JP2006307844A - V-type internal combustion engine - Google Patents

V-type internal combustion engine Download PDF

Info

Publication number
JP2006307844A
JP2006307844A JP2006090466A JP2006090466A JP2006307844A JP 2006307844 A JP2006307844 A JP 2006307844A JP 2006090466 A JP2006090466 A JP 2006090466A JP 2006090466 A JP2006090466 A JP 2006090466A JP 2006307844 A JP2006307844 A JP 2006307844A
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
compressed air
type internal
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090466A
Other languages
Japanese (ja)
Other versions
JP4608453B2 (en
Inventor
Kaoru Hanawa
薫 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006090466A priority Critical patent/JP4608453B2/en
Publication of JP2006307844A publication Critical patent/JP2006307844A/en
Application granted granted Critical
Publication of JP4608453B2 publication Critical patent/JP4608453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a V-type internal combustion engine capable of preventing formation of condensation in a supply passage, by easily forming the compressed air supply passage to an air-fuel mixture injection valve 30 of respective cylinder head parts from an air compressor 18. <P>SOLUTION: This V-type internal combustion engine 1 is formed by arranging the air-fuel mixture injection valve 30 for directly injecting an air-fuel mixture of fuel and air into combustion chambers 23a and 23b in a cylinder in respective cylinder heads 22a and 22b. The compressed air supply passage to the respective air-fuel mixture injection valves 30 from the air compressor 18 attached to the internal combustion engine, is composed of a common passage 32 arranged in a crankcase 11 and a supply passage 33 arranged by branching off into respective cylinder blocks 21a and 21b. The compressed air supply passage is formed by installing the cylinder blocks 21a and 21b in the crankcase 11, and the formation of condensation is prevented by preventing cooling of compressed air in the compressed air supply passage. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数のシリンダを互いにV字状に離間させてクランクケース上に設けたV型内燃機関に関し、特に、シリンダ内の燃焼室へ燃料と空気との混合気を直接噴射する混合気噴射弁を設けたV型内燃機関に関する。   The present invention relates to a V-type internal combustion engine in which a plurality of cylinders are spaced apart from each other in a V shape and provided on a crankcase, and in particular, an air-fuel mixture injection that directly injects a mixture of fuel and air into a combustion chamber in the cylinder. The present invention relates to a V-type internal combustion engine provided with a valve.

自動二輪車等といった車両の動力源として用いられる内燃機関には、シリンダ内の燃焼室へ燃料と空気との混合気を直接噴射する混合気噴射弁を設たものが知られている(特許文献1参照。)
この混合気噴射弁は、内燃機関の燃焼運転サイクルに応じて開閉制御され、空気圧コンプレッサから供給された圧縮空気と燃料とを混合して燃焼室へ噴射し、内燃機関を運転させるものであり、内燃機関の燃費向上等を実現することができる。
An internal combustion engine used as a power source for a vehicle such as a motorcycle is known in which an air-fuel mixture injection valve for directly injecting an air-fuel mixture into a combustion chamber in a cylinder is disclosed (Patent Document 1). reference.)
This air-fuel mixture injection valve is controlled to open and close according to the combustion operation cycle of the internal combustion engine, mixes the compressed air and fuel supplied from the pneumatic compressor, injects them into the combustion chamber, and operates the internal combustion engine. It is possible to improve the fuel consumption of the internal combustion engine.

また、内燃機関には、複数のシリンダを互いにV字状に離間させてクランクケース上に設けたV型内燃機関が知られており、内燃機関のコンパクト化や内燃機関の運転に伴う振動の軽減等を実現することができる。
特に、自動二輪車のように内燃機関の搭載スペースが限られる車両においては、V型内燃機関は有用な構造の内燃機関として知られている。
特開2004−301113号公報。
Further, as the internal combustion engine, a V-type internal combustion engine in which a plurality of cylinders are separated from each other in a V shape and provided on a crankcase is known, and the internal combustion engine is made compact and the vibration associated with the operation of the internal combustion engine is reduced. Etc. can be realized.
In particular, a V-type internal combustion engine is known as an internal combustion engine having a useful structure in a vehicle such as a motorcycle in which a space for mounting the internal combustion engine is limited.
Japanese Patent Application Laid-Open No. 2004-301113.

混合気噴射弁は内燃機関のシリンダヘッド部に設けられるが、当該内燃機関に付設された空気圧コンプレッサから各混合気噴射弁への圧縮空気供給路を如何に設けるかが課題である。
具体的には、V型内燃機関では、V字状に離間した各シリンダのヘッド部へ空気圧コンプレッサからそれぞれ圧縮空気を供給しなければならないため、圧縮空気供給路の取り回しや分岐等を工夫しなければ、圧縮空気供給路の設定に基づいて内燃機関の組み立て構造が複雑化してしまうという課題がある。
The air-fuel mixture injection valve is provided in the cylinder head portion of the internal combustion engine, but how to provide a compressed air supply path from the pneumatic compressor attached to the internal combustion engine to each air-fuel mixture injection valve is a problem.
Specifically, in a V-type internal combustion engine, compressed air must be supplied from the pneumatic compressor to the heads of the cylinders spaced apart in a V-shape, so the compressed air supply path must be routed and branched. For example, the assembly structure of the internal combustion engine becomes complicated based on the setting of the compressed air supply path.

特に、V型内燃機関では、空気圧コンプレッサから各シリンダのヘッド部(混合気噴射弁)へ至る圧縮空気供給路の長さを均一化させないと、圧縮空気圧が不均一となって各混合気噴射弁での燃料混合比が不均一化してしまうという課題があった。
また、圧縮空気供給路が車両の走行に伴って過度に冷却されてしまうと、圧縮空気中の水分が凝縮して圧縮空気供給路内に結露が生じ、この結露により混合気噴射弁の動作不良や内燃機関の運転不良を惹起してしまうという課題がある。
In particular, in a V-type internal combustion engine, unless the length of the compressed air supply path from the pneumatic compressor to the head portion (mixture injection valve) of each cylinder is equalized, the compressed air pressure becomes non-uniform and each mixture injection valve There is a problem that the fuel mixture ratio in the case becomes uneven.
Also, if the compressed air supply path is excessively cooled as the vehicle travels, moisture in the compressed air condenses and condensation occurs in the compressed air supply path, which causes malfunction of the air-fuel mixture injection valve. In addition, there is a problem of causing an operation failure of the internal combustion engine.

また、圧縮空気供給路は過度に冷却されないようにすることが求められる反面、内燃機関に付設される空気圧コンプレッサは、空気の圧縮効率を高めるために、車両の走行に伴って冷却され易いことが求められ、当該相反する要求を満足させ且つ上記の課題を解決することができるV型内燃機関の実現が求められている。   Further, while the compressed air supply path is required not to be excessively cooled, the pneumatic compressor attached to the internal combustion engine is likely to be cooled as the vehicle travels in order to increase the air compression efficiency. There is a need to realize a V-type internal combustion engine that can satisfy the conflicting requirements and solve the above-described problems.

本発明は、上記従来の事情に鑑みなされたもので、内燃機関に付設された空気圧コンプレッサから各混合気噴射弁への圧縮空気供給路を工夫して配設することにより、当該圧縮空気供給路を設けても組み立てが容易な構造のV型内燃機関を提供することを目的としている。
また、本発明は、同様にして、空気圧コンプレッサから各混合気噴射弁へ至る圧縮空気供給路の長さが均一化されるV型内燃機関を提供することを目的としている。
The present invention has been made in view of the above-described conventional circumstances, and the compressed air supply path is devised by arranging the compressed air supply path from the pneumatic compressor attached to the internal combustion engine to each mixture injection valve. It is an object of the present invention to provide a V-type internal combustion engine having a structure that is easy to assemble even if provided.
Another object of the present invention is to provide a V-type internal combustion engine in which the length of the compressed air supply path from the pneumatic compressor to each mixture injection valve is made uniform.

また、本発明は、同様にして、内燃機関が車両の走行に伴って冷却される場合にあっても、圧縮空気供給路が過度に冷却されず、当該圧縮空気供給路での結露発生を防止することができるV型内燃機関を提供することを目的としている。
また、本発明は、同様にして、内燃機関に付設される空気圧コンプレッサが車両の走行に伴って冷却され、当該空気圧コンプレッサによる空気の圧縮効率を高めることができるV型内燃機関を提供することを目的としている。
Further, the present invention similarly prevents the compressed air supply path from being excessively cooled even when the internal combustion engine is cooled as the vehicle travels, and prevents the occurrence of condensation in the compressed air supply path. An object of the present invention is to provide a V-type internal combustion engine that can be used.
In addition, the present invention similarly provides a V-type internal combustion engine in which a pneumatic compressor attached to the internal combustion engine is cooled as the vehicle travels, and air compression efficiency by the pneumatic compressor can be increased. It is aimed.

本発明に係るV型内燃機関は、複数のシリンダを互いにV字状に離間させてクランクケース上に設けたV型内燃機関において、各シリンダヘッド部にシリンダ内の燃焼室へ燃料と空気との混合気を直接噴射する混合気噴射弁を設け、当該内燃機関に付設された空気圧コンプレッサから各混合気噴射弁への圧縮空気供給路の一部をクランクケース部に共用路として設けたことを特徴とする。   A V-type internal combustion engine according to the present invention is a V-type internal combustion engine in which a plurality of cylinders are spaced apart from each other in a V shape and provided on a crankcase. An air-fuel mixture injection valve for directly injecting air-fuel mixture is provided, and a part of the compressed air supply path from the pneumatic compressor attached to the internal combustion engine to each air-fuel mixture injection valve is provided as a common path in the crankcase part And

したがって、空気圧コンプレッサから各混合気噴射弁への圧縮空気供給路の一部をクランクケース部に共用路として設けることにより、各混合気噴射弁に対して分岐される圧縮空気供給路を極力一纏めとし、当該クランクケースにシリンダブロックを組み付けるだけで、圧縮空気供給路が設けられたV型内燃機関を組み立てることができる。
なお、本発明において、空気圧コンプレッサから各混合気噴射弁へ至る圧縮空気供給路の一部又は全部を内燃機関の付設した外部配管により構成することも可能であるが、クランクケースやシリンダブロックに形成した内部管路(内部通路)により構成するのが好ましく、内部管路構造とすることにより内燃機関の運転燃焼熱により圧縮空気供給路が暖められて、これによっても結露防止効果を得ることができる。
Therefore, by providing a part of the compressed air supply path from the pneumatic compressor to each air-fuel mixture injection valve as a common path in the crankcase part, the compressed air supply path branched to each air-fuel mixture injection valve is integrated as much as possible. The V-type internal combustion engine provided with the compressed air supply path can be assembled simply by assembling the cylinder block to the crankcase.
In the present invention, a part or all of the compressed air supply path from the pneumatic compressor to each air-fuel mixture injection valve can be constituted by an external pipe attached to the internal combustion engine, but it is formed in a crankcase or a cylinder block. It is preferable that the internal pipe line (internal passage) is used, and the internal pipe structure allows the compressed air supply path to be warmed by the operating combustion heat of the internal combustion engine, and this also provides the effect of preventing condensation. .

更に、本発明に係るV型内燃機関は、クランクケース部に設けた共用路から各混合気噴射弁へ至る圧縮空気供給路を各シリンダへ分岐し、分岐された各圧縮空気供給路を各シリンダブロックの対向する側の側壁に沿って設け(好ましくは内部通路で設け)たことを特徴とする。   Further, in the V-type internal combustion engine according to the present invention, the compressed air supply path from the common path provided in the crankcase portion to each air-fuel mixture injection valve is branched to each cylinder, and each branched compressed air supply path is branched to each cylinder. It is provided along the side wall on the opposite side of the block (preferably provided in the internal passage).

したがって、クランクケース部の共用路から分岐された各圧縮空気供給路が均一の経路長で各混合気噴射弁へ至ることとなり、各混合気噴射弁へ供給する圧縮空気圧が均等化される。
また、V型内燃機関を自動二輪車に搭載して走行した場合でも、シリンダブロック部の圧縮空気供給路がシリンダブロックにより遮蔽されるため、当該圧縮空気供給路が走行風に晒されて冷却されることを防止し、これによっても結露防止効果を得ることができる。
Therefore, each compressed air supply path branched from the common path of the crankcase portion reaches each air-fuel mixture injection valve with a uniform path length, and the compressed air pressure supplied to each air-fuel mixture injection valve is equalized.
Even when the V-type internal combustion engine is mounted on a motorcycle, the compressed air supply path of the cylinder block is shielded by the cylinder block, so that the compressed air supply path is exposed to the traveling wind and cooled. This can also prevent the condensation.

更に、本発明に係るV型内燃機関は、V型内燃機関を車両に搭載した状態で、空気圧コンプレッサは車両進行方向の前部となる部位に露呈して設けられていることを特徴とする。   Furthermore, the V-type internal combustion engine according to the present invention is characterized in that, with the V-type internal combustion engine mounted on a vehicle, the pneumatic compressor is exposed to a front portion in the vehicle traveling direction.

したがって、V型内燃機関を自動二輪車に搭載して走行した場合、空気圧コンプレッサが走行風に晒されて冷却されるため、当該空気圧コンプレッサによる空気の圧縮効率を高めることができる。   Therefore, when traveling with the V-type internal combustion engine mounted on a motorcycle, the pneumatic compressor is exposed to the traveling wind and cooled, so that the air compression efficiency of the pneumatic compressor can be increased.

本発明によると、空気圧コンプレッサから各混合気噴射弁への圧縮空気供給路の一部をクランクケース部に共用路として設けたV型内燃機関としたため、クランクケースにシリンダブロックを組み付けるだけで圧縮空気供給路が設けられたV型内燃機関を容易に組み立てることができ、更に、共用路をクランクケースに形成した内部通路により構成することで、圧縮空気供給路を暖めて結露防止効果を得ることができる。   According to the present invention, since a part of the compressed air supply path from the pneumatic compressor to each air-fuel mixture injection valve is a V-type internal combustion engine provided as a shared path in the crankcase part, the compressed air can be obtained simply by assembling the cylinder block to the crankcase. It is possible to easily assemble a V-type internal combustion engine provided with a supply path, and further, by configuring the common path with an internal passage formed in the crankcase, it is possible to warm the compressed air supply path and obtain a dew condensation prevention effect. it can.

更に、本発明によると、クランクケース部に設けた共用路から各混合気噴射弁へ至る圧縮空気供給路を各シリンダへ分岐し、分岐された各圧縮空気供給路を各シリンダブロックの対向する側の側壁に沿って設けたため、各混合気噴射弁へ至る各圧縮空気供給路長を均一化することができ、しかも、V型内燃機関を自動二輪車に搭載して走行した場合でも、シリンダブロック部の圧縮空気供給路が走行風に晒されて冷却されることを防止して結露防止効果を得ることができ、更に、各圧縮空気供給路をシリンダブロックに形成した内部通路により構成することで、圧縮空気供給路を暖めて結露防止効果を得ることができる。   Further, according to the present invention, the compressed air supply path from the common path provided in the crankcase portion to each mixture injection valve is branched to each cylinder, and each branched compressed air supply path is opposed to each cylinder block. The length of each compressed air supply passage leading to each air-fuel mixture injection valve can be made uniform, and the cylinder block portion can be used even when the V-type internal combustion engine is mounted on a motorcycle. By preventing the compressed air supply path from being cooled by being exposed to the traveling wind, it is possible to obtain a dew condensation prevention effect, and further, by configuring each compressed air supply path with an internal passage formed in the cylinder block, It is possible to obtain a dew condensation prevention effect by warming the compressed air supply path.

更に、本発明によると、空気圧コンプレッサを車両進行方向の前部となる部位に露呈して設けたため、空気圧コンプレッサを走行風に晒して冷却することができ、空気圧コンプレッサによる空気の圧縮効率を高めることができる。   Furthermore, according to the present invention, since the pneumatic compressor is exposed at the front portion in the vehicle traveling direction, the pneumatic compressor can be cooled by being exposed to traveling wind, and the air compression efficiency by the pneumatic compressor can be increased. Can do.

本発明に係るV型内燃機関を自動二輪車に搭載した一例を用いて具体的に説明する。
図6には本例のV型内燃機関1を搭載した自動二輪車を示してある。
この自動二輪車は、車体フレームに枢支されたフロントフォーク2の下端で前輪3を回転自在に軸支し、車体フレームに前端が上下に揺動自在に支持されたリヤフォークの後端で後輪5を回転自在に軸支している。
A specific description will be given using an example in which a V-type internal combustion engine according to the present invention is mounted on a motorcycle.
FIG. 6 shows a motorcycle equipped with the V-type internal combustion engine 1 of this example.
This motorcycle has a front wheel 3 pivotally supported at the lower end of a front fork 2 pivotally supported by a vehicle body frame, and a rear wheel at a rear end of a rear fork that is supported by the vehicle body frame so that the front end can swing up and down. 5 is rotatably supported.

フロントフォーク2とシート6との間には車体フレームに取付けられた燃料タンク7が設けられており、燃料タンク7の下部に車体フレームを構成するハンガー8で支持されたV型内燃機関1が設けられている。なお、ハンガー8にはV型内燃機関1を冷却する冷媒のラジエータ9が設けられている。
V型内燃機関1は複数のシリンダ(本例では2つのシリンダ10a、10b)を互いにV字状に離間させてクランクケース11上に設けた構造であり、自動二輪車の進行方向前方に位置するシリンダ10aと後方に位置するシリンダ10bからそれぞれ排気管12a、12bが後方へ引き出されている。
A fuel tank 7 attached to the vehicle body frame is provided between the front fork 2 and the seat 6, and a V-type internal combustion engine 1 supported by a hanger 8 constituting the vehicle body frame is provided below the fuel tank 7. It has been. The hanger 8 is provided with a refrigerant radiator 9 for cooling the V-type internal combustion engine 1.
The V-type internal combustion engine 1 has a structure in which a plurality of cylinders (in this example, two cylinders 10a and 10b) are spaced apart from each other in a V shape and are provided on a crankcase 11, and a cylinder positioned in front of the motorcycle in the traveling direction. Exhaust pipes 12a and 12b are drawn backward from the cylinder 10b located at the rear side 10a.

また、V型内燃機関1のシリンダ10aと10bとの間に形成されたV字状の空間には、それぞれのシリンダ10a、10bに接続された吸気管13、排気ガス中の窒素酸化物(NOx)を低減するために排気ガスを内燃機関1の燃焼室に還流させる排気還流装置(EGR)の制御弁14が設けられている。
なお、制御弁14には後方シリンダ10bの排気管12bから排気導入管15を通して排気ガスが導入され、公知のように制御弁14をソレノイドで開閉制御することで、排気導入管15から導入された排気ガスを両シリンダ10a、10bの吸気ポートに供給して、その燃焼室に還流させる。
Further, a V-shaped space formed between the cylinders 10a and 10b of the V-type internal combustion engine 1 includes an intake pipe 13 connected to the cylinders 10a and 10b, and nitrogen oxides (NOx) in the exhaust gas. ) Is provided with an exhaust gas recirculation (EGR) control valve 14 that recirculates the exhaust gas to the combustion chamber of the internal combustion engine 1.
Exhaust gas is introduced into the control valve 14 from the exhaust pipe 12b of the rear cylinder 10b through the exhaust introduction pipe 15, and is introduced from the exhaust introduction pipe 15 by controlling the opening and closing of the control valve 14 with a solenoid as is well known. Exhaust gas is supplied to the intake ports of both cylinders 10a and 10b and recirculated to the combustion chamber.

また、自動二輪車の進行方向前方に位置するシリンダ10aの前部には、当該V型内燃機関1により駆動される空気圧コンプレッサ18が露呈して設けられており、この空気圧コンプレッサ18は、シリンダ内の燃焼室へ燃料と空気との混合気を直接噴射するために各シリンダ10a、10bのヘッド部19a、19bにそれぞれ設けられた混合気噴射弁(図1参照)へ圧縮空気を供給する。
すなわち、空気圧コンプレッサ18は、図外のエアフィルタを通した空気を取り込んで圧縮し、当該圧縮空気を後述する供給路を通して各混合気噴射弁へ供給し、各混合気噴射弁は、制御された適量の燃料を圧縮空気に混合して燃焼室へ直接噴射する。
Further, a pneumatic compressor 18 driven by the V-type internal combustion engine 1 is exposed at the front portion of the cylinder 10a located in front of the motorcycle in the traveling direction, and the pneumatic compressor 18 is disposed in the cylinder. In order to directly inject a mixture of fuel and air into the combustion chamber, compressed air is supplied to the mixture injection valves (see FIG. 1) provided in the head portions 19a and 19b of the cylinders 10a and 10b.
That is, the pneumatic compressor 18 takes in and compresses air that has passed through an air filter (not shown), and supplies the compressed air to each mixture injection valve through a supply path that will be described later, and each mixture injection valve is controlled. An appropriate amount of fuel is mixed with compressed air and injected directly into the combustion chamber.

本例のように空気圧コンプレッサ18が自動二輪車の進行方向前方に位置するシリンダ10aの前部に配置されていることにより、自動二輪車の走行に伴って空気圧コンプレッサ18が走行風により冷却される。すなわち、高温に加熱された空気圧コンプレッサにより空気を圧縮する場合には空気も加熱されて高い圧縮効率を得ることが困難となるが、これに較べて、冷却された空気圧コンプレッサ18により高い圧縮効率を得ることができる。
なお、V型内燃機関1においては、前後のシリンダ10a、10b間に形成されたV字状の空間を補機の設置場所として利用する場合が多いが、上記のように空気圧コンプレッサ18を前シリンダ10aの前部に配置することにより、当該V字状の空間を狭くしたコンパクトなV型内燃機関を実現することが可能となる。
Since the pneumatic compressor 18 is disposed at the front portion of the cylinder 10a positioned forward in the traveling direction of the motorcycle as in this example, the pneumatic compressor 18 is cooled by the traveling wind as the motorcycle travels. That is, when air is compressed by a pneumatic compressor heated to a high temperature, it is difficult to obtain high compression efficiency because the air is also heated, but compared with this, high compression efficiency is achieved by the cooled pneumatic compressor 18. Obtainable.
In the V-type internal combustion engine 1, a V-shaped space formed between the front and rear cylinders 10a and 10b is often used as an auxiliary machine installation place. As described above, the pneumatic compressor 18 is used as the front cylinder. By arranging it at the front part 10a, it is possible to realize a compact V-type internal combustion engine in which the V-shaped space is narrowed.

図1には本例のV型内燃機関1を部分的に断面した側面視で示してある。
各シリンダ10a、10bは、ピストン20a、20bを摺動自在に収容したシリンダブロック21a、21bの上端にシリンダヘッドブロック22a、22bを設けて燃焼室23a、23bが構成されている。なお、各ピストン20a、20bはコネクティングロッド28a、28bによりクランクケース11内に収容されたクランク軸に接続されている。
各燃焼室23a、23bにはそれぞれ2つの吸気ポート24a、24bと排気ポート25a、25bが開口しており、吸気ポート24a、24b及び排気ポート25a、25bは、シリンダヘッドブロック22a、22bに摺動自在に設けられた吸気弁26a、26b及び排気弁27a、27bにより開閉される。
FIG. 1 shows a V-type internal combustion engine 1 of this example in a side view partially cut in section.
Each cylinder 10a, 10b is provided with cylinder head blocks 22a, 22b at upper ends of cylinder blocks 21a, 21b in which pistons 20a, 20b are slidably accommodated to form combustion chambers 23a, 23b. Each piston 20a, 20b is connected to a crankshaft accommodated in the crankcase 11 by connecting rods 28a, 28b.
Each combustion chamber 23a, 23b has two intake ports 24a, 24b and exhaust ports 25a, 25b. The intake ports 24a, 24b and the exhaust ports 25a, 25b slide on the cylinder head blocks 22a, 22b. It is opened and closed by freely provided intake valves 26a and 26b and exhaust valves 27a and 27b.

吸気弁26a、26b及び排気弁27a、27bは、シリンダヘッドブロック22a、22bに設けられたカム機構29a、29bが公知のようにV型内燃機関1の運転で駆動されることで、所定の吸排気タイミングで吸気弁26a、26b及び排気弁27a、27bがそれぞれ開閉動作して、吸気ポート24a、24bに接続された吸気管13から燃焼室23a、23bへ空気を導入し、また、排気ポート25a、25bに接続された排気管12a、12bへ燃焼室23a、23bから排気ガスを排出させる。   The intake valves 26a and 26b and the exhaust valves 27a and 27b are driven by predetermined operation when the cam mechanisms 29a and 29b provided in the cylinder head blocks 22a and 22b are driven by the operation of the V-type internal combustion engine 1, as is well known. At the exhaust timing, the intake valves 26a and 26b and the exhaust valves 27a and 27b are opened and closed to introduce air into the combustion chambers 23a and 23b from the intake pipe 13 connected to the intake ports 24a and 24b. , 25b, exhaust gas is discharged from the combustion chambers 23a, 23b to the exhaust pipes 12a, 12b.

排気還流装置(EGR)の制御弁14には排気管12bから排気導入管15を通して排気ガスが導入され、制御弁14の弁体14aが開閉制御されることで、排気導入管15から導入した排気ガスを弁室14bに引き入れて連通管16aを介して分岐室16bへ導入する。分岐室16bには、分岐室側への逆流を防止する一対の一方向弁(リード弁)16cが設けられており、それぞれのリード弁16cを介して排気供給管17が接続されている。排気供給管17の他端は、吸気管13の吸気ポート24a、24bに近い位置に連通している。
なお、図4には、図1とは90度視点を変えた方向から見た排気導入管15から分岐室14bに至る部分の断面構造を示してある。
Exhaust gas is introduced into the control valve 14 of the exhaust gas recirculation device (EGR) from the exhaust pipe 12b through the exhaust introduction pipe 15, and the valve body 14a of the control valve 14 is controlled to open and close, so that the exhaust gas introduced from the exhaust introduction pipe 15 is exhausted. Gas is drawn into the valve chamber 14b and introduced into the branch chamber 16b through the communication pipe 16a. The branch chamber 16b is provided with a pair of one-way valves (reed valves) 16c that prevent backflow to the branch chamber side, and an exhaust supply pipe 17 is connected to each branch valve 16c. The other end of the exhaust supply pipe 17 communicates with a position near the intake ports 24 a and 24 b of the intake pipe 13.
FIG. 4 shows a cross-sectional structure of a portion from the exhaust introduction pipe 15 to the branch chamber 14b as seen from the direction in which the viewpoint is changed by 90 degrees from FIG.

すなわち、制御弁14が内燃機関の燃焼タイミングに応じて開閉制御されることで、排気管12bから分岐室16bに導入された適量の排気ガスが、リード弁16cにより逆流防止されて排気供給管17から吸気ポート24a、24bを介して燃焼室23a、23bに還流される。
排気ガスを燃焼室に還流させて再燃焼させる排気還流装置(EGR)では、還流させる排気ガスが高温である方が好ましいが、自動二輪車の走行風により冷却されることが少ない車両走行方向後方に位置する排気管12bから還流させる排気ガスを導入しているため、窒素酸化物(NOx)の低減効果を高めることができる。
That is, when the control valve 14 is controlled to open and close according to the combustion timing of the internal combustion engine, an appropriate amount of exhaust gas introduced from the exhaust pipe 12b into the branch chamber 16b is prevented from flowing back by the reed valve 16c, and the exhaust supply pipe 17 To the combustion chambers 23a and 23b through the intake ports 24a and 24b.
In an exhaust gas recirculation device (EGR) that recirculates exhaust gas to the combustion chamber and re-combusts, it is preferable that the exhaust gas to be recirculated is hot, but in the rear of the vehicle traveling direction, which is less cooled by the traveling wind of the motorcycle. Since exhaust gas to be recirculated is introduced from the exhaust pipe 12b located, the effect of reducing nitrogen oxide (NOx) can be enhanced.

図1に示すように、シリンダヘッドブロック22a、22bには燃料と空気との混合気を噴射する混合気噴射弁30が設けられており、これら混合気噴射弁30の先端(噴射端)は各燃焼室23a、23bにその中央部で臨んでいる。
混合気噴射弁30は後述するようにソレノイド駆動により制御動作して、空気圧コンプレッサ18から供給される圧縮空気と燃料タンク7から供給された燃料とを混合気として各燃焼室23a、23b内へ直接噴射する。
As shown in FIG. 1, the cylinder head blocks 22a and 22b are provided with an air-fuel mixture injection valve 30 for injecting an air-fuel mixture of fuel and air. It faces the combustion chambers 23a, 23b at the center.
The air-fuel mixture injection valve 30 is controlled by solenoid drive as will be described later, and the compressed air supplied from the pneumatic compressor 18 and the fuel supplied from the fuel tank 7 are directly mixed into the combustion chambers 23a and 23b as an air-fuel mixture. Spray.

各シリンダブロック21a、21bはクランクケース11上に互いにV字状に離間させて設けられており、クランクケース11には空気圧コンプレッサ18に連通する一筋の圧縮空気供給路(共用路)32が内部管路として形成されている。
共用路32の他端はシリンダヘッドブロック22a、22bが成すV字状空間の基端部に開口しており、各シリンダブロック21a、21bをクランクケース11上に取付けることにより、各シリンダブロック21a、21bに内部管路として形成された圧縮空気供給路33と共用路32とが気密に連通する。
なお、例えば、共用路32はクランクケース11を鋳造する際に形成され、圧縮空気供給路33は各シリンダブロック21a、21bを鋳造する際に形成される。
The cylinder blocks 21a and 21b are provided on the crankcase 11 so as to be spaced apart from each other in a V shape. The crankcase 11 has a single compressed air supply path (shared path) 32 communicating with the pneumatic compressor 18 as an internal pipe. It is formed as a road.
The other end of the common path 32 is opened at the base end of the V-shaped space formed by the cylinder head blocks 22a and 22b, and each cylinder block 21a, The compressed air supply path 33 and the common path 32 formed as internal pipes in 21b communicate in an airtight manner.
For example, the common path 32 is formed when the crankcase 11 is cast, and the compressed air supply path 33 is formed when the cylinder blocks 21a and 21b are cast.

圧縮空気供給路33はシリンダブロック21a、21bの合わせ部近傍33aにおいて二筋に分岐されており、分岐された各圧縮空気供給路33は各シリンダブロック21a、21bの対向する側の側壁(V字状空所側の側壁)に沿ってシリンダヘッドへ延設されている。
なお、図1中には図面の不鮮明化を避けるため、各圧縮空気供給路33の途中を破線で示してある。
The compressed air supply path 33 is bifurcated in the vicinity of the mating portion 33a of the cylinder blocks 21a and 21b. Each branched compressed air supply path 33 has a side wall (V-shaped) on the opposite side of each cylinder block 21a and 21b. (Side wall side wall) is extended to the cylinder head.
In FIG. 1, the middle of each compressed air supply path 33 is indicated by a broken line in order to avoid blurring of the drawing.

したがって、各圧縮空気供給路33は内燃機関の燃焼熱が比較的篭もり易く且つ走行風による冷却を受け難いV字状空所に面した部位に設けられているため、圧縮空気供給路33を流れる圧縮空気が冷却されて結露が発生してしまう事態を防止することができる。
また、クランクケース部では一筋の共用路32とすることによりクランクケース11の加工を容易に行うことができることに加え、当該共用路32から略同等な構造の二筋の圧縮空気供給路33を通して混合気噴射弁30へ圧縮空気が供給されるため、空気圧コンプレッサ18から両シリンダの混合気噴射弁30へ至る圧縮空気の供給路長さが均一化されて、良好な混合気噴射動作を可能ならしめることができる。
Accordingly, each compressed air supply passage 33 is provided at a portion facing the V-shaped space where the combustion heat of the internal combustion engine is relatively easily trapped and is not easily cooled by the traveling wind, and thus flows through the compressed air supply passage 33. A situation in which the compressed air is cooled and condensation occurs can be prevented.
In addition, the crankcase 11 can be easily machined by forming a single common path 32 in the crankcase portion, and mixed from the common path 32 through two compressed air supply paths 33 having substantially the same structure. Since the compressed air is supplied to the air injection valve 30, the length of the compressed air supply path from the pneumatic compressor 18 to the air-fuel mixture injection valve 30 of both cylinders is made uniform, and a favorable air-fuel mixture injection operation is made possible. be able to.

また、各圧縮空気供給路33の上端はシリンダヘッドブロックとの合わせ面に開口しており、各シリンダヘッドブロック22a、22bを各シリンダブロック21a、21b上に取付けることにより、各シリンダヘッドブロック22a、22bに管路として形成された圧縮空気供給路34と圧縮空気供給路33とが気密に連通する。   Further, the upper end of each compressed air supply passage 33 is open to the mating surface with the cylinder head block, and each cylinder head block 22a, 22b is mounted on each cylinder block 21a, 21b, thereby allowing each cylinder head block 22a, A compressed air supply path 34 and a compressed air supply path 33 formed as a pipe line 22b communicate with each other in an airtight manner.

図2には、上記の共用路32、圧縮空気供給路33、及び、圧縮空気供給路34の関係を説明するために、図1中のA−Aに沿ったV型内燃機関1の部分断面を示してある。
すなわち、クランクケース11上に各シリンダブロック21a、21bを組み付け、更に、各シリンダブロック21a、21b上に各シリンダヘッドブロック22a、22bを組み付けるといった内燃機関1の組み立て作業を行うことで、空気圧コンプレッサ18からシリンダヘッド部の混合気噴射弁30へ至る圧縮空気供給路が、これら共用路32、圧縮空気供給路33、及び、圧縮空気供給路34により形成される。
なお、図2中の36は燃焼室に臨んで設けられた点火プラグである。
FIG. 2 shows a partial cross section of the V-type internal combustion engine 1 along AA in FIG. 1 in order to explain the relationship between the common path 32, the compressed air supply path 33, and the compressed air supply path 34 described above. Is shown.
That is, the pneumatic compressor 18 is assembled by assembling the internal combustion engine 1 such that the cylinder blocks 21a and 21b are assembled on the crankcase 11 and the cylinder head blocks 22a and 22b are assembled on the cylinder blocks 21a and 21b. A compressed air supply path from the cylinder head portion to the air-fuel mixture injection valve 30 is formed by the common path 32, the compressed air supply path 33, and the compressed air supply path 34.
Note that 36 in FIG. 2 is a spark plug provided facing the combustion chamber.

図3には、圧縮空気供給路34が混合気噴射弁30へ至る構造を説明するために、V型内燃機関1のシリンダヘッド部を断面して示してある。
シリンダブロック21a、21bの圧縮空気供給路33に連通した各圧縮空気供給路34は二筋に分岐されて、一方がシリンダヘッド部に設けられた空気圧調整器38に連通され、他方が混合気噴射弁30の圧縮空気室に連通されている。
すなわち、圧縮空気供給路34に導かれた圧縮空気は空気圧調整器38により所定の空気圧に調整され、当該圧力調整された圧縮空気が混合気噴射弁30の圧縮空気室に供給される。
なお、図3において、39は吸気管13による吸気量を調整するスロットルバルブである。
In FIG. 3, the cylinder head portion of the V-type internal combustion engine 1 is shown in cross section in order to explain the structure in which the compressed air supply path 34 reaches the air-fuel mixture injection valve 30.
The compressed air supply passages 34 communicated with the compressed air supply passages 33 of the cylinder blocks 21a and 21b are branched into two lines, one is communicated with an air pressure regulator 38 provided in the cylinder head portion, and the other is mixed gas injection. The valve 30 communicates with the compressed air chamber.
That is, the compressed air led to the compressed air supply path 34 is adjusted to a predetermined air pressure by the air pressure adjuster 38, and the compressed air whose pressure has been adjusted is supplied to the compressed air chamber of the mixture injection valve 30.
In FIG. 3, reference numeral 39 denotes a throttle valve that adjusts the amount of intake air through the intake pipe 13.

図5には混合気噴射弁30への圧縮空気及び燃料の供給システムを示してあり、同図を参照して、混合気噴射弁30による混合気噴射動作を説明する。
混合気噴射弁30は、下端が燃焼室23a(23b)に臨む混合気弁30aと、混合気弁30a上に同軸に設けられた燃料弁30bとを備えた構成であり、混合気弁30aと燃料弁30bとを図外のソレノイドで制御動作させることで、燃料を圧縮空気に混合させた混合気を燃焼室23a(23b)に直接噴射する。
FIG. 5 shows a system for supplying compressed air and fuel to the air-fuel mixture injection valve 30, and the air-fuel mixture injection operation by the air-fuel mixture injection valve 30 will be described with reference to FIG.
The air-fuel mixture injection valve 30 includes an air-fuel mixture valve 30a whose lower end faces the combustion chamber 23a (23b) and a fuel valve 30b provided coaxially on the air-fuel mixture valve 30a. By controlling the fuel valve 30b with a solenoid (not shown), an air-fuel mixture in which fuel is mixed with compressed air is directly injected into the combustion chamber 23a (23b).

自動二輪車に備えられたエアフィルタ40から取り入れられた空気は空気圧コンプレッサ18により圧縮されて、当該圧縮空気が圧縮空気供給路(共用路32、供給路33、供給路34)を通して混合気弁30aにより形成された圧縮空気室30cへ供給される。
なお、圧縮空気は供給路34の分岐路により空気圧調整器38に導かれ、余剰圧は解放することで所定の圧力に調整された圧縮空気が圧縮空気室30cへ供給される。
The air taken in from the air filter 40 provided in the motorcycle is compressed by the pneumatic compressor 18, and the compressed air passes through the compressed air supply path (common path 32, supply path 33, supply path 34) by the air-fuel mixture valve 30 a. It is supplied to the formed compressed air chamber 30c.
The compressed air is guided to the air pressure regulator 38 through the branch path of the supply path 34, and the compressed air adjusted to a predetermined pressure by releasing the excess pressure is supplied to the compressed air chamber 30c.

ここで、空気圧コンプレッサ18で圧縮された高圧の空気が冷却されると、当該圧縮空気に含まれる水分が凝固して結露を生じてしまう現象がある。
これに対して、圧縮空気供給路は内燃機関の燃焼運転により加温効果が得られるクランクケース11、シリンダブロック21a、21b、シリンダヘッドブロック22a、22bに形成され、更に、走行風による冷却の影響を受け難い位置に形成されているため、空気圧コンプレッサ18から混合気噴射弁30へ至る供給路内に結露が生じてしまうことが防止され、混合気噴射弁30へ圧縮空気が円滑に供給される。
Here, when the high-pressure air compressed by the pneumatic compressor 18 is cooled, there is a phenomenon in which moisture contained in the compressed air is solidified to cause dew condensation.
On the other hand, the compressed air supply path is formed in the crankcase 11, the cylinder blocks 21a and 21b, and the cylinder head blocks 22a and 22b that can obtain a heating effect by the combustion operation of the internal combustion engine, and further, the influence of cooling by the traveling wind. Since it is formed at a position where it is difficult to receive, condensation is prevented from occurring in the supply path from the pneumatic compressor 18 to the mixture injection valve 30, and compressed air is smoothly supplied to the mixture injection valve 30. .

一方、自動二輪車に備えられた燃料ポンプ42は燃料タンク7からフィルタ41を通して燃料を取り入れ、燃料ポンプ42により圧送される燃料は燃料弁30bにより形成された燃料室30dへ供給される。
なお、燃料噴射弁30へ至る経路から分岐した燃料は燃料圧調整器44に導かれ、余剰燃料は燃料タンク7へ還流させることで、圧縮空気室30cの空気圧より高く且つ圧力差が一定となるように圧力調整された燃料が燃料室30dへ供給される。
On the other hand, the fuel pump 42 provided in the motorcycle takes fuel from the fuel tank 7 through the filter 41, and the fuel pumped by the fuel pump 42 is supplied to the fuel chamber 30d formed by the fuel valve 30b.
The fuel branched from the path leading to the fuel injection valve 30 is guided to the fuel pressure regulator 44, and the excess fuel is returned to the fuel tank 7 so that the air pressure is higher than the compressed air chamber 30c and the pressure difference is constant. The fuel whose pressure is adjusted in this way is supplied to the fuel chamber 30d.

このように圧縮空気室30cに圧縮空気が供給され且つ燃料室30dに燃料が供給された状態で、ソレノイドに通電されて燃料弁30bが開くと、燃料室30dにより計量された燃料が圧縮空気室30cに噴射され、燃料と圧縮空気が混合される。
次いで、ソレノイドに通電されて混合気弁30aが開くと、圧縮空気室30c内の混合気がその圧力により燃焼室23a、23b内に噴射され、点火プラグ36により点火されて燃焼する。
When the compressed air is supplied to the compressed air chamber 30c and the fuel is supplied to the fuel chamber 30d in this manner, when the solenoid is energized and the fuel valve 30b is opened, the fuel measured by the fuel chamber 30d is compressed. 30c is injected, and fuel and compressed air are mixed.
Next, when the solenoid is energized and the air-fuel mixture valve 30a is opened, the air-fuel mixture in the compressed air chamber 30c is injected into the combustion chambers 23a and 23b by the pressure, and is ignited and burned by the spark plug 36.

本発明の一実施形態に係るV型内燃機関の部分断面側面図である。1 is a partial cross-sectional side view of a V-type internal combustion engine according to an embodiment of the present invention. 図1中のA−A線に沿ったV型内燃機関の部分断面正面図である。FIG. 2 is a partial cross-sectional front view of the V-type internal combustion engine taken along line AA in FIG. 1. 本発明の一実施形態に係るV型内燃機関の断面平面図である。1 is a cross-sectional plan view of a V-type internal combustion engine according to an embodiment of the present invention. 本発明の一実施形態に係るV型内燃機関のEGR制御弁部分を示す断面図である。It is sectional drawing which shows the EGR control valve part of the V-type internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係るV型内燃機関の混合気噴射弁への圧縮空気及び燃料の供給システムを示す図である。1 is a view showing a system for supplying compressed air and fuel to an air-fuel mixture injection valve of a V-type internal combustion engine according to an embodiment of the present invention. 本発明の一実施形態に係るV型内燃機関を搭載した自動二輪車の側面図である。1 is a side view of a motorcycle equipped with a V-type internal combustion engine according to an embodiment of the present invention.

符号の説明Explanation of symbols

1:V型内燃機関、 10a、10b:シリンダ、
11:クランクケース、 18:空気圧コンプレッサ、
21a、21b:シリンダブロック、 22a、22b:シリンダベッドブロック、
23a、23b:燃焼室、 30:混合気噴射弁、

1: V-type internal combustion engine, 10a, 10b: cylinder,
11: Crankcase, 18: Pneumatic compressor,
21a, 21b: cylinder block, 22a, 22b: cylinder bed block,
23a, 23b: Combustion chamber, 30: Air-fuel mixture injection valve,

Claims (3)

複数のシリンダを互いにV字状に離間させてクランクケース上に設けたV型内燃機関において、
各シリンダヘッド部にシリンダ内の燃焼室へ燃料と空気との混合気を直接噴射する混合気噴射弁を設け、
当該内燃機関に付設された空気圧コンプレッサから前記各混合気噴射弁への圧縮空気供給路の一部をクランクケース部に共用路として設けたことを特徴とするV型内燃機関。
In a V-type internal combustion engine in which a plurality of cylinders are spaced apart from each other in a V shape and provided on a crankcase,
Each cylinder head portion is provided with an air-fuel mixture injection valve that directly injects an air-fuel mixture into the combustion chamber in the cylinder,
A V-type internal combustion engine characterized in that a part of a compressed air supply path from a pneumatic compressor attached to the internal combustion engine to each of the air-fuel mixture injection valves is provided as a common path in a crankcase portion.
請求項1に記載のV型内燃機関において、
前記クランクケース部に設けた共用路から前記各混合気噴射弁へ至る圧縮空気供給路を各シリンダへ分岐し、分岐された各圧縮空気供給路を各シリンダブロックの対向する側の側壁に沿って設けたことを特徴とするV型内燃機関。
The V-type internal combustion engine according to claim 1,
The compressed air supply path from the common path provided in the crankcase part to each of the mixture injection valves is branched to each cylinder, and each branched compressed air supply path is along the side wall on the opposite side of each cylinder block. A V-type internal combustion engine provided.
請求項1又は請求項2に記載のV型内燃機関において、
V型内燃機関を車両に搭載した状態で、前記空気圧コンプレッサは車両進行方向の前部となる部位に露呈して設けられていることを特徴とするV型内燃機関。

The V-type internal combustion engine according to claim 1 or 2,
The V-type internal combustion engine, wherein the pneumatic compressor is exposed and provided in a front portion in the vehicle traveling direction in a state where the V-type internal combustion engine is mounted on the vehicle.

JP2006090466A 2005-03-30 2006-03-29 V-type internal combustion engine Expired - Fee Related JP4608453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090466A JP4608453B2 (en) 2005-03-30 2006-03-29 V-type internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005096966 2005-03-30
JP2006090466A JP4608453B2 (en) 2005-03-30 2006-03-29 V-type internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006307844A true JP2006307844A (en) 2006-11-09
JP4608453B2 JP4608453B2 (en) 2011-01-12

Family

ID=37474990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090466A Expired - Fee Related JP4608453B2 (en) 2005-03-30 2006-03-29 V-type internal combustion engine

Country Status (1)

Country Link
JP (1) JP4608453B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180129A (en) * 2007-01-24 2008-08-07 Honda Motor Co Ltd Fuel direct injection type internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518336A (en) * 1991-07-11 1993-01-26 Yamaha Motor Co Ltd Fuel injection type engine
JPH05195787A (en) * 1992-01-22 1993-08-03 Yamaha Motor Co Ltd Fuel injection type two-cycle engine
JPH11157484A (en) * 1997-11-26 1999-06-15 Yamaha Motor Co Ltd Preventive construction of water suction into fuel feeding means in propulsion unit for ship and boat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518336A (en) * 1991-07-11 1993-01-26 Yamaha Motor Co Ltd Fuel injection type engine
JPH05195787A (en) * 1992-01-22 1993-08-03 Yamaha Motor Co Ltd Fuel injection type two-cycle engine
JPH11157484A (en) * 1997-11-26 1999-06-15 Yamaha Motor Co Ltd Preventive construction of water suction into fuel feeding means in propulsion unit for ship and boat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180129A (en) * 2007-01-24 2008-08-07 Honda Motor Co Ltd Fuel direct injection type internal combustion engine
JP4704368B2 (en) * 2007-01-24 2011-06-15 本田技研工業株式会社 Direct fuel injection internal combustion engine

Also Published As

Publication number Publication date
JP4608453B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
CN201486674U (en) Cylinder cover for internal combustion engine
JP4768560B2 (en) Water-cooled engine
JP2002161813A (en) Fuel system of four cycle engine for outboard engine
US7370643B2 (en) Internal combustion engine having compressed air supply passages therein for routing compressed air to charge injectors
US9938881B2 (en) Cooling water passage structure of internal combustion engine
US20160281634A1 (en) Cylinder head and internal combustion engine
JP2009062836A (en) Cylinder head of internal combustion engine
JP2008075506A (en) Water-cooled multi-cylinder engine
ITTO20080214A1 (en) V-ENGINE FOR VEHICLE.
JP2006336465A (en) Cylinder injection internal combustion engine equipped with exhaust gas circulation device
US6752114B2 (en) Four-cycle engine for outboard motor
JP2013072353A (en) Oil passage structure of air-oil-cooled internal combustion engine
JP4608453B2 (en) V-type internal combustion engine
JP2008057360A (en) Exhaust gas recirculation device of engine
JP2016128682A (en) Dynamic valve mechanism of engine
EP2310659B1 (en) Working gas circulation engine
JP4669806B2 (en) V-type internal combustion engine
JP2008075507A (en) Water cooled multi-cylinder engine
ITTO20080210A1 (en) V-ENGINE FOR VEHICLE.
CN107035503B (en) Cooling structure of internal combustion engine
JP2013072354A (en) Oil path core structure of cylinder head
JP2009144653A (en) Exhaust gas recirculation device
RU2671450C1 (en) Multi-cylinder engine cylinder head
JP4491999B2 (en) Secondary air supply structure for internal combustion engine
US7314042B2 (en) Exhaust gas recirculation system for a V-type internal combustion engine, and engine including same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070921

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R150 Certificate of patent or registration of utility model

Ref document number: 4608453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees