JP2006311491A - Ring resonator and method of measuring dielectric characteristic of dielectric thin film using the same - Google Patents

Ring resonator and method of measuring dielectric characteristic of dielectric thin film using the same Download PDF

Info

Publication number
JP2006311491A
JP2006311491A JP2005339881A JP2005339881A JP2006311491A JP 2006311491 A JP2006311491 A JP 2006311491A JP 2005339881 A JP2005339881 A JP 2005339881A JP 2005339881 A JP2005339881 A JP 2005339881A JP 2006311491 A JP2006311491 A JP 2006311491A
Authority
JP
Japan
Prior art keywords
dielectric
thin film
ring resonator
ring
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005339881A
Other languages
Japanese (ja)
Other versions
JP4540596B2 (en
Inventor
Yoshihiro Nakao
吉宏 中尾
Akira Nakayama
明 中山
Shin Sugano
慎 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005339881A priority Critical patent/JP4540596B2/en
Publication of JP2006311491A publication Critical patent/JP2006311491A/en
Application granted granted Critical
Publication of JP4540596B2 publication Critical patent/JP4540596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ring resonator capable of measuring dielectric characteristics such as a specific dielectric constant and a dielectric loss tangent of a dielectric thin film, and a DC electric field strength dependence and a temperature dependence of them or the like at a microwave band and a millimeter band, particularly a frequency band of 1 GHz or over with high accuracy, and a method of measuring dielectric characteristics of a dielectric thin film using the ring resonator. <P>SOLUTION: The ring resonator is configured such that the dielectric thin film 2 is formed on a dielectric support substrate 1, and a conductor film 3 divided into an inner conductor 32 and an outer conductor 33 by an annular gap 31 is formed to the upper face of the dielectric thin film 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、誘電体薄膜を具備するリング共振器と、その誘電体薄膜の誘電特性測定方法に関するものであり、特に1GHz以上のマイクロ波帯、ミリ波帯における誘電体薄膜の比誘電率や誘電正接、並びにそれらの直流電界強度依存性、温度依存性等を測定する方法に関するものである。   The present invention relates to a ring resonator including a dielectric thin film and a method for measuring dielectric characteristics of the dielectric thin film, and in particular, relative permittivity and dielectric of a dielectric thin film in a microwave band and a millimeter wave band of 1 GHz or more. The present invention relates to a method for measuring tangents, DC electric field strength dependency, temperature dependency, and the like.

現在、マイクロ波帯、ミリ波帯において誘電体薄膜を用いたデバイスの開発が盛んに行われており、その誘電特性(比誘電率や誘電正接、並びにそれらの直流電界強度依存性、温度依存性等)を正確に測定する方法が求められている。   Currently, devices using dielectric thin films are being actively developed in the microwave band and millimeter wave band, and their dielectric properties (relative permittivity and dielectric loss tangent, their DC field strength dependency, temperature dependency, etc.) Etc.) is required.

従来、共振器法を用いた誘電体基板のマイクロ波帯、ミリ波帯における誘電特性を測定する方法としては大きく分けて2通りの方法が知られている。一つは、空洞共振器等の立体共振器を用いる方法(非特許文献1)である。そして、もう一つは、誘電体基板の上面にリング状のシグナル導体を配置し、下面にグランド導体を配置して構成されるいわゆるマイクロストリップライン型のリング共振器等の平面共振器を用いる方法(非特許文献2)である。
JIS R 1641、2002年制定 Aly E. Fathy et al. “An Innovative Semianalytical Technique for Ceramic Evaluation at Microwave Frequencies” IEEE Trans. MTT, vol.50, pp.2247-2252, Oct. 2002.
2. Description of the Related Art Conventionally, two methods are generally known as methods for measuring dielectric characteristics of a dielectric substrate in a microwave band and a millimeter wave band using a resonator method. One is a method using a three-dimensional resonator such as a cavity resonator (Non-Patent Document 1). The other is a method of using a planar resonator such as a so-called microstrip line type ring resonator configured by disposing a ring-shaped signal conductor on the upper surface of the dielectric substrate and a ground conductor on the lower surface. (Non-Patent Document 2).
JIS R 1641, established in 2002 Aly E. Fathy et al. “An Innovative Semianalytical Technique for Ceramic Evaluation at Microwave Frequencies” IEEE Trans. MTT, vol.50, pp.2247-2252, Oct. 2002.

誘電体基板の誘電特性を測定するために用いられる非特許文献1に記載の空洞共振器を、誘電体薄膜の誘電特性測定に適用した場合、誘電体薄膜の比誘電率や誘電正接を正確に決定することはできるが、電極等を設置して直流電圧を印加することができないため、比誘電率や誘電正接の直流電界強度依存性を測定することはできなかった。   When the cavity resonator described in Non-Patent Document 1 used for measuring the dielectric characteristics of a dielectric substrate is applied to the dielectric characteristics measurement of a dielectric thin film, the relative dielectric constant and dielectric loss tangent of the dielectric thin film are accurately measured. Although it can be determined, since it is not possible to apply a DC voltage by installing an electrode or the like, it was not possible to measure the dependence of the relative permittivity and the dielectric loss tangent on the DC electric field strength.

また、非特許文献2に記載のリング共振器を誘電体薄膜の誘電特性測定に適用した場合、例えば、図28に示すように、誘電体支持基板1上に誘電体薄膜24が形成され、この誘電体薄膜24の上にリング状のシグナル導体34が形成されるとともに、誘電体支持基板1の下面にグランド導体35が形成された構造のリング共振器や、図29に示すように、誘電体支持基板1上にグランド導体35が形成され、このグランド導体35の上に誘電体薄膜24が形成され、さらにこの誘電体薄膜24の上にリング状のシグナル導体34が形成された構造のリング共振器を用いて測定する場合が挙げられるが、これらの場合には、誘電体薄膜に電界エネルギーが集中しないか、あるいは、導体損が大きく、無負荷Qが大幅に劣化することで、比誘電率や誘電正接等を正確に決定することができなかった。   Further, when the ring resonator described in Non-Patent Document 2 is applied to the dielectric characteristic measurement of the dielectric thin film, for example, as shown in FIG. 28, the dielectric thin film 24 is formed on the dielectric support substrate 1, and this A ring resonator having a structure in which a ring-shaped signal conductor 34 is formed on the dielectric thin film 24 and a ground conductor 35 is formed on the lower surface of the dielectric support substrate 1, or a dielectric as shown in FIG. Ring resonance of a structure in which a ground conductor 35 is formed on the support substrate 1, a dielectric thin film 24 is formed on the ground conductor 35, and a ring-shaped signal conductor 34 is formed on the dielectric thin film 24. In these cases, the electric field energy is not concentrated on the dielectric thin film, or the conductor loss is large and the no-load Q is greatly deteriorated. A and dielectric loss tangent, etc. could not be determined accurately.

本発明は上記の事情に鑑みてなされたもので、マイクロ波帯やミリ波帯、特に1GHz以上の周波数帯において、誘電体薄膜の比誘電率や誘電正接、並びにそれらの直流電界強度依存性、温度依存性等の誘電特性を高精度に測定することのできるリング共振器およびこれを用いた誘電体薄膜の誘電特性測定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in the microwave band and millimeter wave band, particularly in the frequency band of 1 GHz or higher, the relative permittivity and dielectric loss tangent of the dielectric thin film, and their DC electric field strength dependency, It is an object of the present invention to provide a ring resonator capable of measuring dielectric properties such as temperature dependency with high accuracy and a dielectric property measuring method for a dielectric thin film using the ring resonator.

本発明は、リング状の間隙により内側導体および外側導体に分割された導体膜と、該導体膜の上面および下面の少なくとも一方に積層された誘電体薄膜とが、誘電体支持基板上に設けられていることを特徴とするリング共振器である。このようなリング共振器では、内側導体と外側導体の一方から他方の導体に向けて電界を発生するような共振モードが得られるため、誘電体薄膜に電界エネルギーが集中しやすくなり、比誘電率や誘電正接等を高精度に決定することができる。なお、このようなリング共振器では、複数のモードにおいて上記効果を得ることができるため、同一試料での周波数依存性の測定が可能である。   In the present invention, a conductor film divided into an inner conductor and an outer conductor by a ring-shaped gap and a dielectric thin film laminated on at least one of the upper surface and the lower surface of the conductor film are provided on a dielectric support substrate. It is the ring resonator characterized by the above. In such a ring resonator, a resonance mode in which an electric field is generated from one of the inner conductor and the outer conductor to the other conductor can be obtained, so that the electric field energy tends to concentrate on the dielectric thin film, and the relative permittivity And dielectric loss tangent can be determined with high accuracy. In addition, in such a ring resonator, since the above-described effect can be obtained in a plurality of modes, it is possible to measure frequency dependence with the same sample.

ここで、前記誘電体薄膜の比誘電率が前記誘電体支持基板の比誘電率よりも高いのが好ましい。このようなリング共振器では、内側導体と外側導体のうちの一方から他方に向けて電界を発生するような共振モードにおいて、より誘電体薄膜に電界エネルギーが集中しやすくなるため、比誘電率や誘電正接等をさらに高精度に決定することができる。   Here, it is preferable that a relative dielectric constant of the dielectric thin film is higher than a relative dielectric constant of the dielectric support substrate. In such a ring resonator, in a resonance mode in which an electric field is generated from one of the inner conductor and the outer conductor toward the other, electric field energy is more likely to be concentrated on the dielectric thin film. The dielectric loss tangent and the like can be determined with higher accuracy.

また、前記誘電体薄膜の誘電正接が前記誘電体支持基板の誘電正接よりも高いのが好ましい。このようなリング共振器では、無負荷Qに含まれる誘電体支持基板のQの寄与に対して、誘電体薄膜のQの寄与が大きくなりやすいため、誘電正接をさらに高精度に決定することができる。   The dielectric tangent of the dielectric thin film is preferably higher than the dielectric tangent of the dielectric support substrate. In such a ring resonator, the contribution of Q of the dielectric thin film tends to be larger than the contribution of Q of the dielectric support substrate included in the unloaded Q. Therefore, the dielectric loss tangent can be determined with higher accuracy. it can.

さらに本発明のリング共振器においては、前記間隙が、幅の広い部位と幅の狭い部位とを有するのが好ましい。このようなリング共振器では、選択的に共振電磁界の電界強度の複数の極大点のうちの少なくとも1個を前記間隙の幅の狭い部位に位置させることにより、誘電体薄膜に電界エネルギーを集中させることができ、比誘電率や誘電正接等をさらに高精度に決定することができると共に、後述のように内側導体と外側導体との間に直流電圧をかける際、幅の狭い部位があることにより、印加する直流電圧を低減することができる。また、選択的に共振電磁界の磁界強度の複数の極大点のうちの全部を前記間隙の幅の広い部位に位置させることができるようになるため、より導体損が小さくなり、比誘電率や誘電正接等をさらに高精度に決定することができると共に、ループアンテナ等によって容易に磁界を励振及び検波することができる。なお、このようなリング共振器では、選択的に複数のモードにおいて上記効果を得ることができるため、同一試料での周波数依存性の測定を高精度に行うことができる。   Furthermore, in the ring resonator of the present invention, it is preferable that the gap has a wide portion and a narrow portion. In such a ring resonator, the electric field energy is concentrated on the dielectric thin film by selectively positioning at least one of a plurality of local maximum points of the electric field strength of the resonant electromagnetic field at a narrow part of the gap. The relative permittivity, dielectric loss tangent, etc. can be determined with higher accuracy, and there is a narrow part when applying a DC voltage between the inner conductor and the outer conductor as will be described later. Thus, the applied DC voltage can be reduced. Further, since all of the plurality of local maximum points of the magnetic field strength of the resonance electromagnetic field can be positioned at a wide part of the gap, the conductor loss is further reduced, and the relative dielectric constant and The dielectric loss tangent and the like can be determined with higher accuracy, and the magnetic field can be easily excited and detected by a loop antenna or the like. In such a ring resonator, the above-described effect can be selectively obtained in a plurality of modes, so that frequency dependency measurement with the same sample can be performed with high accuracy.

ここで、前記幅の広い部位の周方向に占める割合が、前記幅の狭い部位の周方向に占める割合よりも大きいのが好ましい。これにより、容易に共振電磁界の磁界強度の極大点の全部を前記幅の広い部位に位置させることができる。なお、幅の広い部位の周方向に占める割合と幅の狭い部位の周方向に占める割合は、幅の最大値と幅の最小値を加えた値の1/2よりも大きい距離の幅の占める領域が多いか少ないかで判断するものである。   Here, it is preferable that the proportion of the wide portion in the circumferential direction is larger than the proportion of the narrow portion in the circumferential direction. Thereby, all the maximum points of the magnetic field strength of the resonance electromagnetic field can be easily located in the wide part. Note that the ratio of the wide part in the circumferential direction and the ratio of the narrow part in the circumferential direction occupy a width of a distance larger than 1/2 of the value obtained by adding the maximum value of the width and the minimum value of the width. Judgment is made based on whether the area is large or small.

さらに、前記幅の広い部位と前記幅の狭い部位とが、それぞれ2k個(k:正の整数)ずつ交互に形成されているのが好ましい。このようなリング共振器では、2m×k個(m、k:正の整数)存在する共振電磁界の電界強度の複数の極大点のうちの1個または全部が、前記間隙の幅の狭い部位に存在するn次(n=m×k)の共振モードを得ることができるため、より効率的に誘電体薄膜に電界エネルギーが集中しやすくなり、比誘電率や誘電正接等をさらに高精度に決定することができると共に、内側導体と外側導体との間に印加する直流電圧を低減することができる。また、上記n次(n=m×k)の共振モードでは2m×k個存在する磁界強度の極大点の全部を幅の広い部位に位置させることができるようになるため、より効率的に導体損が小さくなり、比誘電率や誘電正接等をさらに高精度に決定することができると共に、ループアンテナ等によって容易に磁界を励振および検波することができる。   Furthermore, it is preferable that the wide portions and the narrow portions are alternately formed by 2k pieces (k: a positive integer). In such a ring resonator, one or all of a plurality of local maximum points of the electric field strength of the resonant electromagnetic field existing 2m × k (m, k: positive integers) are portions where the gap is narrow. N-th order (n = m × k) resonance mode existing in can be obtained, so that the electric field energy can be more efficiently concentrated on the dielectric thin film, and the relative permittivity, dielectric loss tangent, etc. can be made more accurate. It can be determined, and the DC voltage applied between the inner conductor and the outer conductor can be reduced. Further, in the n-th order (n = m × k) resonance mode, all of the 2m × k maximal points of the magnetic field strength can be positioned in a wide part, so that the conductor can be more efficiently conducted. The loss is reduced, the relative permittivity, the dielectric loss tangent, etc. can be determined with higher accuracy, and the magnetic field can be easily excited and detected by a loop antenna or the like.

