JP2006310361A - Thermoelement and manufacturing method thereof - Google Patents

Thermoelement and manufacturing method thereof Download PDF

Info

Publication number
JP2006310361A
JP2006310361A JP2005127726A JP2005127726A JP2006310361A JP 2006310361 A JP2006310361 A JP 2006310361A JP 2005127726 A JP2005127726 A JP 2005127726A JP 2005127726 A JP2005127726 A JP 2005127726A JP 2006310361 A JP2006310361 A JP 2006310361A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric material
atomic
seebeck coefficient
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005127726A
Other languages
Japanese (ja)
Other versions
JP4854215B2 (en
Inventor
Nobuyoshi Imaoka
伸嘉 今岡
Isao Morimoto
勲 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2005127726A priority Critical patent/JP4854215B2/en
Publication of JP2006310361A publication Critical patent/JP2006310361A/en
Application granted granted Critical
Publication of JP4854215B2 publication Critical patent/JP4854215B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelement having a high Seebeck coefficient, a large performance index, excellent impact resistance, superior thermal strain resistance, and superb moldability. <P>SOLUTION: The thermoelement is made of a compound. The compound is expressed by a general expression R<SB>x</SB>(M<SB>y</SB>Si<SB>1-y</SB>)<SB>(100-x)</SB>. In this case: R is at least one kind selected from rare earth elements containing Y; M is at least one kind selected from B, C, Al, P, Zn, As, Se, In, Sn, Sb, Te, Pb, and Bi; x is atom.%; y is an atom ratio; and 20≤x≤50 and 0.002≤y≤0.5 are met. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として−50℃〜100℃の温度領域、一般には室温付近で使用される、ペルチエ効果を利用した冷却装置、温度調節装置や、ゼーベック効果により温度差を用いて発電を行う発電装置、熱起電力を利用した熱電対や温度センサ等に用いられる熱電材料、及びその製造法に関する。   The present invention is mainly used in a temperature range of −50 ° C. to 100 ° C., generally in the vicinity of room temperature, a cooling device using the Peltier effect, a temperature control device, and a power generation device that generates power using a temperature difference by the Seebeck effect. The present invention relates to a thermoelectric material used for a thermocouple, a temperature sensor or the like using a thermoelectromotive force, and a manufacturing method thereof.

異種の半導体を接合して電気回路を形成し、直流電流を流すと一方の接合部で発熱、他方の接合部で吸熱現象が生じる。この現象はペルチエ効果と呼ばれる。ペルチエ効果を利用して対象物を電子的に冷却することを熱電冷却と呼び、これらの目的で構成されたデバイスを熱電冷却素子、あるいは一般にペルチエ素子と言う。また、2つの接合部間に温度差を生じさせると、温度差に比例した起電力が発生する。その現象をゼーベック効果と呼び、生じた起電力を利用して行う発電は、熱電発電と呼ばれている。さらに、異種の金属を接合して電気回路を形成し、2つの接合部間に生じる熱起電力を測定することにより、2つの接合部間の温度差を知るセンサを熱電対と呼ぶ。   When different types of semiconductors are joined to form an electric circuit and a direct current is passed, heat is generated at one junction and an endothermic phenomenon occurs at the other junction. This phenomenon is called the Peltier effect. Electronically cooling an object using the Peltier effect is called thermoelectric cooling, and a device configured for these purposes is called a thermoelectric cooling element, or generally a Peltier element. Further, when a temperature difference is generated between the two junctions, an electromotive force proportional to the temperature difference is generated. This phenomenon is called the Seebeck effect, and power generation using the generated electromotive force is called thermoelectric power generation. Further, a sensor that knows a temperature difference between two junctions by joining different kinds of metals to form an electric circuit and measuring a thermoelectromotive force generated between the two junctions is called a thermocouple.

ゼーベック効果を利用した本願発明でいう各種センサとは、熱電対のみならず、温度に1対1に対応する示強性量の変化(強度変数)を、温度差を電位差によって検知することで捉え、各種機能にフィードバックさせることを目的とするデバイス、モジュール、又はシステムのことである。
以上のような異種の金属あるいは半導体を接合した基本構造を持つ素子は総称して熱電素子、これに用いられる熱電性能の高い金属あるいは半導体は熱電材料と呼ばれている。
熱電冷却は、固体素子による冷却であるため、有害な冷媒ガスを用いる必要が無く、騒音発生もないうえ、局部冷却も可能であるという特徴を有する。さらに、電流方向の切り換えでペルチエ効果による加熱も可能であるため、精密な温度調節ができる。このような特徴を生かした用途としては、電子部品の冷却・精密温調、温度管理の大切なワインクーラ等の貯蔵庫があり、室温以下の低温で性能の高い熱電材料を利用すれば、フロン等の有害ガスを用いない冷蔵庫や冷凍冷蔵庫、車載用等のシートクーラの実現も可能である。
Various sensors referred to in the present invention using the Seebeck effect are not only a thermocouple, but also a change in intensity (intensity variable) corresponding to temperature one-to-one by detecting a temperature difference by a potential difference, A device, module, or system intended to be fed back to various functions.
Elements having a basic structure obtained by bonding different kinds of metals or semiconductors as described above are collectively referred to as thermoelectric elements, and metals or semiconductors having high thermoelectric performance used therefor are referred to as thermoelectric materials.
Since thermoelectric cooling is cooling by a solid element, there is no need to use harmful refrigerant gas, no noise is generated, and local cooling is also possible. Furthermore, since the heating by the Peltier effect is possible by switching the current direction, precise temperature control can be performed. Applications that take advantage of these features include storage of electronic components, such as cooling and precision temperature control, and wine coolers that are important for temperature control. If thermoelectric materials with high performance at low temperatures below room temperature are used, chlorofluorocarbon, etc. It is also possible to realize a refrigerator, a refrigerator, and a vehicle-mounted seat cooler that do not use any harmful gas.

他方、熱電発電は、工場、発電所、自動車等の熱機関の廃熱利用による発電、豊富な太陽エネルギーを利用した発電、或いは体温と外気の温度差を利用した熱電発電腕時計等のウエアラブルデバイス等、エネルギーの有効利用を可能にする。さらに、熱起電力が大きく抵抗が小さい熱電材料は、熱電対等高感度の温度センサとしても利用価値が高い。
熱電素子の性能が高いことは、通常、熱起電力(V)、ゼーベック係数(α)、ペルチエ係数(π)、トムソン係数(τ)、ネルンスト係数(Q)、エッティングスハウゼン係数(P)、電気伝導率(σ)、出力因子(PF)、性能指数(Z)、無次元性能指数(ZT)の何れかが高いか、熱伝導率(κ)、ローレンツ数(L)電気抵抗率(ρ)が低いことで表すことができる。これらの熱電素子の性能を各種熱電性能という。なお、ゼーベック係数は熱電能とも言う。
On the other hand, thermoelectric power generation includes wearable devices such as power generation using waste heat from heat engines such as factories, power plants and automobiles, power generation using abundant solar energy, or thermoelectric power watches using the temperature difference between body temperature and outside air, etc. , Enabling effective use of energy. Furthermore, a thermoelectric material having a large thermoelectromotive force and a small resistance has high utility value as a highly sensitive temperature sensor such as a thermocouple.
The high performance of thermoelectric elements usually means that the thermoelectromotive force (V), Seebeck coefficient (α), Peltier coefficient (π), Thomson coefficient (τ), Nernst coefficient (Q), Etchingshausen coefficient (P), The electrical conductivity (σ), the power factor (PF), the figure of merit (Z), the dimensionless figure of merit (ZT) is high, the thermal conductivity (κ), the Lorentz number (L), the electrical resistivity (ρ ) Is low. The performance of these thermoelectric elements is referred to as various thermoelectric performances. The Seebeck coefficient is also called thermoelectric power.

特に無次元性能指数(ZT)は、ZT=ασT/κ(ここで、Tは絶対温度である)で表され、熱電冷却における成績係数、熱電発電における変換効率等熱電変換エネルギー効率を決定する重要な要素である。そのため性能指数(Z=ασ/κ)の値が大きい熱電材料を用いて熱電素子を作製することにより、冷却及び発電の効率を高めることが可能となる。
即ち、熱電材料としては、ゼーベック係数(α)が大きく、電気伝導率(σ)が大きく、したがって出力因子(PF=ασ)が大きく、熱伝導率(κ)が低い材料が好ましい。また、ゼーベック係数(α)が大きく、電気伝導率と熱伝導率の比σ/κ(=1/TL)が大きい材料が好ましいと言い換えることもできる。
熱電発電の用途では、性能指数はもとより、出力因子の大きい材料が求められる場合がある。性能指数(Z)は、出力因子(PF=ασ)を熱伝導率(κ)で除した値であって、κが小さいと同じ出力因子であっても、性能指数が大きくなる。しかし、あまりκが小さいと、温度差のある部分に素子を挿入するので、熱抵抗が増大する。これが原因となって、システム全体が大きくなり、資本コストや運転コストが大きくなる問題点があった。
In particular, the dimensionless figure of merit (ZT) is expressed as ZT = α 2 σT / κ (where T is the absolute temperature), and determines the thermoelectric conversion energy efficiency such as coefficient of performance in thermoelectric cooling and conversion efficiency in thermoelectric power generation. It is an important element to do. Therefore, the efficiency of cooling and power generation can be increased by producing a thermoelectric element using a thermoelectric material having a large value of the figure of merit (Z = α 2 σ / κ).
That is, as the thermoelectric material, a material having a large Seebeck coefficient (α), a large electric conductivity (σ), a large output factor (PF = α 2 σ), and a low thermal conductivity (κ) is preferable. In other words, a material having a large Seebeck coefficient (α) and a large ratio of electrical conductivity to thermal conductivity σ / κ (= 1 / TL) is preferable.
In thermoelectric power generation applications, materials with high output factors as well as performance indexes may be required. The figure of merit (Z) is a value obtained by dividing the output factor (PF = α 2 σ) by the thermal conductivity (κ). When the value of κ is small, the figure of merit becomes large even if the output factor is the same. However, if κ is too small, an element is inserted in a portion having a temperature difference, so that the thermal resistance increases. Due to this, there is a problem that the whole system becomes large and the capital cost and the operating cost become large.

温度差による熱起電力を利用した各種センサとして用いられる、優れた熱電材料としては、検出感度や精度を高める上で、正のゼーベック係数を有する熱電材料と負のゼーベック係数を有する熱電材料が組み合わされて利用されると有利である。その1℃当たりの熱起電力(=相対熱電能の絶対値)は、室温で50μV/K以上と高いことが求められ、したがって正側、負側それぞれの熱電材料のゼーベック係数(=絶対熱電能)の絶対値は、少なくとも25μV/K以上であることが求められる。銅−コンスタンタン(室温付近で1℃当たりの熱起電力〜50μV/K)、アルメル−クロメル(室温付近で1℃当たりの熱起電力〜41μV/K)、白金−白金ロジウム(室温付近で1℃当たりの熱起電力〜7μV/K)等の金属系熱電材料が常用されるが、貴金属のみで構成されていたり、多成分系の合金を使用するため、材料費や安定性能を維持するための製造コストが高い等の問題があった。   An excellent thermoelectric material used as various sensors using thermoelectromotive force due to temperature difference is a combination of a thermoelectric material having a positive Seebeck coefficient and a thermoelectric material having a negative Seebeck coefficient in order to increase detection sensitivity and accuracy. It is advantageous to be used. The thermoelectromotive force per 1 ° C. (= absolute value of relative thermoelectric power) is required to be as high as 50 μV / K or more at room temperature, and therefore the Seebeck coefficient (= absolute thermoelectric power) of the positive and negative thermoelectric materials. ) Is required to be at least 25 μV / K or more. Copper-constantan (thermal electromotive force per 1 ° C. near room temperature to 50 μV / K), alumel-chromel (thermal electromotive force per 1 ° C. near room temperature to 41 μV / K), platinum-platinum rhodium (1 ° C. near room temperature) Metal thermoelectric materials such as thermoelectromotive force per unit (up to 7μV / K) are commonly used, but they are composed of precious metals only or use multi-component alloys to maintain material costs and stable performance. There were problems such as high manufacturing costs.

以上のように熱電材料においては、まず絶対値が25μV/K以上、好ましくは50μV/K以上の高いゼーベック係数、それに伴って向上する高い出力因子を達成し、性能指数を向上せしめることが必要であるが、それ以外にも、耐衝撃性、耐熱歪性、成形加工特性も同時に要求される。
熱電発電素子は、高温側と低温側の温度差を利用して発電し、また、熱電冷却素子は電流により、低温側から高温側へ熱量を移動することによって機能を果たすので、上述のように、温度差のある部分に素子が挿入されることになる。したがって、低温側と高温側で熱膨張差が生じ、素子内に熱せん断応力が発生する。
As described above, in thermoelectric materials, it is first necessary to achieve a high Seebeck coefficient with an absolute value of 25 μV / K or higher, preferably 50 μV / K or higher, and a high output factor that increases accordingly, thereby improving the figure of merit. However, other than that, impact resistance, heat distortion resistance and molding characteristics are also required.
The thermoelectric power generation element generates power using the temperature difference between the high temperature side and the low temperature side, and the thermoelectric cooling element functions by transferring the amount of heat from the low temperature side to the high temperature side by current. Then, an element is inserted into a portion having a temperature difference. Therefore, a difference in thermal expansion occurs between the low temperature side and the high temperature side, and a thermal shear stress is generated in the element.

また、現在熱電冷却素子としては、BiTe半導体を利用するが、はんだを高温側での電気的接合に用いた場合、はんだ組織の粒塊の粗大化が起こり、不均一な熱せん断応力が素子内に生じる。これらのせん断応力の発生によって、熱サイクルによる熱電半導体素子の寿命が極端に劣化する。
従来、用途に応じ、各種熱電性能を犠牲にしても、せん断応力に比較的強く、劈開性のない溶融多結晶体や粉末焼結体の熱電半導体材料を用いること、液体金属等軟らかい電極材料を用いてせん断応力を緩和した接合を行うこと、さらにスケルトン構造等応力緩和のための様々な素子構造が工夫され提案されてきた。しかしながら、これらの提案では工程や構造が複雑となるため、コストパフォーマンスが劣る問題点があった。上記熱せん断応力に満足に耐えうる熱電材料の出現が望まれている。
In addition, Bi 2 Te 3 semiconductors are currently used as thermoelectric cooling elements. However, when solder is used for electrical joining on the high temperature side, coarsening of the solder structure occurs, resulting in uneven thermal shear stress. Occurs in the device. Due to the generation of these shear stresses, the life of the thermoelectric semiconductor element due to the thermal cycle is extremely deteriorated.
Conventionally, using a thermoelectric semiconductor material such as a melted polycrystalline body or powder sintered body that is relatively strong in shear stress and not cleaved at the expense of various thermoelectric performance, depending on the application, soft electrode materials such as liquid metals Various element structures for stress relaxation such as a skeleton structure have been devised and proposed by using them to relax the shear stress. However, these proposals have a problem that the cost performance is inferior because the process and structure are complicated. The appearance of a thermoelectric material that can withstand the above-described thermal shear stress is desired.

これらの問題は、従来から熱電素子として実用化されている材料のほとんどが、劈開性があって脆いBiTe系に各種物質を結晶構造内に、ドープした多元系半導体材料であることから生じたものである。
この実用化されているBiTe系材料の脆さに起因する問題点としては、上記熱せん断応力に弱い点のほかに、耐衝撃性が不足していたり、切削加工などの機械加工性に乏しい点などが挙げられる。
他方、上記の脆い材料に変わる熱電材料として、YbAlやCePd、CeRhAs等希土類元素を含む4f電子系強相関系材料と言われる材料が検討されてきた。室温より低温の領域で高い熱電特性を示すものが見出され、特に10〜200Kの低温領域で機能する熱電材料としてはその実用化が期待されているが、室温付近では良い特性が得られていない。また、貴金属類等高価な元素を含むことも実用化を妨げている一つの要因である。
These problems are caused by the fact that most of the materials that have been put to practical use as thermoelectric elements are multi-element semiconductor materials doped with various substances in the crystal structure of Bi 2 Te 3 series, which is cleaved and brittle. It has occurred.
The problems caused by the brittleness of the Bi 2 Te 3 material that has been put to practical use include, in addition to the above-mentioned weakness to thermal shear stress, lack of impact resistance, and machinability such as cutting. There are some points that are poor.
On the other hand, a material called a 4f electron strongly correlated material containing rare earth elements such as YbAl 3 , CePd 3 , and CeRhAs has been studied as a thermoelectric material that changes to the brittle material. A material showing high thermoelectric properties in a region lower than room temperature has been found, and practical use is expected as a thermoelectric material functioning particularly in a low temperature region of 10 to 200 K. However, good properties have been obtained near room temperature. Absent. Also, the inclusion of expensive elements such as precious metals is one factor that hinders practical application.

安価な元素を用いて、しかも、電気伝導度が高いなどの金属的性質を有するために、既存の熱電半導体にはない優れた加工性、耐衝撃性及び熱サイクルに対する寿命を備えた熱電材料の出現が期待されている。
梶川委員長、電気学会技術報告第624号、1997、電気学会編、p.35
A thermoelectric material with excellent workability, impact resistance, and life against thermal cycles not found in existing thermoelectric semiconductors because it uses inexpensive elements and has metallic properties such as high electrical conductivity. Appearance is expected.
Chairman Tsujikawa, IEEJ Technical Report No. 624, 1997, IEEJ, p. 35

本発明の課題は、主として−50℃〜100℃の温度領域で使用した場合、熱電素子としての高い性能が期待できる、即ち、ゼーベック係数(α)が高く、出力因子(PF)の大きな熱電材料及びその製造方法を提供すること、それと同時に、熱電半導体の脆さに起因する上記諸問題、例えば、機械加工性の乏しさを解決し、高い性能指数(Z)及び高い電気伝導度を有する、熱電発電又は熱電冷却用熱電素子用に特に適した熱電材料及びその製造方法を提供することである。   The subject of the present invention is that when used mainly in the temperature range of −50 ° C. to 100 ° C., high performance as a thermoelectric element can be expected, that is, a thermoelectric material having a high Seebeck coefficient (α) and a large output factor (PF). And the manufacturing method thereof, and at the same time, the above problems caused by the brittleness of the thermoelectric semiconductor, for example, the poor machinability, and having a high figure of merit (Z) and high electrical conductivity, A thermoelectric material particularly suitable for a thermoelectric element for thermoelectric power generation or thermoelectric cooling and a method for producing the thermoelectric material.

上記の課題を解決するために、本発明者らは、4f元素とSiを主成分とする材料の組成と熱電特性の関係を検討した結果、熱電特性の優れた3元系材料の組成範囲と結晶構造、さらに成形加工特性等に優れた金属的な性質を示す組成とその範囲を見出して、本発明の課題を達成した。同時に、加圧焼結を行うことによって、さらに、微粉砕を行ってから加圧焼結を行うことによって、高い熱電特性を有する材料とする製造法を見出した。
即ち、本発明は、以下のとおりである。
In order to solve the above-mentioned problems, the present inventors have studied the relationship between the composition of the material mainly composed of 4f element and Si and the thermoelectric characteristics, and as a result, the composition range of the ternary material having excellent thermoelectric characteristics and The present invention has achieved the object of the present invention by finding a composition and a range showing metallic properties excellent in crystal structure and molding processing characteristics. At the same time, the inventors have found a method for producing a material having high thermoelectric properties by performing pressure sintering, and further performing pressure sintering after fine pulverization.
That is, the present invention is as follows.

(1)一般式R(MSi1−y(100−x)(但し、Rは、Yを含む希土類元素から選ばれた少なくとも一種、Mは、B、C、Al、P、Zn、As、Se、In、Sn、Sb、Te、Pb及びBiから選ばれた少なくとも1種、xは原子%、yは原子比で、20≦x≦50、0.002≦y≦0.5))で表される化合物からなる熱電材料。
(2)主相が正方晶又は斜方晶の結晶構造を有している上記(1)に記載の熱電材料。
(3)電気伝導度が0.2MS/m以上である上記(1)又は(2)に記載の熱電材料。
(4)R、M及びSi金属を合金化し、0.01〜10GPaで加圧焼結することを特徴とする上記(1)〜(3)のいずれかに記載の熱電材料の製造方法。
(5)R、M及びSi金属を合金化し、平均粒径0.1〜10μmに粉砕し、次いで0.01〜10GPaで加圧焼結することを特徴とする上記(1)〜(3)のいずれかに記載の熱電材料の製造方法。
(1) General formula R x (M y Si 1- y) (100-x) ( where, R represents at least one, M is selected from rare earth elements including Y, B, C, Al, P, Zn , As, Se, In, Sn, Sb, Te, Pb and Bi, x is atomic%, y is an atomic ratio, 20 ≦ x ≦ 50, 0.002 ≦ y ≦ 0.5 ) A thermoelectric material comprising the compound represented by ) .
(2) The thermoelectric material according to (1), wherein the main phase has a tetragonal or orthorhombic crystal structure.
(3) The thermoelectric material according to (1) or (2), wherein the electrical conductivity is 0.2 MS / m or more.
(4) The method for producing a thermoelectric material according to any one of (1) to (3), wherein R, M, and Si metal are alloyed and pressure-sintered at 0.01 to 10 GPa.
(5) The above (1) to (3), wherein R, M and Si metals are alloyed, ground to an average particle size of 0.1 to 10 μm, and then pressure sintered at 0.01 to 10 GPa. The manufacturing method of the thermoelectric material in any one of.

本発明によると、主として−50℃〜100℃の温度領域で、ゼーベック係数(α)が高く、出力因子(PF)が大きく、高い性能指数(Z)及び高い電気伝導度を有する熱電材料を提供することができる。   According to the present invention, a thermoelectric material having a high Seebeck coefficient (α), a large output factor (PF), a high figure of merit (Z), and a high electrical conductivity mainly in a temperature range of −50 ° C. to 100 ° C. can do.

本発明の熱電材料は、一般式R(MSi1−y(100−x)(但し、Rは、Yを含む希土類元素から選ばれた少なくとも一種、Mは、B、C、Al、P、Zn、As、Se、In、Sn、Sb、Te、Pb及びBiから選ばれた少なくとも1種、xは原子%、yは原子比で、20≦x≦50、0.002≦y≦0.5)で表される化合物からなる。
一般式中のRとは、Yを含む希土類元素のことであり、即ち、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた少なくとも1種を指す。中でも、Ce、Sm及びYbから選ばれた少なくとも1種が好ましく、より好ましくはCe及びYbから選ばれた少なくとも1種である。
The thermoelectric material of the present invention has a general formula R x (M y Si 1-y ) (100-x) (where R is at least one selected from rare earth elements including Y, M is B, C, Al , P, Zn, As, Se, In, Sn, Sb, Te, Pb and Bi, x is atomic%, y is an atomic ratio, 20 ≦ x ≦ 50, 0.002 ≦ y ≦ 0.5).
R in the general formula is a rare earth element containing Y, that is, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and It refers to at least one selected from Lu. Among these, at least one selected from Ce, Sm and Yb is preferable, and at least one selected from Ce and Yb is more preferable.

本発明の化合物中で、Ce、Sm及びYbの各元素は通常3価イオンとなるが、そのときの4f軌道の電子数はそれぞれ、1個、5個、13個である。しかし、Ce3+の4fとYb3+の4f13のエネルギー準位はフェルミ準位に接近しており、またSm3+とSm2+の電子状態のエネルギーがほぼ等しいので、他種の希土類3価イオン状態に比べると、これら3種の元素の3価イオン状態はエネルギー的に不安定である。したがって、Ce3+、Yb3+、Sm3+の4f状態は伝導電子と混成しやすく、Ceでは3価に4価が、SmとYbでは3価に2価が僅かに混ざることになる。このc−f混成効果は、近藤効果を通して希土類イオンの磁気モーメントを失わせる等の効果により、強相関系材料特有な巨大熱電能を誘起させるのである。 In the compound of the present invention, each element of Ce, Sm, and Yb is usually a trivalent ion, and the number of electrons in the 4f orbit at that time is 1, 5, and 13, respectively. However, the energy levels of Ce 3+ 4f 1 and Yb 3+ 4f 13 are close to the Fermi level, and the energy of the electronic states of Sm 3+ and Sm 2+ are almost equal. Compared to the state, the trivalent ion states of these three elements are energetically unstable. Accordingly, the 4f state of Ce 3+ , Yb 3+ , and Sm 3+ tends to be mixed with conduction electrons, and Ce is trivalent and tetravalent, and Sm and Yb is slightly mixed with trivalent and divalent. This cf hybrid effect induces a giant thermoelectric power peculiar to strongly correlated materials due to the effect of losing the magnetic moment of rare earth ions through the Kondo effect.

以上から、Ce、Sm及びYbは他の元素に比べて、4f電子の効果でゼーベック係数を上昇させる働きが顕著であり、中でも4f軌道に電子が1個存在するCe、ホールが1個存在するYbが含まれておればc−f混成が容易に実現され、最も高い熱電性能が発揮される。したがって、好ましいRの成分はCe、Sm及びYbであり、より好ましい成分はCe及びYbである。中でも安価なCeは最も好ましい。
本発明の熱電材料中のRの含有量は20原子%以上、50原子%以下である。Rの含有量が20原子%未満であると、室温中心の温度範囲でゼーベック係数(α)が小さい。Rの含有量が50原子%を超える場合、ゼーベック係数が大きく低下するのに加えて、特にLaやCeを含む熱電材料の酸化劣化が顕著になり、耐久性の劣る材料となる。特に好ましいRの含有量の範囲は、30原子%以上、40原子%以下である。
From the above, Ce, Sm, and Yb have a remarkable effect of increasing the Seebeck coefficient by the effect of 4f electrons, compared to other elements, and in particular, there is one Ce and one hole in the 4f orbit. If Yb is contained, cf hybridization is easily realized and the highest thermoelectric performance is exhibited. Accordingly, preferred R components are Ce, Sm and Yb, and more preferred components are Ce and Yb. Of these, inexpensive Ce is most preferable.
The content of R in the thermoelectric material of the present invention is 20 atomic% or more and 50 atomic% or less. If the R content is less than 20 atomic%, the Seebeck coefficient (α) is small in the temperature range centered at room temperature. When the R content exceeds 50 atomic%, the Seebeck coefficient is greatly reduced, and in particular, the oxidative deterioration of a thermoelectric material containing La and Ce becomes remarkable, resulting in a material with poor durability. The particularly preferable range of the R content is 30 atomic% or more and 40 atomic% or less.

M成分は、B、C、Al、P、Zn、As、Se、In、Sn、Sb、Te,Pb及びBiから選ばれた少なくとも1種である。
本発明の熱電材料中のM成分の含有量は必ずSiの含有量以下である。全体に対するM成分の含有量の範囲は、20≦x≦50、0.002≦y≦0.5のときの、式y(100−x)の範囲を計算することにより求められ、その値は0.1〜40原子%となる。
M成分は、主に性能指数(Z)を向上させるために熱伝導度を下げる目的で含有させるが、Siの含有量を超えて含むと電気伝導度が増すことがあるが、ゼーベック係数が低下する。また、M成分がSiサイトにランダムに置換して含有する場合は、特に熱伝導度の低下が顕著となり、性能指数(Z)を初めとする熱電性能が向上する。M成分は全体の0.1原子%未満であると添加効果がなく、40原子%を超えると、ゼーベック係数が低下して性能指数(Z)が低下する。
The M component is at least one selected from B, C, Al, P, Zn, As, Se, In, Sn, Sb, Te, Pb, and Bi.
The content of the M component in the thermoelectric material of the present invention is always less than or equal to the Si content. The range of the content of the M component relative to the whole is obtained by calculating the range of the formula y (100−x) when 20 ≦ x ≦ 50 and 0.002 ≦ y ≦ 0.5, and the value is 0.1 to 40 atomic%.
The M component is included mainly for the purpose of lowering the thermal conductivity in order to improve the figure of merit (Z), but if it exceeds the Si content, the electrical conductivity may increase, but the Seebeck coefficient will decrease. To do. Further, when the M component is randomly substituted at the Si site, the thermal conductivity is particularly lowered, and the thermoelectric performance including the figure of merit (Z) is improved. If the M component is less than 0.1 atomic% of the whole, there is no effect of addition, and if it exceeds 40 atomic%, the Seebeck coefficient decreases and the figure of merit (Z) decreases.

ハンダとの親和性が非常に高いBi、Te、Pb及びSnの4元素を除く各M成分を含有する本発明の熱電材料は、接合にハンダを用いたモジュールにおいて、100℃を超える熱サイクルの激しい用途で特に好ましく用いることができる。なお、M成分の中に10原子%以下であれば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ag、Cu、Hf、Ta、W等の金属元素が含有されていてもよい。これらの元素は、電気伝導度を上げる目的で、悪影響を与えない範囲で添加することができる。
本発明の熱電材料全体に対するSiの含有量の範囲は、20≦x≦50、0.002≦y≦0.5のときの式(1−y)(100−x)の範囲を計算することによって求められ、その値は25原子%以上、79.84原子%以下である。Siの含有量が25原子%未満であると、ゼーベック係数(α)が極端に悪化する。Siの含有量が79.84原子%を超えると、電気伝導度及びパワーファクタが低下する。特に好ましいSiの含有量の範囲は30原子%以上、70原子%以下である。
The thermoelectric material of the present invention containing each M component excluding the four elements of Bi, Te, Pb and Sn, which has a very high affinity with solder, has a thermal cycle exceeding 100 ° C. in a module using solder for bonding. It can be particularly preferably used in severe applications. In addition, if it is 10 atomic% or less in M component, metal elements, such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ag, Cu, Hf, Ta, W, etc. May be contained. These elements can be added in a range that does not adversely affect for the purpose of increasing electrical conductivity.
The range of the Si content with respect to the entire thermoelectric material of the present invention is to calculate the range of the formula (1-y) (100-x) when 20 ≦ x ≦ 50 and 0.002 ≦ y ≦ 0.5. And the value is 25 atomic% or more and 79.84 atomic% or less. When the Si content is less than 25 atomic%, the Seebeck coefficient (α) is extremely deteriorated. If the Si content exceeds 79.84 atomic%, the electrical conductivity and the power factor decrease. A particularly preferable Si content range is 30 atomic% or more and 70 atomic% or less.

M成分とSiとの合計の含有量に関しては、50〜80原子%、好ましくは60〜70原子%である。M成分とSiとの合計の含有量が50原子%未満であると、耐酸化性に乏しく、80原子%を超えると電気伝導度が極端に低下する。
本発明において、一層高いゼーベック係数と耐酸化性を得るためには、熱電材料の主相の結晶構造は正方晶又は斜方晶であることが好ましい。ここに主相とは、本発明の全熱電材料のうち50体積%以上占有する部分のことを言う。主相の結晶構造を決定するのに際しては、X線回折法を用いる。主相の定量的な量比を知るためには、X線解析法とEPMAを組み合わせればよい。
The total content of the M component and Si is 50 to 80 atomic%, preferably 60 to 70 atomic%. When the total content of the M component and Si is less than 50 atomic%, the oxidation resistance is poor, and when it exceeds 80 atomic%, the electrical conductivity is extremely lowered.
In the present invention, in order to obtain a higher Seebeck coefficient and oxidation resistance, the crystal structure of the main phase of the thermoelectric material is preferably tetragonal or orthorhombic. Here, the main phase refers to a portion that occupies 50% by volume or more of the total thermoelectric material of the present invention. In determining the crystal structure of the main phase, an X-ray diffraction method is used. In order to know the quantitative quantity ratio of the main phase, an X-ray analysis method and EPMA may be combined.

例えば、本発明のCe33(Al0.05Si0.9567組成((100−x)=67)の材料は、通常の方法、例えば、常圧下で溶製した場合、ほぼ100体積%がCe(Al0.05Si0.95組成のCeSi型の正方晶系熱電材料である。この場合、(100−x)>67であると、立方晶系のSi、Al又は(Si+Al)副相が混入し、ゼーベック係数は上昇するが、電気伝導度が小さくなる。副相が50体積%を超えるか、(100−x)が80を超えると、性能指数が極端に低下する。また上記の方法で溶製した場合、(100−x)<67であると、斜方晶のCe(Al,Si)副相が生じるが、大きく熱電特性は変化しない。しかし、(100−x)が50を下回ると、耐酸化性が劣る。 For example, the material of Ce 33 (Al 0.05 Si 0.95 ) 67 composition ((100−x) = 67) of the present invention is almost 100% by volume when melted under a normal method, for example, under normal pressure. Is a CeSi 2 type tetragonal thermoelectric material of Ce (Al 0.05 Si 0.95 ) 2 composition. In this case, when (100−x)> 67, cubic Si, Al, or (Si + Al) subphase is mixed and the Seebeck coefficient increases, but the electrical conductivity decreases. When the subphase exceeds 50% by volume or (100−x) exceeds 80, the figure of merit is extremely lowered. Further, in the case of melting by the above method, if (100−x) <67, an orthorhombic Ce (Al, Si) subphase is generated, but the thermoelectric characteristics do not change greatly. However, when (100-x) is less than 50, the oxidation resistance is inferior.

本発明の熱電材料は、電気伝導度が0.2MS/m以上が好ましく、より好ましく0.5MS/m以上である。その上限値は30MS/mである。M成分によっては、Ceの電気伝導度1.3MS/mを大きく超えることがあり、この場合は成型加工性の観点から、さらに好ましい材料となる。
金属的な性質を有した本発明のCe−M−Si組成の熱電材料は、従来のBi−Te系熱電材料とは異なる輸送特性をもつ。Bi−Te系熱電材料は、耐衝撃性、耐熱歪性及び成形加工特性に難点があり、さらにせん断応力の発生やハンダとの反応によって、熱サイクルによる熱電半導体素子の寿命が劣化する等幾つかの問題を抱え、それらは全てBi−Te系熱電材料が半導体材料であることに起因する同根の問題である。Bi−Teは電気伝導度が0.2MS/m未満の半導体材料であることに起因して、熱電材料に要求される耐衝撃性、耐熱歪性、成形加工特性等が不十分である。
The thermoelectric material of the present invention preferably has an electric conductivity of 0.2 MS / m or more, more preferably 0.5 MS / m or more. The upper limit is 30 MS / m. Depending on the M component, the electrical conductivity of Ce may greatly exceed 1.3 MS / m. In this case, the material is more preferable from the viewpoint of moldability.
The thermoelectric material of Ce-M-Si composition of the present invention having metallic properties has transport properties different from those of conventional Bi-Te based thermoelectric materials. Bi-Te-based thermoelectric materials have drawbacks in impact resistance, thermal strain resistance, and molding characteristics, and further, the life of thermoelectric semiconductor elements due to thermal cycles deteriorates due to the generation of shear stress and reaction with solder. These problems are all rooted in the fact that the Bi-Te thermoelectric material is a semiconductor material. Since Bi-Te is a semiconductor material having an electric conductivity of less than 0.2 MS / m, the impact resistance, heat distortion resistance, molding process characteristics, etc. required for the thermoelectric material are insufficient.

本発明の熱電材料が0.2MS/m以上の電気伝導度を有する場合、本発明の組成範囲に入る熱電材料は金属的な材料であるから、成型加工に必要とされる程度の展性や延性を十分に保つ。ハンダと親和性の高いBi、Teを主成分とせず、脆い半導体ではなくて金属的である本発明の熱電材料用いた熱電素子であれば、上記の問題は一挙に、抜本的に解決ができる。
次に、本発明の熱電材料の製造法について説明するが、特にこれらに限定されるものではない。代表的な本発明のR−M−Si材料の製造法中で用いられる製造工程として、(1)合金化、(2)粉砕・分級、(3)成形、(4)切削・塑性加工について、以下に説明する。本発明の材料は、例えば(1)→(4)、(1)→(3)→(4)、(1)→(2)→(3)→(4)の工程を経て製造される。
When the thermoelectric material of the present invention has an electric conductivity of 0.2 MS / m or more, the thermoelectric material that falls within the composition range of the present invention is a metallic material. Maintain sufficient ductility. The above problems can be drastically solved by using a thermoelectric element using the thermoelectric material of the present invention, which does not contain Bi and Te, which are highly compatible with solder, as a main component and is not a brittle semiconductor but metallic. .
Next, although the manufacturing method of the thermoelectric material of this invention is demonstrated, it does not specifically limit to these. As a manufacturing process used in a manufacturing method of a typical R-M-Si material of the present invention, (1) alloying, (2) pulverization / classification, (3) molding, (4) cutting / plastic processing, This will be described below. The material of the present invention is manufactured through, for example, steps (1) → (4), (1) → (3) → (4), (1) → (2) → (3) → (4).

(1)合金化
R−M−Si合金の製造法としては、R、M及びSi金属を高周波により溶解し、鋳型等に鋳込む高周波溶解法、銅等のボートに金属成分を仕込み、アーク放電により溶かし込むアーク溶解法、アーク溶解した溶湯を水冷した鋳型に一気に落とし込むドロップキャスト法、高周波溶解した溶湯を、回転させた銅ロール上に吹き付け或いは流し込みリボン状の合金を得る超急冷法又はロール回転法、高周波溶解した溶湯をガスや液体で噴霧して合金粉体を得るガスアトマイズ法、全て又は一部の構成元素の酸化物原料から出発して、酸化物を還元させながら固相拡散或いは反応させて合金を作製するR/D法、各金属成分単体及び又は合金をボールミル等で微粉砕しながら反応させるメカニカルアロイング法、上記何れかの方法で得た合金を水素雰囲気下で加熱し、一旦R及び又は他の構成元素の水素化物と合金相に分解し、この後高温下で水素ガス分圧を低くして水素を追い出しながら再結合させ合金化するHDDR法のいずれを用いてもよい。
(1) Alloying As a manufacturing method of RM-Si alloy, R, M, and Si metal are melted by high frequency, high frequency melting method in which the metal is cast into a mold, etc., metal components are charged in a boat such as copper, and arc discharge Arc melting method that melts by melt, drop cast method that melts the melted arc melt into a water-cooled mold at once, super rapid quenching method or roll rotation that blows or pours molten metal melted on a rotating copper roll to obtain a ribbon-like alloy Starting from oxide raw materials for all or part of the constituent elements, solid phase diffusion or reaction while reducing oxides. R / D method for producing an alloy, mechanical alloying method in which each metal component and / or alloy is reacted while being finely pulverized with a ball mill, etc. The obtained alloy is heated in a hydrogen atmosphere, once decomposed into R and / or other constituent element hydrides and an alloy phase, and then recombined with low hydrogen gas partial pressure at low temperatures to expel hydrogen. Any of the HDDR methods can be used.

M成分の種類と製造方法によっては、仕込みの組成比と出来上がりの組成比が異なっている場合がある。例えば、蒸気圧の高いBi、Sb、Zn、TeなどをM成分として用い、アーク溶解法や高周波溶解法などの製造法のうち大きな溶解室中で高温に晒して溶解するような工程を含む方法を選ぶと、M成分が気化して合金中から散逸するため、予めM成分を多めに仕込んでおくなどの調整が必要となる。蒸気圧が高く気化して失われる場合のほかに、希土類元素などがるつぼなどの溶解容器と反応したり、系中の酸素と反応したりして失われる場合もあり、以上の損失を加味した上で仕込み組成比を決定しなければならない。   Depending on the type of M component and the production method, the composition ratio of the preparation may be different from the composition ratio of the finished product. For example, a method including a step of using Bi, Sb, Zn, Te or the like having a high vapor pressure as an M component and dissolving by exposure to a high temperature in a large melting chamber in a manufacturing method such as an arc melting method or a high frequency melting method. If M is selected, the M component is vaporized and dissipated from the alloy. Therefore, it is necessary to make adjustments such as adding a large amount of the M component in advance. In addition to the loss due to vaporization due to high vapor pressure, rare earth elements may be lost due to reaction with melting vessels such as crucibles or with oxygen in the system. The charge composition ratio must be determined above.

高周波溶解法、アーク溶解法を用いた場合、作製した合金は、超急冷法、メカニカルアロイング法等を用いた場合に比べ、結晶粒径が大きく結晶性が良好であるが、原料となる金属元素の組み合わせ、組成比により、副相が分相しやすく、合金作製後、均質化のための長時間の熱処理が必要な場合がある。
また超急冷法やロール回転法を用いた場合は、微細な結晶粒が得られ、条件によってはサブミクロンの粒子も調製できる。但し、冷却速度が大きい場合には、合金の非晶質化が起こり、熱電特性が低下することがある。この場合も合金調製後の焼鈍は有効である。
ドロップキャスト法は、両者の中間の性質・微構造を備えた合金を得ることのできる方法であり、合金組成によっては、熱処理時間が極端に短縮できる場合があり、優れた生産性を有した方法のひとつである。
When the high frequency melting method or arc melting method is used, the produced alloy has a larger crystal grain size and better crystallinity than the case of using the ultra-quenching method, mechanical alloying method, etc. Depending on the combination of elements and the composition ratio, the secondary phase is likely to be phase-separated, and a long-time heat treatment for homogenization may be required after the alloy is produced.
In addition, when a rapid quenching method or a roll rotation method is used, fine crystal grains can be obtained, and submicron particles can be prepared depending on conditions. However, when the cooling rate is high, the alloy may become amorphous, and the thermoelectric characteristics may deteriorate. Also in this case, annealing after the alloy preparation is effective.
The drop cast method is a method that can obtain an alloy having intermediate properties and microstructure between the two. Depending on the alloy composition, the heat treatment time can be extremely shortened, and the method has excellent productivity. It is one of.

ガスアトマイズ法で得た合金は球状の形態を取ることが多く、微粉体から粗粉体まで調製することが可能である。この場合も条件によっては焼鈍を行い、結晶性を良好にすることが必要となる。
R/D法、メカニカルアロイング法、HDDR法により調製した合金は、微細な結晶粒を有しており、組成的に均質な窒化粉体を得るため、また単位体積当たりの界面の面積を増やして熱伝導度を抑え熱電特性を向上させるために、これらの製造法を用いるのは特に効果的である。
An alloy obtained by the gas atomization method often takes a spherical form and can be prepared from a fine powder to a coarse powder. Also in this case, it is necessary to perform annealing to improve the crystallinity depending on the conditions.
Alloys prepared by the R / D method, mechanical alloying method, and HDDR method have fine crystal grains, and in order to obtain a compositionally uniform nitrided powder, the area of the interface per unit volume is increased. In order to suppress thermal conductivity and improve thermoelectric properties, it is particularly effective to use these manufacturing methods.

(2)粉砕・分級
上記(1)で高周波溶解法、アーク溶解法、ドロップキャスト法等溶製した材料は、そのまま或いは熱処理した後、切削/塑性加工を施し熱電材料として活用できるが、一般に結晶粒が大きく、既存のBiTe系材料よりは機械的強度が高いものの、耐衝撃性の更なる向上が求められる場合がある。そのため、一旦粉砕及び/又は分級を施してから、焼結することが好ましい。粉砕及び/又は分級後、焼結して単位体積当たり多くの粒界を導入して、機械的強度を向上させることは有効である。また、そのようにして材料内に導入された粒界がファノン散乱中心として機能する場合、熱伝導度が低下するためZが向上して好ましい。
(2) Pulverization / Classification The material melted in (1) above, such as high-frequency melting method, arc melting method, drop casting method, etc. can be used as a thermoelectric material by cutting or plastic working after it is heat-treated. Although the grains are large and the mechanical strength is higher than that of the existing Bi 2 Te 3 series material, further improvement in impact resistance may be required. For this reason, it is preferable to sinter after first grinding and / or classification. After grinding and / or classification, it is effective to improve the mechanical strength by sintering and introducing many grain boundaries per unit volume. Further, when the grain boundary thus introduced into the material functions as a fanon scattering center, Z is improved because the thermal conductivity is lowered.

本発明の材料の粉砕は、ジョークラッシャ、ハンマー、スタンプミル、ロータミル、ピンミル、カッターミル、コーヒーミル等を主に用いて粗粉砕し、回転ボールミル、振動ボールミル、遊星ボールミル、ウェットミル、ジェットミル、ピンミル、手動又は自動乳鉢等を主に用いて微粉砕するが、通常それらの粉砕機を組み合わせて用いることが多い。
また、粉砕の後、ふるい、振動式あるいは音波式分級機、サイクロン等を用いて分級を行い、適度な粒度調整を行うことも、最終的により均質な微構造を形成するために有効である。粒径は0.05〜100μm内で揃えることが好ましく、100μmを超えると粒界効果が小さく、0.05μm未満場合は電気伝導度が低下する傾向がある。特に平均粒径0.1〜10μmに微粉砕して調製すると単位体積当たり、多くの粒界を導入することができて熱伝導度を低減でき、かつ結晶性も良好に保たれ電気伝導度も劣化しないので、各種熱電性能が向上するので好ましい。
The material of the present invention is pulverized mainly using a jaw crusher, a hammer, a stamp mill, a rotor mill, a pin mill, a cutter mill, a coffee mill, etc. A pin mill, manual or automatic mortar is mainly used for fine pulverization, but usually these pulverizers are often used in combination.
Further, after pulverization, classification using a sieve, a vibration or sonic classifier, a cyclone or the like and appropriate particle size adjustment is also effective for forming a more homogeneous microstructure. It is preferable to arrange the particle diameter within 0.05 to 100 μm. When the particle diameter exceeds 100 μm, the grain boundary effect is small, and when it is less than 0.05 μm, the electric conductivity tends to decrease. In particular, when finely pulverized to an average particle size of 0.1 to 10 μm, many grain boundaries can be introduced per unit volume, the thermal conductivity can be reduced, the crystallinity is maintained well, and the electrical conductivity is also good. Since it does not deteriorate, various thermoelectric performances are improved, which is preferable.

平均粒径はレーザー回折式粒度分布計を用いて体積相当径分布を測定し、その分布曲線より求めたメジアン径をもって決定する。なお、密度を向上させ、電気伝導度を向上させるためには、ある程度の粒度分布を持たせていた方が良い場合があるが、その場合でも0.05〜100μmの範囲に粒度分布が収まっていることが望ましい。粉砕・分級の後、不活性ガスや水素中で焼鈍を行うと構造の欠陥を除去することができ、場合によっては効果がある。
メカニカルアロイング法やR/D法を用いて、直接粉体材料を得た場合でも、上記のような粉砕及び又は分級により、適度な粒径に調整することができる。
The average particle diameter is determined by measuring the volume equivalent diameter distribution using a laser diffraction particle size distribution meter and determining the median diameter obtained from the distribution curve. In order to improve density and electrical conductivity, it may be better to have a certain particle size distribution, but even in that case, the particle size distribution is in the range of 0.05 to 100 μm. It is desirable. After pulverization and classification, annealing in an inert gas or hydrogen can remove structural defects and is effective in some cases.
Even when the powder material is obtained directly using the mechanical alloying method or the R / D method, it can be adjusted to an appropriate particle size by the pulverization and / or classification as described above.

(3)成形
上記のようにして得た粉体材料を型に入れ冷間で圧粉成形して、そのまま使用したり、或いは続いて、冷間で圧延、鍛造、衝撃波圧縮成形等を行って成形したりする方法もあるが、多くの場合、50℃以上の温度で熱処理しながら焼結して成形を行う。熱処理雰囲気は非酸化性雰囲気であることが好ましく、アルゴン、ヘリウム等の希ガスや窒素ガス中等の不活性ガス中で、或いは水素ガスを含む還元ガス中で熱処理を行うのが好ましい。500℃以下の温度条件であれば大気中でも可能である。常圧や加圧下の焼結でも、さらには真空中の焼結であってもよい。
(3) Molding The powder material obtained as described above is put into a mold and compacted in a cold state and used as it is, or subsequently subjected to cold rolling, forging, shock wave compression molding, etc. There are methods for molding, but in many cases, sintering is performed while heat treatment at a temperature of 50 ° C. or higher. The heat treatment atmosphere is preferably a non-oxidizing atmosphere, and the heat treatment is preferably performed in an inert gas such as a rare gas such as argon or helium or nitrogen gas, or in a reducing gas containing hydrogen gas. A temperature condition of 500 ° C. or lower is possible in the air. Sintering at normal pressure or under pressure may be used, and further, sintering in a vacuum may be used.

本発明においては、この熱処理は圧粉成形と同時に行うことが好ましい。熱処理と圧粉成形を同時に行う方法としては、ホットプレス法やHIP(ホットアイソスタティックプレス)法、さらにはSPS(放電プラズマ焼結)法等のような加圧焼結法を用いることができる。なお、加圧効果を顕著とするためには、加熱焼結工程における加圧力を0.01〜10GPaが好ましく、0.1〜10GPaがより好ましく、2〜10GPaが最も好ましい。加圧力が0.01GPa未満であると、加圧の効果が乏しく常圧焼結と熱電特性にほとんど差異がなくなる
加圧焼結を施した場合、格子定数が変化したり、結晶系が変化したりすることがある。強相関系材料の場合、Ceのような4f元素と隣接する非4f電子の元素の相対位置が若干異なることにより、同じ組成でも電子雲の重なり方が変化してc−f混成の仕方が変わり、熱電特性、特にゼーベック係数が向上する場合がある。
In the present invention, this heat treatment is preferably performed simultaneously with the compacting. As a method of performing the heat treatment and the compacting simultaneously, a pressure sintering method such as a hot press method, a HIP (hot isostatic press) method, an SPS (discharge plasma sintering) method, or the like can be used. In addition, in order to make a pressurization effect remarkable, 0.01-10 GPa is preferable in the heat-sintering process, 0.1-10 GPa is more preferable, and 2-10 GPa is the most preferable. If the applied pressure is less than 0.01 GPa, the effect of pressurization is poor and there is almost no difference between atmospheric sintering and thermoelectric properties. When pressure sintering is performed, the lattice constant changes or the crystal system changes. Sometimes. In the case of a strongly correlated material, the relative position of the 4f element, such as Ce, and the adjacent non-4f electron element is slightly different, so the electron cloud overlap changes even in the same composition, and the cf hybridization method changes. The thermoelectric properties, particularly the Seebeck coefficient, may be improved.

例えば、Ce33AlSi61では、溶製した材料とホットプレスした材料の格子定数が異なり、ゼーベック係数は4GPaでホットプレスした材料の方が高い。この時、両者の格子体積を比較すると、ホットプレスした材料の方が、1%程度小さくなっている。
加圧焼結を施すことにより、例えば、従来から知られているCe−Si2元相図から予想される相とは違った高圧相も観察されているが、熱電性能が高い材料の結晶構造は、斜方晶系又は正方晶系の材料である。一般に、4f元素と隣接する非4f元素の距離が短いほど高い相関が生じ、ゼーベック係数が向上する。したがって、加圧焼結を施すことは、熱電性能を向上させることが多いので好ましい。
For example, in Ce 33 Al 6 Si 61 , the lattice constants of the melted material and the hot-pressed material are different, and the Seebeck coefficient is higher in the material hot-pressed at 4 GPa. At this time, when the lattice volumes of the two are compared, the hot-pressed material is about 1% smaller.
By applying pressure sintering, for example, a high-pressure phase different from the phase predicted from the conventionally known Ce-Si binary phase diagram has been observed, but the crystal structure of the material with high thermoelectric performance is , Orthorhombic or tetragonal materials. In general, the shorter the distance between the 4f element and the adjacent non-4f element, the higher the correlation, and the Seebeck coefficient improves. Therefore, it is preferable to perform pressure sintering because the thermoelectric performance is often improved.

但し、c−f結合が生じている結晶格子に対して、過剰な圧力を加えて、格子体積を必要以上に小さくすると、4f電子同士がRKKY相互作用を通じて結合し、磁気秩序が生じて巨大熱電能効果を阻害することがあり、この場合は熱電性能全般が低下するので注意を要する。ゼーベック係数を高める効果を持つc−f相互作用同様、その競争関係にあるRKKY相互作用も格子定数の関数であるから、目的の熱電材料の各種性能に対して最適な格子となるような組成や結晶構造を選択することが望ましく、R−M−Si系材料においては、本発明の範囲に制御することが必要な条件となる。
ホットプレス法の中でも、圧粉成形体を組成変形するカプセルの中に仕込み、1軸〜3軸方向から、大きな圧を掛けながら、熱処理してホットプレスする超高圧HP法は、一軸圧縮機を用い超硬やカーボン製の金型中で加圧熱処理するホットプレス法と異なり、タングステンカーバイド超硬金型を用いても難しい2GPa以上の圧を金型の破損等の問題なく材料に加えることができ、しかも圧力でカプセルが塑性変形し内部が密閉されることより大気に触れず成形できるので、酸素等の不純物を混入させず、また揮発性の成分の蒸散を押さえることが可能である。超高圧HP法によれば、他の方法では合成が難しい組成・構造の材料も製造可能な点が魅力である。
However, if excessive pressure is applied to the crystal lattice in which the cf bond is generated and the lattice volume is made smaller than necessary, the 4f electrons are coupled through the RKKY interaction, and a magnetic order is generated, resulting in a giant thermoelectric In this case, care should be taken because the overall thermoelectric performance is degraded. Like the cf interaction, which has the effect of increasing the Seebeck coefficient, the competitive RKKY interaction is also a function of the lattice constant, so that the composition becomes an optimum lattice for various performances of the target thermoelectric material. It is desirable to select the crystal structure, and in the case of the RM-Si based material, it is necessary to control it within the scope of the present invention.
Among the hot press methods, the ultra-high pressure HP method, in which a green compact is charged in a capsule that undergoes compositional deformation and subjected to heat treatment while applying a large pressure from the uniaxial to triaxial directions, is a uniaxial compressor. Unlike the hot press method in which pressure heat treatment is performed in a cemented carbide or carbon mold, a pressure of 2 GPa or more, which is difficult even when using a tungsten carbide cemented mold, can be applied to the material without problems such as damage to the mold. In addition, since the capsule is plastically deformed by pressure and the inside is sealed, it can be molded without being exposed to the atmosphere, so that impurities such as oxygen can be prevented from being mixed and transpiration of volatile components can be suppressed. According to the ultra-high pressure HP method, it is attractive that a material having a composition and structure that is difficult to synthesize by other methods can be produced.

(4)切削加工・塑性加工
以上のようにして作製した焼結試料や溶製材料は、任意の形に切り出して、各種熱電素子として利用することができる。特に本発明の材料のうち金属的な熱電材料であれば、脆い半導体材料ではないので、切削加工及び/又は塑性加工により、任意の形状に、通常の加工機で容易に加工することができる。特に、工業的利用価値の高い角柱状、円筒状、リング状、円板状又は平板状の形状に、容易に加工できることが大きな特徴である。
(4) Cutting / Plastic Processing The sintered sample and melted material produced as described above can be cut into arbitrary shapes and used as various thermoelectric elements. In particular, a metallic thermoelectric material of the present invention is not a brittle semiconductor material, and therefore can be easily processed into an arbitrary shape by a normal processing machine by cutting and / or plastic processing. In particular, it is a great feature that it can be easily processed into a prismatic shape, a cylindrical shape, a ring shape, a disc shape or a flat plate shape having high industrial utility value.

一旦これらの形状に加工した後、さらにそれらに切削加工等を施し、瓦状や任意の底辺形状を有する四角柱等に加工することも可能である。即ち、任意の形状から、円筒面を含む曲面、平面により囲まれたあらゆる形態に、容易に切削加工及び/塑性加工を施すことにより成形することができるのである。
ここで言う切削加工とは、一般的な金属材料の切削加工であり、鋸、旋盤、フライス盤、ボール盤、砥石、ダイヤモンドカッタ等による機械加工であり、塑性加工とは、プレスによる型抜きや成形、圧延、鍛造、爆発成形等である。また、冷間加工後のひずみ除去の為に、本発明の熱電材料の融点未満での焼き鈍し等の熱処理を行うことができる。熱電材料の組成によっては、塑性加工により、ゼーベック係数や電気伝導度等の熱電特性に異方性を付与したり強化したりすることができ、また熱処理と組み合わせることにより熱伝導度等の異方性のみならず微構造に大きく影響する熱電特性の調整を行うことも可能である。勿論、この後、バフ研磨等の機械的な研磨、電解研磨、化学洗浄、めっきやコーティング等の表面加工により、要求するレベルに見合う仕上げ加工を行うこともできる。
Once these shapes are processed, they can be further processed by cutting or the like to form tiles or square pillars having an arbitrary bottom shape. That is, from any shape, it can be easily formed by cutting and / or plastic working any shape surrounded by a curved surface and a plane including a cylindrical surface.
The cutting process mentioned here is a general metal material cutting process, which is a machining process using a saw, a lathe, a milling machine, a drilling machine, a grindstone, a diamond cutter, or the like. Rolling, forging, explosive forming, etc. Moreover, in order to remove the strain after cold working, heat treatment such as annealing at a temperature lower than the melting point of the thermoelectric material of the present invention can be performed. Depending on the composition of the thermoelectric material, anisotropy such as thermal conductivity can be imparted or strengthened by thermomechanical properties such as Seebeck coefficient and electrical conductivity by plastic working, and combined with heat treatment. It is also possible to adjust thermoelectric properties that greatly affect not only the properties but also the microstructure. Of course, after this, finishing processing corresponding to the required level can be performed by surface processing such as mechanical polishing such as buffing, electrolytic polishing, chemical cleaning, plating, coating, or the like.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの例によって何ら限定されるものではない。
本発明の熱電材料の評価方法は以下のとおりである。
ゼーベック係数(α)はΔT法により測定した。
電気伝導率(σ)は4端子法にて、熱伝導率(κ)は、レーザーフラッシュ法で測定した。
粉体の平均粒径は、レーザー回折式粒度分布計を用いて体積相当径分布を測定し、その分布曲線より求めたメジアン径とした。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
The evaluation method of the thermoelectric material of the present invention is as follows.
The Seebeck coefficient (α) was measured by the ΔT method.
The electrical conductivity (σ) was measured by a four-terminal method, and the thermal conductivity (κ) was measured by a laser flash method.
The average particle diameter of the powder was the median diameter obtained from the distribution curve by measuring the volume equivalent diameter distribution using a laser diffraction particle size distribution analyzer.

[実施例1]
純度99.9%のCe、純度99.999%のAl及びSiを原子比で10:1:19となるように銅ハース上に仕込み、Ar雰囲気中でアーク溶解して、Ce(Al0.05Si0.95の組成を有する材料を溶製した。なお、アーク溶解は、溶解後冷えたボタン状材料を銅ハース上でひっくり返して、3度溶解を繰り返すことにより均質化した。次いで、この材料を1080℃で100時間均質化熱処理を施した。さらに、この材料を乳鉢中で約50μm程度の粒径に粉砕し、0.2GPaの圧力で7mmφ×5mmの円筒形に圧粉成形し、これを超高圧HP法で加圧焼結することにより、Ce33(Al0.05Si0.9567熱電材料を作製した。加圧焼結条件は、1250℃、4GPa、300秒間であった。この結晶構造をX線回折法で解析した結果、主相はThSi型の正方晶系の材料であること判った。この材料の室温での熱電特性は、以下のとおり。
ゼーベック係数(α)は−93μV/K、電気伝導度(σ)は1.2MS/m、熱伝導度(κ)は13W/m・Kであり、無次元性能指数は0.24であった。
[Example 1]
Ce having a purity of 99.9%, Al and Si having a purity of 99.999% were charged on a copper hearth so as to have an atomic ratio of 10: 1: 19, and arc-dissolved in an Ar atmosphere to obtain Ce (Al 0. 05 Si 0.95) was smelted material having a second composition. In addition, the arc melting was homogenized by turning the button-shaped material cooled after melting over a copper hearth and repeating the melting three times. The material was then subjected to a homogenization heat treatment at 1080 ° C. for 100 hours. Furthermore, this material is pulverized to a particle size of about 50 μm in a mortar, compacted into a 7 mmφ × 5 mm cylindrical shape at a pressure of 0.2 GPa, and pressure-sintered by an ultrahigh pressure HP method. , Ce 33 (Al 0.05 Si 0.95 ) 67 thermoelectric material was prepared. The pressure sintering conditions were 1250 ° C., 4 GPa, and 300 seconds. As a result of analyzing this crystal structure by an X-ray diffraction method, it was found that the main phase was a ThSi 2 type tetragonal material. The thermoelectric properties of this material at room temperature are as follows:
The Seebeck coefficient (α) was −93 μV / K, the electrical conductivity (σ) was 1.2 MS / m, the thermal conductivity (κ) was 13 W / m · K, and the dimensionless figure of merit was 0.24. .

[比較例1]
Alを添加せず、その分量をSiで置き換える以外は実施例1と同様な方法で作製した材料の室温での熱電特性は以下のようであった。
即ち、ゼーベック係数(α)は−48μV/K、電気伝導度(σ)は1.1MS/m、熱伝導度(κ)は15W/m・Kであり、無次元性能指数は0.05であった。
[Comparative Example 1]
The thermoelectric properties at room temperature of the material produced by the same method as in Example 1 except that Al was not added and the amount was replaced with Si were as follows.
That is, the Seebeck coefficient (α) is −48 μV / K, the electrical conductivity (σ) is 1.1 MS / m, the thermal conductivity (κ) is 15 W / m · K, and the dimensionless figure of merit is 0.05. there were.

[実施例2〜4及び比較例2、3]
実施例1と同様にして、表1のような組成の5種の材料を作製し、室温におけるゼーベック係数(α)と電気伝導度(σ)を測定した。結果を表1に示した。この結晶構造をX線回折法で解析した結果、実施例2の主相は正方晶系の材料であるが、実施例3及び4の主相は斜方晶系の材料である。
[Examples 2 to 4 and Comparative Examples 2 and 3]
In the same manner as in Example 1, five types of materials having the compositions shown in Table 1 were prepared, and the Seebeck coefficient (α) and electrical conductivity (σ) at room temperature were measured. The results are shown in Table 1. As a result of X-ray diffraction analysis of this crystal structure, the main phase of Example 2 is a tetragonal material, while the main phases of Examples 3 and 4 are orthorhombic materials.

[実施例5]
実施例1と同様にして、Ce、Al、Siを銅ハースに仕込み、Ar中で溶解した後、ドロップキャスト法により、6mm厚の板状に成形した。これをジョークラッシャを用いて1mm程度に破砕した後、ピンミルで粗粉砕し次いで回転ボールミルで2μmまで微粉砕した。
この微粉体をグラファイト型に仕込み、900℃、45MPa、20分間の条件で、Ar0.05MPaの雰囲気下SPS法にて焼結を行い、組成がCe33(Al0.05Si0.9567である成形体を得た。この結晶構造をX線回折法で解析した結果、ThSi型の正方晶系の材料であること判った。この材料の300Kの熱電特性は以下のとおりであった。
[Example 5]
In the same manner as in Example 1, Ce, Al, and Si were charged into copper hearth, dissolved in Ar, and then formed into a 6 mm thick plate by a drop cast method. This was crushed to about 1 mm using a jaw crusher, coarsely pulverized with a pin mill, and then finely pulverized to 2 μm with a rotating ball mill.
This fine powder was charged into a graphite mold and sintered by an SPS method in an atmosphere of Ar 0.05 MPa under the conditions of 900 ° C. and 45 MPa for 20 minutes, and the composition was Ce 33 (Al 0.05 Si 0.95 ) 67. A molded body was obtained. As a result of analyzing this crystal structure by an X-ray diffraction method, it was found to be a ThSi 2 type tetragonal material. The 300K thermoelectric properties of this material were as follows:

ゼーベック係数(α)は−86μV/K、電気伝導度(σ)は1.2MS/m、熱伝導度(κ)は8.8W/m・Kであり、無次元性能指数は0.30であった。
粒径が0.1〜10μmの粉体を焼結することによって得た成形体は、熱伝導度が相対的に低く、高い性能指数を実現することができる。
この成形体は、電気伝導度0.2MS/m以上を有する金属材料であるから、ダイヤモンドカッタを用いて、1500rpmの刃の回転速度で1mm以下に切削加工しても割れが生じない程度の機械強度、加工特性を有していた。比較として、既存の電気伝導度0.1MS/mのBi−Te熱電材料を上記と同じ条件で切削したが、非常に脆く、プラステックに挟み込み、刃の回転数100rpm以下の低速ダイヤモンドカッタを用いても亀裂が生じ、生産性が高くなる範囲での機械的な切削加工に適しない材質であることが判った。

Figure 2006310361
The Seebeck coefficient (α) is −86 μV / K, the electrical conductivity (σ) is 1.2 MS / m, the thermal conductivity (κ) is 8.8 W / m · K, and the dimensionless figure of merit is 0.30. there were.
A molded body obtained by sintering powder having a particle size of 0.1 to 10 μm has a relatively low thermal conductivity and can realize a high figure of merit.
Since this molded body is a metal material having an electric conductivity of 0.2 MS / m or more, a machine that does not cause cracking even if it is cut to 1 mm or less with a blade speed of 1500 rpm using a diamond cutter. It had strength and processing characteristics. For comparison, an existing Bi-Te thermoelectric material having an electric conductivity of 0.1 MS / m was cut under the same conditions as described above, but it was very brittle and was sandwiched between plastics, using a low-speed diamond cutter with a blade rotation speed of 100 rpm or less. However, it was found that the material is not suitable for mechanical cutting in the range where cracks occur and productivity increases.
Figure 2006310361

以上説明したように、本発明によれば、ゼーベック係数(α)が高くて、さらに性能指数が大きな熱電材料であって、高性能な熱電素子用材料でありながら、耐衝撃性、耐熱歪性、成型加工性にも優れたものを提供できる。   As described above, according to the present invention, the thermoelectric material has a high Seebeck coefficient (α) and a large figure of merit, and is a high-performance thermoelectric element material. It is possible to provide an excellent mold processability.

Claims (5)

一般式R(MSi1−y(100−x)(但し、Rは、Yを含む希土類元素から選ばれた少なくとも一種、Mは、B、C、Al、P、Zn、As、Se、In、Sn、Sb、Te、Pb及びBiから選ばれた少なくとも1種、xは原子%、yは原子比で、20≦x≦50、0.002≦y≦0.5))で表される化合物からなる熱電材料。 Formula R x (M y Si 1- y) (100-x) ( where, R represents at least one selected from rare earth elements including Y, M is, B, C, Al, P , Zn, As, At least one selected from Se, In, Sn, Sb, Te, Pb and Bi, x is atomic%, y is an atomic ratio, 20 ≦ x ≦ 50, 0.002 ≦ y ≦ 0.5) ) A thermoelectric material comprising the compound represented. 主相が正方晶又は斜方晶の結晶構造を有している請求項1に記載の熱電材料。   The thermoelectric material according to claim 1, wherein the main phase has a tetragonal or orthorhombic crystal structure. 電気伝導度が0.2MS/m以上である請求項1又は請求項2に記載の熱電材料。   The thermoelectric material according to claim 1 or 2, wherein the electric conductivity is 0.2 MS / m or more. R、M及びSi金属を合金化し、0.01〜10GPaで加圧焼結することを特徴とする請求項1〜3のいずれか1項に記載の熱電材料の製造方法。   The method for producing a thermoelectric material according to any one of claims 1 to 3, wherein R, M, and Si metal are alloyed and pressure-sintered at 0.01 to 10 GPa. R、M及びSi金属を合金化し、平均粒径0.1〜10μmに粉砕し、次いで0.01〜10GPaで加圧焼結することを特徴とする請求項1〜3のいずれか1項に記載の熱電材料の製造方法。   4. The alloy according to claim 1, wherein R, M, and Si metal are alloyed, pulverized to an average particle size of 0.1 to 10 μm, and then pressure sintered at 0.01 to 10 GPa. The manufacturing method of the thermoelectric material of description.
JP2005127726A 2005-04-26 2005-04-26 Thermoelectric material and manufacturing method thereof Expired - Fee Related JP4854215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005127726A JP4854215B2 (en) 2005-04-26 2005-04-26 Thermoelectric material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005127726A JP4854215B2 (en) 2005-04-26 2005-04-26 Thermoelectric material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006310361A true JP2006310361A (en) 2006-11-09
JP4854215B2 JP4854215B2 (en) 2012-01-18

Family

ID=37476949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005127726A Expired - Fee Related JP4854215B2 (en) 2005-04-26 2005-04-26 Thermoelectric material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4854215B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100081914A (en) * 2009-01-06 2010-07-15 삼성전자주식회사 Thermoelectric materials, and thermoelectric module and thermoelectric apparatus comprising same
JP2011029351A (en) * 2009-07-24 2011-02-10 National Institute For Materials Science Thermoelectric semiconductor, and thermoelectric power generation element using the same
JP2012514867A (en) * 2009-01-09 2012-06-28 ダイヤモンド イノベイションズ インコーポレーテッド Influence of thermoelectric figure of merit (ZT) by high pressure and high temperature sintering
US8299349B2 (en) 2008-07-18 2012-10-30 Samsung Electronics Co., Ltd. Thermoelectric materials and chalcogenide compounds
KR101267935B1 (en) 2012-03-26 2013-05-27 한국세라믹기술원 Zno-based thermoelectric material and preparing method of the same
US8492643B2 (en) 2009-02-18 2013-07-23 Samsung Electronics Co., Ltd. Thermoelectric material, and thermoelectric element and thermoelectric module comprising same
JP2014220506A (en) * 2014-06-17 2014-11-20 ダイヤモンドイノベイションズ インコーポレーテッド Effect of thermoelectric figure of merit (zt) by high pressure and high temperature sintering
CN112645710A (en) * 2020-12-11 2021-04-13 哈尔滨石油学院 Method for improving thermoelectric performance of bismuth telluride-based pseudo-ternary thermoelectric material by co-doping Er and Ag
JP2021515098A (en) * 2018-02-22 2021-06-17 ジェネラル エンジニアリング アンド リサーチ,エル.エル.シー. Magnetic calorific alloy useful for magnetic refrigeration applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100117A (en) * 1995-10-02 1997-04-15 Natl Inst For Res In Inorg Mater Yttrium borosilicide and its rare earth substituent
JP2001223392A (en) * 1999-11-19 2001-08-17 Basf Ag Active material of thermoelectricity and thermal converter comprising it
JP2001270712A (en) * 2000-03-27 2001-10-02 National Institute For Materials Science Silicon-containing gadolinium polyboride and method for producing the same
JP2005159242A (en) * 2003-11-28 2005-06-16 National Institute For Materials Science RE-B-Si RARE EARTH POLYBORIDE, HIGH TEMPERATURE ANTIOXIDANT, THERMOELECTRIC MATERIAL

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100117A (en) * 1995-10-02 1997-04-15 Natl Inst For Res In Inorg Mater Yttrium borosilicide and its rare earth substituent
JP2001223392A (en) * 1999-11-19 2001-08-17 Basf Ag Active material of thermoelectricity and thermal converter comprising it
JP2001270712A (en) * 2000-03-27 2001-10-02 National Institute For Materials Science Silicon-containing gadolinium polyboride and method for producing the same
JP2005159242A (en) * 2003-11-28 2005-06-16 National Institute For Materials Science RE-B-Si RARE EARTH POLYBORIDE, HIGH TEMPERATURE ANTIOXIDANT, THERMOELECTRIC MATERIAL

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299349B2 (en) 2008-07-18 2012-10-30 Samsung Electronics Co., Ltd. Thermoelectric materials and chalcogenide compounds
KR101688529B1 (en) 2009-01-06 2016-12-22 삼성전자주식회사 Thermoelectric materials, and thermoelectric module and thermoelectric apparatus comprising same
KR20100081914A (en) * 2009-01-06 2010-07-15 삼성전자주식회사 Thermoelectric materials, and thermoelectric module and thermoelectric apparatus comprising same
JP2012514867A (en) * 2009-01-09 2012-06-28 ダイヤモンド イノベイションズ インコーポレーテッド Influence of thermoelectric figure of merit (ZT) by high pressure and high temperature sintering
KR101534372B1 (en) * 2009-01-09 2015-07-07 다이아몬드 이노베이션즈, 인크. Affecting the thermoelectric figure of merit (zt) by high pressure, high temperature sintering
US8492643B2 (en) 2009-02-18 2013-07-23 Samsung Electronics Co., Ltd. Thermoelectric material, and thermoelectric element and thermoelectric module comprising same
JP2011029351A (en) * 2009-07-24 2011-02-10 National Institute For Materials Science Thermoelectric semiconductor, and thermoelectric power generation element using the same
KR101267935B1 (en) 2012-03-26 2013-05-27 한국세라믹기술원 Zno-based thermoelectric material and preparing method of the same
JP2014220506A (en) * 2014-06-17 2014-11-20 ダイヤモンドイノベイションズ インコーポレーテッド Effect of thermoelectric figure of merit (zt) by high pressure and high temperature sintering
JP2021515098A (en) * 2018-02-22 2021-06-17 ジェネラル エンジニアリング アンド リサーチ,エル.エル.シー. Magnetic calorific alloy useful for magnetic refrigeration applications
JP7245474B2 (en) 2018-02-22 2023-03-24 ジェネラル エンジニアリング アンド リサーチ,エル.エル.シー. Magnetocaloric alloys useful for magnetic refrigeration applications
US11728074B2 (en) 2018-02-22 2023-08-15 General Engineering & Research, L.L.C. Magnetocaloric alloys useful for magnetic refrigeration applications
CN112645710A (en) * 2020-12-11 2021-04-13 哈尔滨石油学院 Method for improving thermoelectric performance of bismuth telluride-based pseudo-ternary thermoelectric material by co-doping Er and Ag
CN112645710B (en) * 2020-12-11 2022-08-02 哈尔滨石油学院 Method for improving thermoelectric performance of bismuth telluride-based pseudo-ternary thermoelectric material by co-doping Er and Ag

Also Published As

Publication number Publication date
JP4854215B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4854215B2 (en) Thermoelectric material and manufacturing method thereof
EP2242121B1 (en) Thermoelectric conversion material and thermoelectric conversion module
KR101087355B1 (en) Process for producing a heusler alloy, a half heusler alloy, a filled skutterudite based alloy and thermoelectric conversion system using them
KR100924054B1 (en) Thermoelectric material and method for producing same
JP6058668B2 (en) Thermoelectric conversion material, thermoelectric conversion module using the same, and method of manufacturing thermoelectric conversion material
Karati et al. Simultaneous increase in thermopower and electrical conductivity through Ta-doping and nanostructuring in half-Heusler TiNiSn alloys
JP6879435B2 (en) A thermoelectric conversion material, a thermoelectric conversion module using the thermoelectric conversion material, and a method for manufacturing the thermoelectric conversion material.
WO2013047474A1 (en) Sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
Choi et al. Thermoelectric properties of higher manganese silicide consolidated by flash spark plasma sintering technique
US20230284532A1 (en) Alloy, sintered article, thermoelectric module and method for the production of a sintered article
JP5655201B2 (en) Heusler-type iron-based thermoelectric material powder and method for producing Heusler-type iron-based thermoelectric material
EP3375548B1 (en) Thermoelectric conversion material
JP2013161948A (en) Thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
JP5448942B2 (en) Thermoelectric conversion material
WO2021193481A1 (en) Method for producing thermoelectric conversion element
WO2023145339A1 (en) Thermoelectric conversion material, thermoelectric conversion material composition, thermoelectric conversion element, thermoelectric conversion module, thermoelectric conversion system, method for producing thermoelectric conversion material composition, and method for producing thermoelectric conversion material
WO2023145338A1 (en) Thermoelectric conversion material, thermoelectric conversion material composition, thermoelectric conversion element, thermoelectric conversion module, thermoelectric conversion system, method for producing thermoelectric conversion material composition, and method for producing thermoelectric conversion material
JP5653654B2 (en) Method for manufacturing thermoelectric material
US11839158B2 (en) Silicide alloy material and thermoelectric conversion device in which same is used
US11963448B2 (en) Method for producing thermoelectric conversion element
WO2023145340A1 (en) Thermoelectric conversion module and thermoelectric conversion system
JP6858044B2 (en) Thermoelectric conversion materials and their manufacturing methods, as well as thermoelectric conversion elements, thermoelectric conversion modules, mobile objects
JP6826925B2 (en) Thermoelectric conversion materials, thermoelectric conversion elements, thermoelectric conversion modules, and mobiles
Mishra Half-Heusler based multicomponent alloys for high temperature thermoelectric applications
WO2019139168A1 (en) Thermoelectric conversion material, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees