの16倍の14.4mAとして、回路電圧が1.5Vに達するまで、定電流放電を行った。得られた放電容量から、次式(III)により急速放電率を計算した。
急速放電率=(第2サイクルにおける放電容量/第1サイクルにおける放電容量
)×100 (III)
尚、急速充電率と急速放電率の性能をまとめて、急速充放電特性と称することもある。
(Rapid discharge rate)
Following the constant current charging in the second cycle, high-speed discharge was performed in the second cycle. After switching to constant voltage charging in the same manner as in the first cycle and fully charging, constant current discharge was performed until the circuit voltage reached 1.5 V, with the current value being 14.4 mA, 16 times that of the first cycle. From the obtained discharge capacity, the rapid discharge rate was calculated by the following formula (III).
Rapid discharge rate = (discharge capacity in the second cycle / discharge capacity in the first cycle
) × 100 (III)
The performance of the rapid charge rate and the rapid discharge rate may be collectively referred to as rapid charge / discharge characteristics.

(サイクル特性)
放電容量、初期充放電効率、急速充電率、急速放電率を評価した評価電池とは別の評価電池を作製し、以下のような評価を行なった。
回路電圧が0mVに達するまで4.0mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。20回充放電を繰返し、得られた放電容量から、次式(IV)を用いてサイクル特性を計算した。
サイクル特性=(第20サイクルにおける放電容量/第1サイクルにおける放電
容量)×100 (IV)
(Cycle characteristics)
An evaluation battery different from the evaluation battery that evaluated the discharge capacity, initial charge / discharge efficiency, rapid charge rate, and rapid discharge rate was produced and evaluated as follows.
After 4.0 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5V. The charge / discharge was repeated 20 times, and the cycle characteristics were calculated from the obtained discharge capacity using the following formula (IV).
Cycle characteristics = (discharge capacity in the 20th cycle / discharge in the first cycle)
Capacity) x 100 (IV)

表2に示すように、作用電極に実施例1の黒鉛質材料(1)を負極材料として用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに優れた急速充放電特性および優れたサイクル特性を示す。   As shown in Table 2, the evaluation battery obtained by using the graphite material (1) of Example 1 as the negative electrode material for the working electrode shows a high discharge capacity and has a high initial charge / discharge efficiency. Furthermore, it exhibits excellent rapid charge / discharge characteristics and excellent cycle characteristics.

(比較例1)
実施例1において、金属材料を用いずに、黒鉛質前駆体(1)のみを直接3000℃の温度に加熱して黒鉛化し黒鉛質材料(10)を調製した。得られた黒鉛質材料(10)の平均粒子径は24μmであり、隆起がない球状の粒子であった。該粒子のアスペクト比は1.2、比表面積は0.5m2 /g、格子面間隔d002 は0.3358nmであった。表1に、黒鉛質前駆体、黒鉛質材料の特性などを示した。
黒鉛質材料(10)を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、表面に隆起が存在しない黒鉛質材料(10)の場合は、初期充放電効率こそ高いものの、高い急速充放電特性やサイクル特性が得られない。また、黒鉛化物同士の接点が少ないため、黒鉛化物が元来有する放電容量が完全には発現されず、放電容量が低下している。
(Comparative Example 1)
In Example 1, without using a metal material, only the graphite precursor (1) was directly heated to a temperature of 3000 ° C. to graphitize to prepare a graphite material (10). The obtained graphite material (10) had an average particle size of 24 μm and was a spherical particle having no bulge. The aspect ratio of the particles was 1.2, the specific surface area was 0.5 m 2 / g, and the lattice spacing d 002 was 0.3358 nm. Table 1 shows the characteristics of the graphite precursor and the graphite material.
Using the graphite material (10), a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, in the case of the graphite material (10) having no bulge on the surface, although the initial charge / discharge efficiency is high, high rapid charge / discharge characteristics and cycle characteristics cannot be obtained. Moreover, since there are few contacts between graphitized materials, the discharge capacity which graphitized materials originally have is not fully expressed, but the discharge capacity is falling.

(実施例2)
実施例1において、黒鉛質前駆体の調製方法を変更した。メソフェーズ小球体を予め粉砕して、平均粒子径15μmの塊状粒子を得た。これを窒素雰囲気下600℃で3時間焼成して塊状の黒鉛質前駆体を得た。これのアスペクト比は1.5であった。
このような方法で得られた黒鉛質前駆体を黒鉛質前駆体(2)とする。
黒鉛質前駆体(2)を用いて、実施例1と同様な方法と条件で黒鉛質材料(2)を調製した。得られた黒鉛質材料(2)の平均粒子径は14μmであり、塊状の黒鉛質材料(2)の表面に半球状ないし球状の隆起を7個/100μm2 有する構造であった。隆起の高さhは2.8μm、基底長gは2.3μmであり、h/gは1.2であった。黒鉛質材料のアスペクト比は1.5、比表面積は4.5m2/g、格子面間隔d002 は0.3356nmであった。表1に、黒鉛質前駆体、黒鉛質材料、隆起の特性などを示した。
黒鉛質材料(2)を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、作用電極に実施例2の黒鉛質材料(2)を負極材料として用いて得られた評価電池は、高い放電容量を有し、かつ高い初期充放電効率を有する。さらに優れた急速充放電効率およびサイクル特性を示す。
(Example 2)
In Example 1, the method for preparing the graphite precursor was changed. The mesophase spherules were previously pulverized to obtain massive particles having an average particle size of 15 μm. This was calcined at 600 ° C. for 3 hours in a nitrogen atmosphere to obtain a massive graphite precursor. The aspect ratio of this was 1.5.
Let the graphite precursor obtained by such a method be a graphite precursor (2).
Using the graphite precursor (2), a graphite material (2) was prepared by the same method and conditions as in Example 1. The obtained graphite material (2) had an average particle diameter of 14 μm, and had a structure having 7 hemispherical or spherical bulges / 100 μm 2 on the surface of the massive graphite material (2). The height h of the ridge was 2.8 μm, the base length g was 2.3 μm, and h / g was 1.2. The aspect ratio of the graphite material was 1.5, the specific surface area was 4.5 m 2 / g, and the lattice spacing d 002 was 0.3356 nm. Table 1 shows the characteristics of the graphite precursor, the graphite material, the protuberance, and the like.
Using the graphite material (2), a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, the evaluation battery obtained by using the graphite material (2) of Example 2 as the negative electrode material for the working electrode has a high discharge capacity and a high initial charge / discharge efficiency. Furthermore, it exhibits excellent rapid charge / discharge efficiency and cycle characteristics.

(比較例2)
実施例2において、金属材料を用いずに、黒鉛質前駆体(2)のみを直接3000℃の温度に加熱して黒鉛化し黒鉛質材料(20)を調製した。得られた黒鉛質材料(20)の平均粒子径は14μmであり、隆起がない塊状の粒子であった。該粒子のアスペクト比は1.5、比表面積は0.9m2 /g、格子面間隔d002 は0.3358nmであった。表1に、黒鉛質前駆体、黒鉛質材料の特性などを示した。
黒鉛質材料(20)を用いて、実施例2と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、表面に隆起が存在しない黒鉛質材料(20)の場合は、高い急速充放電特性やサイクル特性が得られない。また放電容量も低下している。
(Comparative Example 2)
In Example 2, without using a metal material, only the graphite precursor (2) was directly heated to a temperature of 3000 ° C. to graphitize to prepare a graphite material (20). The obtained graphite material (20) had an average particle diameter of 14 μm and was a massive particle having no bulge. The aspect ratio of the particles was 1.5, the specific surface area was 0.9 m 2 / g, and the lattice spacing d 002 was 0.3358 nm. Table 1 shows the characteristics of the graphite precursor and the graphite material.
Using the graphite material (20), a working electrode and an evaluation battery were produced under the same method and conditions as in Example 2, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, in the case of the graphite material (20) having no bulge on the surface, high rapid charge / discharge characteristics and cycle characteristics cannot be obtained. Moreover, the discharge capacity is also reduced.

(実施例3)
実施例1において、黒鉛質前駆体の調製方法を変更した。コールタールピッチを直接、窒素雰囲気下600℃で3時間焼成してバルクメソフェーズを得た。これを粉砕して平均粒子径25μmの塊状ないし鱗片状の黒鉛質前駆体を調製した。
(Example 3)
In Example 1, the method for preparing the graphite precursor was changed. The coal tar pitch was directly baked at 600 ° C. for 3 hours in a nitrogen atmosphere to obtain a bulk mesophase. This was pulverized to prepare a massive or scale-like graphite precursor having an average particle diameter of 25 μm.

次いで、この黒鉛質前駆体100gと、フェノール樹脂(黒鉛化後の残存率40質量%)5gとを、エチレングリコール100gとヘキサメチレンテトラミン0.5gとの混合物に浸漬し、攪拌しながら減圧下(1.3Pa)、150℃で媒体であるエチレングリコールを除去し、樹脂で被覆した黒鉛質前駆体を得た。この樹脂被覆した黒鉛質前駆体(3)を空気中で270℃、5時間熱処理して樹脂を硬化させた。こうして得られた樹脂被覆した黒鉛質前駆体(3)のアスペクト比は2.8であった。   Next, 100 g of this graphite precursor and 5 g of a phenol resin (residual rate after graphitization of 40% by mass) are immersed in a mixture of 100 g of ethylene glycol and 0.5 g of hexamethylenetetramine, and the mixture is stirred under reduced pressure ( 1.3 Pa) at 150 ° C., ethylene glycol as a medium was removed, and a graphite precursor coated with a resin was obtained. This resin-coated graphite precursor (3) was heat-treated in air at 270 ° C. for 5 hours to cure the resin. The aspect ratio of the resin-coated graphite precursor (3) thus obtained was 2.8.

なお、この樹脂被覆した黒鉛質前駆体(3)を偏光顆微鏡で観察した結果、表面に薄膜状の光学的等方性相を有しており、内部は光学的異方性相を有していた。また、この樹脂被覆した黒鉛質前駆体(3)をこのまま非酸化性雰囲気下3000℃で6時間加熱して樹脂被覆した黒鉛質前駆体(3)を黒鉛化したものについて、表面の結晶構造を分析した。実施例1と同様にして、黒鉛化物の表面近傍の10箇所について電子回折を行い、結晶性と結晶子の大きさを測定した。その結果、7ケ所で多結晶の性質が認められ、多結晶性の結晶組織を有することが判明した。結晶子の大きさは、平均値を10nm単位に四捨五入すると30nmであった。   As a result of observing this resin-coated graphite precursor (3) with a polarizing condylar microscope, it has a thin film-like optical isotropic phase on the surface, and the inside has an optically anisotropic phase. Was. Further, the resin-coated graphite precursor (3) was heated in a non-oxidizing atmosphere at 3000 ° C. for 6 hours to graphitize the resin-coated graphite precursor (3), and the surface crystal structure was changed. analyzed. In the same manner as in Example 1, electron diffraction was performed at 10 locations near the surface of the graphitized material, and crystallinity and crystallite size were measured. As a result, it was found that polycrystalline properties were observed at seven locations and a polycrystalline crystal structure was obtained. The crystallite size was 30 nm when the average value was rounded to the nearest 10 nm.

この樹脂被覆した黒鉛質前駆体(3)を用いて、実施例1と同様な方法で黒鉛質材料(3)を調製し、さらに、同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、作用電極に実施例3の黒鉛質材料(3)を負極材料として用いて得られた評価電池は、高い放電容量を有し、かつ高い初期充放電効率を有する。さらに優れた急速充放電特性およびサイクル特性を示す。
Using this resin-coated graphite precursor (3), a graphite material (3) was prepared in the same manner as in Example 1, and a working electrode and an evaluation battery were prepared by the same method and conditions. Then, a charge / discharge test was conducted. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, the evaluation battery obtained using the graphite material (3) of Example 3 as the negative electrode material for the working electrode has a high discharge capacity and a high initial charge / discharge efficiency. Furthermore, it exhibits excellent rapid charge / discharge characteristics and cycle characteristics.

(比較例3)
実施例3において、金属材料を用いずに、樹脂被覆した黒鉛質前駆体(3)のみを直接3000℃の温度に加熱して黒鉛化し黒鉛質材料(30)を調製した。得られた黒鉛質材料(30)の平均粒子径は24μmであり、隆起がない塊状ないし鱗片状の粒子であった。該粒子のアスペクト比は2.4、比表面積は0.7m2 /g、格子面間隔d002 は0.3357nmであった。表1に、黒鉛質前駆体、黒鉛質材料の特性などを示した。
黒鉛質材料(30)を用いて、実施例3と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、表面に隆起が存在しない黒鉛質材料(30)の場合は、高い初期充放電効率および急速充放電特性やサイクル特性が得られない。また放電容量も低下している。
(Comparative Example 3)
In Example 3, without using a metal material, only the resin-coated graphite precursor (3) was directly heated to a temperature of 3000 ° C. to graphitize to prepare a graphite material (30). The obtained graphite material (30) had an average particle size of 24 μm, and was a lump or scale-like particle having no bulge. The aspect ratio of the particles was 2.4, the specific surface area was 0.7 m 2 / g, and the lattice spacing d 002 was 0.3357 nm. Table 1 shows the characteristics of the graphite precursor and the graphite material.
Using the graphite material (30), a working electrode and an evaluation battery were produced under the same method and conditions as in Example 3, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, in the case of the graphite material (30) having no bulge on the surface, high initial charge / discharge efficiency, rapid charge / discharge characteristics, and cycle characteristics cannot be obtained. Moreover, the discharge capacity is also reduced.

(実施例4)
(黒鉛質前駆体の調整)
実施例1と同じ方法で調整した黒鉛質前駆体(1)を用いた。
Example 4
(Adjustment of graphite precursor)
The graphite precursor (1) prepared by the same method as in Example 1 was used.

(黒鉛質材料の調製)
この黒鉛質前駆体(1)の100質量部と、ニッケル微粉(平均粒子径0.2μm、球状)3質量部とをヘンシェルミキサー(三井鉱山株式会社製)を用いて混合し、このニッケル微粉が表面に分散して付着した黒鉛質前駆体(1)を得た。ここで、ヘンシェルミキサーの攪拌回転数は700rpmとし、混合は30分間行った。
このようにして得たニッケルが付着した黒鉛質前駆体(1)を、非酸化性雰囲気下3000℃で6時間加熱し、黒鉛質材料(4)を得た。得られた黒鉛質材料(4)の平均粒子径は24μmであり、球状の黒鉛質材料(4)の表面に半球状ないし球状の隆起を4個/100μm有する構造であった。隆起の高さhは3.2μm、基底長gは3.3μmであり、h/gは0.97であった。黒鉛質材料(4)のアスペクト比は1.2、比表面積は1.8m/g、格子面間隔d002は0.3356nmであった。
表1に黒鉛質前駆体、黒鉛質材料、隆起の特性などを示した。
(Preparation of graphite material)
100 parts by mass of this graphite precursor (1) and 3 parts by mass of nickel fine powder (average particle size 0.2 μm, spherical) were mixed using a Henschel mixer (Mitsui Mining Co., Ltd.). A graphite precursor (1) dispersed and adhered to the surface was obtained. Here, the stirring rotation speed of the Henschel mixer was set to 700 rpm, and mixing was performed for 30 minutes.
The thus obtained graphite precursor (1) to which nickel was adhered was heated at 3000 ° C. for 6 hours in a non-oxidizing atmosphere to obtain a graphite material (4). The obtained graphite material (4) had an average particle size of 24 μm, and had a structure having 4 hemispherical or spherical protrusions / 100 μm 2 on the surface of the spherical graphite material (4). The height h of the ridge was 3.2 μm, the base length g was 3.3 μm, and h / g was 0.97. Graphite material (4) had an aspect ratio of 1.2, a specific surface area of 1.8 m 2 / g, and a lattice spacing d 002 of 0.3356 nm.
Table 1 shows the characteristics of the graphite precursor, the graphite material, and the bumps.

なお、得られた黒鉛質材料(4)について、ICP発光分光分析装置を用いて含有元素を分析したが、ニッケルは検出されなかった。また、前記のニッケルが付着した黒鉛質前駆体(1)を非酸化性雰囲気下1000℃で2時間かけて加熱したものについて、X線回折分析により含有化合物を同定したところNiCが検出された。これにより、ニッケルが付着した黒鉛前駆体(1)を1500℃以上の温度で加熱して黒鉛化する過程において、ニッケルの炭化物が生成していることが確認された。 In addition, although the contained element was analyzed about the obtained graphite material (4) using the ICP emission-spectral-spectroscopy apparatus, nickel was not detected. In addition, when the graphite precursor (1) to which nickel was attached was heated at 1000 ° C. for 2 hours in a non-oxidizing atmosphere and the contained compound was identified by X-ray diffraction analysis, Ni 3 C was detected. It was. Thus, it was confirmed that nickel carbide was generated in the process of graphitization by heating the graphite precursor (1) with nickel attached thereto at a temperature of 1500 ° C. or higher.

このようにして得た黒鉛質材料(4)を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、作用電極に実施例4の黒鉛質材料(4)を負極材料として用いて得られた評価電池は、高い放電容量を有し、かつ高い充放電効率を有する。さらに優れた急速充放電特性およびサイクル特性を示す。
Using the graphite material (4) thus obtained, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, the evaluation battery obtained by using the graphite material (4) of Example 4 as the negative electrode material for the working electrode has a high discharge capacity and a high charge / discharge efficiency. Furthermore, it exhibits excellent rapid charge / discharge characteristics and cycle characteristics.

(実施例5)
(黒鉛質前駆体の調整)
実施例1と同じ方法で調整した黒鉛質前駆体(1)を用いた。
(Example 5)
(Adjustment of graphite precursor)
The graphite precursor (1) prepared by the same method as in Example 1 was used.

(黒鉛質材料の調製)
この黒鉛質前駆体(1)をDC二極スパッタリング装置のアノード側ステージに配置し、カソード側に99.999%純度の単結晶コバルトターゲットを配置して、圧力0.5Pa、電圧600V、電流0.5Aの条件でスパッタリングを3時間行った。
なお、アノード側のステージには超音波振動子を取り付け、黒鉛質前駆体(1)に振動を付与しながらスパッタリングを行った。得られたコバルトが付着した黒鉛質前駆体(1)について、ICP発光分光分析装置でコバルトを定量分析したところ、7質量%含有していることが確認された。
(Preparation of graphite material)
This graphite precursor (1) is placed on the anode side stage of a DC bipolar sputtering apparatus, a 99.999% pure single crystal cobalt target is placed on the cathode side, pressure 0.5 Pa, voltage 600 V, current 0 Sputtering was performed for 3 hours under the condition of 5A.
An ultrasonic vibrator was attached to the stage on the anode side, and sputtering was performed while applying vibration to the graphite precursor (1). About the graphite precursor (1) to which the obtained cobalt adhered, cobalt was quantitatively analyzed with an ICP emission spectroscopic analyzer, and it was confirmed that it contained 7% by mass.

コバルトの付着状態を走査型電子顕微鏡で観察したところ、コバルトが粒状に分散して付着している様子が観察された。コバルトが付着した黒鉛質前駆体(1)の表面に付着している粒状のコバルト50個について、最大長を計測したところ、平均値で0.3μmであった。
得られたコバルトが付着した黒鉛質前駆体(1)を非酸化性雰囲気下3000℃で6時間加熱し、黒鉛質材料(5)を得た。得られた黒鉛質材料(5)の平均粒子径は24μmであり、球状の黒鉛質材料(5)の表面に半球状ないし球状の隆起を5個/100μm有する構造であった。隆起の高さhは1.8μm、基底長gは2.8μmであり、h/gは0.64であった。黒鉛質材料(5)のアスペクト比は1.2、比表面積は2.5m/g、格子面間隔d002は0.3356nmであった。
表1に黒鉛質前駆体、黒鉛質材料、隆起の特性などを示した。
When the adhesion state of cobalt was observed with a scanning electron microscope, it was observed that cobalt was dispersed and adhered in a granular form. The maximum length of 50 granular cobalt adhering to the surface of the graphite precursor (1) to which cobalt adhered was measured, and the average value was 0.3 μm.
The obtained graphite precursor (1) to which cobalt was adhered was heated at 3000 ° C. for 6 hours in a non-oxidizing atmosphere to obtain a graphite material (5). The obtained graphite material (5) had an average particle diameter of 24 μm, and had a structure having 5 hemispherical or spherical protrusions / 100 μm 2 on the surface of the spherical graphite material (5). The height h of the ridge was 1.8 μm, the base length g was 2.8 μm, and h / g was 0.64. The aspect ratio of the graphite material (5) was 1.2, the specific surface area was 2.5 m 2 / g, and the lattice spacing d 002 was 0.3356 nm.
Table 1 shows the characteristics of the graphite precursor, the graphite material, and the bumps.

なお、得られた黒鉛質材料(5)について、ICP発光分光分析装置を用いて含有元素を分析したが、コバルトは検出されなかった。また、コバルト付着黒鉛質前駆体を非酸化性雰囲気下1000℃で2時間かけて加熱したものについて、X線回折分析により含有化合物を同定したところCoCが検出された。これより、コバルトを付着させて1500℃以上の温度で加熱して黒鉛化する過程において、コバルトの炭化物が生成していることが確認された。 In addition, although the contained element was analyzed about the obtained graphite material (5) using the ICP emission-spectral-analysis apparatus, cobalt was not detected. Further, when the cobalt-attached graphite precursor was heated at 1000 ° C. for 2 hours in a non-oxidizing atmosphere and the contained compound was identified by X-ray diffraction analysis, Co 2 C was detected. From this, it was confirmed that cobalt carbide was formed in the process of depositing cobalt and heating it to a temperature of 1500 ° C. or higher for graphitization.

このようにして得た黒鉛質材料(5)を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、作用電極に実施例5の黒鉛質材料(5)を負極材料として用いて得られた評価電池は、高い放電容量を有し、かつ高い充放電効率を有する。さらに優れた急速充放電特性およびサイクル特性を示す。
Using the graphite material (5) thus obtained, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, the evaluation battery obtained using the graphite material (5) of Example 5 as the negative electrode material for the working electrode has a high discharge capacity and high charge / discharge efficiency. Furthermore, it exhibits excellent rapid charge / discharge characteristics and cycle characteristics.

(比較例4)
比較例1において得られた球状の黒鉛質材料(10)の97質量部に、ケッチェンブラック[ライオン(株)製、EC600JD、平均粒子径0.03μm]3質量部を混合し、得られた原料23を図3に模式的に示すメカノケミカル処理装置[(株)奈良機械製作所製、「ハイブリダイゼーションシステム」]に投入した。該装置は、固定ドラム21、回転ローター22、原料の循環機構24と排出機構25、ブレード26、ステーター27およびジャケット28などから構成されており、原料23を固定ドラム21とローター22との間に供給し、固定ドラム21とローター22との速度差に起因する圧縮力、剪断力、摩擦力などの機械力を原料23に付加することができる。回転ローター22の周速40m/sec で、処理時間6min の条件下で処理することにより、黒鉛質材料(10)とケッチェンブラックとに機械的作用を繰返し付与した。このような方法により、ケッチェンブラックが表面に付着した黒鉛質材料(10)を、黒鉛質材料(40)とする。
得られた黒鉛質材料(40)の平均粒子径は24μmであり、ケッチェンブラックに由来する微小炭素質粒子が黒鉛質材料(40)の表面に埋設された付着物を有する構造であった。付着物の数は100個/100μm2以上であり、付着物の高さおよび基底長は、付着物の高さが0.1μm以下のため、計測が不可能であった。黒鉛質材料(40)のアスペクト比は1.2、比表面積は21.5m2/g、格子面間隔d002 は0.3360nmであった。表1に、黒鉛質材料(10)、黒鉛質材料(40)、付着物の特性などを示した。
(Comparative Example 4)
It was obtained by mixing 97 parts by mass of the spherical graphite material (10) obtained in Comparative Example 1 with 3 parts by mass of Ketjen Black [manufactured by Lion Corporation, EC600JD, average particle size 0.03 μm]. The raw material 23 was put into a mechanochemical processing apparatus [manufactured by Nara Machinery Co., Ltd., “hybridization system”] schematically shown in FIG. The apparatus includes a fixed drum 21, a rotating rotor 22, a raw material circulation mechanism 24 and a discharge mechanism 25, a blade 26, a stator 27, and a jacket 28. The raw material 23 is placed between the fixed drum 21 and the rotor 22. The mechanical force such as a compressive force, a shear force, and a friction force due to the difference in speed between the fixed drum 21 and the rotor 22 can be supplied to the raw material 23. A mechanical action was repeatedly imparted to the graphite material (10) and ketjen black by treating the rotary rotor 22 at a peripheral speed of 40 m / sec under a treatment time of 6 min. The graphite material (10) having ketjen black adhered to the surface by such a method is defined as a graphite material (40).
The obtained graphite material (40) had an average particle size of 24 μm, and had a structure in which fine carbonaceous particles derived from Ketjen Black had a deposit embedded in the surface of the graphite material (40). The number of deposits was 100/100 μm 2 or more, and the height and base length of the deposits could not be measured because the deposit height was 0.1 μm or less. The graphite material (40) had an aspect ratio of 1.2, a specific surface area of 21.5 m 2 / g, and a lattice spacing d 002 of 0.3360 nm. Table 1 shows the characteristics of the graphite material (10), the graphite material (40), the deposits, and the like.

黒鉛質材料(40)を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、黒鉛質材料(40)の表面に一体化された隆起が存在せず、微小炭素質粒子を埋設し、付着物を形成した場合は、高い急速充放電効率やサイクル特性が得られない。また、比表面積が過度に大きいことから、初期充放電効率が低下している。なお、作用電極の表面を走査型電子顕微鏡で観察したところ、微小炭素質粒子の一部が脱落し、黒鉛質材料(40)の表面に局所的に凝集している様子が観察された。電極作製過程で、脱落したものと推定される。
Using the graphite material (40), a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, there is no ridge integrated on the surface of the graphitic material (40), and when the fine carbonaceous particles are embedded to form deposits, high rapid charge / discharge efficiency and cycle Characteristics are not obtained. Moreover, since the specific surface area is excessively large, the initial charge / discharge efficiency is lowered. In addition, when the surface of the working electrode was observed with a scanning electron microscope, it was observed that a part of the fine carbonaceous particles dropped off and locally aggregated on the surface of the graphite material (40). Presumed to have fallen off during the electrode fabrication process.

(比較例5)
(黒鉛質前駆体の調整)
実施例1と同じ方法で調整した黒鉛質前駆体(1)を用いた。
(Comparative Example 5)
(Adjustment of graphite precursor)
The graphite precursor (1) prepared by the same method as in Example 1 was used.

(黒鉛質材料の調製)
鉄に換算して5質量%の濃度に相当する硝酸鉄のエタノール溶液100質量部に、黒鉛質前駆体(1)の100質量部を加え、液相中で混合し攪拌した。常圧から50Torr(=1.3Pa)まで減圧して脱泡し、該溶液を黒鉛質前駆体(1)に浸透させた。ついで、80℃で24時間乾燥してエタノールを完全に除去した。このようにして、硝酸鉄が付着した黒鉛質前駆体(1)を得た。
(Preparation of graphite material)
100 parts by mass of the graphite precursor (1) was added to 100 parts by mass of an ethanol solution of iron nitrate corresponding to a concentration of 5% by mass in terms of iron, and the mixture was mixed and stirred in the liquid phase. The pressure was reduced from normal pressure to 50 Torr (= 1.3 Pa) to degas, and the solution was infiltrated into the graphite precursor (1). Subsequently, it was dried at 80 ° C. for 24 hours to completely remove ethanol. Thus, a graphite precursor (1) to which iron nitrate was adhered was obtained.

この硝酸鉄が付着した黒鉛質前駆体(1)の外観を走査型電子顕微鏡で観察したところ、黒鉛質前駆体(1)の表面に鉄化合物が膜状に付着していた。   When the appearance of the graphite precursor (1) to which the iron nitrate was adhered was observed with a scanning electron microscope, the iron compound was adhered to the surface of the graphite precursor (1) in a film form.

次に、硝酸鉄が付着した黒鉛質前駆体(1)を非酸化性雰囲気下3000℃で6時間加熱し、黒鉛質材料(50)を得た。得られた黒鉛質材料(50)の平均粒子径は24μmであり、粒状の黒鉛質材料(50)の表面には非常に微細な隆起が観察された。隆起は2個/100μm観察され、高さhは0.4μm、基底長gは0.6μmであり、h/gは0.67であった。黒鉛質材料(50)のアスぺクト比は1.2、比表面積は1.0m/g、格子面間隔d002は0.3357nmであった。表1に黒鉛質前駆体、黒鉛質材料、隆起の特性などを示した。 Next, the graphite precursor (1) to which iron nitrate was adhered was heated at 3000 ° C. for 6 hours in a non-oxidizing atmosphere to obtain a graphite material (50). The average particle diameter of the obtained graphite material (50) was 24 μm, and very fine bumps were observed on the surface of the granular graphite material (50). 2 ridges / 100 μm 2 were observed, the height h was 0.4 μm, the base length g was 0.6 μm, and h / g was 0.67. The aspect ratio of the graphite material (50) was 1.2, the specific surface area was 1.0 m 2 / g, and the lattice spacing d 002 was 0.3357 nm. Table 1 shows the characteristics of the graphite precursor, the graphite material, and the bumps.

この黒鉛質材料(50)を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、金属化合物を溶液として黒鉛質前駆体と混合し、得られた黒鉛質材料が、その表面に規定サイズに達しない隆起を有する比較例5の黒鉛質材料を負極材料として作用電極に用いた評価電池は、高い急速充放電特性やサイクル特性が得られない。
なお、比較例5は特許文献8に記載された方法に相当する。
Using this graphite material (50), a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was conducted. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, the graphite material of Comparative Example 5 in which the metal compound was mixed as a solution with the graphite precursor and the resulting graphite material had a bulge that did not reach the specified size on the surface thereof was used as the negative electrode material. As for the evaluation battery used for the working electrode, high rapid charge / discharge characteristics and cycle characteristics cannot be obtained.
Comparative Example 5 corresponds to the method described in Patent Document 8.

(比較例6)
(黒鉛質前駆体の調整)
ナフタレンをHF/BF触媒の存在下で重縮合して得られた下記に示すメソフェーズ含有ピッチを平均粒子径30μmに粉砕した。
〔メソフェーズ含有ピッチ〕
TI(トルエン不溶分量):73質量%
QI(キノリン不溶分量):44質量%
軟化点(メトラー法):255℃
得られたメソフェーズピッチの断面を偏光顕微鏡で観察したところ、全域が光学的異方性相であった。このメソフェーズピッチを黒鉛質前駆体(60)とする。
(Comparative Example 6)
(Adjustment of graphite precursor)
The following mesophase-containing pitch obtained by polycondensation of naphthalene in the presence of an HF / BF 3 catalyst was pulverized to an average particle size of 30 μm.
[Mesophase-containing pitch]
TI (toluene insoluble content): 73% by mass
QI (quinoline insoluble content): 44% by mass
Softening point (Mettler method): 255 ° C
When the cross section of the obtained mesophase pitch was observed with a polarizing microscope, the entire region was an optically anisotropic phase. This mesophase pitch is defined as a graphite precursor (60).

この黒鉛質前駆体(60)をこのまま非酸化性雰囲気下3000℃で6時間加熱して得た黒鉛質材料(60)について、表面の結晶構造を電子回折分析した。実施例1と同様にして、黒鉛質材料(60)の表面近傍の10箇所について、電子回折を行い、結晶性と結晶子の大きさを測定した。
その結果、いずれにおいても多結晶は観察されず、結晶が配向した状態であった。結晶子の大きさは、平均値を10nm単位に四捨五入すると150nmであった。
With respect to the graphite material (60) obtained by heating the graphite precursor (60) as it is at 3000 ° C. for 6 hours in a non-oxidizing atmosphere, the crystal structure of the surface was subjected to electron diffraction analysis. In the same manner as in Example 1, electron diffraction was performed at 10 locations near the surface of the graphite material (60) to measure crystallinity and crystallite size.
As a result, in any case, no polycrystal was observed, and the crystal was oriented. The crystallite size was 150 nm when the average value was rounded to the nearest 10 nm.

(黒鉛質材料の調製)
この黒鉛質前駆体(60)の100質量部と、酸化鉄(平均粒子径0.3μm、粒状)10質量部とをヘンシェルミキサー(三井鉱山株式会社製)を用いて混合し、この酸化鉄が表面に分散して付着した黒鉛質前駆体を得た。ここで、ヘンシェルミキサーの攪拌回転数は700rpmとし、混合は30分間行った。
このようにして得た酸化鉄付着黒鉛質前駆体を、窒素雰囲気下、450℃で6時間加熱処理した。加熱処理によって酸化鉄付着黒鉛質前駆体がわずかに融着したので、再度粉砕し、平均粒子径30μmになるように粒度調整した。粒度調整後の酸化鉄付着黒鉛質前駆体のアスペクト比は3.5であった。次いで、非酸化性雰囲気下3000℃で6時間加熱し、黒鉛質材料(60)を得た。得られた黒鉛質材料(60)の平均粒子径は29μmであり、塊状の黒鉛質材料(60)の表面に隆起は生成していなかった。黒鉛質材料(60)のアスペクト比3.5、比表面積は0.9m/g、格子面間隔d002は0.3358nmであった。
表1に黒鉛質前駆体、黒鉛質材料の特性などを示した。
(Preparation of graphite material)
100 parts by mass of this graphite precursor (60) and 10 parts by mass of iron oxide (average particle size 0.3 μm, granular) were mixed using a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.). A graphite precursor dispersed and adhered to the surface was obtained. Here, the stirring rotation speed of the Henschel mixer was set to 700 rpm, and mixing was performed for 30 minutes.
The iron oxide-attached graphite precursor thus obtained was heat-treated at 450 ° C. for 6 hours in a nitrogen atmosphere. Since the iron oxide-attached graphite precursor was slightly fused by the heat treatment, it was pulverized again and the particle size was adjusted to an average particle size of 30 μm. The aspect ratio of the iron oxide-attached graphite precursor after the particle size adjustment was 3.5. Subsequently, it heated at 3000 degreeC under non-oxidizing atmosphere for 6 hours, and obtained the graphite material (60). The obtained graphite material (60) had an average particle size of 29 μm, and no bumps were formed on the surface of the massive graphite material (60). The graphite material (60) had an aspect ratio of 3.5, a specific surface area of 0.9 m 2 / g, and a lattice spacing d 002 of 0.3358 nm.
Table 1 shows the characteristics of the graphite precursor and the graphite material.

このようにして得た黒鉛質材料(60)を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、黒鉛質材料の表面に隆起が存在しない場合は、高い急速充放電特性やサイクル特性が得られない。
なお、比較例6は、特開2001−107057号に記載された技術に相当する。
Using the graphite material (60) thus obtained, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, when there is no bulge on the surface of the graphite material, high rapid charge / discharge characteristics and cycle characteristics cannot be obtained.
Comparative example 6 corresponds to the technique described in JP-A-2001-107057.

(比較例7)
(黒鉛質材料の調製)
フェノール樹脂(黒鉛化後の残存率50質量%)8質量部をエタノール100質量部に溶解し、次いで、鱗片状天然黒鉛(平均粒子径10μm、アスペクト比4.7)96質量部を加え、液相中で混合し攪拌した(この鱗片状天然黒鉛を天然黒鉛(70)とする)。常圧から1.3Paまで減圧して脱泡し、該分散液を天然黒鉛に浸透させた。次いで、150℃でエタノールを除去したのち、窒素雰囲気下で500℃、7時間熱処理して樹脂を硬化、炭化させた。加熱処理によってわずかに融着したので、再度粉砕し、平均粒子径を12μmに粒度調整した。粒度調整後のアスペクト比は4.3であった。
尚、この樹脂被覆した天然黒鉛(70)を偏光顕微鏡で観察した結果、表面に薄膜状の光学的等方性相を有しており、内部は光学的異方性相を有していた。
この樹脂被覆した天然黒鉛(70)を非酸化性雰囲気下3000℃で6時間加熱し、黒鉛質材料(70)を得た。実施例1と同様にして、得られた黒鉛質材料(70)の表面近傍の10箇所について、電子回折を行い、結晶性を結晶子の大きさを測定した。
その結果、8箇所で多結晶の性質が認められ、多結晶性の結晶組織を有することが判明した。結晶子の大きさは平均値を10nm単位に四捨五入すると40nmであった。
表1に黒鉛質材料(70)の特性などを示した。さらに、このようにして得た黒鉛質材料(70)を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、黒鉛に樹脂を被覆し黒鉛化しただけの隆起を有さない黒鉛質材料を負極材料として作用電極に用いた評価電池は、高い急速充放電特性やサイクル特性が得られない。
(Comparative Example 7)
(Preparation of graphite material)
8 parts by mass of a phenol resin (residual rate after graphitization 50% by mass) is dissolved in 100 parts by mass of ethanol, and then 96 parts by mass of scaly natural graphite (average particle size 10 μm, aspect ratio 4.7) is added to obtain a liquid. The mixture was stirred in the phase (this scaly natural graphite is referred to as natural graphite (70)). The pressure was reduced from normal pressure to 1.3 Pa to degas, and the dispersion was infiltrated into natural graphite. Next, after removing ethanol at 150 ° C., the resin was cured and carbonized by heat treatment at 500 ° C. for 7 hours in a nitrogen atmosphere. Since it was slightly fused by the heat treatment, it was pulverized again and the average particle size was adjusted to 12 μm. The aspect ratio after adjusting the particle size was 4.3.
In addition, as a result of observing this resin-coated natural graphite (70) with a polarizing microscope, the surface had a thin film-like optical isotropic phase, and the inside had an optically anisotropic phase.
This resin-coated natural graphite (70) was heated at 3000 ° C. for 6 hours in a non-oxidizing atmosphere to obtain a graphite material (70). In the same manner as in Example 1, electron diffraction was performed at 10 locations near the surface of the obtained graphite material (70), and the crystallinity was measured for the crystallite size.
As a result, it was found that polycrystalline properties were observed at eight locations, and a polycrystalline crystal structure was obtained. The crystallite size was 40 nm when the average value was rounded to the nearest 10 nm.
Table 1 shows the characteristics of the graphite material (70). Furthermore, using the graphite material (70) thus obtained, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, the evaluation battery using the working electrode as a negative electrode material obtained by coating graphite with a resin and not having a bulge that has been graphitized has high rapid charge / discharge characteristics and cycle characteristics. I can't.

(実施例6)
(黒鉛質材料の調製)
比較例7において、フェノール樹脂(黒鉛化後の残存率50質量%)8質量部をエタノール100質量部に溶解し、次いで、天然黒鉛(70)96質量部を加えたのちに、さらに、酸化鉄微粉(Fe、平均粒子径0.3μm、粒状)を6質量部混合して、液相中で混合し攪拌した以外は、比較例7と同様にして黒鉛質材料(6)を得た。
表1に黒鉛質材料(6)の特性などを示した。さらに、このようにして得た黒鉛質材料(6)を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表2に示した。
表2に示されるように、作用電極に実施例6の黒鉛質材料(6)を負極材料として用いて得られた評価電池は、高い放電容量を有し、かつ高い充放電効率を有する。さらに優れた急速充放電特性およびサイクル特性を示す。
(Example 6)
(Preparation of graphite material)
In Comparative Example 7, 8 parts by mass of a phenol resin (residual rate after graphitization of 50% by mass) was dissolved in 100 parts by mass of ethanol, and then 96 parts by mass of natural graphite (70) was added. A graphite material (6) is obtained in the same manner as in Comparative Example 7 except that 6 parts by mass of fine powder (Fe 2 O 3 , average particle size 0.3 μm, granular) is mixed, mixed and stirred in the liquid phase. It was.
Table 1 shows the characteristics of the graphite material (6). Further, using the graphite material (6) thus obtained, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As shown in Table 2, the evaluation battery obtained using the graphite material (6) of Example 6 as the negative electrode material for the working electrode has a high discharge capacity and a high charge / discharge efficiency. Furthermore, it exhibits excellent rapid charge / discharge characteristics and cycle characteristics.

Figure 2006312578
Figure 2006312578

Figure 2006312578
Figure 2006312578

本発明の黒鉛質材料は、搭載する機器の小型化および高性能化に有効に寄与するリチウムイオン二次電池の負極材料として用いることができる。また、その特徴を活かして、導電性や耐熱性を必要とする各種用途、例えば、樹脂添加用導電材、燃料電池セパレータ用導電材、耐火物用黒鉛などに使用することもできる。   The graphite material of the present invention can be used as a negative electrode material of a lithium ion secondary battery that contributes effectively to downsizing and high performance of the equipment to be mounted. In addition, taking advantage of this feature, it can also be used in various applications that require electrical conductivity and heat resistance, such as resin additive conductive materials, fuel cell separator conductive materials, and refractory graphite.

本発明の黒鉛質材料の一例の走査型電子顕微鏡写真である。It is a scanning electron micrograph of an example of the graphite material of this invention. 充放電試験に用いるためのボタン型評価電池の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the button type evaluation battery for using for a charging / discharging test. 比較例において使用したメカノケミカル処理装置の模式図である。It is a schematic diagram of the mechanochemical processing apparatus used in the comparative example. 隆起を有する黒鉛質材料の断面の模式図である。It is a schematic diagram of the cross section of the graphite material which has a protrusion.

符号の説明Explanation of symbols

1 黒鉛質材料の母材
2 黒鉛質材料の表面
3 黒鉛質材料の隆起
4 黒鉛質材料のしわ
11 外装カップ
12 作用電極
13 外装缶
14 対極
15 電解質溶液含浸セパレータ
16 絶縁ガスケット
17a,17b 集電体
21 固定ドラム
22 回転ローター
23 原料
24 原料の循環機構
25 原料の排出機構
26 ブレード
27 ステーター
28 ジャケット
h 隆起の高さ
g 基底長
DESCRIPTION OF SYMBOLS 1 Base material of graphite material 2 Surface of graphite material 3 Ridge of graphite material 4 Wrinkle of graphite material 11 Exterior cup 12 Working electrode 13 Exterior can 14 Counter electrode 15 Electrolyte solution impregnation separator 16 Insulating gasket 17a, 17b Current collector 21 Fixed drum 22 Rotating rotor 23 Raw material 24 Raw material circulation mechanism 25 Raw material discharge mechanism 26 Blade 27 Stator 28 Jacket h Height of protrusion g Base length

Claims (16)

表面に高さ1μm以上の隆起を有することを特徴とする黒鉛質材料。   A graphite material characterized by having a bulge having a height of 1 μm or more on the surface. 前記隆起の高さhと基底長gとの比(h/g)の平均値が0.1〜15であることを特徴とする請求項1に記載の黒鉛質材料。   2. The graphite material according to claim 1, wherein an average value of a ratio (h / g) between the height h of the ridge and the base length g is 0.1 to 15. 3. 前記黒鉛質材料の平均粒子径が1〜100μmであることを特徴とする請求項1または2に記載の黒鉛質材料。   The graphite material according to claim 1 or 2, wherein an average particle diameter of the graphite material is 1 to 100 µm. 前記隆起の数が2〜20個/100μmであることを特徴とする請求項1〜3のいずれかに記載の黒鉛質材料。 Graphitic material according to claim 1, wherein the number of said raised are 2-20 / 100 [mu] m 2. 前記黒鉛質材料がメソフェーズ小球体の黒鉛化物である請求項1〜4のいずれかに記載の黒鉛質材料。   The graphite material according to any one of claims 1 to 4, wherein the graphite material is a graphitized product of mesophase spherules. 炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属材料を、非溶液状態で黒鉛質材料の前駆体に接触させて前記金属材料を前記前駆体に点在させ、1500℃以上の温度で加熱する、黒鉛質材料の製造方法。   A metal material having at least one of a property of reacting with carbon and a property of dissolving carbon is brought into contact with a precursor of a graphite material in a non-solution state to interspers the metal material with the precursor; A method for producing a graphite material, which is heated at a temperature of 1500 ° C. or higher. 前記金属材料が粉末状である請求項6に記載の黒鉛質材料の製造方法。   The method for producing a graphite material according to claim 6, wherein the metal material is in a powder form. 前記金属材料と前記前駆体とを分散媒中で混合した後、前記分散媒を除去して、前記金属材料を前記前駆体に点在させる請求項6または7に記載の黒鉛質材料の製造方法。   The method for producing a graphite material according to claim 6 or 7, wherein after mixing the metal material and the precursor in a dispersion medium, the dispersion medium is removed, and the metal material is scattered in the precursor. . 前記金属材料を、PVD法またはCVD法により前記前駆体に点在させる請求項6に記載の黒鉛質材料の製造方法。   The method for producing a graphite material according to claim 6, wherein the metal material is scattered in the precursor by a PVD method or a CVD method. 前記前駆体が、その表面の少なくとも一部に光学的等方性の結晶構造を有する請求項6〜9のいずれかに記載の黒鉛質材料の製造方法。   The method for producing a graphite material according to any one of claims 6 to 9, wherein the precursor has an optically isotropic crystal structure on at least a part of a surface thereof. 炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属材料と、黒鉛化後に少なくとも一部に光学的等方性の結晶構造を形成する炭素源物質とを混合し、得られた混合物を、黒鉛質材料の前駆体に付着させ、1500℃以上の温度で加熱する、黒鉛質材料の製造方法。   A metal material having at least one of a property of reacting with carbon and a property of dissolving carbon, and a carbon source material that forms an optically isotropic crystal structure at least partially after graphitization; A method for producing a graphite material, wherein the obtained mixture is attached to a precursor of a graphite material and heated at a temperature of 1500 ° C. or higher. 前記加熱温度が、1500〜3300℃である請求項6〜11のいずれかに記載の黒鉛質材料の製造方法。   The said heating temperature is 1500-3300 degreeC, The manufacturing method of the graphite material in any one of Claims 6-11. 前記前駆体がメソフェーズ小球体である請求項6〜12のいずれかに記載の黒鉛質材料の製造方法。   The method for producing a graphite material according to any one of claims 6 to 12, wherein the precursor is a mesophase microsphere. 請求項1〜5のいずれかに記載の黒鉛質材料を含むリチウムイオン二次電池用負極材料。   The negative electrode material for lithium ion secondary batteries containing the graphite material in any one of Claims 1-5. 請求項14に記載のリチウムイオン二次電池用負極材料を含有するリチウムイオン二次電池用負極。   The negative electrode for lithium ion secondary batteries containing the negative electrode material for lithium ion secondary batteries of Claim 14. 請求項15に記載のリチウムイオン二次電池用負極を用いたリチウムイオン二次電池。   The lithium ion secondary battery using the negative electrode for lithium ion secondary batteries of Claim 15.
JP2005246034A 2004-08-27 2005-08-26 Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Active JP4751138B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004248996 2004-08-27
JP2004248996 2004-08-27
JP2005109547 2005-04-06
JP2005109547 2005-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011005634A Division JP5346962B2 (en) 2004-08-27 2011-01-14 Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006312578A true JP2006312578A (en) 2006-11-16
JP4751138B2 JP4751138B2 (en) 2011-08-17

Family

ID=35967319

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005246034A Active JP4751138B2 (en) 2004-08-27 2005-08-26 Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011005634A Active JP5346962B2 (en) 2004-08-27 2011-01-14 Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011005634A Active JP5346962B2 (en) 2004-08-27 2011-01-14 Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (5)

Country Link
JP (2) JP4751138B2 (en)
KR (1) KR100908371B1 (en)
CN (1) CN1984841B (en)
TW (1) TWI271382B (en)
WO (1) WO2006022100A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263160A (en) * 2008-04-24 2009-11-12 Jfe Chemical Corp Method of producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2011023221A (en) * 2009-07-16 2011-02-03 Nec Energy Devices Ltd Lithium ion secondary battery
WO2011049199A1 (en) * 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries
WO2012144617A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
WO2012144618A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite/carbon mixed material, carbon material for battery electrodes, and battery
TWI469921B (en) * 2012-05-14 2015-01-21 Jfe Chemical Corp Composite graphite material and manufacturing method thereof, anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
CN105470488A (en) * 2016-01-04 2016-04-06 北京理工大学 Porous hollow structured metal oxide/carbon composite negative electrode material and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153303B2 (en) * 2006-11-10 2012-04-10 Tokai Carbon Co., Ltd. Negative electrode material for lithium ion secondary battery and method for producing the same
US20140227522A1 (en) * 2011-09-09 2014-08-14 Sumitomo Bakelite Company Limited Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and lithium ion secondary battery
CN103183331B (en) 2011-12-28 2016-01-20 清华大学 The preparation method of Graphene
JP6097641B2 (en) * 2012-06-13 2017-03-15 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
CN103794792B (en) * 2014-02-28 2015-09-30 江苏丽港科技有限公司 A kind of preparation method of used as negative electrode of Li-ion battery nano carbon microsphere material
CN114031066A (en) * 2014-03-14 2022-02-11 14集团技术公司 Novel method for solvent-free sol-gel polymerization and production of adjustable carbon structures therefrom
KR102581549B1 (en) * 2014-07-07 2023-09-21 미쯔비시 케미컬 주식회사 Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material
KR102349703B1 (en) * 2014-12-22 2022-01-12 에스케이온 주식회사 Lithium secondary battery
JPWO2016121711A1 (en) * 2015-01-27 2017-11-02 昭和電工株式会社 Method for producing graphite powder for negative electrode material of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN112996749A (en) * 2019-09-17 2021-06-18 杰富意化学株式会社 Method for producing graphite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292033A (en) * 1996-04-26 1997-11-11 Eagle Ind Co Ltd Mechanism seal
JPH09295867A (en) * 1996-04-26 1997-11-18 Eagle Ind Co Ltd Carbon sliding material
JPH10236808A (en) * 1996-12-26 1998-09-08 Hitachi Chem Co Ltd Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JPH10255770A (en) * 1997-03-14 1998-09-25 Adokemuko Kk Manufacture of graphite material for battery and battery
JP2001106519A (en) * 1999-10-04 2001-04-17 Sumitomo Metal Ind Ltd Graphite material suitable for negative electrode of secondary battery of lithium ion and its producing method
JP2001107057A (en) * 1999-10-08 2001-04-17 Kawasaki Steel Corp Preparation method for carbon material and graphite material, and lithium ion secondary battery negative electrode material
JP2001196064A (en) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and its preparation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735814B2 (en) * 1992-10-06 1995-04-19 株式会社山陽精機 Gas bearing
JP2873930B2 (en) * 1996-02-13 1999-03-24 工業技術院長 Carbonaceous solid structure having carbon nanotubes, electron emitter for electron beam source element composed of carbonaceous solid structure, and method of manufacturing carbonaceous solid structure
JP3870309B2 (en) * 1997-09-01 2007-01-17 大阪瓦斯株式会社 Carbon material for electrode, method for producing the same, and negative electrode for non-aqueous electrolyte secondary battery using the same
JP2000048811A (en) * 1998-05-25 2000-02-18 Adchemco Corp Lithium ion secondary battery negative electrode material, manufacture thereof and the battery
KR100358805B1 (en) * 2000-03-07 2002-10-25 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
KR100359053B1 (en) * 2000-04-17 2002-11-07 한국과학기술연구원 Fabrication of carbon materials modified by fluidized bed cvd, carbon electrode and lithium secondary batteries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292033A (en) * 1996-04-26 1997-11-11 Eagle Ind Co Ltd Mechanism seal
JPH09295867A (en) * 1996-04-26 1997-11-18 Eagle Ind Co Ltd Carbon sliding material
JPH10236808A (en) * 1996-12-26 1998-09-08 Hitachi Chem Co Ltd Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JPH10255770A (en) * 1997-03-14 1998-09-25 Adokemuko Kk Manufacture of graphite material for battery and battery
JP2001106519A (en) * 1999-10-04 2001-04-17 Sumitomo Metal Ind Ltd Graphite material suitable for negative electrode of secondary battery of lithium ion and its producing method
JP2001107057A (en) * 1999-10-08 2001-04-17 Kawasaki Steel Corp Preparation method for carbon material and graphite material, and lithium ion secondary battery negative electrode material
JP2001196064A (en) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and its preparation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263160A (en) * 2008-04-24 2009-11-12 Jfe Chemical Corp Method of producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2011023221A (en) * 2009-07-16 2011-02-03 Nec Energy Devices Ltd Lithium ion secondary battery
US8372373B2 (en) 2009-10-22 2013-02-12 Showa Denko K.K. Graphite material, carbonaceous material for battery electrodes, and batteries
JP4738553B2 (en) * 2009-10-22 2011-08-03 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
JP2011184293A (en) * 2009-10-22 2011-09-22 Showa Denko Kk Graphite material, carbonaceous material for battery electrode, and battery
WO2011049199A1 (en) * 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries
WO2012144617A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
WO2012144618A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite/carbon mixed material, carbon material for battery electrodes, and battery
JP5081335B1 (en) * 2011-04-21 2012-11-28 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
CN102844918A (en) * 2011-04-21 2012-12-26 昭和电工株式会社 Graphite material, carbon material for battery electrode, and battery
JP5140781B2 (en) * 2011-04-21 2013-02-13 昭和電工株式会社 Graphite / carbon mixed material, carbon material for battery electrode, and battery
US9099742B2 (en) 2011-04-21 2015-08-04 Show A Denko K.K. Graphite material, carbon material for battery electrodes, and batteries
US9099745B2 (en) 2011-04-21 2015-08-04 Showa Denko K.K. Graphite carbon composite material, carbon material for battery electrodes, and batteries
TWI469921B (en) * 2012-05-14 2015-01-21 Jfe Chemical Corp Composite graphite material and manufacturing method thereof, anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
CN105470488A (en) * 2016-01-04 2016-04-06 北京理工大学 Porous hollow structured metal oxide/carbon composite negative electrode material and preparation method thereof

Also Published As

Publication number Publication date
CN1984841B (en) 2011-06-15
KR20070017510A (en) 2007-02-12
JP2011079737A (en) 2011-04-21
TWI271382B (en) 2007-01-21
WO2006022100A1 (en) 2006-03-02
TW200613219A (en) 2006-05-01
CN1984841A (en) 2007-06-20
JP4751138B2 (en) 2011-08-17
JP5346962B2 (en) 2013-11-20
KR100908371B1 (en) 2009-07-20

Similar Documents

Publication Publication Date Title
JP4751138B2 (en) Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5473886B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4666876B2 (en) Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
TWI469921B (en) Composite graphite material and manufacturing method thereof, anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP5322804B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4927384B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20190125389A (en) Anode active material for lithium ion secondary battery, anode for lithium ion secondary battery and lithium ion secondary battery
KR100575971B1 (en) Mesophase spherular graphitized substance, anode material, anode, and lithium ion secondary battery using same
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004253379A (en) Negative electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4542352B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5551883B2 (en) Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery
JP5173555B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4707570B2 (en) Method for producing fine graphite particles
JP2006269110A (en) Metal-graphite composite particle, cathode material for lithium ion secondary battery, cathode, and the lithium ion secondary battery
JP6218348B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2006008462A (en) Granular composite carbon material and its manufacturing method, and negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell and lithium ion secondary cell
JP4299608B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4839202B2 (en) Method for producing mesophase microspheres and carbon material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Ref document number: 4751138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3