なお、本発明のリング共振器は、誘電体薄膜の厚みが10−8m以上10−5m以下である場合に好ましく利用できる。このようなリング共振器は、作製が容易であると共に、誘電体薄膜に電界エネルギーが集中しやすいため、比誘電率や誘電正接等を高精度に決定することができる。 The ring resonator of the present invention can be preferably used when the thickness of the dielectric thin film is 10 −8 m or more and 10 −5 m or less. Such a ring resonator is easy to manufacture and the electric field energy tends to concentrate on the dielectric thin film, so that the relative permittivity, dielectric loss tangent, etc. can be determined with high accuracy.

また本発明は、上記のリング共振器を電磁界励振させて、前記リング共振器の共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記誘電体薄膜の誘電特性を決定することを特徴とする誘電体薄膜の誘電特性測定方法である。このような誘電特性測定法により、内側導体と外側導体のうちの一方から他方に向けて電界を発生するような共振モードの共振周波数および/または無負荷Qから、比誘電率や誘電正接等を高精度に決定することができる。   In the present invention, the ring resonator is electromagnetically excited to measure a resonance frequency and no-load Q of the ring resonator, and a dielectric characteristic of the dielectric thin film is determined from the resonance frequency and the no-load Q. This is a method for measuring dielectric characteristics of a dielectric thin film. By such a dielectric property measurement method, the relative permittivity, dielectric loss tangent, etc. are determined from the resonance frequency and / or no-load Q of the resonance mode that generates an electric field from one of the inner conductor and the outer conductor to the other. It can be determined with high accuracy.

さらに本発明は、上記のリング共振器の前記幅の狭い部位に共振電磁界の電界強度の極大点が存在するように前記リング共振器を磁界励振させて、前記リング共振器の共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記誘電体薄膜の誘電特性を決定することを特徴とする誘電体薄膜の誘電特性測定方法である。このような誘電特性測定方法により、より効率的に誘電体薄膜に電界エネルギーが集中しやすくなり、比誘電率や誘電正接等をさらに高精度に決定することができる。また、内側導体と外側導体との間に印加する直流電圧を低減することができる。   Furthermore, the present invention provides a magnetic field excitation of the ring resonator so that a maximum point of the electric field strength of the resonance electromagnetic field exists at the narrow portion of the ring resonator, so that the resonance frequency and the resonance frequency of the ring resonator are reduced. A dielectric thin film dielectric property measuring method, comprising: measuring a load Q; and determining a dielectric characteristic of the dielectric thin film from the resonance frequency and the no-load Q. By such a dielectric property measurement method, the electric field energy is easily concentrated more efficiently on the dielectric thin film, and the relative permittivity, dielectric loss tangent, etc. can be determined with higher accuracy. Moreover, the DC voltage applied between the inner conductor and the outer conductor can be reduced.

またさらに本発明は、上記のリング共振器の前記幅の狭い部位に共振電磁界の電界強度の極大点が存在するように前記リング共振器を磁界励振させて、前記間隙に前記電界強度の極大点が2m×k個(m、n:正の整数)存在するn次(n=m×k)の共振モードの共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記誘電体薄膜の誘電特性を決定することを特徴とする誘電体薄膜の誘電特性測定方法である。このような誘電特性測定方法により、より効率的に導体損が小さくなり、比誘電率や誘電正接等をさらに高精度に決定することができると共に、ループアンテナ等によって容易に電磁界を励振および検波することができる。なお、m=1のとき、リング状の間隙における幅の広い部位と幅の狭い部位の周方向に占める割合に関わらず、2k個存在する共振電磁界の電界強度の極大点の全部が幅の狭い部位に位置し、2k個存在する共振電磁界の磁界強度の極大点の全部が幅の広い部位に位置するn次の共振モードが得られるので、比誘電率や誘電正接等を最も高精度に決定することができる。また、このような誘電特性測定方法では、n次(n=m×k)以外の共振モードは共振波形が分離しないため、目的の共振ピークを容易に見つけることができる。また、前記mの異なる共振モードを得ることによって、より高精度での同一試料での周波数依存性の測定が可能である。   Still further, the present invention provides a magnetic field excitation of the ring resonator so that a maximum point of the electric field strength of the resonant electromagnetic field exists in the narrow portion of the ring resonator, and the maximum of the electric field strength in the gap. The resonance frequency and no-load Q of the n-th order (n = m × k) resonance mode in which 2m × k points (m, n: positive integer) exist are measured, and the resonance frequency and the no-load Q are A method for measuring dielectric properties of a dielectric thin film characterized by determining dielectric properties of the dielectric thin film. Such a dielectric property measurement method makes it possible to reduce the conductor loss more efficiently and to determine the relative permittivity, dielectric loss tangent, etc. with higher accuracy, and to easily excite and detect the electromagnetic field with a loop antenna or the like. can do. When m = 1, regardless of the ratio of the wide part and the narrow part of the ring-shaped gap in the circumferential direction, all the local maximum points of the electric field strength of the 2k resonance electromagnetic fields are wide. Since the n-th order resonance mode is obtained, where the maximum points of the magnetic field strength of 2k resonance electromagnetic fields are located in a wide part, which is located in a narrow part, the relative permittivity, dielectric loss tangent, etc. are the most accurate. Can be determined. Further, in such a dielectric characteristic measuring method, since the resonance waveform is not separated in resonance modes other than the nth order (n = m × k), a target resonance peak can be easily found. Further, by obtaining the m different resonance modes, it is possible to measure the frequency dependence of the same sample with higher accuracy.

ここで、前記内側導体と前記外側導体との間に直流電圧を印加しながら、前記リング共振器を磁界励振させるのが好ましい。これにより、比誘電率や誘電正接の直流電界強度依存性を測定することができる。   Here, it is preferable that the ring resonator is magnetically excited while applying a DC voltage between the inner conductor and the outer conductor. Thereby, the direct-current electric field strength dependence of a dielectric constant or a dielectric loss tangent can be measured.

なお、本発明の誘電特性測定方法においては、前記共振周波数が1GHz以上であるのが好ましい。このような誘電特性測定方法では、高次モードを用いて、導体損を小さくすることが容易となるため、誘電正接をより高精度に測定することができる。   In the dielectric property measuring method of the present invention, the resonance frequency is preferably 1 GHz or more. In such a dielectric property measurement method, it is easy to reduce the conductor loss by using a higher-order mode, so that the dielectric loss tangent can be measured with higher accuracy.

本発明によれば、内側導体と外側導体の一方から他方の導体に向けて電界を発生するような共振モードが得られるため、誘電体薄膜に電界エネルギーが集中しやすくなり、比誘電率や誘電正接等を高精度に決定することができる。   According to the present invention, since a resonance mode that generates an electric field from one of the inner conductor and the outer conductor toward the other conductor is obtained, electric field energy is easily concentrated on the dielectric thin film, and the relative permittivity and dielectric The tangent or the like can be determined with high accuracy.

以下、本発明のリング共振器とそれを用いた誘電特性測定方法について、図面に基づいて説明する。なお、誘電体薄膜は、厚みが10−8m以上のものを想定する。 Hereinafter, a ring resonator of the present invention and a dielectric property measuring method using the same will be described with reference to the drawings. The dielectric thin film is assumed to have a thickness of 10 −8 m or more.

本発明のリング共振器は、図1、図5、図6に示すように、リング状の間隙31により内側導体32と外側導体33とに分割された導体膜3と、この導体膜3の上面および下面の少なくとも一方に積層された誘電体薄膜2が、誘電体支持基板1上に設けられていることを特徴とするものである。   As shown in FIGS. 1, 5, and 6, the ring resonator of the present invention includes a conductor film 3 divided into an inner conductor 32 and an outer conductor 33 by a ring-shaped gap 31, and an upper surface of the conductor film 3. The dielectric thin film 2 laminated on at least one of the lower surface and the lower surface is provided on the dielectric support substrate 1.

図1に示すリング共振器は、誘電体支持基板1上に誘電体薄膜2が形成され、さらにこの誘電体薄膜2の上面に、リング状の間隙31により内側導体32と外側導体33とに分割された導体膜3(いわゆるリング状のスロットラインが形成された導体膜)が積層された構造となっている。   The ring resonator shown in FIG. 1 has a dielectric thin film 2 formed on a dielectric support substrate 1 and is further divided into an inner conductor 32 and an outer conductor 33 by a ring-shaped gap 31 on the upper surface of the dielectric thin film 2. The conductive film 3 (a conductive film in which a so-called ring-shaped slot line is formed) is laminated.

誘電体支持基板1は、縦10〜100mm、横10〜100mm、厚み0.1〜10mm程度の平板状の基板である。この誘電体支持基板1は、誘電体薄膜に対して、比誘電率が低く、誘電正接が低い誘電体材料からなるのが好ましく、特に、平坦度が要求されるという点からサファイア、ガラスなどが望ましい。   The dielectric support substrate 1 is a flat substrate having a length of 10 to 100 mm, a width of 10 to 100 mm, and a thickness of about 0.1 to 10 mm. The dielectric support substrate 1 is preferably made of a dielectric material having a low relative dielectric constant and a low dielectric loss tangent with respect to the dielectric thin film. In particular, sapphire, glass and the like are required because flatness is required. desirable.

誘電体薄膜2は、本発明において誘電特性を測定する測定対象であって、誘電体支持基板1上に設けられるものであるから、縦、横の長さは誘電体支持基板1と同じく形成され、その厚みは0.01〜10μmの薄膜である。   Since the dielectric thin film 2 is a measurement object for measuring dielectric characteristics in the present invention and is provided on the dielectric support substrate 1, the vertical and horizontal lengths are the same as those of the dielectric support substrate 1. The thickness is a thin film of 0.01 to 10 μm.

導体膜3は、主として白金、金などの金属からなり、リング状の間隙31により内側導体32と外側導体33とに分割されている。言い換えると、導体膜3は、いわゆるリング状のスロットラインが形成された構造になっている。この導体膜2の縦、横の長さ、言い換えると外側導体33の外周における縦、横の長さは誘電体薄膜2と同様に誘電体支持基板1と同じく形成され、その厚みは0.01〜10μmとなっている。   The conductor film 3 is mainly made of a metal such as platinum or gold, and is divided into an inner conductor 32 and an outer conductor 33 by a ring-shaped gap 31. In other words, the conductor film 3 has a structure in which a so-called ring-shaped slot line is formed. The conductor film 2 has the same vertical and horizontal lengths, in other words, the vertical and horizontal lengths on the outer periphery of the outer conductor 33, which are formed in the same manner as the dielectric support substrate 1 in the same manner as the dielectric thin film 2, and has a thickness of 0.01. -10 μm.

通常、誘電体薄膜2および導体膜3は、スパッタリングにより誘電体支持基板1上に形成されるが、別に機械加工等により作製された治具を載置してもよい。   Usually, the dielectric thin film 2 and the conductor film 3 are formed on the dielectric support substrate 1 by sputtering, but a jig manufactured by machining or the like may be placed thereon.

そして、リング状の間隙31の幅(内側導体32と外側導体33との間隔)は、10−6〜10−2mであることが望ましい。この幅が狭くなると導体損が大きくなるため、誘電正接を高精度に測定することが困難となる。また、目的の共振モードの電磁界を励振および検波することも困難となる。一方、この幅が広くなると誘電体薄膜に電界エネルギーが集中しにくくなるため、比誘電率を高精度に測定することが困難となる。また、一定範囲における直流電界強度依存性を測定する上で、大きな直流電圧が必要となるため、危険である。特に、前記リング状間隙31の幅(内側導体32と外側導体33との間隔)は10−5〜10−3mであることが望ましく、直流電界強度依存性を測定する必要のある場合には10−5〜10−4m、直流電界強度依存性を測定する必要のない場合には10−4〜10−3mであることがより望ましい。 The width of the ring-shaped gap 31 (the distance between the inner conductor 32 and the outer conductor 33) is preferably 10 −6 to 10 −2 m. When this width is narrowed, the conductor loss increases, so that it is difficult to measure the dielectric loss tangent with high accuracy. Also, it becomes difficult to excite and detect the electromagnetic field of the target resonance mode. On the other hand, when this width is widened, it becomes difficult to concentrate electric field energy on the dielectric thin film, so that it is difficult to measure the relative dielectric constant with high accuracy. Moreover, it is dangerous because a large DC voltage is required to measure the DC electric field strength dependency in a certain range. In particular, the width of the ring-shaped gap 31 (the distance between the inner conductor 32 and the outer conductor 33) is preferably 10 −5 to 10 −3 m, and when the DC electric field strength dependency needs to be measured. 10 −5 to 10 −4 m, and 10 −4 to 10 −3 m are more desirable when it is not necessary to measure the DC electric field strength dependency.

リング状の間隙31の形状については、共振モードの説明とともに後述する。   The shape of the ring-shaped gap 31 will be described later together with the description of the resonance mode.

このようなリング共振器は、図4に示すように、例えば一対のループアンテナを導体膜3に平行にした状態で、リング状の間隙31の対向する位置にそれぞれ近づけることにより励振される。具体的には、一方の同軸ケーブル41の先端に設けられたループアンテナ42により励振され、他方のループアンテナ42により検波される。詳しくは、発振器、例えばシンセサイズドスイーパーから、周波数が掃引された信号を一方の同軸ケーブル41からループアンテナ42を通して共振器に注入することで、目的の共振モードの電磁界が励振される。そして、他方のループアンテナ42から同軸ケーブル41を通して、共振器の透過信号がネットワークアナライザー等の測定機器に入力されることで、このリング共振器の共振周波数と無負荷Qを測定することができる。なお、ループアンテナ42のリング共振器への挿入深さは、測定する目的の共振モードの共振周波数における挿入損失が30dB程度になるように調整される。   As shown in FIG. 4, such a ring resonator is excited, for example, by bringing the pair of loop antennas close to the opposing positions of the ring-shaped gap 31 in a state where the pair of loop antennas are parallel to the conductor film 3. Specifically, it is excited by a loop antenna 42 provided at the tip of one coaxial cable 41 and detected by the other loop antenna 42. More specifically, an electromagnetic field of a target resonance mode is excited by injecting a frequency-swept signal from an oscillator, for example, a synthesized sweeper, into the resonator through the loop antenna 42 from one coaxial cable 41. Then, when the transmission signal of the resonator is input from the other loop antenna 42 through the coaxial cable 41 to a measuring device such as a network analyzer, the resonance frequency and no-load Q of the ring resonator can be measured. The insertion depth of the loop antenna 42 into the ring resonator is adjusted so that the insertion loss at the resonance frequency of the resonance mode to be measured is about 30 dB.

ここで、上記のリング共振器では、図2に示すように、内側導体と外側導体のうちの一方から他方に向けて電界を発生する共振モードが得られるため、誘電体薄膜に電界エネルギーが集中しやすくなり、比誘電率や誘電正接等を高精度に決定することができる。また、上記のリング共振器では、図3に示すように、導体膜3に磁界(電流)が集中しない共振モードが得られるため、導体損が小さくなり、無負荷Qに含まれる導体のQの寄与に対して、誘電体薄膜のQの寄与が大きくなりやすいため、誘電正接を高精度に決定することができる。   Here, in the above-described ring resonator, as shown in FIG. 2, since a resonance mode for generating an electric field from one of the inner conductor and the outer conductor to the other is obtained, the electric field energy is concentrated on the dielectric thin film. Therefore, the relative permittivity, the dielectric loss tangent, etc. can be determined with high accuracy. Further, in the above-described ring resonator, as shown in FIG. 3, since a resonance mode in which a magnetic field (current) is not concentrated on the conductor film 3 is obtained, the conductor loss is reduced, and the Q of the conductor included in the unloaded Q is reduced. Since the contribution of the Q of the dielectric thin film tends to increase with respect to the contribution, the dielectric loss tangent can be determined with high accuracy.

比誘電率や誘電正接等の誘電特性は、このリング共振器の共振周波数と無負荷Qの測定値から有限要素法やモードマッチング法等による数値解析を行うことで計算できる。特に、本発明に用いるような軸対称形状のリング共振器に対しては、軸対称の有限要素法を用いることができるため、寸法、比誘電率、誘電正接等から共振電磁界分布、共振周波数、無負荷Q等を高精度、かつ短時間で計算できる。従って、これを応用すれば共振周波数や無負荷Qから、誘電体薄膜の比誘電率や誘電正接を求めることができる。   Dielectric characteristics such as relative permittivity and dielectric loss tangent can be calculated by performing numerical analysis by a finite element method, a mode matching method or the like from the measured values of the resonance frequency of the ring resonator and the no load Q. In particular, an axially symmetric finite element method can be used for an axially symmetric ring resonator as used in the present invention, so that the resonant electromagnetic field distribution, resonant frequency can be determined from the dimensions, relative permittivity, dielectric loss tangent, etc. The no-load Q and the like can be calculated with high accuracy and in a short time. Therefore, if this is applied, the dielectric constant and dielectric loss tangent of the dielectric thin film can be obtained from the resonance frequency and the no-load Q.

より具体的な計算方法として、以下のような方法があげられる。まず、リング共振器の寸法を測定顕微鏡等を用いて測定し、形状を決定しておく。次に、誘電体薄膜2(誘電体試料)の比誘電率ε’を少なくとも3点以上変化させたときの共振周波数f0を、軸対称の有限要素法等により計算しておく。このとき得られる共振周波数f0の計算値は共振周波数の測定値とそのバラツキの程度であることが望ましい。次に、線形最小二乗法により共振周波数f0 と比誘電率ε’の線形近似式、f0=a×ε’+bの係数a、bを求める。これによって、共振周波数f0の測定値f0Aから比誘電率ε’が計算できる。 More specific calculation methods include the following methods. First, the dimensions of the ring resonator are measured using a measurement microscope or the like to determine the shape. Next, the resonance frequency f 0 when the relative dielectric constant ε ′ of the dielectric thin film 2 (dielectric sample) is changed by at least three points is calculated by an axially symmetric finite element method or the like. The calculated value of the resonance frequency f 0 obtained at this time is preferably the measured value of the resonance frequency and the degree of variation thereof. Next, a linear approximation formula of resonance frequency f 0 and relative permittivity ε ′, coefficients a and b of f 0 = a × ε ′ + b are obtained by the linear least square method. Thereby, the relative dielectric constant ε ′ can be calculated from the measured value f 0A of the resonance frequency f 0 .

続いて、この比誘電率ε’の計算値を用いることで導体Q(Q)、誘電体試料内に蓄積される電界エネルギーの比率(P)を軸対称の有限要素法により計算する。このとき得られるQ、Pの計算値と、無負荷Q(Q)、誘電正接 tanδとにはQ -1=Q -1+P×tanδという関係式が成り立つ。従って、この式に無負荷Qの測定値を代入することによって、誘電正接が計算できる。 Subsequently, by using the calculated value of the relative dielectric constant ε ′, the conductor Q (Q c ) and the ratio of electric field energy accumulated in the dielectric sample (P e ) are calculated by the axially symmetric finite element method. A relational expression of Q u −1 = Q c −1 + P e × tan δ holds between the calculated values of Q c and P e obtained at this time, the unloaded Q (Q u ), and the dielectric loss tangent tan δ. Therefore, the dielectric loss tangent can be calculated by substituting the measured value of no-load Q into this equation.

ここで、目的の周波数で測定を行うためには、モード次数nを変更すればよい。モード次数nをn1からn2に変更すると共振周波数は約n2/n1倍になる。また、リング共振器の形状(リング径d、間隙の幅w等)を変更することによっても、共振周波数を制御できる。リング径dをd1からd2に変更すると共振周波数は約d1/d2倍になる。また、間隙の幅wを小さくすると誘電体薄膜に電界エネルギーが集中するようになるため、共振周波数は低くなり、間隙の幅wを大きくすると誘電体薄膜に電界エネルギーが集中しないようになるため、共振周波数は高くなる。   Here, in order to perform measurement at a target frequency, the mode order n may be changed. When the mode order n is changed from n1 to n2, the resonance frequency becomes about n2 / n1 times. The resonance frequency can also be controlled by changing the shape of the ring resonator (ring diameter d, gap width w, etc.). When the ring diameter d is changed from d1 to d2, the resonance frequency becomes about d1 / d2. Moreover, since the electric field energy concentrates on the dielectric thin film when the gap width w is reduced, the resonance frequency is lowered, and when the gap width w is increased, the electric field energy does not concentrate on the dielectric thin film. The resonance frequency is increased.

本発明の誘電特性測定法では、誘電体支持基板の誘電特性(比誘電率、誘電正接)、導体膜の導電率を予め測定しておく必要がある。誘電体支持基板の誘電定数は、従来の空洞共振器法等を用いることによって測定できる。また、導体膜の導電率は、例えば、図1、図5、図6に示す本発明のリング共振器における誘電体薄膜2及び誘電体薄膜4を取り除いたような構造のリング共振器を用いることによって測定できる。   In the dielectric property measurement method of the present invention, it is necessary to measure in advance the dielectric properties (dielectric constant, dielectric loss tangent) of the dielectric support substrate and the conductivity of the conductor film. The dielectric constant of the dielectric support substrate can be measured by using a conventional cavity resonator method or the like. For the conductivity of the conductor film, for example, a ring resonator having a structure in which the dielectric thin film 2 and the dielectric thin film 4 in the ring resonator of the present invention shown in FIGS. 1, 5, and 6 are removed is used. Can be measured by.

そして、図1に示すリング共振器では、内側導体32と外側導体33が剥き出しになっており、これらの間に容易に直流電圧を印加することができる。例えば、図4に示すように、内側導体32と外側導体33の上には端子5が接合されるとともに、導線等を介して端子7と直流電源とが電気的に接続され、直流電圧が印加される。このときの端子5の形成方法としては、誘電体薄膜2および導体膜3等に影響を及ぼさない温度以下で形成されるものであれば何でもよい。例えば、めっき、蒸着、印刷、エッチング、リフロー、あるいはこれらを組み合わせた方法などがあげられる。また、端子5の材質は、金、銀、銅、はんだなど何でもよいが、電気抵抗が低いという点から金、銀、銅などが望ましく、また、融点が低いという点から、はんだなどが望ましい。   In the ring resonator shown in FIG. 1, the inner conductor 32 and the outer conductor 33 are exposed, and a DC voltage can be easily applied between them. For example, as shown in FIG. 4, the terminal 5 is joined on the inner conductor 32 and the outer conductor 33, and the terminal 7 and the DC power source are electrically connected via a conducting wire or the like to apply a DC voltage. Is done. As a method for forming the terminal 5 at this time, any method may be used as long as it is formed at a temperature not affecting the dielectric thin film 2, the conductor film 3, and the like. Examples thereof include plating, vapor deposition, printing, etching, reflow, or a combination of these. The terminal 5 may be made of any material such as gold, silver, copper, and solder, but gold, silver, copper, and the like are preferable from the viewpoint of low electrical resistance, and solder is preferable from the viewpoint of a low melting point.

この直流電圧の印加とともにリング共振器を磁界励振させることにより、比誘電率や誘電正接の直流電界強度依存性を測定することができ、この測定方法については後述する。   When the ring resonator is magnetically excited along with the application of the DC voltage, the relative permittivity and the dielectric loss tangent dependency of the DC electric field strength can be measured. This measuring method will be described later.

その他、無負荷Qに含まれる放射のQの寄与を低減するという点からは、リング共振器全体を覆うことのできる遮蔽導体、誘電定数の温度依存性を測定するという点からは、恒温槽等を設置してもよい。   In addition, from the viewpoint of reducing the contribution of the radiation Q included in the unloaded Q, a shielding conductor that can cover the entire ring resonator, a temperature chamber, etc. from the point of measuring the temperature dependence of the dielectric constant May be installed.

本発明においては、図1に示すような誘電体支持基板1上に誘電体薄膜2が形成され、さらにこの誘電体薄膜2の上面に、リング状の間隙31により内側導体32と外側導体33とに分割された導体膜3が積層された構造に限定されず、図5および図6に示すような構造のものも採用できる。   In the present invention, a dielectric thin film 2 is formed on a dielectric support substrate 1 as shown in FIG. 1, and an inner conductor 32 and an outer conductor 33 are formed on the upper surface of the dielectric thin film 2 by a ring-shaped gap 31. The structure is not limited to the structure in which the conductor films 3 divided into two are stacked, and the structure shown in FIGS. 5 and 6 can also be adopted.

図5に示すリング共振器では、誘電体支持基板1上に、リング状の間隙31により内側導体32と外側導体33とに分割された導体膜3が設けられ、この導体膜3の上面に誘電体薄膜2が積層された構造となっている。また、図においては、導体膜3の内側導体32と外側導体33との間に直流電圧を印加できるように、誘電体薄膜2の一部(内側導体32の上側および外側導体33の上側)に一対の直流電圧印加孔6が設けられており、内側導体32の一部と外側導体33の一部が露出している。   In the ring resonator shown in FIG. 5, a conductor film 3 divided into an inner conductor 32 and an outer conductor 33 by a ring-shaped gap 31 is provided on a dielectric support substrate 1, and a dielectric film is formed on the upper surface of the conductor film 3. The body thin film 2 is laminated. Further, in the drawing, a part of the dielectric thin film 2 (upper side of the inner conductor 32 and upper side of the outer conductor 33) is provided so that a DC voltage can be applied between the inner conductor 32 and the outer conductor 33 of the conductor film 3. A pair of DC voltage application holes 6 are provided, and a part of the inner conductor 32 and a part of the outer conductor 33 are exposed.

また、図6に示すリング共振器では、誘電体支持基板1上に、リング状の間隙31により内側導体32および外側導体33に分割された導体膜3と、この導体膜3の上面および下面に積層された誘電体薄膜2とが設けられた構造となっている。また、図においては、導体膜3の内側導体32と外側導体33との間に直流電圧を印加できるように、誘電体薄膜2の一部(内側導体32の上側および外側導体33の上側)に一対の直流電圧印加孔6が設けられており、内側導体32の一部と外側導体33の一部が露出している。   In the ring resonator shown in FIG. 6, the conductor film 3 divided into the inner conductor 32 and the outer conductor 33 by the ring-shaped gap 31 on the dielectric support substrate 1, and the upper and lower surfaces of the conductor film 3 The laminated dielectric thin film 2 is provided. Further, in the drawing, a part of the dielectric thin film 2 (upper side of the inner conductor 32 and upper side of the outer conductor 33) is provided so that a DC voltage can be applied between the inner conductor 32 and the outer conductor 33 of the conductor film 3. A pair of DC voltage application holes 6 are provided, and a part of the inner conductor 32 and a part of the outer conductor 33 are exposed.

次に、リング状の間隙31の形状と共振モードについて説明する。
図7は、本発明のリング共振器のリング状の間隙31の形状と共振モード(1次共振モード)を説明するための平面図であって、リング状間隙の幅が一周において変化がなく、共振電磁界が一周に1波長存在する1次共振モードが表されている。
Next, the shape of the ring-shaped gap 31 and the resonance mode will be described.
FIG. 7 is a plan view for explaining the shape and resonance mode (primary resonance mode) of the ring-shaped gap 31 of the ring resonator of the present invention, and the width of the ring-shaped gap does not change in one round, A primary resonance mode in which one wavelength of the resonance electromagnetic field exists in one circle is shown.

図7のように、リング状間隙の幅が一周において変化がない(幅の広い部位と幅の狭い部位を有するものでない)場合、軸対称の有限要素法を用いることができるため、寸法、比誘電率、誘電正接等から共振電磁界分布、共振周波数、無負荷Q等を高精度、かつ短時間で計算できる。但し、この場合、大きな直流電圧を必要とせずに一定範囲における直流電界強度依存性を測定することと目的の共振モードの電磁界を励振および検波することとを両立させることが困難となる。   As shown in FIG. 7, when the width of the ring-shaped gap does not change in one round (not having a wide part and a narrow part), an axially symmetric finite element method can be used. Resonance electromagnetic field distribution, resonance frequency, no load Q, etc. can be calculated with high accuracy and in a short time from dielectric constant, dielectric loss tangent and the like. However, in this case, it is difficult to achieve both the measurement of the DC electric field strength dependence in a certain range without requiring a large DC voltage and the excitation and detection of the electromagnetic field of the target resonance mode.

そこで、前者においてリング状間隙の幅は、共振電磁界の電界強度が極大となるような点(電界極大点)の少なくとも1個で狭くなっていることが望ましく、後者においてリング状間隙の幅は、共振電磁界の磁界強度が極大となるような点(磁界極大点)の少なくとも2個(励振用に1個と検波用に1個)で広くなっていることが望ましい。また、誘電体薄膜に電界エネルギーを集中させ、比誘電率や誘電正接等を高精度に測定するためにも、リング状間隙の幅は上記電界極大点の少なくとも1個で狭くなっていることが望ましい。言い換えると、リング状の間隙が、幅の広い部位と幅の狭い部位とを有するのが望ましい。また、導体損を小さくし、比誘電率や誘電正接等を高精度に測定するためには、リング状間隙の幅は上記磁界極大点の全部で広くなっていることが望ましい。言い換えると、リング状の間隙における幅の広い部位の周方向に占める割合が、幅の狭い部位の周方向に占める割合よりも大きいのが望ましい。このような形状および共振モードの例が、図8、図9に示してある。   Therefore, the width of the ring-shaped gap in the former is desirably narrowed at at least one point (field maximum point) at which the electric field strength of the resonant electromagnetic field is maximized, and the width of the ring-shaped gap in the latter is It is desirable that at least two points (one for excitation and one for detection) at which the magnetic field strength of the resonance electromagnetic field is maximized are widened. Further, in order to concentrate electric field energy on the dielectric thin film and to measure the relative permittivity, dielectric loss tangent, etc. with high accuracy, the width of the ring-shaped gap should be narrow at at least one of the electric field maximum points. desirable. In other words, it is desirable that the ring-shaped gap has a wide portion and a narrow portion. Further, in order to reduce the conductor loss and to measure the relative dielectric constant and the dielectric loss tangent with high accuracy, it is desirable that the width of the ring-shaped gap is wide at all the magnetic field maximum points. In other words, it is desirable that the proportion of the wide portion in the circumferential direction in the ring-shaped gap is larger than the proportion of the narrow portion in the circumferential direction. Examples of such shapes and resonance modes are shown in FIGS.

図8は、リング状間隙の他の形状と共振モードを説明するための平面図であって、(a)は1次共振モード、(b)は2次共振モードを表している。そして、リング状間隙は一周において変化があるもので、言い換えると、幅の狭い部位と幅の広い部位が2個ずつあり、かつ、幅の広い部位の周方向に占める割合が、幅の狭い部位の周方向に占める割合よりも大きくなっている。なお、幅の広い部位の周方向に占める割合と幅の狭い部位の周方向に占める割合は、幅の最大値と幅の最小値を加えた値の1/2よりも大きい距離の幅の占める領域が多いか少ないかで判断するものである。   FIG. 8 is a plan view for explaining another shape of the ring-shaped gap and the resonance mode, in which (a) represents the primary resonance mode and (b) represents the secondary resonance mode. And the ring-shaped gap has a change in one round. In other words, there are two narrow parts and two wide parts, and the ratio of the wide part in the circumferential direction is a narrow part. It is larger than the ratio in the circumferential direction. Note that the ratio of the wide part in the circumferential direction and the ratio of the narrow part in the circumferential direction occupy a width of a distance larger than 1/2 of the value obtained by adding the maximum value of the width and the minimum value of the width. Judgment is made based on whether the area is large or small.

リング状の間隙が図8に示す形状の場合、電界極大点と磁界極大点とにおける上記要請を両立させる可能性がある。図8(a)のような一周に1波長存在する1次の共振モードや、図8(b)のような一周に2波長存在する2次の共振モードが存在し得る。なお、リング状間隙の構造には、180degの対称性があり、図8のような共振モードと、その電界極大点と磁界極大点とを反転させた共振モードが存在し得る(最小作用の原理)。そこで、図8のような共振モードを用いた場合、リング状間隙における幅の一番狭い点に電界極大点の半分又は全部があり、幅の一番広い(図8(a))または比較的幅の広い(図8(b))点に磁界極大点の全部がある共振モードを用いて測定することができる。このような意味から、上記リング状間隙の幅は最低二種類で良いことがわかる。   In the case where the ring-shaped gap has the shape shown in FIG. 8, there is a possibility that both the above requirements at the electric field maximum point and the magnetic field maximum point are made compatible. There may be a primary resonance mode in which one wavelength exists in one circle as shown in FIG. 8A and a secondary resonance mode in which two wavelengths exist in one circle as shown in FIG. 8B. The structure of the ring-shaped gap has a symmetry of 180 deg, and there can exist a resonance mode as shown in FIG. 8 and a resonance mode in which the electric field maximum point and the magnetic field maximum point are inverted (the principle of minimum action). ). Therefore, when the resonance mode as shown in FIG. 8 is used, the narrowest point in the ring gap has half or all of the electric field maximum points, and the widest width (FIG. 8A) or relatively The measurement can be performed using a resonance mode in which all of the magnetic field maximum points are present at a wide point (FIG. 8B). From this meaning, it can be seen that the ring-shaped gap may have at least two kinds of widths.

また、図9は、リング状間隙のさらに他の形状と共振モードを説明するための平面図であって、(a)は1次共振モード、(b)は2次共振モードを表している。そして、リング状間隙において幅の狭い部位と幅の広い部位が1個ずつあり、かつ、幅の広い部位の周方向に占める割合が、幅の狭い部位の周方向に占める割合よりも大きくなっている。   FIG. 9 is a plan view for explaining still another shape of the ring-shaped gap and the resonance mode, where (a) represents the primary resonance mode and (b) represents the secondary resonance mode. In the ring-shaped gap, there are one narrow part and one wide part, and the ratio of the wide part in the circumferential direction is larger than the ratio of the narrow part in the circumferential direction. Yes.

リング状の間隙が図9に示す形状の場合、図9(a)のような1周に1波長存在する1次の共振モードや図9(b)のような1周に2波長存在する2次の共振モードが存在し得る。なお、これと、その電界極大点と磁界極大点とを反転させた共振モードも存在し得る(最小作用の原理)。そこで、図9のように、幅の狭い部位に電界極大点の1個があり、幅の広い部位に磁界極大点の全部がある共振モードを用いて測定することができる。このように、高次モードにおいても磁界極大点の全部を幅の広い部位に位置させるためには、幅の広い部位は幅の狭い部位よりも周方向に占める割合の大きいことが望ましい。この割合は、測定するモードの次数を考慮し、適宜調整することができる。図9のようなリング状間隙の形状では、n次(1周にn波長)の共振モードまで測定する場合、幅の狭い部位は90/m[deg]未満であることが望ましい。   When the ring-shaped gap has the shape shown in FIG. 9, a primary resonance mode in which one wavelength exists in one turn as shown in FIG. 9A, or two wavelengths exist in one turn as shown in FIG. 9B. The following resonance modes can exist. There may also be a resonance mode in which the electric field maximum point and the magnetic field maximum point are reversed (the principle of minimum action). Therefore, as shown in FIG. 9, the measurement can be performed using a resonance mode in which one of the electric field maximum points is in a narrow portion and all the magnetic field maximum points are in a wide portion. As described above, in order to locate all the magnetic field maximum points in the wide portion even in the higher-order mode, it is desirable that the wide portion occupies a larger ratio in the circumferential direction than the narrow portion. This ratio can be appropriately adjusted in consideration of the order of the mode to be measured. In the shape of the ring-shaped gap as shown in FIG. 9, it is preferable that the narrow portion is less than 90 / m [deg] when measuring up to the n-th order (n wavelength per round) resonance mode.

また、図9において、リング状間隙の幅の広い部位と前記幅の狭い部位とが、それぞれ2k個(k:正の整数)ずつ交互に形成されていると仮定すると、k次の共振モードを用いた場合、幅の狭い部位に電界極大点の全部があると考えられる。   Further, in FIG. 9, assuming that the wide portion of the ring-shaped gap and the narrow portion are alternately formed by 2k pieces (k: positive integer), the k-th order resonance mode is expressed as follows. When used, it is considered that all of the electric field maximum points are in a narrow portion.

そこで、幅の広い部位と幅の狭い部位とが、それぞれ2k個(n:正の整数)ずつ交互に形成されているのが望ましい。このような形状および共振モードの例が、図10に示してある。   Therefore, it is desirable that the wide portions and the narrow portions are alternately formed by 2k pieces (n: a positive integer). An example of such shape and resonance mode is shown in FIG.

図10は、リング状間隙のまたさらに他の形状と共振モードを説明するための平面図であって、(a)はm×k=2次共振モード、(b)はm×k=4次共振モードを表している。そして、リング状間隙において幅の広い部位と幅の狭い部位とが、それぞれ4個ずつ(2k個のk=2の場合)交互に形成されている。   FIG. 10 is a plan view for explaining still another shape of the ring-shaped gap and the resonance mode, where (a) is m × k = second order resonance mode, and (b) is m × k = fourth order. Resonance mode is represented. In the ring-shaped gap, four wide portions and narrow portions are alternately formed (in the case of 2k k = 2).

そして、図10のようにリング状の間隙が、幅の広い部位と幅の狭い部位とを2k個(k:正の整数)ずつ交互に形成した周期構造をもっている場合、電界強度の極大点が2m×k個(m、k:正の整数)存在するn次(n=m×k)の共振モード、例えば図10(a)のような一周に2波長存在する2次の共振モードや図10(b)のような1周に4波長存在する4次の共振モードが存在し得る。なお、これと、その電界極大点と磁界極大点とを反転させた共振モードも存在し得る(最小作用の原理)。そこで、図10のように、幅の狭い部位に電界極大点の半分または全部があり、幅の広い部位に磁界極大点の全部がある共振モードを用いて測定することができる。   Then, when the ring-shaped gap has a periodic structure in which 2k wide portions and narrow portions are alternately formed (k: positive integer) as shown in FIG. 10, the maximum point of electric field strength is 2m × k (m, k: positive integer) n-order (n = m × k) resonance modes, for example, a second-order resonance mode or a diagram having two wavelengths in one circle as shown in FIG. There may be a fourth-order resonance mode such as 10 (b) in which four wavelengths exist in one round. There may also be a resonance mode in which the electric field maximum point and the magnetic field maximum point are reversed (the principle of minimum action). Therefore, as shown in FIG. 10, measurement can be performed using a resonance mode in which half or all of the electric field maximum points are present in a narrow portion and all the magnetic field maximum points are present in a wide portion.

また、図11は、本発明のリング共振器のまたさらに他の構造を説明するための平面図(上)と断面図(下)である。   FIG. 11 is a plan view (top) and a cross-sectional view (bottom) for explaining still another structure of the ring resonator of the present invention.

図11に示すリング共振器では、幅の広い部位と幅の狭い部位とが交互に形成されたリング状の間隙をもち、この幅の広い部位と幅の狭い部位が一周に20個(2k個のk=10のとき)ずつの周期構造をもつ構造となっている。上記のように、このようなリング共振器では、20m個(2m×k個のk=1、mが正の整数のとき)存在する複数の電界強度の極大点の一部または全部が幅の狭い部位に位置する10m次の(一周につき10m波長を有する)共振モードが得られる。このような共振モードを用いれば、20m個存在する複数の磁界強度の極大点の全部が幅の広い部位に位置する10m次の(一周につき10m波長を有する)共振モードが得られ易くなるため、導体損が小さくなり、誘電正接を高精度に測定することが容易となる。また、目的の共振モードの電磁界を励振および検波することも容易となる。これに加えて、誘電体薄膜2に電界エネルギーが集中するようになるため、比誘電率を高精度に測定することができる。また、一定範囲における直流電界強度依存性を測定する上で、大きな直流電圧が不要となるため、安全である。特に、幅の狭い部位における内側導体32と外側導体33との間隔w5は10−7〜10−4mであることが望ましく、幅の広い部位における内側導体32と外側導体33との間隔w4は10−5〜10−2mであることが望ましい。また、周方向における幅の広い部位と幅の狭い部位との比は2:1から200:1であることが望ましい。この比が2:1よりも小さくなると上記効果が得られにくくなり、200:1よりも大きくなると目的の共振モードを同定することが困難となる。また、数値計算も困難となる。 The ring resonator shown in FIG. 11 has a ring-shaped gap in which a wide portion and a narrow portion are alternately formed, and the wide portion and the narrow portion are 20 (2k pieces) in one round. (When k = 10), each has a periodic structure. As described above, in such a ring resonator, some or all of the maximum points of a plurality of electric field strengths that are 20 m (2 m × k k = 1, where m is a positive integer) have a width. A resonance mode of 10 m order (having a wavelength of 10 m per round) located in a narrow part is obtained. If such a resonance mode is used, it becomes easy to obtain a resonance mode of the 10th order (having a wavelength of 10 m per round) in which all of the maximum points of a plurality of magnetic field strengths existing in 20 m are located in a wide portion. The conductor loss is reduced, and the dielectric loss tangent can be easily measured with high accuracy. In addition, it is easy to excite and detect the electromagnetic field of the target resonance mode. In addition, since the electric field energy is concentrated on the dielectric thin film 2, the relative permittivity can be measured with high accuracy. In addition, it is safe because a large DC voltage is not required in measuring the DC field strength dependency in a certain range. In particular, the distance w5 between the inner conductor 32 and the outer conductor 33 in the narrow part is preferably 10 −7 to 10 −4 m, and the distance w4 between the inner conductor 32 and the outer conductor 33 in the wide part is It is desirable that it is 10 < -5 > -10 <-2> m. Further, the ratio of the wide portion and the narrow portion in the circumferential direction is preferably 2: 1 to 200: 1. If this ratio is less than 2: 1, the above effect is difficult to obtain, and if it is greater than 200: 1, it is difficult to identify the target resonance mode. In addition, numerical calculation becomes difficult.

図11に示すリング共振器を用いて、誘電体薄膜の直流電界強度依存性を測定する方法として以下のような方法が挙げられる。
まず、内側導体32と外側導体33との間に直流電圧を印加しない場合の共振モード(20m個存在する電界強度の極大点の一部または全部が、リング状間隙における幅の狭い部位に位置する)の共振周波数と無負荷Qの測定値から比誘電率や誘電正接等の誘電特性を計算しておく。次に、内側導体32と外側導体33との間に直流電圧を印加した場合の上記共振モードの共振周波数と無負荷Qを測定し、幅の狭い部位に位置する誘電体薄膜の比誘電率や誘電正接等のみが変化すると仮定して、これらの誘電特性を計算する。このとき、幅の広い部位に位置する誘電体薄膜の比誘電率や誘電正接等は、直流電圧を印加しない場合の計算結果と等しいものとする。この直流電圧を適宜変化させた場合の各共振モードの共振周波数と無負荷Qの変化を測定することによって、目的の周波数における誘電体薄膜の比誘電率や誘電正接等の直流電界強度依存性が計算できる。具体的には、幅の狭い部位に位置する誘電体薄膜に発生する実効的な直流電界強度Eeffを直流電圧Vと幅の狭い部位の内側導体32と外側導体33との間隔Lとから下記の(式1)によって決定することによって、目的の周波数における誘電体薄膜の比誘電率や誘電正接等の直流電界強度依存性が計算できる。

Figure 2006311491
As a method of measuring the dependency of the dielectric thin film on the DC electric field strength using the ring resonator shown in FIG.
First, a resonance mode in the case where a DC voltage is not applied between the inner conductor 32 and the outer conductor 33 (a part or all of the maximum points of the electric field strength existing in 20 m are located in a narrow part in the ring-shaped gap. ) And the dielectric characteristics such as dielectric constant and dielectric loss tangent are calculated in advance from the measured values of the resonance frequency and no-load Q. Next, the resonance frequency and no-load Q in the resonance mode when a DC voltage is applied between the inner conductor 32 and the outer conductor 33 are measured, and the relative dielectric constant of the dielectric thin film located in the narrow portion is calculated. These dielectric characteristics are calculated on the assumption that only the dielectric loss tangent or the like changes. At this time, the relative dielectric constant, dielectric loss tangent, and the like of the dielectric thin film located in the wide portion are assumed to be equal to the calculation result when no DC voltage is applied. By measuring changes in the resonance frequency and no-load Q in each resonance mode when this DC voltage is changed as appropriate, the dependence of the dielectric thin film on the target frequency, such as relative permittivity and dielectric loss tangent, at the target frequency can be determined. Can be calculated. Specifically, the effective DC electric field intensity E eff generated in the dielectric thin film located in the narrow portion is determined from the DC voltage V and the distance L between the inner conductor 32 and the outer conductor 33 in the narrow portion as follows. By determining (Equation 1), the direct current electric field strength dependency such as the relative dielectric constant and dielectric loss tangent of the dielectric thin film at the target frequency can be calculated.
Figure 2006311491

但し、上記方法は、幅の広い部位の内側導体32と外側導体33との間隔が幅の狭い部位の内側導体32と外側導体33との間隔よりも十分に大きく、かつその幅の狭い部位の内側導体32と外側導体33との間隔が内側導体32および外側導体33の厚みに対して十分に大きい場合には有効であるが、それ以外の場合には、幅の狭い部位に位置する誘電体薄膜の比誘電率や誘電正接等のみが変化すると仮定できなくなるか、幅の狭い部位に位置する誘電体薄膜に発生する実効的な直流電界強度Eeffを(式1)によって決定することができなくなるため、有効でない。 However, in the above method, the distance between the inner conductor 32 and the outer conductor 33 in the wide part is sufficiently larger than the distance between the inner conductor 32 and the outer conductor 33 in the narrow part, and the narrow part in the narrow part. It is effective when the distance between the inner conductor 32 and the outer conductor 33 is sufficiently large with respect to the thickness of the inner conductor 32 and the outer conductor 33. In other cases, the dielectric is located in a narrow portion. It is impossible to assume that only the relative dielectric constant or dielectric loss tangent of the thin film changes, or the effective DC electric field strength E eff generated in the dielectric thin film located in a narrow portion can be determined by (Equation 1). Because it disappears, it is not effective.

そこで、理想的には、内側導体32と外側導体33との間に直流電圧を印加したときの直流電界強度(E)分布と上記共振モードの共振周波数における電界強度(E)分布とを計算することによって誘電体薄膜の比誘電率や誘電正接等の直流電界強度依存性を計算する。具体的には、誘電体薄膜の各微小領域iにおける比誘電率の変化量Δε’による共振周波数の変化量Δf0,iと、誘電正接の変化量Δtanδによる無負荷Qの変化量ΔQu,iとが、下記の(式2)で表される上記共振モードの共振周波数における誘電体薄膜の各微小領域iの(誘電体薄膜全体に対する)電界エネルギー比率Pe,iの大きさに比例して大きくなることを利用し、誘電体薄膜に発生する実効的な直流電界強度Eeffを、直流電圧を印加したときの直流電界強度E1,iの上記Pe,iによる重み平均から下記の(式3)のように決定することができる。

Figure 2006311491
Therefore, ideally, a DC electric field intensity (E 1 ) distribution when a DC voltage is applied between the inner conductor 32 and the outer conductor 33 and an electric field intensity (E 2 ) distribution at the resonance frequency of the resonance mode are obtained. By calculating, the dependence of the dielectric thin film on the DC electric field strength such as the relative permittivity and the dielectric loss tangent is calculated. Specifically, a variation Delta] f 0, i of the resonance frequency due to variation [Delta] [epsilon] 'i of the dielectric constant at each micro area i of the dielectric thin film, the amount of change ΔQ of the unloaded Q by variation Derutatieienuderuta i of dielectric loss tangent u, i is the magnitude of the electric field energy ratio Pe, i in each minute region i of the dielectric thin film at the resonance frequency of the resonance mode expressed by the following (Equation 2). Using the proportional increase, the effective DC electric field intensity E eff generated in the dielectric thin film is calculated from the weighted average of the DC electric field intensity E 1, i when the DC voltage is applied by the above P e, i. It can be determined as in (Equation 3) below.
Figure 2006311491

Figure 2006311491
Figure 2006311491

これによって、幅の広い部位の内側導体32と外側導体33との間隔、幅の狭い部位の内側導体32と外側導体33との間隔、内側導体32および外側導体33の厚み等に関わらず、より正確に誘電体薄膜の比誘電率や誘電正接等の直流電圧依存性を計算できる。   Accordingly, regardless of the distance between the inner conductor 32 and the outer conductor 33 in the wide portion, the distance between the inner conductor 32 and the outer conductor 33 in the narrow portion, the thickness of the inner conductor 32 and the outer conductor 33, and the like. It is possible to accurately calculate the DC voltage dependency such as the dielectric constant and dielectric loss tangent of the dielectric thin film.

また、図1、図5、図6に示す軸対称形状のリング共振器を用いて、誘電体薄膜の直流電界強度依存性を測定する場合には、内側導体32と外側導体33との間に直流電圧を印加したときの直流電界強度(E)は周方向に対して一様とみなせ、且つ上記共振モードの共振周波数における電界強度(E)の径方向に対する分布はEの径方向に対する分布で近似できるため、Eの分布を計算する必要はなく、Eの分布を計算するだけでよい。このとき、誘電体薄膜に発生する実効的な直流電界強度Eeffは(式2)によって決定することができる。

Figure 2006311491
When measuring the DC electric field strength dependence of a dielectric thin film using the axially symmetric ring resonator shown in FIGS. 1, 5, and 6, the gap between the inner conductor 32 and the outer conductor 33 is measured. The DC electric field intensity (E 1 ) when a DC voltage is applied can be considered uniform in the circumferential direction, and the distribution of the electric field intensity (E 2 ) at the resonance frequency of the resonance mode with respect to the radial direction is the radial direction of E 1 . Therefore, it is not necessary to calculate the distribution of E 2 , and it is only necessary to calculate the distribution of E 1 . At this time, the effective DC electric field intensity E eff generated in the dielectric thin film can be determined by (Equation 2).
Figure 2006311491

誘電体薄膜における比誘電率や誘電正接等の直流電界強度依存性がわかる上記の方法によれば、例えば可変容量素子(チューナブルキャパシタ)に誘電体薄膜を適用する際に効果を発揮することができる。   According to the above-described method in which the dependence of the dielectric thin film on the direct current electric field strength such as the relative permittivity and the dielectric loss tangent is known, the effect can be exerted when the dielectric thin film is applied to, for example, a variable capacitor (tunable capacitor). it can.

以上、本発明の実施の形態を説明したが、本発明の実施は、前記の形態に限定されるものではなく、本発明の範囲内で種々の変更を施すことが可能である。   Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.

図1に示す本発明のリング共振器モデル(誘電体支持基板の厚みa1=0.3mm、誘電体薄膜の厚みb1=0.001mm、導体膜の厚みc1=0.001mm、リング径d1=20mm、リング状間隙の幅w1=0.05mm)を作製し、軸対称の有限要素法による数値解析を行った。このとき、誘電体支持基板の誘電定数はサファイアを想定し、比誘電率ε’=11.54、Qf=10GHzとした。また、導体膜の導電率はPtを想定し、導電率σ=9.434×10S/mとした。 The ring resonator model of the present invention shown in FIG. 1 (dielectric support substrate thickness a1 = 0.3 mm, dielectric thin film thickness b1 = 0.001 mm, conductor film thickness c1 = 0.001 mm, ring diameter d1 = 20 mm , The width w1 of the ring-shaped gap was 0.05 mm), and numerical analysis was performed by the axially symmetric finite element method. At this time, the dielectric constant of the dielectric support substrate was assumed to be sapphire, and the relative permittivity ε ′ = 11.54 and Qf = 10 6 GHz. Moreover, the electrical conductivity of the conductor film was assumed to be Pt, and the electrical conductivity was σ = 9.434 × 10 6 S / m.

まず、誘電体薄膜の誘電定数を比誘電率ε’=500、誘電正接tanδ=0.05としたときの共振周波数fとQ値(導体のQ:Q、誘電体支持基板のQ:Qd,sub、誘電体薄膜のQ:Qd,film、無負荷Q:Q)の計算を行った。 First, when the dielectric constant of the dielectric thin film is the relative dielectric constant ε ′ = 500 and the dielectric loss tangent tan δ = 0.05, the resonance frequency f 0 and the Q value (conductor Q: Q c , dielectric support substrate Q: Q d, sub , dielectric thin film Q: Q d, film , unloaded Q: Q u ) were calculated.

図12に、モード次数nに対する共振周波数fの計算結果を示す。モード次数nと共振周波数fとがほぼ比例関係になっていることがわかる。これは、高次モードを用いることによって、より高い周波数での測定が可能であることを示している。 FIG. 12 shows the calculation result of the resonance frequency f 0 with respect to the mode order n. It can be seen that the mode order n and the resonance frequency f 0 are in a substantially proportional relationship. This indicates that measurement at a higher frequency is possible by using a higher-order mode.

図13に、モード次数nに対するQ値の計算結果を示す。モード次数が高くなるにつれて、Qが高くなっていることがわかる。これは、高次モードを用いることによって、導体膜に磁界(電流)が集中しなくなることを示している。また、モード次数が高くなるにつれて、Qd,subが低くなっていることがわかる。誘電体支持基板への電界エネルギーの集中率と誘電体薄膜への電界エネルギーの集中率はモード次数によってほとんど変化しないため、この変化は、高周波化に伴うサファイアの高tanδ化に起因するものであるといえる。 FIG. 13 shows the calculation result of the Q value for the mode order n. As the mode order increases, it can be seen that Q c is high. This indicates that the magnetic field (current) is not concentrated on the conductor film by using the higher-order mode. Further, it can be seen that Qd, sub decreases as the mode order increases. Since the concentration ratio of the electric field energy on the dielectric support substrate and the concentration ratio of the electric field energy on the dielectric thin film hardly change depending on the mode order, this change is caused by the increase in tan δ of sapphire accompanying the increase in frequency. It can be said.

次に、モード次数nをn=10としたときの共振周波数fとQ値(導体のQ:Q、誘電体支持基板のQ:Qd,sub、誘電体薄膜のQ:Qd,film、無負荷Q:Q)の計算を行った。 Next, when the mode order n is n = 10, the resonance frequency f 0 and the Q value (the conductor Q: Q c , the dielectric support substrate Q: Q d, sub , the dielectric thin film Q: Q d, film , no load Q: Q u ).

図14に、誘電体薄膜の比誘電率ε’に対する共振周波数fの計算結果を示す。ε’の変化に対するfの変化は十分大きな傾きを持っていることがわかる。実際の測定を想定した場合、fの測定誤差は通常±1MHz程度であることから、fの測定値より、図14のチャートを用いることで、ε’を高精度に決定できることがわかる。 FIG. 14 shows the calculation result of the resonance frequency f 0 with respect to the relative dielectric constant ε ′ of the dielectric thin film. It can be seen that the change in f 0 with respect to the change in ε ′ has a sufficiently large slope. Assuming actual measurement, since the measurement error of f 0 is usually about ± 1 MHz, it can be seen from the measured value of f 0 that ε ′ can be determined with high accuracy by using the chart of FIG.

図15に、誘電体薄膜の誘電正接tanδに対するQ値の計算結果を示す。tanδの変化に対するQの変化は十分大きな傾きを持っていることがわかる。実際の測定を想定した場合、Qの測定誤差は通常±5%程度であることから、Qの測定値より、図15のチャートを用いることで、tanδを高精度に決定できることがわかる。 FIG. 15 shows the calculation result of the Q value with respect to the dielectric loss tangent tan δ of the dielectric thin film. change of Q u for tanδ change of it can be seen that have a sufficiently large slope. Assuming the actual measurement, since a measurement error of Q u is usually about ± 5%, than the measured value of Q u, by using the chart of FIG. 15, it can be seen that determining the tanδ at high accuracy.

図5に示す本発明のリング共振器モデル(誘電体支持基板の厚みa2=0.3mm、誘電体薄膜の厚みb2=0.001mm、導体膜の厚みc2=0.001mm、リング径d2=20mm、リング状間隙の幅w2=0.05mm)を作製し、軸対称の有限要素法による数値解析を行った。このとき、誘電体支持基板の誘電定数はサファイアを想定し、比誘電率ε’=11.54、Qf=10GHzとした。また、導体膜の導電率はPtを想定し、導電率σ=9.434×10S/mとした。 The ring resonator model of the present invention shown in FIG. 5 (dielectric support substrate thickness a2 = 0.3 mm, dielectric thin film thickness b2 = 0.001 mm, conductor film thickness c2 = 0.001 mm, ring diameter d2 = 20 mm , The width w2 of the ring-shaped gap was 0.05 mm), and numerical analysis was performed by the axially symmetric finite element method. At this time, the dielectric constant of the dielectric support substrate was assumed to be sapphire, and the relative permittivity ε ′ = 11.54 and Qf = 10 6 GHz. Moreover, the electrical conductivity of the conductor film was assumed to be Pt, and the electrical conductivity was σ = 9.434 × 10 6 S / m.

モード次数nをn=10としたときの共振周波数fとQ値(導体のQ:Q、誘電体支持基板のQ:Qd,sub、誘電体薄膜のQ:Qd,film、無負荷Q:Q)の計算を行った。 Resonant frequency f 0 and Q value when mode order n is n = 10 (conductor Q: Q c , dielectric support substrate Q: Q d, sub , dielectric thin film Q: Q d, film , none The load Q: Q u ) was calculated.

図16に、誘電体薄膜の比誘電率ε’に対する共振周波数fの計算結果を示す。ε’の変化に対するfの変化は十分大きな傾きを持っていることがわかる。実際の測定を想定した場合、fの測定誤差は通常±1MHz程度であることから、fの測定値より、図16のチャートを用いることで、ε’を高精度に決定できることがわかる。 FIG. 16 shows the calculation result of the resonance frequency f 0 with respect to the relative dielectric constant ε ′ of the dielectric thin film. It can be seen that the change in f 0 with respect to the change in ε ′ has a sufficiently large slope. Assuming actual measurement, the measurement error of f 0 is normally about ± 1 MHz, so it can be seen from the measurement value of f 0 that ε ′ can be determined with high accuracy by using the chart of FIG.

図17に、誘電体薄膜の誘電正接tanδに対するQ値の計算結果を示す。tanδの変化に対するQの変化は十分大きな傾きを持っていることがわかる。実際の測定を想定した場合、Qの測定誤差は通常±5%程度であることから、Qの測定値より、図17のチャートを用いることで、tanδを高精度に決定できることがわかる。 FIG. 17 shows the calculation result of the Q value with respect to the dielectric loss tangent tan δ of the dielectric thin film. change of Q u for tanδ change of it can be seen that have a sufficiently large slope. Assuming the actual measurement, since a measurement error of Q u is usually about ± 5%, than the measured value of Q u, by using the chart of FIG. 17, it can be seen that determining the tanδ at high accuracy.

図6に示す本発明のリング共振器モデル(誘電体支持基板の厚みa3=0.3mm、誘電体薄膜の厚みb3=0.001mm、導体膜の厚みc3=0.001mm、リング径d4=20mm、リング状間隙の幅w3=0.05mm)を作製し、軸対称の有限要素法による数値解析を行った。このとき、誘電体支持基板の誘電定数はサファイアを想定し、比誘電率ε’=11.54、Qf=10GHzとした。また、導体膜の導電率はPtを想定し、導電率σ=9.434×10S/mとした。 The ring resonator model of the present invention shown in FIG. 6 (dielectric support substrate thickness a3 = 0.3 mm, dielectric thin film thickness b3 = 0.001 mm, conductor film thickness c3 = 0.001 mm, ring diameter d4 = 20 mm , A ring-shaped gap width w3 = 0.05 mm) was prepared, and numerical analysis was performed by an axially symmetric finite element method. At this time, the dielectric constant of the dielectric support substrate was assumed to be sapphire, and the relative permittivity ε ′ = 11.54 and Qf = 10 6 GHz. Moreover, the electrical conductivity of the conductor film was assumed to be Pt, and the electrical conductivity was σ = 9.434 × 10 6 S / m.

モード次数nをn=10としたときの共振周波数fとQ値(導体のQ:Q、誘電体支持基板のQ:Qd,sub、誘電体薄膜のQ:Qd,film、無負荷Q:Q)の計算を行った。 Resonant frequency f 0 and Q value when mode order n is n = 10 (conductor Q: Q c , dielectric support substrate Q: Q d, sub , dielectric thin film Q: Q d, film , none The load Q: Q u ) was calculated.

図18に、誘電体薄膜の比誘電率ε’に対する共振周波数fの計算結果を示す。ε’の変化に対するfの変化は十分大きな傾きを持っていることがわかる。実際の測定を想定した場合、fの測定誤差は通常±1MHz程度であることから、fの測定値より、図18のチャートを用いることで、ε’を高精度に決定できることがわかる。 FIG. 18 shows a calculation result of the resonance frequency f 0 with respect to the relative dielectric constant ε ′ of the dielectric thin film. It can be seen that the change in f 0 with respect to the change in ε ′ has a sufficiently large slope. Assuming actual measurement, since the measurement error of f 0 is usually about ± 1 MHz, it can be seen from the measured value of f 0 that ε ′ can be determined with high accuracy by using the chart of FIG.

図19に、誘電体薄膜の誘電正接tanδに対するQ値の計算結果を示す。tanδの変化に対するQの変化は十分大きな傾きを持っていることがわかる。実際の測定を想定した場合、Qの測定誤差は通常±5%程度であることから、Qの測定値より、図19のチャートを用いることで、tanδを高精度に決定できることがわかる。 FIG. 19 shows the calculation result of the Q value with respect to the dielectric loss tangent tan δ of the dielectric thin film. change of Q u for tanδ change of it can be seen that have a sufficiently large slope. Assuming the actual measurement, since a measurement error of Q u is usually about ± 5%, than the measured value of Q u, by using the chart of FIG. 19, it can be seen that determining the tanδ at high accuracy.

図1に示す本発明のリング共振器モデル(誘電体支持基板の厚みa1=0.3mm、誘電体薄膜の厚みb1=0.001mm、導体膜の厚みc1=0.001mm、リング径d1=20mm、リング状間隙の幅w1=0.5mm)を作製し、軸対称の有限要素法による数値解析を行った。リング状間隙の幅を変更したこと以外は<実施例1>と全く同様の計算である。   The ring resonator model of the present invention shown in FIG. 1 (dielectric support substrate thickness a1 = 0.3 mm, dielectric thin film thickness b1 = 0.001 mm, conductor film thickness c1 = 0.001 mm, ring diameter d1 = 20 mm The width of the ring-shaped gap w1 = 0.5 mm) was prepared, and numerical analysis was performed by an axially symmetric finite element method. Except that the width of the ring-shaped gap is changed, the calculation is exactly the same as in <Example 1>.

図20に、誘電体薄膜の誘電定数を比誘電率ε’=500、誘電正接tanδ=0.05としたときのモード次数nに対する共振周波数fの計算結果を示す。リング状間隙の幅w1を大きくしたことによって、fが高くなっていることがわかる。これは、誘電体薄膜に電界エネルギーが集中しなくなったことに起因するものであるといえる。 FIG. 20 shows the calculation result of the resonance frequency f 0 with respect to the mode order n when the dielectric constant of the dielectric thin film is set to the relative dielectric constant ε ′ = 500 and the dielectric loss tangent tan δ = 0.05. By having an increased width w1 of the ring-shaped gap, it can be seen that f 0 is higher. This can be attributed to the fact that the electric field energy is no longer concentrated on the dielectric thin film.

図21に、このときのモード次数nに対するQ値の計算結果を示す。リング状間隙の幅w1を大きくしたことによって、Qが高くなっていることがわかる。これは、導体膜に磁界(電流)が集中しなくなることを示している。また、w1を大きくしたことによって、Qd,subが低くなっていることがわかる。これは、誘電体薄膜に電界エネルギーが集中しなくなったことに伴って、誘電体支持基板に電界エネルギーが集中するようになったことに起因するものであるといえる。 FIG. 21 shows the calculation result of the Q value for the mode order n at this time. By having an increased width w1 of the ring-shaped gap, it can be seen that Q c is high. This indicates that the magnetic field (current) is not concentrated on the conductor film. It can also be seen that Q d, sub is lowered by increasing w1. This can be attributed to the fact that the electric field energy is concentrated on the dielectric supporting substrate as the electric field energy is not concentrated on the dielectric thin film.

次に、モード次数nをn=10としたときの共振周波数fとQ値(導体のQ:Q、誘電体支持基板のQ:Qd,sub、誘電体薄膜のQ:Qd,film、無負荷Q:Q)の計算を行った。 Next, when the mode order n is n = 10, the resonance frequency f 0 and the Q value (the conductor Q: Q c , the dielectric support substrate Q: Q d, sub , the dielectric thin film Q: Q d, film , no load Q: Q u ).

図22に、モード次数nをn=10としたときの誘電体薄膜の比誘電率ε’に対する共振周波数fの計算結果を示す。<実施例1>程ではないもののε’の変化に対するfの変化は十分大きな傾きを持っていることがわかる。実際の測定を想定した場合、fの測定誤差は通常±1MHz程度であることから、fの測定値より、図22のチャートを用いることで、ε’を高精度に決定できることがわかる。 FIG. 22 shows the calculation result of the resonance frequency f 0 with respect to the relative dielectric constant ε ′ of the dielectric thin film when the mode order n is n = 10. <Embodiment 1> It can be seen that the change in f 0 with respect to the change in ε ′ has a sufficiently large slope, though not so much. Assuming actual measurement, since the measurement error of f 0 is usually about ± 1 MHz, it can be seen from the measured value of f 0 that ε ′ can be determined with high accuracy by using the chart of FIG.

図23に、誘電体薄膜の誘電正接tanδに対するQ値の計算結果を示す。<実施例1>に対して、誘電体薄膜に電界エネルギーが集中しなくなったことによってQd,filmは高くなっているが、それ以上にQが高くなったために、Qの変化は<実施例1>のときよりも十分大きな傾きを持っていることがわかる。実際の測定を想定した場合、Qの測定誤差は通常±5%程度であることから、Qの測定値より、図23のチャートを用いることで、tanδを高精度に決定できることがわかる。特に直流電界強度依存性を測定する必要のない場合には、リング状間隙の幅w1は<実施例1>よりも適当な大きさになっていると考えられる。 FIG. 23 shows the calculation result of the Q value with respect to the dielectric loss tangent tan δ of the dielectric thin film. Compared to <Example 1>, Q d and film are high because electric field energy is not concentrated on the dielectric thin film . However, since Q c is higher than that, the change of Q u is < It can be seen that the slope is sufficiently larger than in the case of Example 1>. Assuming the actual measurement, since a measurement error of Q u is usually about ± 5%, than the measured value of Q u, by using the chart of FIG. 23, it can be seen that determining the tanδ at high accuracy. In particular, when it is not necessary to measure the DC electric field strength dependency, it is considered that the width w1 of the ring-shaped gap is more appropriate than that of <Example 1>.

図21に示す本発明のリング共振器モデル(誘電体支持基板の厚みa4=0.3mm、誘電体薄膜の厚みb4=0.001mm、導体膜の厚みc4=0.001mm、リング径d4=10mm、広い方のリング状間隙の幅w4=0.1mm、狭い方のリング状間隙の幅w5=0.01mm、広い方のリング状間隙の角度=12°、狭い方のリング状間隙の角度=6°)を想定し、図22に示す計算モデルを作製した。この計算モデルでは、対称性を考慮し、図21における太枠部だけを切り出している(誘電体支持基板の径方向の幅e=0.5mm、導体膜の径方向の幅f=0.2mm、誘電体支持基板の厚みg=0.2mm、上部空気層の厚みh=0.2mm)。切り出した際に付与すべき境界条件については、周方向の両端面を電気壁(10次の共振モードで20個存在する電界極大点の全てがリング状間隙の幅の狭い方の内側導体3と外側導体4との間に位置し、20個存在する磁界極大点の全てがリング状間隙の幅の広い方の内側導体3と外側導体4との間に位置する)とし、それ以外の側面を磁気壁とした。この計算モデルを用いて、3次元の有限要素法(市販ソフト:HFSS)による数値解析を行った。このとき、誘電体支持基板の比誘電率はサファイアを想定し、c軸に垂直な方向(リング状間隙の存在する平面に垂直な方向)の比誘電率をε=9.4、c軸に並行な方向(リング状間隙の存在する平面に並行な方向)の比誘電率をε//=11.54とした。なお、誘電体支持基板の誘電正接は誘電体薄膜の誘電正接に比べて非常に小さいために、tanδ=0として無視した。また、導体膜の導電率はPtを想定し、導電率σ=9.434×10S/mとした。 The ring resonator model of the present invention shown in FIG. 21 (dielectric support substrate thickness a4 = 0.3 mm, dielectric thin film thickness b4 = 0.001 mm, conductor film thickness c4 = 0.001 mm, ring diameter d4 = 10 mm Width of wide ring-shaped gap w4 = 0.1 mm, width of narrow ring-shaped gap w5 = 0.01 mm, angle of wide ring-shaped gap = 12 °, angle of narrow ring-shaped gap = 6) and a calculation model shown in FIG. 22 was produced. In this calculation model, in consideration of symmetry, only the thick frame portion in FIG. 21 is cut out (the radial width e of the dielectric support substrate is 0.5 mm, and the radial width f of the conductor film is 0.2 mm). , Dielectric support substrate thickness g = 0.2 mm, upper air layer thickness h = 0.2 mm). As for boundary conditions to be given when cutting, both end faces in the circumferential direction are made of electric walls (all of the 20 electric field maximum points existing in the 10th-order resonance mode are connected to the inner conductor 3 with the narrower width of the ring-shaped gap). All of the 20 magnetic field maximum points that are located between the outer conductor 4 and the outer conductor 4 are located between the wider inner conductor 3 and the outer conductor 4 of the ring-shaped gap. A magnetic wall was used. Using this calculation model, numerical analysis was performed by a three-dimensional finite element method (commercial software: HFSS). At this time, the relative permittivity of the dielectric support substrate is assumed to be sapphire, and the relative permittivity in the direction perpendicular to the c-axis (direction perpendicular to the plane where the ring-shaped gap exists) is ε = 9.4, c-axis The relative dielectric constant in the direction parallel to (direction parallel to the plane in which the ring-shaped gap exists) was set to ε // = 11.54. Since the dielectric loss tangent of the dielectric support substrate is much smaller than the dielectric loss tangent of the dielectric thin film, it was ignored as tan δ = 0. Moreover, the electrical conductivity of the conductor film was assumed to be Pt, and the electrical conductivity was σ = 9.434 × 10 6 S / m.

まず、誘電体薄膜の誘電定数を比誘電率ε’=500、誘電正接tanδ=0.05としたときのモード次数n=10の共振周波数fとQ値(導体のQ:Q、誘電体薄膜のQ:Qd,film、無負荷Q:Q)の計算を行った。 First, when the dielectric constant of the dielectric thin film is the relative dielectric constant ε ′ = 500 and the dielectric loss tangent tan δ = 0.05, the resonance frequency f 0 and the Q value of the mode order n = 10 (Q of the conductor: Q c , dielectric The body thin film Q: Qd, film , no load Q: Qu ) was calculated.

計算の結果、f=16.600GHz、Q=60.6、Qd,film=27.1、Q=18.7となった。図23と図24に、この共振モードの電界分布と磁界分布をそれぞれ示す。電界極大点がリング状間隙の幅の狭い方の内側導体と外側導体との間に位置しており、磁界極大点がリング状間隙の幅の広い方の内側導体と外側導体との間に位置していることがわかる。 As a result of calculation, f 0 = 16.600 GHz, Q c = 60.6, Q d, film = 27.1, and Q u = 18.7. FIG. 23 and FIG. 24 show the electric field distribution and magnetic field distribution of this resonance mode, respectively. The field maximum point is located between the inner conductor and the outer conductor having the smaller width of the ring gap, and the field maximum point is located between the inner conductor and the outer conductor having the larger width of the ring gap. You can see that

なお、上記モデルと同様の計算を行った結果、広い方のリング状間隙の幅w4=0.1mmのみが存在する場合、f=31.492GHz、Q=89.0、Qd,film=49.9、Q=32.0、狭い方のリング状間隙の幅w5=0.01mmのみが存在する場合、f=19.701GHz、Q=21.6、Qd,film=25.6、Q=11.7、周方向の両端面を磁気壁(10次の共振モードで20個存在する電界極大点の全てがリング状間隙の幅の広い方の内側導体3と外側導体4との間に位置し、20個存在する磁界極大点の全てがリング状間隙の幅の狭い方の内側導体3と外側導体4との間に位置する)とした場合、f=34.325GHz、Q=42.0、Qd,film=42.8、Q=21.2となった。このように、図22に示す計算モデルは、広い方のリング状間隙の幅のみが存在する場合と同様に導体損が小さく(Qが高く)、狭い方のリング状間隙の幅のみが存在する場合と同様に誘電体薄膜に電界エネルギーが集中する(Qd,filmが低い)。 As a result of performing the same calculation as in the above model, when only the wide ring gap width w4 = 0.1 mm exists, f 0 = 31.492 GHz, Q c = 89.0, Q d, film = 49.9, Q u = 32.0, if only narrow ring gap width w5 = 0.01 mm exists, f 0 = 19.701 GHz, Q c = 21.6, Q d, film = 25.6, Q u = 11.7, both end surfaces in the circumferential direction are magnetic walls (all of the 20 electric field maximum points existing in the 10th-order resonance mode are the inner conductor 3 and the outer side of the wider ring-shaped gap) When all of the 20 magnetic field maximum points existing between the conductor 4 and the conductor 4 are located between the inner conductor 3 and the outer conductor 4 having a smaller width of the ring-shaped gap, f 0 = 34 .325 GHz, Q c = 42.0, Q d, film = 42.8, Q u = 21.2. Thus, the calculation model shown in FIG. 22, wider if only the width of the ring-shaped gap exists as well as the conductor loss is small (high Q c is), only the width of the narrower of the ring-shaped gap exists In the same manner as described above, electric field energy is concentrated on the dielectric thin film ( Qd and film are low).

次に、モード次数n=20の共振周波数fと誘電体薄膜のQ:Qd,filmの計算を行った。 Next, the resonance frequency f 0 of mode order n = 20 and Q: Q d, film of the dielectric thin film were calculated.

計算の結果、f=47.463GHz、Qd,film=49.7となった。なお、上記モードは、周方向の両端面を磁気壁(20次の共振モードで40個存在する電界極大点の半分がリング状間隙の幅の狭い方の内側導体3と外側導体4との間に位置し、40個存在する磁界極大点の全部がリング状間隙の幅の広い方の内側導体3と外側導体4との間に位置する)とした場合の共振モードである。 As a result of calculation, f 0 = 47.463 GHz, Q d, film = 49.7. In the above mode, both end faces in the circumferential direction are provided between the inner conductor 3 and the outer conductor 4 with the magnetic walls (half of the electric field maximum points existing in the 20th-order resonance mode being narrower in the ring-shaped gap). And all of the 40 magnetic field maximal points are located between the inner conductor 3 and the outer conductor 4 having the larger width of the ring-shaped gap).

次に、内側導体3と外側導体4とに直流電圧を印加した場合を想定し、リング状間隙の幅の狭い方の内側導体3と外側導体4との間の誘電体薄膜の比誘電率のみがε’=500からε’=50まで変化したときの(リング状間隙の幅の狭い方の内側導体3と外側導体4との間の電界強度が高くなる)モード次数n=10の共振周波数fの計算を行った。 Next, assuming a case where a DC voltage is applied to the inner conductor 3 and the outer conductor 4, only the relative dielectric constant of the dielectric thin film between the inner conductor 3 and the outer conductor 4 with the narrower ring-shaped gap is selected. Is a resonance frequency of mode order n = 10 when ε ′ = 500 is changed from ε ′ = 500 to ε ′ = 50 (the electric field strength between the inner conductor 3 and the outer conductor 4 with the narrower width of the ring gap increases) the calculation was performed of f 0.

図25に、リング状間隙の幅の狭い方の内側導体と外側導体との間の誘電体薄膜の比誘電率ε’に対する共振周波数fの計算結果を示す。ε’の変化に対するfの変化は十分大きな傾きを持っていることがわかる。実際の測定を想定した場合、fの測定誤差は通常±1MHz程度であることから、fの測定値より、図25のチャートを用いることで、ε’を高精度に決定できることがわかる。 FIG. 25 shows a calculation result of the resonance frequency f 0 with respect to the relative dielectric constant ε ′ of the dielectric thin film between the inner conductor and the outer conductor having the narrower ring-shaped gap. It can be seen that the change in f 0 with respect to the change in ε ′ has a sufficiently large slope. Assuming actual measurement, the measurement error of f 0 is usually about ± 1 MHz, and it can be seen from the measurement value of f 0 that ε ′ can be determined with high accuracy by using the chart of FIG.

図1に示す本発明のリング共振器モデル(誘電体支持基板の厚みa1=0.3mm、誘電体薄膜の厚みb1=0.001mm、導体膜の厚みc1=0.001mm、リング径d1=任意、リング状間隙の幅w1=0.1mm)における誘電体薄膜の比誘電率や誘電正接等の直流電界強度依存性の計算を想定し、2次元の有限要素法による数値解析を行った。このとき得られた誘電体薄膜の各微小領域iにおける直流電界強度Eの結果を用いて、(式2)により誘電体薄膜に発生する実効的な直流電界強度Eeffを計算した。このとき、誘電体薄膜を比誘電率ε’=500、誘電体支持基板の誘電定数はサファイアを想定し、比誘電率ε’=9.4とした。また、内側導体と外側導体との間に印加した直流電圧を100Vとした。 The ring resonator model of the present invention shown in FIG. 1 (dielectric support substrate thickness a1 = 0.3 mm, dielectric thin film thickness b1 = 0.001 mm, conductor film thickness c1 = 0.001 mm, ring diameter d1 = arbitrary Assuming calculation of DC electric field strength dependency such as relative permittivity and dielectric loss tangent of the dielectric thin film in the width w1 of the ring-shaped gap (0.1 mm), numerical analysis was performed by a two-dimensional finite element method. Using the results of the DC electric field strength E i in each minute area i of the dielectric thin film obtained at this time was calculated effective DC electric field strength E eff generated in the dielectric thin film (Formula 2). At this time, it was assumed that the dielectric thin film had a relative dielectric constant ε ′ = 500 and the dielectric constant of the dielectric support substrate was sapphire, and the relative dielectric constant ε ′ = 9.4. The DC voltage applied between the inner conductor and the outer conductor was 100V.

計算の結果、Eeff=1.03×10V/mとなった。これは一様な直流電界を考慮した場合の(式3)による結果(Eeff=1.00×10V/m)と近似する。すなわち、リング状間隙の幅w1が0.1mmのときは、(式2)による結果と(式3)による結果が近似する。 As a result of the calculation, E eff = 1.03 × 10 6 V / m. This approximates the result (E eff = 1.00 × 10 6 V / m) according to (Equation 3) when a uniform DC electric field is considered. That is, when the width w1 of the ring-shaped gap is 0.1 mm, the result by (Expression 2) and the result by (Expression 3) are approximated.

次に、リング状間隙の幅w1をw1=0.1mmからw1=0.0015mmに変更した場合の誘電体薄膜に発生する実効的な直流電界強度Eeffを計算した。 Next, the effective DC electric field strength E eff generated in the dielectric thin film when the width w1 of the ring-shaped gap was changed from w1 = 0.1 mm to w1 = 0.015 mm was calculated.

計算の結果、Eeff=6.20×10V/mとなった。これは一様な直流電界を考慮した場合の(式3)による結果(Eeff=6.67×10V/m)に対して小さい値である。すなわち、リング状間隙の幅w1が0.0015mmのときは、(式2)による結果と(式3)による結果が大きく異なる。 As a result of the calculation, E eff = 6.20 × 10 7 V / m. This is a small value with respect to the result (E eff = 6.67 × 10 7 V / m) based on (Equation 3) when a uniform DC electric field is considered. That is, when the width w1 of the ring-shaped gap is 0.0015 mm, the result by (Expression 2) and the result by (Expression 3) are greatly different.

したがって、(式2)を用いて計算するのがよいことがわかる。   Therefore, it is understood that it is preferable to calculate using (Equation 2).

本発明のリング共振器を説明するための平面図(上)と断面図(下)である。It is the top view (upper) and sectional drawing (lower) for demonstrating the ring resonator of this invention. 図1に示すリング共振器におけるリング状間隙断面部の電界分布を示す濃淡図である。FIG. 2 is a shading diagram showing an electric field distribution in a cross section of a ring-shaped gap in the ring resonator shown in FIG. 1. 図1に示すリング共振器におけるリング状間隙断面部の磁界分布を示す濃淡図である。FIG. 2 is a shading diagram showing a magnetic field distribution in a cross section of a ring-shaped gap in the ring resonator shown in FIG. 1. 本発明の誘電特性測定方法を説明するための平面図(上)と断面図(下)である。It is the top view (upper) and sectional drawing (lower) for demonstrating the dielectric property measuring method of this invention. 本発明のリング共振器の他の構造を説明するための平面図(上)と断面図(下)である。It is the top view (upper) and sectional drawing (lower) for demonstrating the other structure of the ring resonator of this invention. 本発明のリング共振器のさらに他の構造を説明するための平面図(上)と断面図(下)である。It is the top view (upper) and sectional drawing (lower) for demonstrating other structure of the ring resonator of this invention. 本発明のリング共振器のリング状間隙の形状と共振モード(n=1)を説明するための平面図である。It is a top view for demonstrating the shape of the ring-shaped gap | interval and resonance mode (n = 1) of the ring resonator of this invention. 本発明のリング共振器のリング状間隙の他の形状と共振モードを説明するための平面図であって、(a)は1次共振モード、(b)は2次共振モードを表している。It is a top view for demonstrating the other shape and resonance mode of the ring-shaped gap | interval of the ring resonator of this invention, (a) represents the primary resonance mode, (b) represents the secondary resonance mode. 本発明のリング共振器のリング状間隙のさらに他の形状と共振モードを説明するための平面図であって、(a)は1次共振モード、(b)は2次共振モードを表している。It is a top view for demonstrating other shape and resonance mode of the ring-shaped gap | interval of the ring resonator of this invention, (a) represents the primary resonance mode, (b) represents the secondary resonance mode. . 本発明のリング共振器のリング状間隙のまたさらに他の形状と共振モードを説明するための平面図であって、(a)はm×k=2次共振モード、(b)はm×k=4次共振モードを表している。It is a top view for demonstrating still another shape and resonance mode of the ring-shaped gap | interval of the ring resonator of this invention, (a) is m * k = secondary resonance mode, (b) is m * k. = Represents the fourth-order resonance mode. 本発明のリング共振器のまたさらに他の構造を説明するための平面図(上)と断面図(下)である。FIG. 6 is a plan view (upper) and a cross-sectional view (lower) for explaining still another structure of the ring resonator of the present invention. 図1のリング共振器モデルにおけるモード次数nに対する共振周波数fの計算結果を表すグラフである。6 is a graph showing a calculation result of a resonance frequency f 0 with respect to a mode order n in the ring resonator model of FIG. 1. 図1のリング共振器モデルにおけるモード次数nに対するQ値の計算結果を表すグラフである。6 is a graph showing a calculation result of a Q value with respect to a mode order n in the ring resonator model of FIG. 1. 図1のリング共振器モデルにおける誘電体薄膜の比誘電率ε’に対する共振周波数fの計算結果を表すグラフである。6 is a graph showing a calculation result of a resonance frequency f 0 with respect to a relative dielectric constant ε ′ of a dielectric thin film in the ring resonator model of FIG. 図1のリング共振器モデルにおける誘電体薄膜の誘電正接tanδに対するQ値の計算結果を表すグラフである。3 is a graph showing a calculation result of a Q value with respect to a dielectric loss tangent tan δ of a dielectric thin film in the ring resonator model of FIG. 1. 図5のリング共振器モデルにおける誘電体薄膜の比誘電率ε’に対する共振周波数fの計算結果を表すグラフである。6 is a graph showing a calculation result of a resonance frequency f 0 with respect to a relative dielectric constant ε ′ of a dielectric thin film in the ring resonator model of FIG. 5. 図5のリング共振器モデルにおける誘電体薄膜の誘電正接tanδに対するQ値の計算結果を表すグラフである。6 is a graph showing a calculation result of a Q value with respect to a dielectric loss tangent tan δ of a dielectric thin film in the ring resonator model of FIG. 5. 図6のリング共振器モデルにおける誘電体薄膜の比誘電率ε’に対する共振周波数fの計算結果を表すグラフである。FIG. 7 is a graph showing a calculation result of a resonance frequency f 0 with respect to a relative dielectric constant ε ′ of a dielectric thin film in the ring resonator model of FIG. 6. 図6のリング共振器モデルにおける誘電体薄膜の誘電正接tanδに対するQ値の計算結果を表すグラフである。It is a graph showing the calculation result of Q value with respect to the dielectric loss tangent tan-delta of the dielectric thin film in the ring resonator model of FIG. 図1のリング共振器モデルにおけるモード次数nに対する共振周波数fの計算結果を表すグラフである。6 is a graph showing a calculation result of a resonance frequency f 0 with respect to a mode order n in the ring resonator model of FIG. 1. 図1のリング共振器モデルにおけるモード次数nに対するQ値の計算結果を表すグラフである。6 is a graph showing a calculation result of a Q value with respect to a mode order n in the ring resonator model of FIG. 1. 図1のリング共振器モデルにおける誘電体薄膜の比誘電率ε’に対する共振周波数fの計算結果を表すグラフである。6 is a graph showing a calculation result of a resonance frequency f 0 with respect to a relative dielectric constant ε ′ of a dielectric thin film in the ring resonator model of FIG. 図1のリング共振器モデルにおける誘電体薄膜の誘電正接tanδに対するQ値の計算結果を表すグラフである。3 is a graph showing a calculation result of a Q value with respect to a dielectric loss tangent tan δ of a dielectric thin film in the ring resonator model of FIG. 1. 図11のリング共振器モデルにおける計算モデルを説明するための図である。It is a figure for demonstrating the calculation model in the ring resonator model of FIG. 図11のリング共振器モデルにおける誘電体薄膜上面部の電界分布を示す濃淡図である。FIG. 12 is a shading diagram showing the electric field distribution on the upper surface portion of the dielectric thin film in the ring resonator model of FIG. 11. 図11のリング共振器モデルにおける誘電体薄膜上面部の磁界分布を示す濃淡図である。FIG. 12 is a shading diagram showing a magnetic field distribution on the upper surface portion of the dielectric thin film in the ring resonator model of FIG. 11. 図11のリング共振器モデルにおけるリング状間隙の幅の狭い部位の誘電体薄膜の比誘電率に対する共振周波数fの計算結果を表すグラフである。12 is a graph showing a calculation result of a resonance frequency f 0 with respect to a relative dielectric constant of a dielectric thin film in a portion having a narrow width of a ring-shaped gap in the ring resonator model of FIG. リング共振器の比較例を説明するための平面図(上)と断面図(下)である。It is the top view (upper) and sectional drawing (lower) for demonstrating the comparative example of a ring resonator. リング共振器の他の比較例を説明するための平面図(上)と断面図(下)である。It is the top view (upper) and sectional drawing (lower) for demonstrating the other comparative example of a ring resonator.

符号の説明Explanation of symbols

1:誘電体支持基板
2:誘電体薄膜(試料)
3:導体膜
31:間隙
32:内側導体
33:外側導体
41:同軸ケーブル
42:ループアンテナ
5:端子
6:直流電圧印加孔
1: Dielectric support substrate 2: Dielectric thin film (sample)
3: Conductor film 31: Gap 32: Inner conductor 33: Outer conductor 41: Coaxial cable 42: Loop antenna 5: Terminal 6: DC voltage application hole

Claims (10)

リング状の間隙により内側導体および外側導体に分割された導体膜と、該導体膜の上面および下面の少なくとも一方に積層された誘電体薄膜とが、誘電体支持基板上に設けられていることを特徴とするリング共振器。 A conductor film divided into an inner conductor and an outer conductor by a ring-shaped gap and a dielectric thin film laminated on at least one of the upper surface and the lower surface of the conductor film are provided on the dielectric support substrate. A characteristic ring resonator. 前記誘電体薄膜の比誘電率が前記誘電体支持基板の比誘電率よりも高いことを特徴とする請求項1に記載のリング共振器。 The ring resonator according to claim 1, wherein a relative dielectric constant of the dielectric thin film is higher than a relative dielectric constant of the dielectric support substrate. 前記誘電体薄膜の誘電正接が前記誘電体支持基板の誘電正接よりも高いことを特徴とする請求項1または請求項2に記載のリング共振器。 3. The ring resonator according to claim 1, wherein a dielectric loss tangent of the dielectric thin film is higher than a dielectric loss tangent of the dielectric support substrate. 前記間隙が、幅の広い部位と幅の狭い部位とを有することを特徴とする請求項1乃至請求項3のいずれかに記載のリング共振器。 The ring resonator according to any one of claims 1 to 3, wherein the gap has a wide portion and a narrow portion. 前記幅の広い部位の周方向に占める割合が、前記幅の狭い部位の周方向に占める割合よりも大きいことを特徴とする請求項4に記載のリング共振器。 The ring resonator according to claim 4, wherein a ratio of the wide portion in the circumferential direction is larger than a ratio of the narrow portion in the circumferential direction. 前記幅の広い部位と前記幅の狭い部位とが、それぞれ2k個(k:正の整数)ずつ交互に形成されていることを特徴とする請求項4または請求項5に記載のリング共振器。 6. The ring resonator according to claim 4, wherein the wide portion and the narrow portion are alternately formed by 2k pieces (k: a positive integer). 請求項1乃至請求項6のいずれかに記載のリング共振器を電磁界励振させて、前記リング共振器の共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記誘電体薄膜の誘電特性を決定することを特徴とする誘電体薄膜の誘電特性測定方法。 7. The ring resonator according to claim 1 is electromagnetically excited to measure a resonance frequency and no-load Q of the ring resonator, and the dielectric is calculated from the resonance frequency and the no-load Q. A method for measuring a dielectric property of a dielectric thin film, wherein the dielectric property of the thin film is determined. 請求項4乃至請求項6のいずれかに記載のリング共振器の前記幅の狭い部位の少なくとも1個に共振電磁界の電界強度の極大点が存在するように前記リング共振器を磁界励振させて、前記リング共振器の共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記誘電体薄膜の誘電特性を決定することを特徴とする誘電体薄膜の誘電特性測定方法。 The ring resonator is magnetically excited so that at least one of the narrow portions of the ring resonator according to any one of claims 4 to 6 has a maximum point of the electric field strength of the resonance electromagnetic field. A method for measuring a dielectric property of a dielectric thin film, comprising: measuring a resonance frequency and no-load Q of the ring resonator, and determining a dielectric property of the dielectric thin film from the resonance frequency and the no-load Q. 請求項6に記載のリング共振器の前記幅の狭い部位の少なくとも1個に共振電磁界の電界強度の極大点が存在するように前記リング共振器を磁界励振させて、前記間隙に前記電界強度の極大点が2m×k個(m、k:正の整数)存在するn次(n=m×k)の共振モードの共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記誘電体薄膜の誘電特性を決定することを特徴とする誘電体薄膜の誘電特性測定方法。 7. The ring resonator is magnetically excited so that at least one of the narrow portions of the ring resonator according to claim 6 has a maximum point of the electric field strength of the resonant electromagnetic field, and the electric field strength is generated in the gap. The resonance frequency and no-load Q of an n-th order (n = m × k) resonance mode in which 2m × k local maximum points exist (m, k: positive integer) are measured, and the resonance frequency and the no-load Q are measured. A dielectric property measurement method for a dielectric thin film, comprising: determining a dielectric property of the dielectric thin film from: 前記内側導体と前記外側導体との間に直流電圧を印加しながら、前記リング共振器を磁界励振させることを特徴とする請求項7乃至請求項9のいずれかに記載の誘電体薄膜の誘電特性測定方法。 The dielectric characteristic of the dielectric thin film according to any one of claims 7 to 9, wherein the ring resonator is magnetically excited while a DC voltage is applied between the inner conductor and the outer conductor. Measuring method.
JP2005339881A 2005-03-29 2005-11-25 Ring resonator and dielectric property measurement method of dielectric thin film using the same Expired - Fee Related JP4540596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339881A JP4540596B2 (en) 2005-03-29 2005-11-25 Ring resonator and dielectric property measurement method of dielectric thin film using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005093943 2005-03-29
JP2005339881A JP4540596B2 (en) 2005-03-29 2005-11-25 Ring resonator and dielectric property measurement method of dielectric thin film using the same

Publications (2)

Publication Number Publication Date
JP2006311491A true JP2006311491A (en) 2006-11-09
JP4540596B2 JP4540596B2 (en) 2010-09-08

Family

ID=37477773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339881A Expired - Fee Related JP4540596B2 (en) 2005-03-29 2005-11-25 Ring resonator and dielectric property measurement method of dielectric thin film using the same

Country Status (1)

Country Link
JP (1) JP4540596B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154049A (en) * 2015-04-03 2016-11-23 深圳光启高等理工研究院 The method of testing of thin-film material dielectric properties and system
JP2019070549A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Dielectric material evaluation device
CN109950229A (en) * 2017-12-20 2019-06-28 矽品精密工业股份有限公司 Measuring structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577290A (en) * 2015-01-29 2015-04-29 无锡江南计算技术研究所 Split cylindrical resonant cavity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101505A (en) * 1981-12-14 1983-06-16 Nippon Telegr & Teleph Corp <Ntt> Resonance circuit element
JP2003344466A (en) * 2002-05-27 2003-12-03 Kyocera Corp Dielectric constant measuring method
JP2005308716A (en) * 2004-03-24 2005-11-04 Kyocera Corp Measuring method for electromagnetic physical property value

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101505A (en) * 1981-12-14 1983-06-16 Nippon Telegr & Teleph Corp <Ntt> Resonance circuit element
JP2003344466A (en) * 2002-05-27 2003-12-03 Kyocera Corp Dielectric constant measuring method
JP2005308716A (en) * 2004-03-24 2005-11-04 Kyocera Corp Measuring method for electromagnetic physical property value

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154049A (en) * 2015-04-03 2016-11-23 深圳光启高等理工研究院 The method of testing of thin-film material dielectric properties and system
JP2019070549A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Dielectric material evaluation device
JP7011806B2 (en) 2017-10-06 2022-01-27 国立研究開発法人産業技術総合研究所 Dielectric material evaluation device
CN109950229A (en) * 2017-12-20 2019-06-28 矽品精密工业股份有限公司 Measuring structure
CN109950229B (en) * 2017-12-20 2020-11-03 矽品精密工业股份有限公司 Measuring structure

Also Published As

Publication number Publication date
JP4540596B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
Abbosh Accurate effective permittivity calculation of printed center-fed dipoles and its application to quasi Yagi-Uda antennas
JP4540596B2 (en) Ring resonator and dielectric property measurement method of dielectric thin film using the same
JP4628116B2 (en) Conductivity measurement method
US20060132264A1 (en) Temperature compensation of resonators using different materials for housing and inner conductor as well as suitable dimensions
CN114779139A (en) High-frequency magnetic field generating device
JP6510263B2 (en) Complex permittivity measurement method
Kawabata et al. Multi-frequency measurements of complex permittivity of dielectric plates using higher-order modes of a balanced-type circular disk resonator
JP4726395B2 (en) Electrical property value measurement method
JP4467418B2 (en) Dielectric constant measurement method
Wang et al. A rigorous analysis of tapered slot antennas on dielectric substrates
RU2679463C1 (en) Charge carriers in the semiconductor structure mobility non-destructive measuring method
JP4157387B2 (en) Electrical property measurement method
Chatterjee et al. Field Characterization of an iris excited 10GHz slot radiator
Rahiminejad et al. Design of micromachined ridge gap waveguides for millimeter-wave applications
JP2005134185A (en) Measuring jig, electrical property measuring method, and resonator
Heidarzadeh et al. Bandwidth enhancement of the SIW cavity backed slot antennas using symmetric circular perturbation
JP4776382B2 (en) Dielectric constant measurement method
JP4216739B2 (en) Electrical property value measuring method and measuring jig
JP4373857B2 (en) Electrical property measurement method
Zarezin et al. Relativistic plasma excitations in two-dimensional electron systems
Kim et al. Analysis of Stacked Dielectric Resonator Antenna
Tao et al. Efficient analysis of quadruple corner-cut ridged circular waveguide by hybrid mode-matching boundary-element method
RU2247400C1 (en) Device for measurement of complex permittivity of low- impedance materials at microwave frequencies
Salem Al-Sayed et al. Bandwidth enhancement of cylindrical triangular microstrip antenna using a stacked technique
Xu et al. Method for identifying the surface wave frequency band‐gap of EBG structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees