JP4373857B2 - Electrical property measurement method - Google Patents

Electrical property measurement method Download PDF

Info

Publication number
JP4373857B2
JP4373857B2 JP2004187771A JP2004187771A JP4373857B2 JP 4373857 B2 JP4373857 B2 JP 4373857B2 JP 2004187771 A JP2004187771 A JP 2004187771A JP 2004187771 A JP2004187771 A JP 2004187771A JP 4373857 B2 JP4373857 B2 JP 4373857B2
Authority
JP
Japan
Prior art keywords
dielectric
cylindrical cavity
conductor
electrical property
property value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004187771A
Other languages
Japanese (ja)
Other versions
JP2006010492A (en
Inventor
博道 吉川
明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004187771A priority Critical patent/JP4373857B2/en
Publication of JP2006010492A publication Critical patent/JP2006010492A/en
Application granted granted Critical
Publication of JP4373857B2 publication Critical patent/JP4373857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、電気的物性値測定法に関し、特に、ミリ波領域で使用される電子部品又は回路基板における導体層と誘電体の界面の導電率又は抵抗率を測定するための電気的物性値測定法に関するものである。   The present invention relates to an electrical property value measurement method, and in particular, an electrical property value measurement for measuring the electrical conductivity or resistivity of an interface between a conductor layer and a dielectric in an electronic component or circuit board used in a millimeter wave region. It is about the law.

一般に、回路基板や半導体素子用パッケージに用いられるマイクロストリップライン、ストリップラインやコプレーナライン等では、導体層と誘電体との界面の導電率が回路の損失設計をする上で重要なパラメータとなってきている。例えば、近年、車載用レーダやミリ波無線LANの開発が行われてきているが、回路設計のために、ミリ波領域における導体層と誘電体との界面の導電率の測定値が必要となってきた。特に、ミリ波領域では、内層導体の表面粗さのために導電率が急激に劣化することが知られており、システムが構築される周波数での導電率の評価が要求されている。   In general, in the microstrip line, strip line, coplanar line, etc. used for circuit boards and semiconductor device packages, the conductivity at the interface between the conductor layer and the dielectric has become an important parameter in designing the circuit loss. ing. For example, in recent years, in-vehicle radars and millimeter-wave wireless LANs have been developed, but measurement values of the conductivity at the interface between the conductor layer and the dielectric in the millimeter-wave region are required for circuit design. I came. In particular, in the millimeter wave region, it is known that the conductivity rapidly deteriorates due to the surface roughness of the inner layer conductor, and the evaluation of the conductivity at the frequency at which the system is constructed is required.

近年、導体層と誘電体との界面の導電率の測定方法としては、図8に示すような両端短絡形誘電体円柱共振器を用いた方法が提案されている。この両端短絡形誘電体円柱共振器では、誘電体円柱10の上下を、片面に導体層5a、5bを設けた誘電体基板3a、3bにより、誘電体円柱10に誘電体基板3a、3bが当接するように狭持して構成し、その無負荷Qより界面導電率を求める方法が知られている。誘電体円柱10には、低損失なサファイア円柱が用いられる。この方法は、マイクロ波帯において、ループアンテナによる励振により、良好な精度の測定を実現している。また、ミリ波帯においてもNRDガイド励振を用いた測定結果が報告されている(例えば、特許文献1参照)。
特開平10−216795号
In recent years, a method using a both-end short-circuited dielectric cylindrical resonator as shown in FIG. 8 has been proposed as a method for measuring the conductivity at the interface between the conductor layer and the dielectric. In this double-end short-circuited dielectric cylindrical resonator, the dielectric substrate 3a and 3b provided with conductor layers 5a and 5b on one side are placed on the upper and lower sides of the dielectric cylinder 10 so that the dielectric substrate 3a and 3b are in contact with the dielectric cylinder 10. There is known a method of sandwiching the electrodes so as to be in contact with each other and obtaining the interface conductivity from the unloaded Q. As the dielectric cylinder 10, a low-loss sapphire cylinder is used. This method realizes measurement with good accuracy in the microwave band by excitation with a loop antenna. In addition, measurement results using NRD guide excitation have also been reported in the millimeter wave band (see, for example, Patent Document 1).
JP-A-10-216795

しかしながら、ミリ波帯において、両端短絡形誘電体円柱共振器法を用いると、誘電体円柱10として使用するサファイア円柱の寸法が小さくなり、共振器を構成しにくいという問題がある。   However, when the double-end short-circuited dielectric cylinder resonator method is used in the millimeter wave band, there is a problem that the size of the sapphire cylinder used as the dielectric cylinder 10 becomes small and it is difficult to configure the resonator.

また、両端短絡形誘電体円柱共振器法では、誘電体円柱10の上下を導体層5a、5bで狭持して共振器を構成しているが、上下の導体層5a、5bは平行であるという前提条件がある。しかしながら、マイクロ波帯で測定した試料をそのまま適応しようとすると、誘電体円柱10に対して導体層5a、5bの直径が大きくなりすぎ、上下導体5a、5bの平行度が悪くなるという問題があった。例えば、TE011モードを用いた13GHz帯の測定では、サファイア円柱の寸法は、直径D=10mm、高さH=5mmとなるのに対して、TE021モードを用いた60GHz帯の測定では、サファイア円柱の寸法は、直径D=3.1mm、高さH=2.25mmとなる。 In the double-end short-circuited dielectric cylindrical resonator method, the dielectric cylinder 10 is sandwiched by the conductor layers 5a and 5b to form a resonator, but the upper and lower conductor layers 5a and 5b are parallel to each other. There is a precondition. However, if the sample measured in the microwave band is applied as it is, there is a problem that the diameter of the conductor layers 5a and 5b becomes too large with respect to the dielectric cylinder 10 and the parallelism of the upper and lower conductors 5a and 5b is deteriorated. It was. For example, in the 13 GHz band measurement using the TE 011 mode, the dimensions of the sapphire cylinder are a diameter D = 10 mm and a height H = 5 mm, whereas in the 60 GHz band measurement using the TE 021 mode, sapphire The dimensions of the cylinder are a diameter D = 3.1 mm and a height H = 2.25 mm.

このとき、導体層5a、5bに必要な大きさは、13GHz帯では、直径d=30mm以上であるのに対して、60GHz帯では、直径d=10mm以上であればよい。13GHz帯で測定した直径30mmの導体を直径3mmのサファイア円柱の上下に設置するのが難しいため、現状では、導体を小さく加工したものを使用している。このため、ミリ波帯では、測定にかかる時間よりも、共振器の構成準備にかける時間に多くの時間を費やしてしまっているのが現状である。   At this time, the size required for the conductor layers 5a and 5b is not less than 30 mm in diameter in the 13 GHz band, but may be not less than 10 mm in the 60 GHz band. Since it is difficult to install a conductor with a diameter of 30 mm measured in the 13 GHz band above and below a sapphire cylinder with a diameter of 3 mm, currently, a conductor with a small size is used. For this reason, in the millimeter wave band, more time is spent on the preparation time for the resonator than on the measurement time.

本発明は、ミリ波帯において、ある程度任意の大きさの導体層に対して測定でき、また、従来と同等の測定精度を持ち、導体層と誘電体の界面の導電率を簡易に測定することができる電気的物性値測定法を提供することを目的とする。   The present invention can measure a conductor layer of any size to some extent in the millimeter wave band, and has a measurement accuracy equivalent to the conventional one, and easily measures the conductivity at the interface between the conductor layer and the dielectric. An object of the present invention is to provide an electrical property value measuring method capable of achieving the above.

本発明の電気的物性値測定法は、円筒導体の両端開口部を第1、第2遮蔽体により閉塞してなる円筒空洞共振器であって、前記第1、第2遮蔽体を導体から構成したときの前記円筒空洞共振器の共振周波数f1と無負荷Q1を測定し、該共振周波数f1と無負荷Q1から、前記円筒空洞共振器の電気的物性値及び寸法を求める第1の工程と、
前記第1、第2遮蔽体のうち少なくとも1つを、導体層を内層した誘電体基板、又は片側表面に導体層が設けられた誘電体基板から構成し、該遮蔽体を誘電体側が円筒空洞側となるように前記円筒導体に設けて円筒空洞共振器を構成し、該円筒空洞共振器の共振周波数f2と無負荷Q2を測定し、該共振周波数f2と無負荷Q2、及び前記第1の工程で求めた円筒空洞共振器の電気的物性値及び寸法から、前記導体層と前記誘電体との界面の電気的物性値を求める第2の工程とを具備することを特徴とする。
An electrical property value measuring method of the present invention is a cylindrical cavity resonator in which both end openings of a cylindrical conductor are closed by first and second shields, and the first and second shields are made of conductors. A first step of measuring a resonance frequency f1 and no-load Q1 of the cylindrical cavity resonator, and determining an electrical property value and dimensions of the cylindrical cavity resonator from the resonance frequency f1 and no-load Q1;
At least one of the first and second shields is composed of a dielectric substrate having a conductor layer as an inner layer, or a dielectric substrate having a conductor layer provided on one surface, and the shield side is a cylindrical cavity on the dielectric side. The cylindrical conductor is provided on the cylindrical conductor so as to be on the side, and the resonance frequency f2 and no-load Q2 of the cylindrical cavity resonator are measured. The resonance frequency f2, the no-load Q2, and the first And a second step of obtaining an electrical property value of the interface between the conductor layer and the dielectric from the electrical property value and dimensions of the cylindrical cavity resonator obtained in the step.

本発明の電気的物性値測定法では、図1に示すような円筒空洞共振器の構造を有しており、TE011モードの電界強度の分布を有する。この円筒空洞共振器のTE011モードの電界強度は空洞共振器の高さ方向の中心面で最大になり、両端でゼロになる。本発明の電気的物性値測定法では、図2に示すように、両端で電界がゼロとなる場所に導体を配置するため、誘電体の比誘電率や誘電正接の影響を小さくすることができる。 The electrical property value measuring method of the present invention has a cylindrical cavity resonator structure as shown in FIG. 1, and has a TE 011 mode electric field intensity distribution. The electric field strength of the TE 011 mode of this cylindrical cavity resonator becomes maximum at the center plane in the height direction of the cavity resonator and becomes zero at both ends. In the electrical property value measuring method of the present invention, as shown in FIG. 2, since the conductor is disposed at a position where the electric field is zero at both ends, the influence of the dielectric constant and dielectric loss tangent of the dielectric can be reduced. .

また、本発明の電気的物性値測定法では、導体層が円形であり、その直径は円筒空洞の直径よりも大きいことを特徴とする。このような測定法では、導体の比導電率または抵抗率を求めることができる。   In the electrical property value measuring method of the present invention, the conductor layer is circular, and the diameter thereof is larger than the diameter of the cylindrical cavity. In such a measuring method, the specific conductivity or resistivity of the conductor can be obtained.

さらに、本発明の電気的物性値測定法は、円筒導体の開口部と導体層との間に介装された誘電体の厚みが、0.3mm以下であることを特徴とする。このような測定法では、円筒導体の開口部と導体層との間に介装された誘電体の厚みが、0.3mm以下とすることにより、導体層と開口部との間の試料(誘電体)の誘電率や誘電正接の影響を小さくすることができる。特に、ミリ波帯では、例えば、周波数30〜100GHzで使用される場合には、導体層と開口部との間の誘電体厚みは、0.3mm以下の厚みまで薄くすることが望ましい。導体層と開口部との間の誘電体を薄くすることで、誘電体基板の中に蓄積される電界エネルギーを小さくでき、TE011モードの共振周波数の低下も緩和される。 Furthermore, the electrical property value measuring method of the present invention is characterized in that the thickness of the dielectric interposed between the opening of the cylindrical conductor and the conductor layer is 0.3 mm or less. In such a measurement method, the thickness of the dielectric interposed between the opening of the cylindrical conductor and the conductor layer is set to 0.3 mm or less, so that the sample (dielectric) between the conductor layer and the opening is reduced. The influence of the dielectric constant and dielectric loss tangent of the body can be reduced. In particular, in the millimeter wave band, for example, when used at a frequency of 30 to 100 GHz, it is desirable that the dielectric thickness between the conductor layer and the opening is reduced to a thickness of 0.3 mm or less. By making the dielectric between the conductor layer and the opening thinner, the electric field energy accumulated in the dielectric substrate can be reduced, and the decrease in the resonance frequency of the TE 011 mode can be mitigated.

さらに、本発明の電気的物性値測定法は、円筒空洞共振器のTEモードの共振周波数fと無負荷Qを測定し、該共振周波数fと無負荷Qから、導体層と誘電体との界面の電気的物性値を求めることを特徴とする。特に、円筒空洞共振器のTE011モードの共振周波数fと無負荷Qを測定して、該試料導体界面の電気的物性値を求めることが望ましい。このように円筒空洞共振器のTEモードの共振周波数fと無負荷Qを用いることにより、誘電体端部から半径方向への放射を無くすことができる。 Furthermore, the electrical property value measuring method of the present invention measures the TE mode resonance frequency f and no-load Q of the cylindrical cavity resonator, and determines the interface between the conductor layer and the dielectric from the resonance frequency f and no-load Q. It is characterized in that the electrical property value of is obtained. In particular, it is desirable to measure the resonance frequency f and unloaded Q of the TE 011 mode of the cylindrical cavity resonator to determine the electrical property value of the sample conductor interface. Thus, by using the TE-mode resonance frequency f and the no-load Q of the cylindrical cavity resonator, radiation in the radial direction from the dielectric end can be eliminated.

また、本発明の電気的物性値測定法は、円筒空洞の直径Dに対する高さHの寸法比D/Hが、1以上であることを特徴とする。   The electrical property value measuring method of the present invention is characterized in that a dimensional ratio D / H of a height H to a diameter D of a cylindrical cavity is 1 or more.

このような電気的物性値測定法では、円筒空洞の直径Dに対する高さHの寸法比D/Hを1以上とすることで測定精度を上げることが可能である。共振周波数を一定としたときの円筒空洞の直径Dに対する高さHの寸法比D/Hに対する円筒空洞の導体損失と上下遮蔽板の導体損失の比を図7に示す。全損失に占める割合のうち、円筒空洞の導体損失の割合より遮蔽板の導体損失の割合を大きくなるような寸法比にすることで、界面導電率の測定精度の向上が可能となる。また、図6に示すように、測定試料よりも高い導電率の円筒空洞を使用することで測定精度が向上することが分かる。   In such an electrical property value measurement method, the measurement accuracy can be increased by setting the dimensional ratio D / H of the height H to the diameter D of the cylindrical cavity to 1 or more. FIG. 7 shows a ratio of the conductor loss of the cylindrical cavity and the conductor loss of the upper and lower shielding plates to the dimension ratio D / H of the height H to the diameter D of the cylindrical cavity when the resonance frequency is constant. By setting the dimensional ratio such that the conductor loss ratio of the shielding plate is larger than the conductor loss ratio of the cylindrical cavity in the ratio of the total loss, the measurement accuracy of the interface conductivity can be improved. In addition, as shown in FIG. 6, it can be seen that the measurement accuracy is improved by using a cylindrical cavity having a higher conductivity than the measurement sample.

さらに、本発明の電気的物性値測定法は、円筒空洞共振器の温度を変化させ、該円筒空洞共振器の共振周波数fと無負荷Qの温度依存性を測定し、該試料導体界面の電気的物性値の温度依存性を求めることを特徴とする。このような電気的物性値測定法では、円筒空洞共振器の温度を変化させ、該円筒空洞共振器の共振周波数fと無負荷Qの温度依存性を測定し、比導電率または抵抗率の電気的物性値の温度依存性を求めることができる。   Furthermore, the electrical property value measuring method of the present invention changes the temperature of the cylindrical cavity resonator, measures the temperature dependence of the resonance frequency f and no load Q of the cylindrical cavity resonator, and It is characterized by determining the temperature dependence of the physical property value. In such an electrical property value measurement method, the temperature of the cylindrical cavity resonator is changed, the temperature dependence of the resonance frequency f and no load Q of the cylindrical cavity resonator is measured, and the electrical conductivity of the specific conductivity or resistivity is measured. The temperature dependence of the physical property value can be determined.

本発明によれば、従来、安定して測定できていなかった30GHz以上のミリ波帯において、空洞共振器を用いて導体層と誘電体の界面の導電率の測定を簡易に測定でき、測定時間を大幅に短縮することができる。   According to the present invention, in the millimeter wave band of 30 GHz or higher, which has not been able to be measured stably in the past, it is possible to easily measure the conductivity of the interface between the conductor layer and the dielectric using a cavity resonator, and the measurement time. Can be greatly shortened.

図1は本発明の電気的物性値測定法の第1の工程に用いる円筒空洞共振器の構造図および電界分布である。円筒空洞共振器は、円筒導体2の両端開口部が導体からなる第1、第2遮蔽体1a、1bにより遮蔽された構造となっている。円筒導体2、第1、第2遮蔽体1a、1bは、Cu、Fe、Ag、Au、Mo、W等の金属から構成されている。厚みは測定周波数における表皮深さよりも厚ければ問題は生じない。   FIG. 1 is a structural diagram and electric field distribution of a cylindrical cavity resonator used in the first step of the electrical property value measuring method of the present invention. The cylindrical cavity resonator has a structure in which the opening portions at both ends of the cylindrical conductor 2 are shielded by the first and second shields 1a and 1b made of a conductor. The cylindrical conductor 2 and the first and second shields 1a and 1b are made of a metal such as Cu, Fe, Ag, Au, Mo, or W. If the thickness is thicker than the skin depth at the measurement frequency, no problem occurs.

共振器の励振および検波は、図示しないが、通常、円筒導体2に励振孔が開けられ同軸線の先端にループアンテナを介して磁界結合により行われる。この評価方法はすでにJIS R 1641で確立されており、その方法に従えばよい。また、この第1の工程は、一旦導電率を決定した後は、行う必要はない。   Although not shown in the figure, excitation and detection of the resonator are usually performed by magnetic coupling through a loop antenna at the tip of the coaxial line with an excitation hole formed in the cylindrical conductor 2. This evaluation method has already been established in JIS R 1641, and the method may be followed. Further, this first step need not be performed once the conductivity is once determined.

図2は、第2の工程に用いる円筒空洞共振器の構造図である。この円筒空洞共振器は、円筒導体2の上下を、測定試料である導体層4a、4bが内層された誘電体基板3a、3b(第1、第2遮蔽体)で遮蔽して構成されている。即ち、円筒空洞側に、誘電体基板3a、3bの一部を構成する誘電体が面しており、円筒空洞と導体層4a、4bとの間には誘電体3a1、3b1が介在している。誘電体3a1、3b1は、十分平行度があるものを使用する必要がある。第2の工程においても共振器の励振および検波は、第1の工程と同様に行えばよい。   FIG. 2 is a structural diagram of a cylindrical cavity resonator used in the second step. This cylindrical cavity resonator is configured by shielding the upper and lower sides of a cylindrical conductor 2 with dielectric substrates 3a and 3b (first and second shields) in which conductor layers 4a and 4b as measurement samples are provided as inner layers. . That is, the dielectric constituting the dielectric substrates 3a and 3b faces the cylindrical cavity side, and the dielectrics 3a1 and 3b1 are interposed between the cylindrical cavity and the conductor layers 4a and 4b. . It is necessary to use dielectrics 3a1 and 3b1 having sufficient parallelism. Also in the second step, the excitation and detection of the resonator may be performed in the same manner as in the first step.

また、導体層4a、4bは円形状であり、その直径は円筒空洞の直径よりも大きく形成されている。これにより、TE011モードの電磁界を空洞共振器内部に閉じ込めることができる。特に、電磁界を誘電体の端部から半径方向へ放射させないという理由から、導体層4a、4bの直径は、空洞の直径Dに対して1.5倍以上の大きさが特に望ましい。また、導体層4a、4bの厚みは、測定周波数における表皮深さよりも厚ければ問題は生じない。 The conductor layers 4a and 4b are circular and have a diameter larger than the diameter of the cylindrical cavity. Thereby, the TE 011 mode electromagnetic field can be confined inside the cavity resonator. In particular, the diameter of the conductor layers 4a and 4b is particularly preferably 1.5 times or more larger than the diameter D of the cavity because the electromagnetic field is not radiated from the end of the dielectric in the radial direction. Further, there is no problem if the thickness of the conductor layers 4a and 4b is greater than the skin depth at the measurement frequency.

さらに、円筒導体2の開口部と導体層4a、4bとの間に介装された誘電体3a1、3b1の厚みは、0.3mm以下とされている。これにより、導体層4a、4bと開口部との間の誘電体3a1、3b1の誘電率や誘電正接の影響を小さくすることができ、より正確な導体層4a、4bの界面導電率を得ることができる。特に、ミリ波帯では、例えば、周波数30〜100GHzで使用される場合には、導体層4a、4bと開口部との間の誘電体3a1、3b1の厚みは、特に、電界を誘電体へ集中させないという理由から、0.3mm以下であることが望ましい。   Furthermore, the thickness of the dielectrics 3a1, 3b1 interposed between the opening of the cylindrical conductor 2 and the conductor layers 4a, 4b is set to 0.3 mm or less. Thereby, the influence of the dielectric constant and dielectric loss tangent of the dielectrics 3a1, 3b1 between the conductor layers 4a, 4b and the opening can be reduced, and more accurate interface conductivity of the conductor layers 4a, 4b can be obtained. Can do. In particular, in the millimeter wave band, for example, when used at a frequency of 30 to 100 GHz, the thickness of the dielectrics 3a1 and 3b1 between the conductor layers 4a and 4b and the opening portion particularly concentrates the electric field on the dielectric. It is desirable that it is 0.3 mm or less because it is not allowed to occur.

尚、図3に示すように、有底筒状の円筒導体2の上部開口部を、導体層4bが内層された誘電体基板3bで遮蔽して構成してもよい。この場合には、より簡単な構造となるとともに、試料も1個で済む利点もある。   In addition, as shown in FIG. 3, you may comprise the upper opening part of the cylindrical conductor 2 with a bottomed cylinder by shielding with the dielectric substrate 3b by which the conductor layer 4b was inner-layered. In this case, there is an advantage that the structure is simpler and only one sample is required.

また、図4は、第2の工程に用いる円筒空洞共振器の他の構造を示すもので、この図4では、円筒導体2の上下開口部を、片側表面に導体層5a、5bが設けられた誘電体基板6a、6b(第1、第2遮蔽体)で遮蔽して構成されている。即ち、円筒空洞側に、誘電体基板6a、6bが面しており、言い換えれば、円筒空洞と導体層5a、5bとの間には誘電体基板6a、6bが介在している。   FIG. 4 shows another structure of the cylindrical cavity resonator used in the second step. In FIG. 4, the upper and lower openings of the cylindrical conductor 2 are provided with conductor layers 5a and 5b on one surface. The dielectric substrates 6a and 6b (first and second shields) are shielded. That is, the dielectric substrates 6a and 6b face the cylindrical cavity side. In other words, the dielectric substrates 6a and 6b are interposed between the cylindrical cavity and the conductor layers 5a and 5b.

さらに、図5に示すように、有底筒状の円筒導体2の上部開口部を、片側表面に導体層5bが設けられた誘電体基板6bで遮蔽して構成してもよい。この場合には、より簡単な構造となるとともに、試料も1個で済む利点もある。   Further, as shown in FIG. 5, the upper opening of the cylindrical conductor 2 having a bottomed cylindrical shape may be shielded by a dielectric substrate 6b having a conductor layer 5b provided on one surface. In this case, there is an advantage that the structure is simpler and only one sample is required.

導体層4a、4bまたは導体層5a、5bの導電率は、有限要素法やモード整合法等の数値計算を行い、計算される。軸対称の有限要素法を用いると本発明で使用するような軸対称形状の共振器に対して、寸法、形状、比誘電率、誘電正接から共振電磁界分布、共振周波数、無負荷Qを精度よく短時間で計算できる。従って、これを応用すれば共振周波数や無負荷Qから試料の導電率を求めることができる。   The conductivity of the conductor layers 4a and 4b or the conductor layers 5a and 5b is calculated by performing numerical calculation such as a finite element method or a mode matching method. Using the axially symmetric finite element method, the accuracy of the resonant electromagnetic field distribution, resonant frequency, and no-load Q from the size, shape, relative dielectric constant, and dielectric loss tangent to the axially symmetric resonator used in the present invention. Can be calculated in a short time. Therefore, if this is applied, the conductivity of the sample can be obtained from the resonance frequency and the no-load Q.

次に、本発明の電気的物性値測定法について説明する。先ず、空洞共振器(図1)の寸法及び導電率を評価する。通常は、この評価方法はすでにJIS R 1641:2002で確立されており、その方法に従えばよい。   Next, the electrical property value measuring method of the present invention will be described. First, the dimensions and conductivity of the cavity resonator (FIG. 1) are evaluated. Usually, this evaluation method has already been established in JIS R 1641: 2002, and the method may be followed.

また、第1、第2遮蔽体1a、1bと円筒導体2の比導電率を別々に評価することもできる。例えば、遮蔽体1a、1bの評価方法は、JIS R 1627で確立されており、その方法に従って算出する。共振器は、60GHz帯と40GHz帯用の二つを準備した。これら二つの共振器に対してそれぞれ、ネットワークアナライザを用いて共振周波数および無負荷Qの測定を行い、遮蔽体1a、1bの比導電率σ(pl)を評価する。続いて、JIS R 1641による評価方法にて空洞共振器の測定を行ない、その測定結果と遮蔽体1a、1bの測定結果より円筒導体2の比導電率σ(cl)を算出することができる。この算出に関しては、JIS R 1641に記述されている。   Further, the specific conductivities of the first and second shields 1a and 1b and the cylindrical conductor 2 can be evaluated separately. For example, the evaluation method of the shields 1a and 1b is established in JIS R 1627 and is calculated according to the method. Two resonators for 60 GHz band and 40 GHz band were prepared. For these two resonators, the resonance frequency and the no-load Q are measured using a network analyzer, and the specific conductivity σ (pl) of the shields 1a and 1b is evaluated. Subsequently, the cavity resonator is measured by the evaluation method according to JIS R 1641, and the specific conductivity σ (cl) of the cylindrical conductor 2 can be calculated from the measurement result and the measurement results of the shields 1a and 1b. This calculation is described in JIS R 1641.

次に、測定された空洞共振器(図2)を用いて第2工程である誘電体3a1、3b1と導体4a、4bの界面の導電率の測定を行う。先ず、ネットワークアナライザを用いて共振周波数fおよび無負荷Qの測定を行い、誘電体3a1、3b1と導体4a、4bの界面の比導電率を測定する。測定に用いるTE011モードのQuと誘電体損によるQ, Qdおよび導体損によるQ, Qcの間には次の関係がある。

Figure 0004373857
Next, the conductivity of the interface between the dielectrics 3a1 and 3b1 and the conductors 4a and 4b, which is the second step, is measured using the measured cavity resonator (FIG. 2). First, the resonance frequency f and no-load Q are measured using a network analyzer, and the specific conductivity at the interface between the dielectrics 3a1, 3b1 and the conductors 4a, 4b is measured. There is the following relationship between the TE 011 mode Q u used for measurement and Q, Q d due to dielectric loss and Q, Q c due to conductor loss.
Figure 0004373857

ここで、Wは、共振器内部の全蓄積エネルギー、WおよびWは、円筒空洞における蓄積エネルギーおよび誘電体における蓄積エネルギー、tanδは誘電正接、Pc1およびPc2は円筒導体における損失エネルギーおよび試料導体における損失エネルギーである。WおよびPは、共振器の電磁界成分を積分することで求まる。電磁界の計算手法は、有限要素法、モード整合法やFDTD法等により数値計算をする必要がある。比導電率は、これらの所定の計算を行なった後、無負荷Qの測定値より(1)式の関係を用いて得ることができる。 Where W is the total stored energy inside the resonator, W 1 and W 2 are stored energy in the cylindrical cavity and stored in the dielectric, tan δ is the dielectric loss tangent, P c1 and P c2 are the loss energy in the cylindrical conductor and It is the loss energy in the sample conductor. W and P are obtained by integrating the electromagnetic field components of the resonator. As an electromagnetic field calculation method, it is necessary to perform numerical calculation by a finite element method, a mode matching method, an FDTD method, or the like. The specific conductivity can be obtained from the measured value of the no load Q using the relationship of the expression (1) after performing these predetermined calculations.

本発明の電気的物性値測定法は、特にミリ波帯において最も効果があり、絶縁体、例えばセラミック内にメタライズや蒸着して形成された導体の界面導電率の測定に好適に用いることができる。   The electrical property value measuring method of the present invention is most effective particularly in the millimeter wave band, and can be suitably used for measuring the interfacial conductivity of a conductor formed by metallization or vapor deposition in an insulator, for example, ceramic. .

測定で使用する空洞共振器の評価のために第1の工程を行う。空洞共振器(図1)の寸法及び導電率を評価した。通常は、この評価方法はすでにJIS R 1641:2002で確立されており、その方法に従えばよいが、今回は、第1、第2遮蔽体1a、1bと円筒導体2の比導電率を別々に評価を行った。   The first step is performed to evaluate the cavity resonator used in the measurement. The dimensions and conductivity of the cavity resonator (FIG. 1) were evaluated. Usually, this evaluation method is already established in JIS R 1641: 2002, and this method can be followed. However, this time, the specific conductivities of the first and second shields 1a and 1b and the cylindrical conductor 2 are separately set. Was evaluated.

先ず、第1、第2遮蔽体1a、1bの評価方法は、JIS R 1627で確立されており、その方法に従った。共振器として、60GHz帯と40GHz帯用の二つを準備し、これら二つの共振器に対してそれぞれ、ネットワークアナライザを用いて共振周波数fおよび無負荷Qの測定を行い、第1、第2遮蔽体1a、1bの比導電率σ(pl)を評価した。この結果を表1中の(plate)に示した。   First, the evaluation method of the 1st, 2nd shield 1a, 1b was established by JISR1627, and followed the method. Two resonators for the 60 GHz band and 40 GHz band are prepared, and the resonance frequency f and no-load Q are measured for each of these two resonators using a network analyzer. The specific conductivity σ (pl) of the bodies 1a and 1b was evaluated. The results are shown in (plate) in Table 1.

続いて、JIS R 1641による評価方法にて空洞共振器の測定を行ない、その測定結果と第1、第2遮蔽体1a、1bの測定結果より円筒導体2の比導電率σ(cl)が算出される。この算出は、上記の手法により求めた。この結果を表1中の(clinder)に示した。   Subsequently, the cavity resonator is measured by the evaluation method according to JIS R 1641, and the specific conductivity σ (cl) of the cylindrical conductor 2 is calculated from the measurement result and the measurement results of the first and second shields 1a and 1b. Is done. This calculation was obtained by the above method. The results are shown in (clinder) in Table 1.

次に、測定された空洞共振器を用いて第2工程である誘電体と導体層の界面の導電率の測定を行う。本測定に用いた試料は、一層の誘電体厚さが0.3mmのLTCC(低温焼成基板)中の内層メタライズ(Cu)である。厚みは、0.01mm、直径は、円筒空洞よりも直径が2倍とした。   Next, the conductivity of the interface between the dielectric and the conductor layer, which is the second step, is measured using the measured cavity resonator. The sample used for this measurement is inner layer metallization (Cu) in LTCC (low temperature fired substrate) having a dielectric thickness of 0.3 mm. The thickness was 0.01 mm, and the diameter was twice that of the cylindrical cavity.

共振器の構造は、図3に示したタイプを用いた。ネットワークアナライザを用いて共振周波数f及び無負荷Quの測定を行い、誘電体とメタライズ層(導体層)の界面の比導電率σrを求めた結果を表1に示す。 The type of resonator shown in FIG. 3 was used. Table 1 shows the results obtained by measuring the resonance frequency f 0 and the no-load Qu using a network analyzer and determining the specific conductivity σr at the interface between the dielectric and the metallized layer (conductor layer).

ここで、共振周波数fが37GHz程度と63GHz程度の誘電体の誘電率ε’および誘電正接tanδの測定値と円筒空洞の導電率σ(pl)よりモード整合法を用いて解析を行った。また、共振周波数fが31GHz程度において、同じ試料に対する測定を従来の円柱共振器法(図8)にて行った。この結果も表1に示す。

Figure 0004373857
Here, analysis was performed using a mode matching method based on measured values of dielectric constant ε ′ and dielectric loss tangent tan δ of a dielectric having resonance frequencies f 0 of about 37 GHz and about 63 GHz and the conductivity σ (pl) of the cylindrical cavity. In addition, when the resonance frequency f 0 was about 31 GHz, the measurement for the same sample was performed by the conventional cylindrical resonator method (FIG. 8). The results are also shown in Table 1.
Figure 0004373857

この表1の結果から、無酸素銅製の空洞共振器の比導電率の値も周波数が上がるにつれて低下していることが分かる。   From the results in Table 1, it can be seen that the value of the specific conductivity of the oxygen-free copper cavity resonator also decreases as the frequency increases.

また、これらの結果から周波数に対する比導電率の依存性を図7に示した。この結果より、共振周波数が高くなるにつれて表面粗さ等の影響で、試料の比導電率が低下していることを実測することができた。   Moreover, the dependence of the specific conductivity on the frequency is shown in FIG. 7 from these results. From this result, it was possible to actually measure that the specific conductivity of the sample was decreased due to the influence of the surface roughness and the like as the resonance frequency increased.

本発明の第1の工程に用いる円筒空洞共振器の構造および電界の分布を示すものである。1 shows the structure of a cylindrical cavity resonator used in the first step of the present invention and the electric field distribution. 本発明の第2の工程に用いる円筒空洞共振器の構造を示すもので、(a)は断面図、(b)は平面図である。The structure of the cylindrical cavity resonator used for the 2nd process of this invention is shown, (a) is sectional drawing, (b) is a top view. 本発明の第2の工程に用いる他の円筒空洞共振器の構造を示す断面図である。It is sectional drawing which shows the structure of the other cylindrical cavity resonator used for the 2nd process of this invention. 本発明の第2の工程に用いるさらに他の円筒空洞共振器の構造を示す断面図である。It is sectional drawing which shows the structure of the further another cylindrical cavity resonator used for the 2nd process of this invention. 本発明の第2の工程に用いるさらに他の円筒空洞共振器の構造を示す断面図である。It is sectional drawing which shows the structure of the further another cylindrical cavity resonator used for the 2nd process of this invention. 本発明の円筒空洞共振器の寸法を設計する際に用いるチャートである。It is a chart used when designing the dimension of the cylindrical cavity resonator of this invention. 本発明による周波数に対するLTCCおよび内層メタライズの比導電率(界面導電率)の測定結果である。It is a measurement result of the specific conductivity (interface electrical conductivity) of LTCC and inner layer metallization with respect to the frequency by this invention. 従来の両端短絡形誘電体円柱共振器の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the conventional both ends short circuit type dielectric cylinder resonator.

符号の説明Explanation of symbols

1a、1b・・・第1、第2遮蔽板
2・・・円筒導体
3a、3b、6a、6b・・・誘電体基板
4a、4b、5a、5b・・・導体層
1a, 1b ... 1st, 2nd shielding board 2 ... Cylindrical conductor 3a, 3b, 6a, 6b ... Dielectric substrate 4a, 4b, 5a, 5b ... Conductor layer

Claims (7)

円筒導体の両端開口部を第1、第2遮蔽体により閉塞してなる円筒空洞共振器であって、前記第1、第2遮蔽体を導体から構成したときの前記円筒空洞共振器の共振周波数f1と無負荷Q1を測定し、該共振周波数f1と無負荷Q1から、前記円筒空洞共振器の電気的物性値及び寸法を求める第1の工程と、
前記第1、第2遮蔽体のうち少なくとも1つを、導体層を内層した誘電体基板、又は片側表面に導体層が設けられた誘電体基板から構成し、該遮蔽体を誘電体側が円筒空洞側となるように前記円筒導体に設けて円筒空洞共振器を構成し、該円筒空洞共振器の共振周波数f2と無負荷Q2を測定し、該共振周波数f2と無負荷Q2、及び前記第1の工程で求めた円筒空洞共振器の電気的物性値及び寸法から、前記導体層と前記誘電体との界面の電気的物性値を求める第2の工程とを具備することを特徴とする電気的物性値測定法。
A cylindrical cavity resonator in which openings at both ends of a cylindrical conductor are closed by first and second shields, and the resonance frequency of the cylindrical cavity resonator when the first and second shields are made of a conductor. a first step of measuring f1 and no-load Q1, and determining an electrical property value and dimensions of the cylindrical cavity resonator from the resonance frequency f1 and no-load Q1;
At least one of the first and second shields is composed of a dielectric substrate having a conductor layer as an inner layer, or a dielectric substrate having a conductor layer provided on one surface, and the shield side is a cylindrical cavity on the dielectric side. The cylindrical conductor is provided on the cylindrical conductor so as to be on the side, and the resonance frequency f2 and no-load Q2 of the cylindrical cavity resonator are measured. The resonance frequency f2, the no-load Q2, and the first A second step of obtaining an electrical property value of the interface between the conductor layer and the dielectric from the electrical property value and dimensions of the cylindrical cavity resonator obtained in the step. Value measurement method.
導体層が円形であり、その直径は円筒空洞の直径よりも大きいことを特徴とする請求項1記載の電気的物性値測定法。 2. The electrical property value measuring method according to claim 1, wherein the conductor layer is circular and has a diameter larger than that of the cylindrical cavity. 円筒導体の開口部と導体層との間に介装された誘電体の厚みが、0.3mm以下であることを特徴とする請求項1又は2記載の電気的物性値測定法。 The method for measuring an electrical property value according to claim 1 or 2, wherein the thickness of the dielectric interposed between the opening of the cylindrical conductor and the conductor layer is 0.3 mm or less. 円筒空洞共振器のTEモードの共振周波数fと無負荷Qを測定し、該共振周波数fと無負荷Qから、導体層と誘電体との界面の電気的物性値を求めることを特徴とする請求項1乃至3のうちいずれかに記載の電気的物性値測定法。 A TE-mode resonance frequency f and no-load Q of a cylindrical cavity resonator are measured, and an electrical property value of an interface between a conductor layer and a dielectric is obtained from the resonance frequency f and no-load Q. Item 4. An electrical property value measuring method according to any one of Items 1 to 3. 円筒空洞共振器のTE011モードの共振周波数fと無負荷Qを測定して、導体層と誘電体との界面の電気的物性値を求めることを特徴とする請求項4記載の電気的物性値測定法。 5. The electrical property value according to claim 4, wherein the TE 011 mode resonance frequency f and no-load Q of the cylindrical cavity resonator are measured to determine an electrical property value at the interface between the conductor layer and the dielectric. Measurement method. 円筒空洞の直径Dに対する高さHの寸法比D/Hが、1以上であることを特徴とする請求項1乃至5のうちいずれかに記載の電気的物性値測定法。 6. The electrical property value measuring method according to claim 1, wherein a dimensional ratio D / H of a height H to a diameter D of the cylindrical cavity is 1 or more. 円筒空洞共振器の温度を変化させ、該円筒空洞共振器の共振周波数fと無負荷Qの温度依存性を測定し、導体層と誘電体との界面の電気的物性値の温度依存性を求めることを特徴とする請求項1乃至6のうちいずれかに記載の電気的物性値測定法。 The temperature dependence of the resonance frequency f of the cylindrical cavity resonator and the unloaded Q is measured by changing the temperature of the cylindrical cavity resonator, and the temperature dependence of the electrical property value at the interface between the conductor layer and the dielectric is obtained. The electrical property value measuring method according to any one of claims 1 to 6.
JP2004187771A 2004-06-25 2004-06-25 Electrical property measurement method Expired - Fee Related JP4373857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004187771A JP4373857B2 (en) 2004-06-25 2004-06-25 Electrical property measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004187771A JP4373857B2 (en) 2004-06-25 2004-06-25 Electrical property measurement method

Publications (2)

Publication Number Publication Date
JP2006010492A JP2006010492A (en) 2006-01-12
JP4373857B2 true JP4373857B2 (en) 2009-11-25

Family

ID=35777916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004187771A Expired - Fee Related JP4373857B2 (en) 2004-06-25 2004-06-25 Electrical property measurement method

Country Status (1)

Country Link
JP (1) JP4373857B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836774B2 (en) * 2006-12-28 2011-12-14 株式会社神戸製鋼所 Metal plate performance evaluation method, metal plate performance evaluation device
KR102164927B1 (en) * 2019-06-17 2020-10-13 동의대학교 산학협력단 A Q measurement method of a lossy coupled cavity resonator

Also Published As

Publication number Publication date
JP2006010492A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
Janezic et al. Dielectric and conductor-loss characterization and measurements on electronic packaging materials
JP4941293B2 (en) Resonator, printed circuit board, and method of measuring complex dielectric constant
Cheng et al. W-band characterizations of printed circuit board based on substrate integrated waveguide multi-resonator method
JP4628116B2 (en) Conductivity measurement method
O'Brien et al. Miniaturization of microwave components and antennas using 3D manufacturing
Rasoulzadeh et al. Thickness measurement of thin layers with double E-shaped slots loaded in a microstrip line
JP3634966B2 (en) Method for measuring conductivity at metal layer interface
JP4726395B2 (en) Electrical property value measurement method
JP4373857B2 (en) Electrical property measurement method
JP4035024B2 (en) Dielectric constant measurement method
JP4530907B2 (en) Method for measuring dielectric properties of dielectric thin films
JP4485985B2 (en) Dielectric property measuring method and conductivity measuring method
JP3735501B2 (en) Method for measuring conductivity of metal layer
Joshi et al. Microstrip with dielectric overlay: variational analysis and validation
Mahant et al. HMSIW based highly selective filter for radar applications
CN115236143A (en) Planar microwave sensor loaded with complementary curve ring resonator structure
JP4157387B2 (en) Electrical property measurement method
JP4216739B2 (en) Electrical property value measuring method and measuring jig
JP4467418B2 (en) Dielectric constant measurement method
JP4530951B2 (en) Dielectric constant measurement method and open-ended half-wavelength coplanar line resonator
CN114660365A (en) 5G dual-band dielectric constant nondestructive measurement method of surface sensor based on double complementary open loops
Kulke et al. RF-Benchmark up to 40 GHz for various LTCC low loss tapes
Samad et al. Design of DS-CSRR based microwave sensor for efficient measurement of dielectric constant of materials
Hirayama et al. Measurements of Interface Conductivity of Copper-Clad Dielectric Substrates at Millimeter Wave Frequencies Using TE 02δ Mode Dielectric Rod Resonator Excited by NRD Guide
JP4698244B2 (en) Method for measuring electromagnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees