JP2006309029A - Method for manufacturing phase difference compensation film - Google Patents

Method for manufacturing phase difference compensation film Download PDF

Info

Publication number
JP2006309029A
JP2006309029A JP2005133648A JP2005133648A JP2006309029A JP 2006309029 A JP2006309029 A JP 2006309029A JP 2005133648 A JP2005133648 A JP 2005133648A JP 2005133648 A JP2005133648 A JP 2005133648A JP 2006309029 A JP2006309029 A JP 2006309029A
Authority
JP
Japan
Prior art keywords
stretching
film
resin
carbon atoms
unit represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005133648A
Other languages
Japanese (ja)
Inventor
Toru Murayama
徹 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005133648A priority Critical patent/JP2006309029A/en
Publication of JP2006309029A publication Critical patent/JP2006309029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively manufacturing a phase difference compensation film which hardly causes bowing and has satisfactory accuracy of optical axis angle, in sequential biaxial stretching of subjecting a thermoplastic resin film to longitudinal stretching and, thereafter, to lateral stretching. <P>SOLUTION: When the thermoplastic resin film is laterally deformed in the lateral stretching step, stretching temperature of the lateral stretching is made higher than the stretching temperature of the longitudinal stretching and wind speed of the lateral stretching in a preheating zone and in a stretching zone is set to be 8 m/sec to 30 m/sec. According to such a method, the phase difference compensation film which hardly causes bowing and has satisfactory accuracy of optical axis angle can be manufactured inexpensively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶表示装置の視野角改善やコントラスト改善に使用される位相差補償フィルムの製造方法に関する。   The present invention relates to a method for producing a retardation compensation film used for improving a viewing angle and a contrast of a liquid crystal display device.

近年、液晶表示装置の大画面化に伴い、液晶表示装置の視野角改善やコントラスト改善に使用される位相差補償フィルムへの要求品質は、急速に高まってきている。特に、光軸角度精度や位相差バラツキがフィルム大面積にわたり良好であることが求められている。また、液晶表示装置が世の中に広く普及していくためには、液晶表示装置に使用される部材の革新的低コスト化、すなわち、構造・材料・作り方・供給等の革新や、標準化による生産性の向上が必要である。   In recent years, with the increase in screen size of liquid crystal display devices, the required quality of retardation compensation films used for improving the viewing angle and contrast of liquid crystal display devices has been rapidly increasing. In particular, the optical axis angle accuracy and the phase difference variation are required to be good over a large film area. In addition, in order for the liquid crystal display devices to become widespread in the world, innovative cost reduction of components used in the liquid crystal display devices, that is, innovations in structure, materials, manufacturing methods, supply, etc., and productivity through standardization Need to be improved.

位相差補償フィルムが液晶表示装置の視野角やコントラストを適切に改善するためには、高度に制御されたフィルム面内およびフィルム厚み方向の複屈折が要求される。上記フィルムの複屈折を高度に制御しつつ付与する方法としては、縦横の逐次延伸からなる逐次二軸延伸が一般的である。   In order for the retardation compensation film to appropriately improve the viewing angle and contrast of the liquid crystal display device, highly controlled birefringence in the film plane and in the film thickness direction is required. As a method for applying the birefringence of the film with high control, sequential biaxial stretching composed of longitudinal and lateral sequential stretching is generally used.

しかし、逐次二軸延伸法によって位相差補償フィルムを製造すると、横延伸をする際に、いわゆる、ボーイングと呼ばれる、フィルムの端部と中心部での進行速度が異なることにより、幅方向に分子の配向方向の不均一化が起こる。このボーイング現象のため、液晶配向を精緻に補償しうる位相差補償フィルムを得ることは難しかった。   However, when the retardation compensation film is produced by the sequential biaxial stretching method, when the lateral stretching is performed, the so-called bowing, which is different in the traveling speed at the end portion and the central portion of the film, causes the molecules in the width direction. Non-uniform orientation occurs. Due to this bowing phenomenon, it has been difficult to obtain a retardation compensation film capable of precisely compensating the liquid crystal alignment.

この問題点を解決するために、例えば、特許文献1に開示されている、横延伸をする際にテンターを用い、テンターのレールの開き角度を10度以内にする低角度拡幅法が提案されている。しかし、この方法ではボーイング対策は不充分であり、光軸方向精度が±1度以内に収まる範囲は横延伸後のフィルム幅の60〜65%程度であった。   In order to solve this problem, for example, a low-angle widening method has been proposed, which is disclosed in Patent Document 1 and uses a tenter for lateral stretching, and the opening angle of the tenter rail is within 10 degrees. Yes. However, this method has insufficient measures for bowing, and the range in which the accuracy in the optical axis direction is within ± 1 degree is about 60 to 65% of the film width after transverse stretching.

また、例えば、特許文献2に開示されている、横延伸工程の後に緩和工程を設けて光軸精度を向上する方法や、例えば、特許文献3に開示されている、テンターのレールの開き角度を8〜20度以内とし、かつ、その状態を拡幅前のフィルム幅の2倍以上の距離保持し続ける方法等が提案されている。これらの方法によれば、光軸方向精度が±1度以内に収まる範囲は横延伸後のフィルム幅の80%以上と良好な位相差補償フィルムが得られるものの、これらの方法は、高価なノルボルネン系樹脂を使用する必要があり、得られる位相差補償フィルムの品質は十分であるものの、コスト的に高価なフィルムとなってしまうという問題があった。
特開2002−148438公報 特開2002−196135公報 特開2004−144942公報
In addition, for example, a method of improving the optical axis accuracy by providing a relaxation step after the transverse stretching step disclosed in Patent Document 2, or a tenter rail opening angle disclosed in Patent Document 3, for example. A method has been proposed in which the angle is within a range of 8 to 20 degrees and the state is kept at a distance of twice or more the film width before widening. According to these methods, the range in which the accuracy in the optical axis direction is within ± 1 degree is 80% or more of the film width after transverse stretching, and a good retardation compensation film can be obtained. However, these methods are expensive norbornene It is necessary to use a resin, and although the quality of the obtained retardation compensation film is sufficient, there is a problem that the film becomes expensive in terms of cost.
JP 2002-148438 A JP 2002-196135 A JP 2004-144492 A

本発明は、上記従来技術の課題に鑑みてなされたものであり、熱可塑性樹脂フィルムを縦延伸した後に横延伸をする逐次二軸延伸において、ボーイングが少なく、光軸角度の精度がよい位相差補償フィルムを安価に製造する方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and in sequential biaxial stretching in which transverse stretching is performed after longitudinal stretching of a thermoplastic resin film, there is little bowing, and the retardation of the optical axis angle is good. It is an object of the present invention to provide a method for producing a compensation film at a low cost.

上記課題を解決するため、本発明者らは鋭意研究の結果、横延伸工程において熱可塑性樹脂フィルムを幅方向に変形する際に、横延伸時の延伸温度を縦延伸時の延伸温度より高くし、かつ、横延伸の予熱ゾーン及び延伸ゾーンの風速を8m/秒〜30m/秒とすることにより、ボーイングが少なく、光軸角度の精度がよい位相差補償フィルムを安価に製造することが可能となることを見出し、本発明に至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research and have made the stretching temperature during transverse stretching higher than the stretching temperature during longitudinal stretching when the thermoplastic resin film is deformed in the width direction in the transverse stretching step. In addition, by setting the wind speed of the preheating zone and the stretching zone of the transverse stretching to 8 m / sec to 30 m / sec, it is possible to manufacture a retardation compensation film with low bowing and good optical axis angle at low cost. As a result, the present invention has been achieved.

具体的には、本発明によれば、非晶性の熱可塑性樹脂フィルムを縦延伸した後に横延伸する逐次二軸延伸による位相差補償フィルムの製造方法であって、横延伸時の延伸温度を縦延伸時の延伸温度より高くし、かつ、横延伸の予熱ゾーン及び延伸ゾーンの風速を8m/秒〜30m/秒とすることを特徴とする位相差補償フィルムの製造方法が提供される。   Specifically, according to the present invention, there is provided a method for producing a retardation compensation film by sequential biaxial stretching in which an amorphous thermoplastic resin film is longitudinally stretched and then laterally stretched, and the stretching temperature at the time of lateral stretching is set. There is provided a method for producing a retardation compensation film, characterized in that the temperature is higher than the stretching temperature at the time of longitudinal stretching, and the wind speed of the preheating zone and the stretching zone for transverse stretching is 8 m / sec to 30 m / sec.

また、本発明に係る光学用フィルムの製造方法は、上記非晶性の熱可塑性樹脂として、イミド樹脂を含有する樹脂組成物が用いられることが好ましい。   In the method for producing an optical film according to the present invention, a resin composition containing an imide resin is preferably used as the amorphous thermoplastic resin.

また、本発明に係る光学用フィルムの製造方法は、上記イミド樹脂が、下記の一般式(1)で表される単位と、下記の一般式(2)で表される単位及び/又は(3)で表される単位と、を有するイミド樹脂であることが好ましい。   Further, in the method for producing an optical film according to the present invention, the imide resin includes a unit represented by the following general formula (1), a unit represented by the following general formula (2), and / or (3 It is preferable that it is an imide resin having a unit represented by:

Figure 2006309029
Figure 2006309029

(ただし、R1およびR2は、それぞれ独立に、水素または炭素数1〜8のアルキル基を
示し、R3は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、また
は炭素数5〜15の芳香環を含む置換基を示す。)
(Wherein, R 1 and R 2 each independently represents a hydrogen or an alkyl group having 1 to 8 carbon atoms, R 3 is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)

Figure 2006309029
Figure 2006309029

(ただし、R4およびR5は、それぞれ独立に、水素または炭素数1〜8のアルキル基を示し、R6は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数5〜15の芳香環を含む置換基を示す。) (However, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)

Figure 2006309029
Figure 2006309029

(ただし、R7は、水素または炭素数1〜8のアルキル基を示し、R8は、炭素数5〜15の芳香環を含む置換基を示す。) (Wherein, R 7 is a hydrogen or an alkyl group having 1 to 8 carbon atoms, R 8 represents a substituent containing an aromatic ring having 5 to 15 carbon atoms.)

本発明の位相差補償フィルムの製造方法の構成は上述の通りであるから、熱可塑性樹脂フィルムを縦延伸した後に横延伸をする逐次二軸延伸において、ボーイングが少なく、光軸角度がよい位相差補償フィルムを安価に製造する方法を提供することができ、有用である。   Since the constitution of the method for producing the retardation compensation film of the present invention is as described above, in sequential biaxial stretching in which the thermoplastic resin film is stretched longitudinally and then laterally stretched, there is little bowing and the optical axis angle is good. A method for producing a compensation film at low cost can be provided and is useful.

〔フィルムの組成〕
まず、本発明に係る光学用フィルムの製造方法において用いられるフィルムについて説明する。本発明において、フィルムは少なくとも非晶性の熱可塑性樹脂からなる。この非晶性の熱可塑性樹脂としては、ポリメタクリル酸メチル系樹脂やポリカーボネート系樹脂、ポリスチレン系樹脂、シクロオレフィン系樹脂、セルロース系樹脂、塩化ビニル系樹脂、ポリサルフォン系樹脂、ポリエーテルサルフォン系樹脂、マレイミド・オレフィン系樹脂、グルタルイミド系樹脂などの単独樹脂、あるいはこれらを混合してなる樹脂組成物が挙げられる。
[Composition of film]
First, the film used in the method for producing an optical film according to the present invention will be described. In the present invention, the film is made of at least an amorphous thermoplastic resin. The amorphous thermoplastic resin includes polymethyl methacrylate resin, polycarbonate resin, polystyrene resin, cycloolefin resin, cellulose resin, vinyl chloride resin, polysulfone resin, and polyether sulfone resin. , A single resin such as a maleimide / olefin resin and a glutarimide resin, or a resin composition obtained by mixing these resins.

非晶性の熱可塑性樹脂としては、下記一般式(1)で表される単位を有するイミド樹脂が好ましく、下記一般式(1)で表される単位と下記一般式(2)で表される単位とが共重合したイミド樹脂、下記一般式(1)で表される単位と下記一般式(3)で表される単位とが共重合したイミド樹脂、又は、下記一般式(1)で表される単位と下記一般式(2)で表される単位と下記一般式(3)で表される単位とが共重合したイミド樹脂がより好ましい。   As the amorphous thermoplastic resin, an imide resin having a unit represented by the following general formula (1) is preferable, and a unit represented by the following general formula (1) and the following general formula (2) are represented. An imide resin copolymerized with a unit, an imide resin copolymerized with a unit represented by the following general formula (1) and a unit represented by the following general formula (3), or represented by the following general formula (1) An imide resin obtained by copolymerizing a unit represented by the following general formula (2) and a unit represented by the following general formula (3) is more preferable.

Figure 2006309029
Figure 2006309029

(ただし、R1およびR2は、それぞれ独立に、水素または炭素数1〜8のアルキル基を示し、R3は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数5〜15の芳香環を含む置換基を示す。) (Wherein, R 1 and R 2 each independently represents a hydrogen or an alkyl group having 1 to 8 carbon atoms, R 3 is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)

Figure 2006309029
Figure 2006309029

(ただし、R4およびR5は、それぞれ独立に、水素または炭素数1〜8のアルキル基を示し、R6は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数5〜15の芳香環を含む置換基を示す。) (However, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)

Figure 2006309029
Figure 2006309029

(ただし、R7は、水素または炭素数1〜8のアルキル基を示し、R8は、炭素数5〜15の芳香環を含む置換基を示す。) (Wherein, R 7 is a hydrogen or an alkyl group having 1 to 8 carbon atoms, R 8 represents a substituent containing an aromatic ring having 5 to 15 carbon atoms.)

イミド樹脂は、通常、上記一般式(1)で表される単位を有する樹脂である。この一般式(1)で表される単位からなる樹脂は、正の固有複屈折を有している。一方、上記一般式(2)で表される単位からなる樹脂はゼロ近傍の固有複屈折を有し、式(3)で表される単位からなる樹脂は負の固有複屈折を有している。従って、上記一般式(1)で表される単位と上記一般式(2)及び/又は(3)で表される単位とが適切な比率で共重合したイミド樹脂を用いれば、光学用途に好適なゼロ複屈折のフィルム、又はそれに近いフィルムを実現することができる。   The imide resin is usually a resin having a unit represented by the general formula (1). The resin composed of the unit represented by the general formula (1) has positive intrinsic birefringence. On the other hand, the resin composed of the unit represented by the general formula (2) has an intrinsic birefringence near zero, and the resin composed of the unit represented by the formula (3) has a negative intrinsic birefringence. . Therefore, if an imide resin in which the unit represented by the general formula (1) and the unit represented by the general formula (2) and / or (3) are copolymerized at an appropriate ratio is used, it is suitable for optical applications. A zero birefringent film or a film close thereto can be realized.

上記一般式(1)で表される単位を有する樹脂としては、例えば、グルタルイミド樹脂等が挙げられる。また、上記一般式(1)で表される単位と上記一般式(2)で表される単位とを有する樹脂としては、例えば、イミド化ポリメタクリル酸メチル樹脂(イミド化PMMA樹脂)等が挙げられる。また、上記一般式(1)で表される単位と上記一般式(3)で表される単位とを有する樹脂としては、例えば、イミド化スチレン樹脂等が挙げられる。また、上記一般式(1)で表される単位と上記一般式(2)で表される単位と上記一般式(3)で表される単位とを有する樹脂としては、例えば、イミド化メタクリルスチレン樹脂(イミド化MS樹脂)等が挙げられる。なお、これらの樹脂の合成方法は特に限定されるものではなく、従来公知の方法を用いて合成することができる。   Examples of the resin having a unit represented by the general formula (1) include glutarimide resin. Examples of the resin having the unit represented by the general formula (1) and the unit represented by the general formula (2) include imidized polymethyl methacrylate resin (imidized PMMA resin). It is done. Moreover, as resin which has a unit represented by the said General formula (1) and a unit represented by the said General formula (3), an imidized styrene resin etc. are mentioned, for example. Examples of the resin having a unit represented by the general formula (1), a unit represented by the general formula (2), and a unit represented by the general formula (3) include, for example, imidized methacrylstyrene. Resin (imidized MS resin) etc. are mentioned. In addition, the synthesis | combining method of these resin is not specifically limited, It can synthesize | combine using a conventionally well-known method.

また、非晶性の熱可塑性樹脂としては、樹脂組成物であってもよい。本発明において、非晶性の熱可塑性樹脂として用いることができる樹脂組成物の具体的な組成は特に限定されるものではなく、上述した各種熱可塑性樹脂(好ましくは上記イミド樹脂)と、本発明の技術分野で公知の他の成分とを公知の比率で含有していればよい。他の成分としては、他の樹脂成分であってもよいし、以下の押出工程で一般的に用いられている安定剤や滑剤等、及び/又は紫外線吸収剤等であってもよい。   Further, the amorphous thermoplastic resin may be a resin composition. In the present invention, the specific composition of the resin composition that can be used as an amorphous thermoplastic resin is not particularly limited, and the various thermoplastic resins described above (preferably the imide resin described above) and the present invention. Other components known in the technical field may be contained in a known ratio. As other components, other resin components may be used, and stabilizers and lubricants generally used in the following extrusion process, and / or ultraviolet absorbers may be used.

〔フィルムの成形方法〕
フィルムを成形する方法としては、従来公知の任意の方法が可能であり、たとえば、溶液流延法や溶融押出法などが挙げられる。そのいずれをも採用することができるが、地球環境上や作業環境上、あるいは製造コストの観点から、溶剤を使用しない溶融押出法が好ましい。
[Film forming method]
As a method of forming the film, any conventionally known method can be used, and examples thereof include a solution casting method and a melt extrusion method. Any of these methods can be employed, but from the viewpoint of the global environment, work environment, and production cost, a melt extrusion method that does not use a solvent is preferable.

本発明にかかるフィルムの製造方法においては、少なくとも縦延伸した後に横延伸する逐次二軸延伸工程が含まれていればよく、他の工程については特に限定されるものではないが、好ましい実施形態としては、さらに、予備乾燥工程、押出工程、冷却工程の各工程を含む製造方法を挙げることができる。   In the method for producing a film according to the present invention, it is only necessary to include a sequential biaxial stretching process in which at least longitudinal stretching is performed and then lateral stretching is performed, and other processes are not particularly limited, but as a preferred embodiment Furthermore, the manufacturing method including each process of a preliminary drying process, an extrusion process, and a cooling process can be mentioned.

予備乾燥工程は、フィルム化の前に、用いる熱可塑性樹脂を予備乾燥しておく工程である。予備乾燥は、例えば原料をペレットなどの形態にして、熱風乾燥機などを用いることによって行われる。以上の予備乾燥によって、押し出される樹脂の発泡を防ぐことができる。本工程を採用することによって、特に光学用フィルムを製造する場合には、発泡に伴う光学用フィルムの品質低下を回避できるため好ましい。予備乾燥の具体的な条件は特に限定されるものではなく、本発明の技術分野で公知の条件を採用することができる。なお、予備乾燥の際の温度は、水を充分に気化させられる程度に高温であり、かつ、原料ペレットがブロッキングしない程度に低温であることが好ましい。   The pre-drying step is a step of pre-drying the thermoplastic resin to be used before film formation. The preliminary drying is performed by, for example, using a hot air dryer or the like in the form of pellets or the like. By the above preliminary drying, foaming of the extruded resin can be prevented. By adopting this step, particularly when an optical film is produced, it is possible to avoid a deterioration in the quality of the optical film due to foaming, which is preferable. Specific conditions for the preliminary drying are not particularly limited, and conditions known in the technical field of the present invention can be employed. In addition, it is preferable that the temperature at the time of preliminary drying is high enough to vaporize water sufficiently and low enough that the raw material pellets do not block.

押出工程は、熱可塑性樹脂を押出機に供給してシート状に押出し、フィルムとして成膜する工程である。押出機の種類および押出条件は特に限定されるものではなく、本発明の技術分野で公知の条件を採用することができる。例えば、押出機内で加熱溶融された熱可塑性樹脂を、ギヤーポンプやフィルターを通して、Tダイに供給する構成の押出機を好ましく用いることができる。ギヤーポンプを用いることによって、樹脂の押出量の均一性を向上させ、厚みむらを低減させることができる。また、フィルターを用いることによって、樹脂中の異物を除去し、欠陥の無い外観に優れたフィルムを得ることができる。このような構成を採用することによって、得られる光学用フィルムの品質をより向上させることができる。   The extrusion process is a process in which a thermoplastic resin is supplied to an extruder and extruded into a sheet shape to form a film. The type of the extruder and the extrusion conditions are not particularly limited, and conditions known in the technical field of the present invention can be employed. For example, an extruder having a configuration in which a thermoplastic resin heated and melted in an extruder is supplied to a T die through a gear pump or a filter can be preferably used. By using the gear pump, the uniformity of the resin extrusion amount can be improved, and the thickness unevenness can be reduced. Further, by using a filter, it is possible to remove foreign substances in the resin and obtain a film having an excellent appearance without defects. By adopting such a configuration, the quality of the obtained optical film can be further improved.

冷却工程は、押し出されるシート状の溶融樹脂を2つの冷却ドラムで挟み込んで冷却する工程である。冷却工程を採用することによって、光学用フィルムを効率的かつ高品質に成膜することができる。ここで、2つの冷却ドラムのうち、一方は表面が平滑な剛体製の金属ドラムであり、もう一方は表面が平滑な弾性変形可能な金属製弾性外筒を備えたフレキシブルなドラムであることが特に好ましい。剛体製のドラムとフレキシブルなドラムとで、押し出されるシート状の溶融樹脂を挟み込んで冷却して成膜することにより、表面の微小な凹凸やダイラインなどが矯正されて、表面の平滑な、厚みむらが5μm以下であるフィルムを得ることができる。   The cooling process is a process in which the extruded sheet-like molten resin is sandwiched between two cooling drums and cooled. By adopting the cooling step, the optical film can be formed efficiently and with high quality. Here, of the two cooling drums, one is a rigid metal drum having a smooth surface, and the other is a flexible drum having an elastically deformable metal elastic outer cylinder having a smooth surface. Particularly preferred. By sandwiching the extruded sheet-like molten resin between the rigid drum and the flexible drum and cooling to form a film, fine irregularities on the surface and die lines are corrected, and the surface has smooth and uneven thickness. A film having a thickness of 5 μm or less can be obtained.

上記剛体製ドラムおよびフレキシブルドラムの具体的な材質や形状、大きさ等は特に限定されるものではなく、押し出されたシート状の溶融樹脂を十分に冷却できるようなドラムとなっていればよい。なお、本明細書において「冷却ドラム」とは、いわゆる「タッチロール」および「冷却ロール」をも包含するものである。   The specific material, shape, size, and the like of the rigid drum and the flexible drum are not particularly limited as long as the extruded sheet-like molten resin can be sufficiently cooled. In the present specification, the “cooling drum” includes so-called “touch roll” and “cooling roll”.

本冷却工程では、たとえ一方のドラムが弾性変形可能であったとしても、通常いずれのドラム表面も金属であるために、ドラムの面同士が接触してドラム外面に傷がつきやすく、また、ドラムそのものが破損しやすい。従って、成形するフィルムの厚みは10μm以上であることが好ましく、50μm以上であることがより好ましく、80μm以上であることがさらに好ましく、100μm以上であることが特に好ましい。   In this cooling process, even if one of the drums can be elastically deformed, the surfaces of the drums are usually made of metal, so that the drum surfaces come into contact with each other and the outer surface of the drum is easily damaged. It is easy to break itself. Accordingly, the thickness of the film to be molded is preferably 10 μm or more, more preferably 50 μm or more, further preferably 80 μm or more, and particularly preferably 100 μm or more.

また、本冷却工程では、フィルムが厚いと、フィルムの冷却が不均一になりやすく、光学的特性が不均一になりやすい。従って、フィルムの厚みは200μm以下であることが好ましく、170μm以下であることがさらに好ましい。   Further, in this cooling step, if the film is thick, the cooling of the film is likely to be non-uniform, and the optical characteristics are likely to be non-uniform. Accordingly, the thickness of the film is preferably 200 μm or less, and more preferably 170 μm or less.

本発明の好ましい実施態様として、上記予備乾燥工程、押出工程、冷却工程、および後述する延伸工程を含む製造方法を例示したが、もちろん本発明はこれに限定されるものではなく、必要に応じて一部の工程を省略してもよいし、本発明の技術分野で公知の他の工程を追加してもよい。他の工程としては、後述する表面処理工程等を挙げることができるが、特に限定されるものではない。   As a preferred embodiment of the present invention, the production method including the preliminary drying step, the extrusion step, the cooling step, and the stretching step described later is exemplified, but the present invention is of course not limited to this, and as necessary. Some steps may be omitted, or other steps known in the technical field of the present invention may be added. Examples of other steps include a surface treatment step described later, but are not particularly limited.

〔フィルムの延伸方法〕
本発明では、上記のようにして得られたフィルムに対して延伸工程を施すことにより延伸フィルムを得る。すなわち、延伸フィルムは、上記〔フィルムの成形方法〕において説明した方法などによって得られた未延伸状態のフィルムに対して、縦延伸した後に横延伸する逐次二軸延伸を行うことにより得られる(但し、未延伸状態のフィルムに代えて、延伸済みのフィルムに適用することも可能である。)。これらの延伸を行うことにより、フィルム面内およびフィルム厚み方向の複屈折を適度に付与することができる。なお、原料フィルムを成形した後、必要に応じて一旦フィルムを保管もしくは移動して、その後にフィルムの延伸を行ってもよい。
[Stretching method of film]
In the present invention, a stretched film is obtained by subjecting the film obtained as described above to a stretching step. That is, a stretched film can be obtained by subjecting an unstretched film obtained by the method described in the above [Film Forming Method] or the like to sequential biaxial stretching that is longitudinally stretched and then laterally stretched (however, It is also possible to apply to a stretched film instead of an unstretched film.) By performing these stretching operations, birefringence in the film plane and in the film thickness direction can be appropriately imparted. In addition, after shape | molding a raw material film, a film may be once stored or moved as needed, and a film may be extended after that.

縦延伸には、従来公知の任意の延伸方法が採用されてよく、一般に、ゾーン延伸またはロール縦延伸が一般的である。ゾーン延伸法は、2つのニップロール間に加熱ゾーンを有する縦一軸延伸であり、ロール縦延伸法は、所定の温度に設定された延伸ロール間で、入口側のロール回転数より出口側のロール回転数を大きくすることによって延伸する方法である。延伸温度は、使用する熱可塑性樹脂により異なるが、一般に、熱可塑性樹脂のガラス転移温度〜ガラス転移温度+10℃の範囲が好ましい。   For the longitudinal stretching, any conventionally known stretching method may be adopted, and generally zone stretching or roll longitudinal stretching is common. The zone stretching method is longitudinal uniaxial stretching having a heating zone between two nip rolls, and the roll longitudinal stretching method rotates the roll on the outlet side from the roll speed on the inlet side between the stretching rolls set to a predetermined temperature. This is a method of stretching by increasing the number. The stretching temperature varies depending on the thermoplastic resin to be used, but in general, a range of glass transition temperature to glass transition temperature + 10 ° C. of the thermoplastic resin is preferable.

横延伸は、テンター延伸が一般的である。すなわち、フィルムの幅方向端部をテンタークリップで保持し、次第に間隔が開くように設置されたテンターレールに沿って、フィルムの幅方向端部を保持したテンタークリップを前進させることにより、フィルムを横延伸するのが通常である。   The transverse stretching is generally tenter stretching. That is, the film is held horizontally by holding the end in the width direction of the film with the tenter clip, and moving the tenter clip holding the end in the width direction of the film along the tenter rail installed so that the gap gradually increases. It is usual to stretch.

本発明においては、横延伸時の延伸温度は縦延伸時の延伸温度より高くする必要がある。横延伸の延伸温度が縦延伸の延伸温度より低い場合、分子の配向方向の不均一化が起こり光軸角度精度が悪くなる。従って、横延伸の延伸温度は縦延伸の延伸温度より高い温度限定され、好ましくは、縦延伸の延伸温度+5℃以上である。   In the present invention, the stretching temperature during transverse stretching must be higher than the stretching temperature during longitudinal stretching. When the stretching temperature in the transverse stretching is lower than the stretching temperature in the longitudinal stretching, the molecular orientation direction becomes nonuniform and the optical axis angle accuracy is deteriorated. Accordingly, the stretching temperature in the transverse stretching is limited to a temperature higher than the stretching temperature in the longitudinal stretching, and is preferably the stretching temperature in the longitudinal stretching + 5 ° C. or more.

横延伸の予熱ゾーン及び延伸ゾーンの風速は8m/秒〜30m/秒の範囲である必要がある。風速が遅い場合、フィルムの幅方向の温度分布が大きくなってしまうため、光軸角度精度が悪くなる。また、風速が速すぎる場合、フィルムが熱風に煽られて熱風吹き出しノズルと接触し、フィルムが破断する等の問題が発生する。従って、横延伸の予熱ゾーン及び延伸ゾーンの風速は8m/秒〜30m/秒の範囲に限定され、好ましくは、10m/秒〜25m/秒の範囲である。   The wind speed of the preheating zone and the stretching zone of the transverse stretching needs to be in the range of 8 m / sec to 30 m / sec. When the wind speed is slow, the temperature distribution in the width direction of the film becomes large, so that the optical axis angle accuracy deteriorates. When the wind speed is too high, the film is blown by the hot air and comes into contact with the hot air blowing nozzle, causing problems such as the film breaking. Therefore, the wind speed of the pre-heating zone and the stretching zone in the transverse stretching is limited to the range of 8 m / sec to 30 m / sec, and preferably in the range of 10 m / sec to 25 m / sec.

本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。なお、以下の実施例および比較例で測定した光軸角度精度は、複屈折計(王子計測機器社製、商品名「KOBRA−21ADH」)を用いてフィルム幅方向に35mm間隔で光軸角度を測定し、各測定点における光軸角度が±1.0度以内に入っている比率を百分率で示した。   EXAMPLES Although this invention is demonstrated further in detail based on an Example, this invention is not limited only to these Examples. Those skilled in the art can make various changes, modifications, and alterations without departing from the scope of the present invention. In addition, the optical axis angle accuracy measured in the following examples and comparative examples is determined using the birefringence meter (trade name “KOBRA-21ADH” manufactured by Oji Scientific Instruments Co., Ltd.) and the optical axis angle at intervals of 35 mm in the film width direction. The ratio of the optical axis angle at each measurement point within ± 1.0 degrees was shown as a percentage.

(製造例1)
ポリメタクリル酸メチル‐スチレン共重合体(MS)樹脂を、イミド化剤であるモノメチルアミンによりイミド化し、イミド化MS樹脂を製造した。このイミド化MS樹脂は、実施形態の〔フィルムの組成〕に記載した一般式(1)で表される単位と一般式(2)で表される単位と一般式(3)で表される単位とが共重合したイミド樹脂に相当する。得られたイミド樹脂を押出機にてペレットにし、得られたペレットを140℃で5時間乾燥した後、40mm単軸押出機と400mm幅のTダイとを用いて260℃で押出し、厚み150μmのフィルムを得た。
(Production Example 1)
A polymethyl methacrylate-styrene copolymer (MS) resin was imidized with monomethylamine as an imidizing agent to produce an imidized MS resin. The imidized MS resin includes a unit represented by the general formula (1), a unit represented by the general formula (2), and a unit represented by the general formula (3) described in [Film Composition] of the embodiment. Corresponds to an imide resin copolymerized. The obtained imide resin was formed into pellets with an extruder, and the obtained pellets were dried at 140 ° C. for 5 hours, and then extruded at 260 ° C. using a 40 mm single screw extruder and a 400 mm wide T-die. A film was obtained.

(製造例2)
アクリル酸エステル系樹脂であるポリメタクリル酸メチル(PMAA)樹脂を、イミド化剤であるモノメチルアミンによりイミド化し、イミド化PMAA樹脂を製造した。この、イミド化PMAA樹脂は、実施形態の〔フィルムの組成〕に記載した一般式(1)で表される単位と一般式(2)で表される単位とが共重合したイミド樹脂に相当する。得られたイミド樹脂を押出機にてペレットにし、得られたペレットを100℃で5時間乾燥した後、40mm単軸押出機と400mm幅のTダイとを用いて230℃で押出し、厚み150μmのフィルムを得た。
(Production Example 2)
A polymethyl methacrylate (PMAA) resin, which is an acrylic ester resin, was imidized with monomethylamine, which is an imidizing agent, to produce an imidized PMAA resin. This imidized PMAA resin corresponds to an imide resin obtained by copolymerizing the unit represented by the general formula (1) and the unit represented by the general formula (2) described in [Film Composition] of the embodiment. . The obtained imide resin was pelletized with an extruder, and the obtained pellet was dried at 100 ° C. for 5 hours, and then extruded at 230 ° C. using a 40 mm single-screw extruder and a 400 mm wide T-die. A film was obtained.

〔実施例1〕
製造例1のフィルムを、延伸温度を160℃、延伸倍率を2.0倍の条件にて縦延伸した。次に、縦延伸フィルムをテンターに導き、延伸温度を170℃、予熱ゾーンと延伸ゾーンの風速を12m/秒、延伸倍率を2.1倍の条件にて横延伸した。そして、フィルムの耳をトリミングした後、厚み40μmの二軸延伸フィルムを得た。
[Example 1]
The film of Production Example 1 was longitudinally stretched under the conditions of a stretching temperature of 160 ° C. and a stretching ratio of 2.0 times. Next, the longitudinally stretched film was guided to a tenter, and stretched transversely under the conditions of a stretching temperature of 170 ° C., a wind speed of the preheating zone and the stretching zone of 12 m / sec, and a stretching ratio of 2.1 times. Then, after trimming the ears of the film, a biaxially stretched film having a thickness of 40 μm was obtained.

得られたフィルムの光軸角度精度は85%であり、ボーイングが少なく、光軸角度精度のよいフィルムであった。   The obtained film had an optical axis angle accuracy of 85%, had little bowing, and had a good optical axis angle accuracy.

〔実施例2〕
製造例2のフィルムを用い、かつ、縦延伸の延伸温度を120℃、横延伸の延伸温度を135℃とした以外は、実施例1と同様の方法で二軸延伸フィルムを得た。
[Example 2]
A biaxially stretched film was obtained in the same manner as in Example 1, except that the film of Production Example 2 was used, the stretching temperature for longitudinal stretching was 120 ° C., and the stretching temperature for transverse stretching was 135 ° C.

得られたフィルムの光軸角度精度は82%であり、ボーイングが少なく、光軸角度精度のよいフィルムであった。   The obtained film had an optical axis angle accuracy of 82%, had little bowing, and had a good optical axis angle accuracy.

〔比較例1〕
横延伸の延伸温度を155℃とする以外の条件は実施例1と同様にして、厚み40μmの二軸延伸フィルムを得た。
[Comparative Example 1]
A biaxially stretched film having a thickness of 40 μm was obtained in the same manner as in Example 1 except that the stretching temperature for transverse stretching was 155 ° C.

得られたフィルムの光軸角度精度は63%であり、ボーイングが大きく、光軸角度精度に劣るフィルムであった。   The obtained film had an optical axis angle accuracy of 63%, a large bowing, and an inferior optical axis angle accuracy.

〔比較例2〕
横延伸の予熱ゾーンと延伸ゾーンの風速を5m/秒とする以外の条件は実施例1と同様にして、厚み40μmの二軸延伸フィルムを得た。
[Comparative Example 2]
A biaxially stretched film having a thickness of 40 μm was obtained in the same manner as in Example 1 except that the preheating zone for transverse stretching and the wind speed of the stretching zone were 5 m / sec.

得られたフィルムの光軸角度精度は50%であり、ボーイングが大きく、光軸角度精度に劣るフィルムであった。   The obtained film had an optical axis angle accuracy of 50%, a large bowing, and an inferior optical axis angle accuracy.

〔比較例3〕
横延伸の予熱ゾーンと延伸ゾーンの風速を40m/秒とする以外の条件は実施例1と同様にして、厚み40μmの二軸延伸フィルムを得ようとしたが、フィルムの破断が頻発し、二軸延伸フィルムを安定的に得ることができなかった。
[Comparative Example 3]
A biaxially stretched film having a thickness of 40 μm was obtained in the same manner as in Example 1 except that the wind speed of the transverse stretching preheating zone and the stretching zone was 40 m / sec. An axially stretched film could not be obtained stably.

Claims (3)

非晶性の熱可塑性樹脂フィルムを縦延伸した後に横延伸する逐次二軸延伸による位相差補償フィルムの製造方法であって、横延伸時の延伸温度を縦延伸時の延伸温度より高くし、かつ、横延伸の予熱ゾーン及び延伸ゾーンの風速を8m/秒〜30m/秒とすることを特徴とする位相差補償フィルムの製造方法。   A method for producing a retardation compensation film by sequential biaxial stretching in which an amorphous thermoplastic resin film is stretched in the longitudinal direction and then stretched in the longitudinal direction, wherein the stretching temperature in the transverse stretching is higher than the stretching temperature in the longitudinal stretching, and A method for producing a retardation compensation film, wherein the pre-heating zone for transverse stretching and the wind speed of the stretching zone are 8 m / sec to 30 m / sec. 上記非晶性の熱可塑性樹脂として、イミド樹脂又はイミド樹脂を含有する樹脂組成物が用いられることを特徴とする、請求項1に記載の位相差補償フィルムの製造方法。   The method for producing a retardation compensation film according to claim 1, wherein an imide resin or a resin composition containing an imide resin is used as the amorphous thermoplastic resin. 上記イミド樹脂が、下記の一般式(1)で表される単位と、下記の一般式(2)で表される単位及び/又は(3)で表される単位とを有するイミド樹脂であることを特徴とする、請求項2に記載の位相差補償フィルムの製造方法。
Figure 2006309029
(ただし、R1およびR2は、それぞれ独立に、水素または炭素数1〜8のアルキル基を示し、R3は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数5〜15の芳香環を含む置換基示す。)
Figure 2006309029
(ただし、R4およびR5は、それぞれ独立に、水素または炭素数1〜8のアルキル基を示し、R6は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2006309029
(ただし、R7は、水素または炭素数1〜8のアルキル基を示し、R8は、炭素数5〜15の芳香環を含む置換基を示す。)
The imide resin is an imide resin having a unit represented by the following general formula (1) and a unit represented by the following general formula (2) and / or a unit represented by (3). The method for producing a retardation compensation film according to claim 2, wherein:
Figure 2006309029
(Wherein, R 1 and R 2 each independently represents a hydrogen or an alkyl group having 1 to 8 carbon atoms, R 3 is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)
Figure 2006309029
(However, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)
Figure 2006309029
(Wherein, R 7 is a hydrogen or an alkyl group having 1 to 8 carbon atoms, R 8 represents a substituent containing an aromatic ring having 5 to 15 carbon atoms.)
JP2005133648A 2005-04-28 2005-04-28 Method for manufacturing phase difference compensation film Pending JP2006309029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005133648A JP2006309029A (en) 2005-04-28 2005-04-28 Method for manufacturing phase difference compensation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133648A JP2006309029A (en) 2005-04-28 2005-04-28 Method for manufacturing phase difference compensation film

Publications (1)

Publication Number Publication Date
JP2006309029A true JP2006309029A (en) 2006-11-09

Family

ID=37475966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133648A Pending JP2006309029A (en) 2005-04-28 2005-04-28 Method for manufacturing phase difference compensation film

Country Status (1)

Country Link
JP (1) JP2006309029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073646A (en) * 2011-12-26 2012-04-12 Nippon Zeon Co Ltd Manufacturing method of retardation plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073646A (en) * 2011-12-26 2012-04-12 Nippon Zeon Co Ltd Manufacturing method of retardation plate

Similar Documents

Publication Publication Date Title
JP5588626B2 (en) Optical film, polarizing plate, optical compensation film, antireflection film, and liquid crystal display device
JP2006309033A (en) Method for manufacturing film for optics
WO2007125857A1 (en) Process for producing optical film with uneven structure, optical film, wire grid polarizer, and retardation film
JP2010079287A (en) Liquid crystal display device
JP2005254812A (en) Method for manufacturing stretched film composed of thermoplastic norbornene and phase difference film
KR20170125098A (en) Liquid crystal display device having a touch panel and method of manufacturing the same
JP4544005B2 (en) Method for producing stretched film
JP3846566B2 (en) Method for producing thermoplastic resin sheet
CN113454501A (en) Method for producing resin film, and retardation film and method for producing same
CN105765424A (en) method for producing retardation film
JP2006150659A (en) Manufacturing method of stretched film and phase difference film
JP5777776B2 (en) Optical film, polarizing plate, optical compensation film, antireflection film, and liquid crystal display device
JP2010026097A (en) Retardation film, composite sheet polarizer, sheet polarizer and liquid crystal display device
WO2013027414A1 (en) Method for producing long stretched film and method for producing circularly polarizing plate
JP5411488B2 (en) Film and manufacturing method thereof, optical compensation film for liquid crystal display plate, polarizing plate and liquid crystal display device
JP2009126899A (en) Cellulose ester film and optical film
JP2006309029A (en) Method for manufacturing phase difference compensation film
JP2008284829A (en) Manufacturing method for optical film
JP2003236915A (en) Method for manufacturing amorphous thermoplastic resin sheet
JP2010208078A (en) Method for manufacturing acrylic resin film
WO2022259668A1 (en) Method for manufacturing film roll, and projection adjustment system used in method for manufacturing film roll
JP2005234431A (en) Liquid crystal display and polarizing plate set
WO2021153695A1 (en) Retardation film manufacturing method
JP2010069703A (en) Film, method for producing the film and apparatus for producing the film
WO2022145174A1 (en) Optical film and manufacturing method therefor