JP2008180129A - Fuel direct injection type internal combustion engine - Google Patents

Fuel direct injection type internal combustion engine Download PDF

Info

Publication number
JP2008180129A
JP2008180129A JP2007013693A JP2007013693A JP2008180129A JP 2008180129 A JP2008180129 A JP 2008180129A JP 2007013693 A JP2007013693 A JP 2007013693A JP 2007013693 A JP2007013693 A JP 2007013693A JP 2008180129 A JP2008180129 A JP 2008180129A
Authority
JP
Japan
Prior art keywords
air
fuel
injector
fuel mixture
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007013693A
Other languages
Japanese (ja)
Other versions
JP4704368B2 (en
Inventor
Ryuta Niimura
竜太 新村
Shiro Kokubu
志朗 国府
Junichiro Suzuki
純一郎 鈴木
Noriaki Okano
則明 岡野
Noriyuki Kawamata
則行 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbital Australia Pty Ltd
Honda Motor Co Ltd
Original Assignee
Orbital Australia Pty Ltd
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orbital Australia Pty Ltd, Honda Motor Co Ltd filed Critical Orbital Australia Pty Ltd
Priority to JP2007013693A priority Critical patent/JP4704368B2/en
Publication of JP2008180129A publication Critical patent/JP2008180129A/en
Application granted granted Critical
Publication of JP4704368B2 publication Critical patent/JP4704368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily and efficiently reduce pressure in a combustion chamber when starting an engine, by using an air-fuel mixture injection injector, in a fuel direct injection type internal combustion engine of a plurality of cylinders. <P>SOLUTION: This fuel direct injection type internal combustion engine operates an air injection valve of the air-fuel mixture injection injector 40 for opening in a predetermined time after the air-fuel mixture injection timing into the combustion chamber 30 by the air-fuel mixture injection injector 40 in response to an operation state of the engine 20. The engine 20 has front and rear cylinders 23a and 23b different in phase. Front and rear air supply passages 66a and 66b to the respective air-fuel mixture injection injectors 40 arranged in the respective cylinders 23a and 23b, are mutually connected to communicate with each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、加圧された混合気を燃焼室内に直接噴射する燃料直接噴射型内燃機関に関する。   The present invention relates to a fuel direct injection internal combustion engine that directly injects a pressurized air-fuel mixture into a combustion chamber.

従来、上記内燃機関において、エア噴射バルブの開閉作動により加圧された混合気を燃焼室内に噴射する混合気噴射インジェクタと、当該内燃機関の運転状態を検出する運転状態検出手段と、前記混合気噴射インジェクタの作動制御を行う制御装置とを備え、当該内燃機関の運転状況に応じて、前記混合気噴射インジェクタによる燃焼室内への混合気噴射タイミング後の所定時間に、該混合気噴射インジェクタのエア噴射バルブを開作動させることで、当該内燃機関の始動時における燃焼室内の圧縮圧力を逃がし、もって当該内燃機関の始動性を向上させたものがある(例えば、特許文献1参照。)。
特開2005−105826号公報
Conventionally, in the internal combustion engine, an air-fuel mixture injector for injecting an air-fuel mixture pressurized by opening / closing operation of an air injection valve into a combustion chamber, an operating state detecting means for detecting an operating state of the internal combustion engine, and the air-fuel mixture A control device for controlling the operation of the injector, and according to the operating condition of the internal combustion engine, the air of the mixture injector at a predetermined time after the mixture injection timing into the combustion chamber by the mixture injector There is one that improves the startability of the internal combustion engine by releasing the compression pressure in the combustion chamber when starting the internal combustion engine by opening the injection valve (see, for example, Patent Document 1).
JP 2005-105826 A

ところで、上記従来の構成においては、燃焼室内の圧縮圧力が混合気噴射インジェクタ内及び該混合気噴射インジェクタへの空気供給路内に逃がされる。すなわち、前記空気供給路の容量が燃焼室内の減圧に影響するが、その容量を増加させることは通路長を増加させたり空気圧を低下させる等の課題がある。また、特に混合気の噴射圧力を高めようとした場合、空気供給路内の残圧が影響し易く、燃料室内の十分な減圧が困難になるという課題がある。
この発明は上記事情に鑑みてなされたもので、複数気筒の燃料直接噴射型内燃機関において、エンジン始動時における燃焼室内の減圧を混合気噴射インジェクタを用いて簡易かつ効率良く行うことを目的とする。
By the way, in the above-described conventional configuration, the compression pressure in the combustion chamber is released into the air-fuel mixture injector and the air supply path to the air-fuel mixture injector. That is, the capacity of the air supply passage affects the pressure reduction in the combustion chamber, but increasing the capacity has problems such as increasing the passage length and lowering the air pressure. In particular, when trying to increase the injection pressure of the air-fuel mixture, there is a problem that the residual pressure in the air supply passage is easily affected and it is difficult to sufficiently reduce the pressure in the fuel chamber.
The present invention has been made in view of the above circumstances, and an object of the present invention is to easily and efficiently reduce the pressure in a combustion chamber at the time of engine start using a mixture injection injector in a multiple cylinder fuel direct injection internal combustion engine. .

上記課題の解決手段として、請求項1に記載した発明は、加圧された混合気を燃焼室(例えば実施例の燃焼室30)内に直接噴射する燃料直接噴射型内燃機関(例えば実施例のエンジン20)であって、エア噴射バルブ(例えば実施例のエア噴射バルブ44)の開閉作動により前記混合気を燃焼室内に噴射する混合気噴射インジェクタ(例えば実施例の混合気噴射インジェクタ40)と、当該内燃機関の運転状態を検出する運転状態検出手段(例えば実施例のスロットル開度センサ71、回転数センサ72及びクランク角センサ73)と、前記混合気噴射インジェクタの作動制御を行う制御装置(例えば実施例の制御装置70)とを備え、当該内燃機関の運転状態に応じて、前記混合気噴射インジェクタによる燃焼室内への混合気噴射タイミング後の所定時間に、該混合気噴射インジェクタのエア噴射バルブを開作動させる燃料直接噴射型内燃機関において、当該内燃機関が位相の異なる複数の気筒(例えば実施例の前後シリンダ23a,23b)を有し、該各気筒に設けられる前記混合気噴射インジェクタのそれぞれへの空気供給路(例えば実施例の前後空気供給路66a,66b)が、位相の異なる気筒に対応するもの同士で互いに連通することを特徴とする。   As a means for solving the above problems, the invention described in claim 1 is directed to a fuel direct injection type internal combustion engine (for example, in the embodiment) in which a pressurized air-fuel mixture is directly injected into a combustion chamber (for example, the combustion chamber 30 in the embodiment). An engine 20), and an air-fuel mixture injector (for example, the air-fuel mixture injector 40 of the embodiment) that injects the air-fuel mixture into the combustion chamber by opening and closing an air injection valve (for example, the air injection valve 44 of the embodiment); Operating state detecting means for detecting the operating state of the internal combustion engine (for example, the throttle opening sensor 71, the rotational speed sensor 72, and the crank angle sensor 73 in the embodiment) and a control device (for example, controlling the operation of the air-fuel mixture injector) And a mixture injection timing into the combustion chamber by the mixture injection injector according to the operating state of the internal combustion engine. In a fuel direct injection internal combustion engine that opens the air injection valve of the air-fuel mixture injector at a predetermined time after the operation, a plurality of cylinders (for example, the front and rear cylinders 23a and 23b in the embodiment) having different phases are used. The air supply passages (for example, the front and rear air supply passages 66a and 66b in the embodiment) to each of the air-fuel mixture injectors provided in the respective cylinders communicate with each other corresponding to the cylinders having different phases. It is characterized by.

請求項2に記載した発明は、当該内燃機関がV型二気筒エンジンであり、その各気筒間に前記空気導入路を配置したことを特徴とする。   The invention described in claim 2 is characterized in that the internal combustion engine is a V-type two-cylinder engine, and the air introduction path is arranged between the cylinders.

請求項1に記載した発明によれば、当該内燃機関の始動時において、混合気噴射インジェクタからの混合気噴射タイミング後にエア噴射バルブを開作動させて燃焼室内の減圧(デコンプレッション)を行う際、該燃焼室内の圧力を対応する空気導入路のみならず他の気筒に対応する空気導入路をも利用して逃がすと共に、前記他の気筒が排気行程であれば、該気筒の混合気噴射インジェクタのエア噴射バルブを開作動させて空気導入路内の圧力を排気と共に逃がすことができる。すなわち、エンジン始動時における燃焼室内の減圧を簡易かつ効率良く行うことができる。   According to the first aspect of the present invention, when the internal combustion engine is started, when the air injection valve is opened after the air-fuel mixture injection timing from the air-fuel mixture injector and decompression (decompression) in the combustion chamber is performed, The pressure in the combustion chamber is released using not only the corresponding air introduction path but also the air introduction path corresponding to another cylinder, and if the other cylinder is in the exhaust stroke, the mixture injection injector of the cylinder By opening the air injection valve, the pressure in the air introduction path can be released together with the exhaust gas. That is, it is possible to easily and efficiently reduce the pressure in the combustion chamber when starting the engine.

請求項2に記載した発明によれば、各気筒への空気導入路を効率良く配置でき、かつこれに連なる空気圧縮機を各気筒のバンク間に配置した場合にも、該空気圧縮機と空気導入路とを容易に接続できる。   According to the second aspect of the present invention, even when the air introduction path to each cylinder can be efficiently arranged and the air compressor connected to this is arranged between the banks of each cylinder, the air compressor and the air It can be easily connected to the introduction path.

以下、この発明の実施例について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ車両における向きと同一とする。また、図中矢印FRは車両前方を、矢印LHは車両左方を、矢印UPは車両上方をそれぞれ示す。   Embodiments of the present invention will be described below with reference to the drawings. Note that the directions such as front, rear, left and right in the following description are the same as those in the vehicle unless otherwise specified. In the figure, the arrow FR indicates the front of the vehicle, the arrow LH indicates the left side of the vehicle, and the arrow UP indicates the upper side of the vehicle.

図1は、この発明の一実施例であるエンジン(燃料直接噴射型内燃機関)20を搭載した自動二輪車1を示す。図1に示すように、自動二輪車1の前輪2は左右一対のフロントフォーク3の下端部に軸支され、該左右フロントフォーク3の上部はステアリングステム4を介して車体フレーム5前端部のヘッドパイプ6に操舵可能に枢支される。ステアリングステム4の上部には転舵用のバーハンドル7が取り付けられる。自動二輪車1の後輪8はスイングアーム9の後端部に軸支され、該スイングアーム9の前端部は車体フレーム5後部のピボットブラケット11に上下揺動可能に枢支される。スイングアーム後部の左右アームと車体フレーム5の後部両側との間にはそれぞれ左右リアクッション12が配設される。   FIG. 1 shows a motorcycle 1 equipped with an engine (fuel direct injection internal combustion engine) 20 according to an embodiment of the present invention. As shown in FIG. 1, a front wheel 2 of a motorcycle 1 is pivotally supported by lower ends of a pair of left and right front forks 3, and an upper portion of the left and right front forks 3 is connected to a head pipe at a front end of a vehicle body frame 5 via a steering stem 4. 6 is pivotally supported to be steerable. A steering bar handle 7 is attached to the upper portion of the steering stem 4. The rear wheel 8 of the motorcycle 1 is pivotally supported at the rear end portion of the swing arm 9, and the front end portion of the swing arm 9 is pivotally supported by the pivot bracket 11 at the rear portion of the vehicle body frame 5 so as to be swingable up and down. Left and right rear cushions 12 are disposed between the left and right arms of the rear part of the swing arm and the both sides of the rear part of the vehicle body frame 5, respectively.

車体フレーム5は、車体略中央に位置する自動二輪車1の原動機としてのエンジン20を取り囲む所謂クレードル型とされ、ヘッドパイプ6の上部からエンジン20の上方を斜め下後方へ延びるメインパイプ13と、ヘッドパイプ6の下部から左右に分岐してメインパイプ13よりも急傾斜をなして斜め後下方に延びた後にさらに屈曲して後方に延びる左右ダウンパイプ15と、メインパイプ13及び各ダウンパイプ15の後端部間に跨る前記左右ピボットブラケット11とを主になる。メインパイプ13の上方には燃料タンク16が配設され、燃料タンク16の後方には運転者用の前シート17が配設され、該前シート17の後方には後部同乗者用の後シート18が配設される。   The vehicle body frame 5 is a so-called cradle type surrounding the engine 20 as a prime mover of the motorcycle 1 positioned substantially in the center of the vehicle body, and includes a main pipe 13 extending obliquely downward and rearward from the upper part of the head pipe 6 above the engine 20, and a head The left and right down pipes 15 branch from the lower part of the pipe 6 to the left and right, form a steeper slope than the main pipe 13 and extend obliquely rearward and downward, and then bend and extend rearward. The left and right pivot bracket 11 straddling between the end portions is mainly used. A fuel tank 16 is disposed above the main pipe 13, a driver's front seat 17 is disposed behind the fuel tank 16, and a rear passenger's rear seat 18 is disposed behind the front seat 17. Is disposed.

図2を併せて参照し、エンジン20は単一のクランクシャフト22を左右方向に沿わせた狭角のV型二気筒エンジンとされ、そのクランクケース21上には上側ほど前側となるように傾斜する前シリンダ23a、及び上側ほど後側となるように傾斜する後シリンダ23bがそれぞれ立設される。なお、図中符号C1はクランクシャフト22の回転軸線を示す。前シリンダ23aの後側及び後シリンダ23bの前側には吸気マニホールド31aの一対の下流側端がそれぞれ接続される。なお、吸気マニホールド31aの上流側端にはスロットルボディ及びエアクリーナケース(何れも不図示)が連なって接続される。一方、前シリンダ23aの前側及び後シリンダ23bの後側にはそれぞれ排気管32aの上流側端が接続される。各排気管32aは車体右下に取り回され、その下流側端が後輪8左方に位置するサイレンサ32bに接続される(図1参照)。   Referring also to FIG. 2, the engine 20 is a narrow-angle V-type two-cylinder engine having a single crankshaft 22 along the left-right direction, and the crankcase 21 is inclined so that the upper side is the front side. The front cylinder 23a and the rear cylinder 23b which inclines so as to be on the rear side toward the upper side are erected. In the figure, reference sign C1 indicates the rotational axis of the crankshaft 22. A pair of downstream ends of the intake manifold 31a are connected to the rear side of the front cylinder 23a and the front side of the rear cylinder 23b, respectively. A throttle body and an air cleaner case (both not shown) are connected to the upstream end of the intake manifold 31a. On the other hand, the upstream end of the exhaust pipe 32a is connected to the front side of the front cylinder 23a and the rear side of the rear cylinder 23b. Each exhaust pipe 32a is routed to the lower right of the vehicle body, and its downstream end is connected to a silencer 32b located to the left of the rear wheel 8 (see FIG. 1).

前後シリンダ23a,23bは、クランクケース21上に取り付けられるシリンダ本体24と、該シリンダ本体24上に取り付けられるシリンダヘッド25と、該シリンダヘッド25上に取り付けられるヘッドカバー26とを一体に結合してなる。シリンダヘッド25及びヘッドカバー26は動弁室27を形成する。各シリンダ本体24内にはピストン28が往復動可能に嵌挿され、該各ピストン28がコンロッド29を介してクランクシャフト22のクランクピン22a(図3参照)に連結される。各ピストン28はそれぞれシリンダヘッド25及びシリンダ本体24と共に燃焼室30を形成する。各ピストン28の往復動により生じたクランクシャフト22の回転動力は、クランクケース21後部内に収容された変速機及び例えばシャフトドライブ式の伝動機構(何れも不図示)を介して後輪8に伝達される。   The front and rear cylinders 23a and 23b are formed by integrally connecting a cylinder body 24 mounted on the crankcase 21, a cylinder head 25 mounted on the cylinder body 24, and a head cover 26 mounted on the cylinder head 25. . The cylinder head 25 and the head cover 26 form a valve operating chamber 27. A piston 28 is fitted in each cylinder body 24 so as to be reciprocally movable, and each piston 28 is connected to a crank pin 22 a (see FIG. 3) of the crankshaft 22 via a connecting rod 29. Each piston 28 forms a combustion chamber 30 together with the cylinder head 25 and the cylinder body 24. Rotational power of the crankshaft 22 generated by the reciprocating motion of each piston 28 is transmitted to the rear wheel 8 via a transmission housed in the rear part of the crankcase 21 and a shaft drive type transmission mechanism (both not shown). Is done.

各シリンダヘッド25には吸排気ポート31,32が形成され、該吸排気ポート31,32の燃焼室側開口がそれぞれ吸排気バルブ33,34により開閉される。吸排気バルブ33,34のステムは側面視V字状をなして配置され、該各ステム間に吸排気バルブ33,34駆動用のカムシャフト35が左右方向に沿って配置される。なお、図中符号C2はカムシャフト35の回転軸線を示す。各カムシャフト35は例えばチェーン式の伝動機構を用いてクランクシャフト22と同期して回転する。各カムシャフト35には吸排気カムが設けられ、該吸排気カムにそれぞれ接して揺動する吸排気ロッカーアーム36,37により、吸排気バルブ33,34が作動して吸排気ポート31,32の燃焼室側開口をそれぞれ開閉させる。   Each cylinder head 25 is formed with intake and exhaust ports 31 and 32, and the combustion chamber side openings of the intake and exhaust ports 31 and 32 are opened and closed by intake and exhaust valves 33 and 34, respectively. The stems of the intake / exhaust valves 33, 34 are arranged in a V shape when viewed from the side, and the camshaft 35 for driving the intake / exhaust valves 33, 34 is arranged along the left-right direction between the stems. In the figure, reference symbol C2 indicates the rotational axis of the camshaft 35. Each camshaft 35 rotates in synchronization with the crankshaft 22 using, for example, a chain transmission mechanism. Each camshaft 35 is provided with an intake / exhaust cam, and intake / exhaust valves 33, 34 are operated by intake / exhaust rocker arms 36, 37 swinging in contact with the intake / exhaust cams. Open and close each combustion chamber side opening.

図3,6に示すように、エンジン20は、加圧された混合気を各シリンダ23a,23bの燃焼室30内に運転状態に応じた制御により直接噴射する燃料直接噴射型内燃機関として構成される。具体的には、エンジン20は、後述のエア噴射バルブ44の開閉作動により前記混合気を燃焼室30内に噴射する混合気噴射インジェクタ40と、当該エンジン20の運転状態を検出する運転状態検出手段としてのスロットル開度センサ71、回転数センサ72及びクランク角センサ73と、前記混合気噴射インジェクタ40の作動制御を行う制御装置70とを備える。なお、図3は前シリンダ23aを示すが、後シリンダ23bも同様の構成を有するものとする。また、図3中符号25aは点火プラグを示す。   As shown in FIGS. 3 and 6, the engine 20 is configured as a fuel direct injection internal combustion engine that directly injects a pressurized air-fuel mixture into the combustion chamber 30 of each cylinder 23a, 23b by control according to the operating state. The Specifically, the engine 20 includes an air-fuel mixture injector 40 that injects the air-fuel mixture into the combustion chamber 30 by opening and closing an air injection valve 44, which will be described later, and an operating state detection unit that detects the operating state of the engine 20. As a throttle opening sensor 71, a rotation speed sensor 72, a crank angle sensor 73, and a control device 70 for controlling the operation of the air-fuel mixture injector 40. FIG. 3 shows the front cylinder 23a, but the rear cylinder 23b has the same configuration. Moreover, the code | symbol 25a in FIG. 3 shows a spark plug.

混合気噴射インジェクタ40は、その内部の混合室42b(図4参照)内で圧縮空気と加圧燃料とからなる加圧混合気を生成し、該混合気を燃焼室30内に噴射する所謂エアアシスト式のものとされる。混合気噴射インジェクタ40はシリンダヘッド25の中央部にその軸線(シリンダ軸線)C3に沿うように配設され、かつ自身の燃焼室側端に設けられる噴射口49(図4参照)を燃焼室30内に臨ませ、該噴射口49からピストン28上面に向けて略垂直に(シリンダ軸線C3に沿うように)混合気を噴射可能とされる。   The air-fuel mixture injector 40 generates a pressurized air-fuel mixture composed of compressed air and pressurized fuel in the internal mixing chamber 42b (see FIG. 4), and so-called air that injects the air-fuel mixture into the combustion chamber 30. Assist type. The air-fuel mixture injector 40 is disposed at the center of the cylinder head 25 along the axis (cylinder axis) C3, and has an injection port 49 (see FIG. 4) provided at the end of its own combustion chamber. The air-fuel mixture can be injected from the injection port 49 toward the upper surface of the piston 28 substantially vertically (along the cylinder axis C3).

混合気噴射インジェクタ40は、その本体部分を構成するべくシリンダヘッド25に挿通されるエアインジェクタ41と、該エアインジェクタ41の動弁室側に連設される燃料インジェクタ51とを有してなる。   The air-fuel mixture injector 40 includes an air injector 41 that is inserted into the cylinder head 25 so as to constitute a main body portion thereof, and a fuel injector 51 that is connected to the valve chamber side of the air injector 41.

図3,4に示すように、エアインジェクタ41は、シリンダヘッド25に挿通保持される筒状のハウジング42と、該ハウジング42内にその軸線に沿って形成される管路43と、該管路43内にその軸線に沿って往復動可能に嵌挿されるエア噴射バルブ44と、該エア噴射バルブ44の動弁室側に一体的に設けられるコア45と、該コア45を動弁室側に付勢するスプリング46と、コア45外周を囲むように前記ハウジング42に保持されるコイル47とを有してなる。コイル47は制御装置70からの電力供給により励磁可能とされる。   As shown in FIGS. 3 and 4, the air injector 41 includes a cylindrical housing 42 inserted and held in the cylinder head 25, a conduit 43 formed in the housing 42 along the axis thereof, and the conduit 43, an air injection valve 44 that is fitted in an axial direction along the axis thereof, a core 45 that is integrally provided on the valve operating chamber side of the air injection valve 44, and the core 45 on the valve operating chamber side. A spring 46 for biasing and a coil 47 held by the housing 42 so as to surround the outer periphery of the core 45 are provided. The coil 47 can be excited by supplying power from the control device 70.

エア噴射バルブ44の下端部にはプラグ部材48が連設され、前記コイル47が非励磁状態のときは前記スプリング46の付勢力によりコア45、エア噴射バルブ44及びプラグ部材48が動弁室側に付勢され、もってプラグ部材48が前記管路43の燃焼室側端に形成された噴射口49を閉塞する。一方、前記コイル47が励磁されたときは、コア45、エア噴射バルブ44及びプラグ部材48がスプリング46の付勢力に抗して燃焼室側に移動し、プラグ部材48が噴射口49を開放させる。このとき、管路43の動弁室側端に連通する混合室42b内に生成された加圧混合気が、噴射口49から燃焼室30内に噴射可能となる。   A plug member 48 is connected to the lower end portion of the air injection valve 44. When the coil 47 is in a non-excited state, the core 45, the air injection valve 44, and the plug member 48 are moved to the valve chamber side by the biasing force of the spring 46. Accordingly, the plug member 48 closes the injection port 49 formed at the combustion chamber side end of the pipe line 43. On the other hand, when the coil 47 is excited, the core 45, the air injection valve 44, and the plug member 48 move toward the combustion chamber against the urging force of the spring 46, and the plug member 48 opens the injection port 49. . At this time, the pressurized air-fuel mixture generated in the mixing chamber 42 b communicating with the valve chamber side end of the conduit 43 can be injected into the combustion chamber 30 from the injection port 49.

図5を併せて参照し、燃料インジェクタ51は、エアインジェクタ41のハウジング42の動弁室側に連設される筒状のハウジング52と、該ハウジング52の燃焼室側に一体的に設けられるノズル部53と、該ノズル部53内にその軸線に沿って往復動可能に嵌挿される燃料噴射バルブ54と、該燃料噴射バルブ54の動弁室側に一体的に設けられるコア55と、該コア55を燃焼室側に付勢するスプリング56と、コア55外周を囲むように前記ハウジング52に保持されるコイル57とを有してなる。コイル57は制御装置70からの電力供給により励磁可能とされる。   Referring also to FIG. 5, the fuel injector 51 includes a cylindrical housing 52 that is connected to the valve chamber side of the housing 42 of the air injector 41 and a nozzle that is integrally provided on the combustion chamber side of the housing 52. 53, a fuel injection valve 54 fitted into the nozzle portion 53 so as to be reciprocable along the axis thereof, a core 55 integrally provided on the valve chamber side of the fuel injection valve 54, the core A spring 56 for urging 55 to the combustion chamber side and a coil 57 held by the housing 52 so as to surround the outer periphery of the core 55 are provided. The coil 57 can be excited by supplying power from the control device 70.

ノズル部53内にはその軸線と直交する内壁53aが形成され、該内壁53a中央には燃料噴射口59が形成される。燃料噴射口59の動弁室側端と前記燃料噴射バルブ54の燃焼室側端との間にはプラグボール58が挟持され、前記コイル57が非励磁状態のときは前記スプリング56の付勢力によりコア55、燃料噴射バルブ54及びプラグボール58が燃焼室側に付勢され、もってプラグボール58が燃料噴射口59を閉塞する。一方、前記コイル57が励磁されたときは、コア55、燃料噴射バルブ54及びプラグボール58がスプリング56の付勢力に抗して動弁室側に移動し、プラグボール58が燃料噴射口59を開放させる。   An inner wall 53a perpendicular to the axis is formed in the nozzle portion 53, and a fuel injection port 59 is formed in the center of the inner wall 53a. A plug ball 58 is sandwiched between the end of the fuel injection port 59 on the side of the valve chamber and the end of the fuel injection valve 54 on the side of the combustion chamber. When the coil 57 is in a non-excited state, the biasing force of the spring 56 is used. The core 55, the fuel injection valve 54, and the plug ball 58 are urged toward the combustion chamber, and the plug ball 58 closes the fuel injection port 59. On the other hand, when the coil 57 is excited, the core 55, the fuel injection valve 54, and the plug ball 58 move toward the valve chamber against the urging force of the spring 56, and the plug ball 58 opens the fuel injection port 59. Open.

エアインジェクタ41のハウジング42の動弁室側内は、上方に開放する燃料インジェクタ装着空間とされ、該空間の底部には燃料インジェクタ51のノズル部53を嵌入保持するノズル保持部材42aが設けられる。ノズル保持部材42aの内部空間は燃料インジェクタ51からの加圧燃料と空気圧縮機65からの圧縮空気とを混合する混合室42bとされる。混合室42bは、その燃焼室側に延びる連通路42cを介して前記管路43(エア噴射バルブ44の内部空間)と連通して設けられる。   The inside of the valve chamber side of the housing 42 of the air injector 41 is a fuel injector mounting space that opens upward, and a nozzle holding member 42 a that fits and holds the nozzle portion 53 of the fuel injector 51 is provided at the bottom of the space. The internal space of the nozzle holding member 42 a is a mixing chamber 42 b that mixes the pressurized fuel from the fuel injector 51 and the compressed air from the air compressor 65. The mixing chamber 42b is provided in communication with the pipe line 43 (the internal space of the air injection valve 44) via a communication passage 42c extending to the combustion chamber side.

燃料インジェクタ51のノズル部53内の内壁53aよりも動弁室側には、燃料ポンプ61からの加圧燃料を供給可能な燃料室53bが設けられ、前述の如く燃料噴射口59が開放した際には、燃料室53b内の燃料を燃料噴射口59から混合室42b内に噴射可能となる。混合室42b内に噴射された燃料は圧縮空気と混合されて高濃度の加圧混合気となり、該混合気が自身の圧力により混合気噴射インジェクタ40から(エアインジェクタ41から)噴射可能となる。   A fuel chamber 53b capable of supplying pressurized fuel from the fuel pump 61 is provided on the valve chamber side of the inner wall 53a in the nozzle portion 53 of the fuel injector 51, and when the fuel injection port 59 is opened as described above. Thus, the fuel in the fuel chamber 53b can be injected into the mixing chamber 42b from the fuel injection port 59. The fuel injected into the mixing chamber 42b is mixed with compressed air to become a high-concentration pressurized air-fuel mixture, and the air-fuel mixture can be injected from the air-fuel mixture injector 40 (from the air injector 41) by its own pressure.

ここで、図7に示すように、前後シリンダ23a,23bの各混合気噴射インジェクタ40は、単一の燃料ポンプ61及び空気圧縮機65を共有する。燃料ポンプ61の吐出口から延びる燃料供給路62は、前後シリンダ23a,23bの混合気噴射インジェクタ40(燃料インジェクタ51)に向けて前後燃料供給路62a,62bに分岐する。同様に、空気圧縮機65の吐出口から延びる空気供給路66は、前後シリンダ23a,23bの混合気噴射インジェクタ40(エアインジェクタ41)に向けて前後空気供給路66a,66bに分岐する。   Here, as shown in FIG. 7, the air-fuel mixture injectors 40 of the front and rear cylinders 23 a and 23 b share a single fuel pump 61 and an air compressor 65. A fuel supply path 62 extending from the discharge port of the fuel pump 61 branches into the front and rear fuel supply paths 62a and 62b toward the air-fuel mixture injector 40 (fuel injector 51) of the front and rear cylinders 23a and 23b. Similarly, the air supply path 66 extending from the discharge port of the air compressor 65 branches into the front and rear air supply paths 66a and 66b toward the air-fuel mixture injector 40 (air injector 41) of the front and rear cylinders 23a and 23b.

各供給路は、前後シリンダ23a,23bから独立した配管又はシリンダヘッド25内若しくは混合気噴射インジェクタ40内に形成された通路の少なくとも一方からなる。これら各供給路並びに燃料ポンプ61及び空気圧縮機は、前後シリンダ23a,23bのバンク間に配置される。なお、燃料ポンプ61及び空気圧縮機65の吐出口には、制御装置70により開閉作動を制御される制御弁63,67がそれぞれ設けられる。   Each supply path includes at least one of a pipe independent of the front and rear cylinders 23a and 23b, or a path formed in the cylinder head 25 or the air-fuel mixture injector 40. These supply paths, the fuel pump 61 and the air compressor are arranged between the banks of the front and rear cylinders 23a and 23b. Control valves 63 and 67 whose opening / closing operations are controlled by the control device 70 are provided at the discharge ports of the fuel pump 61 and the air compressor 65, respectively.

図6に示すように、制御装置70は、前記スロットルボディのスロットルバルブの開度(スロットル開度)を検出するスロットル開度センサ71、クランクシャフト22の回転数(エンジン回転数)を検出する回転数センサ72、及びクランクシャフト22の回転角(クランク角)を検出するクランク角センサ73等が電気的に接続され、これら各センサからの検出情報等に基づき、エアインジェクタ41及び燃料インジェクタ51の噴射制御(燃料室53b内への混合気の噴射制御)を行う。   As shown in FIG. 6, the control device 70 has a throttle opening sensor 71 that detects the opening degree of the throttle valve (throttle opening degree) of the throttle body, and a rotation that detects the rotation speed (engine speed) of the crankshaft 22. The number sensor 72 and a crank angle sensor 73 for detecting the rotation angle (crank angle) of the crankshaft 22 are electrically connected, and the injection of the air injector 41 and the fuel injector 51 is based on detection information from these sensors. Control (injection control of the air-fuel mixture into the fuel chamber 53b) is performed.

図8のダイヤグラムは、エンジン20のクランク角に対するエア噴射バルブ44(噴射口49)及び燃料噴射バルブ54(燃料噴射口59)の開弁期間を示すもので、上死点のクランク角を0度とし、左回り(進角側)を+方向としている(左回りに進角側の角度を増加させている)。   The diagram of FIG. 8 shows the opening period of the air injection valve 44 (injection port 49) and the fuel injection valve 54 (fuel injection port 59) with respect to the crank angle of the engine 20, and the crank angle at the top dead center is 0 degree. The counterclockwise direction (advance side) is the + direction (the advance angle is increased counterclockwise).

燃料噴射バルブ54の開弁期間は、クランク角センサ73が検出したクランク角が例えば圧縮上死点前330°〜210°にあるときで、この間に制御装置70がコイル57に給電して燃料インジェクタ51から混合室42b内に燃料を噴射させる。一方、エア噴射バルブ44の開弁期間は、クランク角が例えば圧縮上死点前120°〜30°にあるときで、この間に制御装置70がコイル47に給電してエアインジェクタ41から燃料室53b内に混合室42b内で生成した混合気を噴射させる。以下、前記燃料噴射バルブ54の開弁期間を燃料噴射タイミングといい、前記エア噴射バルブ44の開弁期間を混合気噴射タイミングという。   The valve opening period of the fuel injection valve 54 is when the crank angle detected by the crank angle sensor 73 is, for example, 330 ° to 210 ° before compression top dead center. During this time, the control device 70 supplies power to the coil 57 and supplies the fuel injector. Fuel is injected from 51 into the mixing chamber 42b. On the other hand, the opening period of the air injection valve 44 is when the crank angle is, for example, 120 ° to 30 ° before the compression top dead center. During this time, the control device 70 supplies power to the coil 47 to supply the fuel chamber 53b from the air injector 41. The air-fuel mixture generated in the mixing chamber 42b is injected into the inside. Hereinafter, the valve opening period of the fuel injection valve 54 is referred to as fuel injection timing, and the valve opening period of the air injection valve 44 is referred to as air-fuel mixture injection timing.

所定の混合気噴射タイミングで燃焼室30内に噴射された混合気は、点火プラグ25aの点火により燃焼を開始して燃焼(膨張)行程に移行する。このとき、混合気噴射インジェクタ40から点火プラグ25aの点火部(電極部)の周囲に高濃度の混合気を噴射することで、効率の良い燃焼を実現すると共に全体として希薄燃焼を実現し、もって燃費向上及び排気ガスの清浄化を実現させる。   The air-fuel mixture injected into the combustion chamber 30 at a predetermined air-fuel mixture injection timing starts combustion by ignition of the spark plug 25a and shifts to a combustion (expansion) stroke. At this time, by injecting a high-concentration air-fuel mixture around the ignition part (electrode part) of the spark plug 25a from the air-fuel mixture injector 40, efficient combustion and overall lean combustion are realized. Improve fuel efficiency and purify exhaust gas.

ここで、混合気噴射インジェクタ40は、エンジン20の始動時等のクランク低回転時に燃焼室30内の圧縮圧力を逃がすデコンプレッション装置としても機能する。具体的には、混合気噴射インジェクタ40は、エンジン20が圧縮上死点の直前(圧縮行程の終盤)にあるときに、燃焼室30内の圧縮圧力を逃がすべくエア噴射バルブ44を開作動させる。   Here, the air-fuel mixture injector 40 also functions as a decompression device that releases the compression pressure in the combustion chamber 30 at the time of low crank rotation such as when the engine 20 is started. Specifically, the air-fuel mixture injector 40 opens the air injection valve 44 to release the compression pressure in the combustion chamber 30 when the engine 20 is immediately before the compression top dead center (the final stage of the compression stroke). .

制御装置70は、エンジン20の始動時において、クランクシャフト22が所定速度(エンジン始動後の安定回転速度に相当)未満で回転するときには、前記燃料噴射タイミングにおいて燃料噴射バルブ54を閉じたままとして混合室42bに燃料を噴射させず、かつ前記混合気噴射タイミング(圧縮行程の後半)においては燃料噴射バルブ54及び制御弁67を閉じたままとしてエア噴射バルブ44が開作動しても混合気噴射インジェクタ40から混合気を噴射させない。   When the crankshaft 22 rotates at a speed lower than a predetermined speed (corresponding to a stable rotational speed after the engine is started) when the engine 20 is started, the control device 70 performs mixing while keeping the fuel injection valve 54 closed at the fuel injection timing. Even if the fuel injection valve 54 and the control valve 67 remain closed at the air-fuel mixture injection timing (the second half of the compression stroke), the air-fuel injection injector does not inject fuel into the chamber 42b. No air-fuel mixture is injected from 40.

その後、制御装置70は、圧縮行程終盤のデコンプ作動タイミング(例えば圧縮上死点前30°〜0°)において、燃料噴射バルブ54及び制御弁67を閉じたままとしてエア噴射バルブ44を開作動させ、管路43及び前記各空気供給路66a,66b等を通じて燃焼室30内の圧縮圧力を逃がす。このときのエア噴射バルブ44の開作動は、前記混合気噴射タイミングの開作動から継続して行っても一旦閉じた後に行ってもよい。これにより、圧縮上死点直前の圧力上昇によるクランクシャフト22の回転抑制力が抑えられ、クランクシャフト22の回転が十分に加速される。なお、デコンプ作動タイミングは、クランク角だけではなくスロットル開度やエンジン回転数等を含むエンジン運転状態に応じて設定される。   Thereafter, the control device 70 opens the air injection valve 44 while keeping the fuel injection valve 54 and the control valve 67 closed at the decompression operation timing at the end of the compression stroke (for example, 30 ° to 0 ° before compression top dead center). The compression pressure in the combustion chamber 30 is released through the pipe 43 and the air supply paths 66a and 66b. The opening operation of the air injection valve 44 at this time may be performed continuously from the opening operation of the air-fuel mixture injection timing or may be performed after it is once closed. Thereby, the rotation suppression force of the crankshaft 22 due to the pressure increase immediately before the compression top dead center is suppressed, and the rotation of the crankshaft 22 is sufficiently accelerated. The decompression operation timing is set in accordance with not only the crank angle but also the engine operating state including the throttle opening, the engine speed, and the like.

一方、制御装置70は、クランクシャフト22が前記所定速度以上で回転し始めた際には、前記燃料噴射タイミングにおいて制御弁63及び燃料噴射バルブ54を開作動させて混合室42bに燃料を噴射させ、かつ前記混合気噴射タイミングにおいて制御弁67及びエア噴射バルブ44を開作動させて混合気噴射インジェクタ40から混合気を噴射させる。エア噴射バルブ44を開いて混合気を噴射する際には、燃料噴射バルブ54を閉じて燃料インジェクタ51内に加圧混合気が逆流することを防止する。   On the other hand, when the crankshaft 22 starts to rotate at the predetermined speed or more, the control device 70 opens the control valve 63 and the fuel injection valve 54 at the fuel injection timing to inject fuel into the mixing chamber 42b. In addition, the control valve 67 and the air injection valve 44 are opened at the air-fuel mixture injection timing to inject the air-fuel mixture from the air-fuel mixture injector 40. When the air-fuel mixture is injected by opening the air injection valve 44, the fuel injection valve 54 is closed to prevent the pressurized air-fuel mixture from flowing backward into the fuel injector 51.

その後、制御装置70は、前記デコンプ作動タイミングにおいてエア噴射バルブ44を閉じたままとし、燃焼室30内での通常の圧縮行程を可能とする。これにより、スタータモータ等のエンジン始動手段の初期入力を軽減させた上で、エンジン20を容易かつ確実に始動させることが可能となる。   Thereafter, the control device 70 keeps the air injection valve 44 closed at the decompression operation timing, thereby enabling a normal compression stroke in the combustion chamber 30. This makes it possible to start the engine 20 easily and reliably while reducing the initial input of the engine starting means such as a starter motor.

図9のタイミングチャートに示すように、前後シリンダ23a,23bの間には300°程の位相差があり、前シリンダ23aがデコンプ作動タイミングにあるときには後シリンダ23bが吸気行程(図中INで示す)となり、後シリンダ23bがデコンプ作動タイミングにあるときには前シリンダ23aが排気行程(図中EXで示す)となる。   As shown in the timing chart of FIG. 9, there is a phase difference of about 300 ° between the front and rear cylinders 23a, 23b, and when the front cylinder 23a is at the decompression operation timing, the rear cylinder 23b is in the intake stroke (indicated by IN in the figure). When the rear cylinder 23b is at the decompression operation timing, the front cylinder 23a is in the exhaust stroke (indicated by EX in the figure).

そして、エンジン始動持には、まず前シリンダ23aにおいて、吸気行程後の前記混合気噴射タイミング(BTDC120°〜30°)が終了した後、前記デコンプ作動タイミング(BTDC30°〜0°)に移行すると、燃料噴射バルブ54及び制御弁67が閉じたままでエア噴射バルブ44が開作動する。このとき、前シリンダ23aだけでなく吸気行程にある後シリンダ23bのエア噴射バルブ44も同時に開作動する。   In order to start the engine, first, in the front cylinder 23a, after the mixture injection timing after the intake stroke (BTDC 120 ° to 30 °) ends, the decompression operation timing (BTDC 30 ° to 0 °) shifts. The air injection valve 44 is opened while the fuel injection valve 54 and the control valve 67 are closed. At this time, not only the front cylinder 23a but also the air injection valve 44 of the rear cylinder 23b in the intake stroke is simultaneously opened.

これにより、前シリンダ23aの燃焼室30内がエア噴射バルブ44内及び各空気供給路66a,66b内と連通すると共に後シリンダ23bの燃焼室30内とも連通し、前シリンダ23a内の圧縮圧力がエア噴射バルブ44内及び各空気供給路66a,66b内並びに後シリンダ23b内に逃がされる。特に、後シリンダ23bが吸気行程にあることで、前シリンダ23a内の圧縮圧力が吸引されて効果的に逃がされると共に、後シリンダ23bの吸気抵抗も軽減され、クランクシャフト22の回転が効率良く加速される。   As a result, the combustion chamber 30 of the front cylinder 23a communicates with the air injection valve 44 and the air supply passages 66a and 66b and also with the combustion chamber 30 of the rear cylinder 23b, and the compression pressure in the front cylinder 23a is reduced. The air is released into the air injection valve 44, the air supply paths 66a and 66b, and the rear cylinder 23b. In particular, because the rear cylinder 23b is in the intake stroke, the compression pressure in the front cylinder 23a is sucked and effectively released, and the intake resistance of the rear cylinder 23b is reduced, and the rotation of the crankshaft 22 is efficiently accelerated. Is done.

次いで、後シリンダ23bにおいても同様に、混合気噴射タイミング後のデコンプ作動タイミングに移行した際、燃料噴射バルブ54及び制御弁67が閉じたままで前後シリンダ23a,23bのエア噴射バルブ44が同時に開作動する。
これにより、前記同様、後シリンダ23b内の圧縮圧力がエア噴射バルブ44内及び各空気供給路66a,66b内並びに前シリンダ23a内に逃がされる。このとき、前シリンダ23aは排気工程にあり、該前シリンダ23a内に逃がされた圧縮圧力はその排気経路中にも逃がされる。
Next, in the rear cylinder 23b as well, when shifting to the decompression operation timing after the air-fuel mixture injection timing, the air injection valves 44 of the front and rear cylinders 23a and 23b are simultaneously opened while the fuel injection valve 54 and the control valve 67 remain closed. To do.
As a result, as described above, the compression pressure in the rear cylinder 23b is released into the air injection valve 44, the air supply paths 66a and 66b, and the front cylinder 23a. At this time, the front cylinder 23a is in the exhaust process, and the compression pressure released into the front cylinder 23a is also released into the exhaust path.

このように、前後シリンダ23a,23bのデコンプ作動タイミングを経てクランクシャフト22の回転が十分に加速され、その速度が所定値以上になったと制御装置70に判断された時点で、混合気噴射インジェクタ40からの混合気の噴射が開始されると共に、前後シリンダ23a,23bにおいて減圧を行わない通常の四工程(吸気、圧縮、燃焼及び排気行程)が実施され、もってエンジン20がスムーズに始動を開始する。   In this way, when the control device 70 determines that the rotation of the crankshaft 22 is sufficiently accelerated through the decompression operation timing of the front and rear cylinders 23a, 23b and the speed exceeds a predetermined value, the air-fuel mixture injector 40 And the normal four steps (intake, compression, combustion, and exhaust stroke) in which pressure reduction is not performed in the front and rear cylinders 23a, 23b are performed, and the engine 20 starts smoothly. .

以上説明したように、上記実施例におけるエンジン20は、加圧された混合気を燃焼室30内に直接噴射する燃料直接噴射型内燃機関であって、エア噴射バルブ44の開閉作動により前記混合気を燃焼室30内に噴射する混合気噴射インジェクタ40と、当該エンジン20の運転状態を検出する運転状態検出手段としてのスロットル開度センサ71、回転数センサ72及びクランク角センサ73と、前記混合気噴射インジェクタ40の作動制御を行う制御装置70とを備え、当該エンジン20の運転状態に応じて、前記混合気噴射インジェクタ40による燃焼室30内への混合気噴射タイミング後の所定時間に、該混合気噴射インジェクタ40のエア噴射バルブ44を開作動させるものにおいて、当該エンジン20が位相の異なる前後シリンダ23a,23bを有し、該各シリンダ23a,23bに設けられる前記混合気噴射インジェクタ40のそれぞれへの前後空気供給路66a,66bが互いに連通するものである。   As described above, the engine 20 in the above embodiment is a direct fuel injection type internal combustion engine that directly injects a pressurized air-fuel mixture into the combustion chamber 30, and the air-fuel mixture is operated by opening and closing the air injection valve 44. An air-fuel mixture injector 40 for injecting fuel into the combustion chamber 30, a throttle opening sensor 71, a rotation speed sensor 72 and a crank angle sensor 73 as operating state detecting means for detecting the operating state of the engine 20, and the air-fuel mixture A control device 70 for controlling the operation of the injector 40, and in accordance with the operating state of the engine 20, the mixing is performed at a predetermined time after the mixture injection timing into the combustion chamber 30 by the mixture injector 40. When the air injection valve 44 of the air injection injector 40 is opened, the engine 20 is a front / rear cylinder with different phases. 23a, has a 23b, in which respective cylinders 23a, front and rear air supply passage 66a to each of the gas mixture injector 40 provided in 23b, 66b communicate with each other.

この構成によれば、当該エンジン20の始動時において、一シリンダの混合気噴射タイミング後に対応する混合気噴射インジェクタ40のエア噴射バルブ44を開作動させて燃焼室30内の圧縮圧力を減圧(デコンプレッション)する際、該圧縮圧力を対応する空気供給路のみならず他シリンダに対応する空気供給路をも利用して逃がすと共に、前記他気筒の行程に応じてその混合気噴射インジェクタ40のエア噴射バルブ44を開作動させ、該他シリンダの燃焼室30内にも前記圧縮圧力逃がすことができる。これにより、空気供給路内の残圧や該空気供給路に設けたプレッシャレギュレータの制御圧に影響されることなく、エンジン始動時における燃焼室30内の減圧を簡易かつ効率良く行うことができる。   According to this configuration, when the engine 20 is started, the air injection valve 44 of the air-fuel mixture injector 40 corresponding to the air-fuel mixture injection timing of one cylinder is opened to reduce the compression pressure in the combustion chamber 30 (decompression). When the compression is performed, the compressed pressure is released using not only the corresponding air supply path but also the air supply path corresponding to the other cylinder, and the air injection of the mixture injection injector 40 according to the stroke of the other cylinder. By opening the valve 44, the compression pressure can be released also into the combustion chamber 30 of the other cylinder. Thereby, the pressure reduction in the combustion chamber 30 at the time of starting the engine can be performed easily and efficiently without being affected by the residual pressure in the air supply path or the control pressure of the pressure regulator provided in the air supply path.

また、上記エンジン20においては、当該エンジン20がV型二気筒エンジンであり、その各シリンダ23a,23b間に前記混合気噴射インジェクタ40への空気供給路66a,66bを配置したことで、各シリンダ23a,23bの混合機噴射インジェクタ40への空気導入路66a,66bを効率良く配置できると共に、混合気噴射インジェクタ40に対応する空気圧縮機65を各シリンダ23a,23bのバンク間に配置した場合にも、該空気圧縮機65と空気供給路66a,66bとを容易に接続できる。   Further, in the engine 20, the engine 20 is a V-type two-cylinder engine, and the air supply passages 66a and 66b to the air-fuel mixture injector 40 are disposed between the cylinders 23a and 23b. When the air introduction paths 66a and 66b to the mixer injector 40 of 23a and 23b can be arranged efficiently, and the air compressor 65 corresponding to the mixture injector 40 is arranged between the banks of the cylinders 23a and 23b. In addition, the air compressor 65 and the air supply paths 66a and 66b can be easily connected.

なお、この発明は上記実施例に限られるものではなく、例えば、自動二輪車以外の車両(乗用車、バス、トラック、原動機付自転車、自転車、四輪バギー車等)あるいは航空機、船、ボート、ヨット、マリンバイク等の各種輸送機器の原動機に適用してもよい。
また、DOHCエンジンやOHVエンジン等に適用してもよく、三気筒以上の複数気筒エンジンに適用してもよく、並列(直列)気筒エンジンやクランクシャフトを車両前後方向に沿わせた縦置きエンジン等の各種レシプロエンジンに適用してもよい。
そして、上記実施例における構成はこの発明の一例であり、当該発明の要旨を逸脱しない範囲で種々の変更が可能であることはいうまでもない。
The present invention is not limited to the above-described embodiments. For example, vehicles other than motorcycles (passenger cars, buses, trucks, motorbikes, bicycles, four-wheel buggy cars, etc.) or aircrafts, ships, boats, yachts, You may apply to the motor | power_engine of various transport apparatuses, such as a marine bike.
Also, it may be applied to DOHC engines, OHV engines, etc., may be applied to multi-cylinder engines with three or more cylinders, parallel (in-line) cylinder engines, vertical engines with a crankshaft along the vehicle longitudinal direction, etc. It may be applied to various reciprocating engines.
And the structure in the said Example is an example of this invention, and it cannot be overemphasized that a various change is possible in the range which does not deviate from the summary of the said invention.

この発明の実施例における自動二輪車の左側面図である。1 is a left side view of a motorcycle according to an embodiment of the present invention. 上記自動二輪車のエンジンの一部断面を含む左側面図である。Fig. 2 is a left side view including a partial cross section of the engine of the motorcycle. 図2のA−A断面図である。It is AA sectional drawing of FIG. 上記エンジンの混合気噴射インジェクタのエアインジェクタの断面図である。It is sectional drawing of the air injector of the fuel-air mixture injector of the said engine. 上記混合気噴射インジェクタの燃料インジェクタの断面図である。It is sectional drawing of the fuel injector of the said fuel-air mixture injector. 上記混合気噴射インジェクタの制御系の主要構成図である。It is a principal block diagram of the control system of the air-fuel mixture injector. 上記エンジンの前後シリンダの混合気噴射インジェクタ周りの主要構成を示す図2に相当する側面図である。FIG. 3 is a side view corresponding to FIG. 2 showing a main configuration around an air-fuel mixture injector of front and rear cylinders of the engine. 上記混合気噴射インジェクタのクランク角に対する作動範囲を示すダイヤグラムである。It is a diagram which shows the operating range with respect to the crank angle of the said air-fuel mixture injector. 上記前後シリンダの混合気噴射インジェクタのクランク角に対する行程の変化を示すタイミングチャートである。It is a timing chart which shows the change of the stroke to the crank angle of the air-fuel mixture injector of the front and rear cylinders.

符号の説明Explanation of symbols

1 自動二輪車
20 エンジン(燃料直接噴射型内燃機関)
23a 前シリンダ(気筒)
23b 後シリンダ(気筒)
30 燃焼室
40 混合気噴射インジェクタ
44 エア噴射バルブ
66a 前空気供給路(空気供給路)
66b 後空気供給路(空気供給路)
70 制御装置
71 スロットル開度センサ(運転状態検出手段)
72 回転数センサ(運転状態検出手段)
73 クランク角センサ(運転状態検出手段)
1 Motorcycle 20 Engine (Fuel Direct Injection Internal Combustion Engine)
23a Front cylinder (cylinder)
23b Rear cylinder (cylinder)
30 Combustion chamber 40 Air-fuel mixture injector 44 Air injection valve 66a Front air supply path (air supply path)
66b Rear air supply path (air supply path)
70 Control device 71 Throttle opening sensor (operating state detection means)
72 Rotational speed sensor (Operating state detection means)
73 Crank angle sensor (operating state detection means)

Claims (2)

加圧された混合気を燃焼室内に直接噴射する燃料直接噴射型内燃機関であって、
エア噴射バルブの開閉作動により前記混合気を燃焼室内に噴射する混合気噴射インジェクタと、当該内燃機関の運転状態を検出する運転状態検出手段と、前記混合気噴射インジェクタの作動制御を行う制御装置とを備え、
当該内燃機関の運転状態に応じて、前記混合気噴射インジェクタによる燃焼室内への混合気噴射タイミング後の所定時間に、該混合気噴射インジェクタのエア噴射バルブを開作動させる燃料直接噴射型内燃機関において、
当該内燃機関が位相の異なる複数の気筒を有し、該各気筒に設けられる前記混合気噴射インジェクタのそれぞれへの空気供給路が、位相の異なる気筒に対応するもの同士で互いに連通することを特徴とする燃料直接噴射型内燃機関。
A fuel direct injection internal combustion engine that directly injects a pressurized air-fuel mixture into a combustion chamber,
An air-fuel mixture injector that injects the air-fuel mixture into the combustion chamber by opening and closing an air injection valve; an operating state detecting means that detects an operating state of the internal combustion engine; and a control device that controls the operation of the air-fuel mixture injector. With
In a fuel direct injection internal combustion engine that opens an air injection valve of a mixture injection injector at a predetermined time after the mixture injection timing into the combustion chamber by the mixture injection injector according to the operating state of the internal combustion engine ,
The internal combustion engine has a plurality of cylinders having different phases, and the air supply paths to the mixture injectors provided in the cylinders communicate with each other corresponding to the cylinders having different phases. A fuel direct injection internal combustion engine.
当該内燃機関がV型二気筒エンジンであり、その各気筒間に前記空気導入路を配置したことを特徴とする請求項1に記載の燃料直接噴射型内燃機関。 2. The direct fuel injection internal combustion engine according to claim 1, wherein the internal combustion engine is a V-type two-cylinder engine, and the air introduction path is disposed between the cylinders.
JP2007013693A 2007-01-24 2007-01-24 Direct fuel injection internal combustion engine Expired - Fee Related JP4704368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013693A JP4704368B2 (en) 2007-01-24 2007-01-24 Direct fuel injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013693A JP4704368B2 (en) 2007-01-24 2007-01-24 Direct fuel injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008180129A true JP2008180129A (en) 2008-08-07
JP4704368B2 JP4704368B2 (en) 2011-06-15

Family

ID=39724219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013693A Expired - Fee Related JP4704368B2 (en) 2007-01-24 2007-01-24 Direct fuel injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP4704368B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8485154B2 (en) 2010-07-27 2013-07-16 Sundance Enterprises Inc. Intake manifold flange

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105826A (en) * 2003-09-26 2005-04-21 Honda Motor Co Ltd Fuel direct injection internal combustion engine
JP2006307844A (en) * 2005-03-30 2006-11-09 Honda Motor Co Ltd V-type internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105826A (en) * 2003-09-26 2005-04-21 Honda Motor Co Ltd Fuel direct injection internal combustion engine
JP2006307844A (en) * 2005-03-30 2006-11-09 Honda Motor Co Ltd V-type internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8485154B2 (en) 2010-07-27 2013-07-16 Sundance Enterprises Inc. Intake manifold flange

Also Published As

Publication number Publication date
JP4704368B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
TWI330219B (en)
JP6337439B2 (en) Motorcycle
US7883443B2 (en) Method and system for controlling an engine for a vehicle, and a motorcycle
US9988978B2 (en) Four-cycle multi-cylinder engine
JP4704368B2 (en) Direct fuel injection internal combustion engine
JP4628161B2 (en) Intake device for vehicle-mounted engine
EP3048286B1 (en) Structure for attaching an exhaust gas sensor of an internal combustion engine
US7380533B2 (en) Outboard motor provided with internal combustion engine having electrical equipment box
US10364755B2 (en) Exhaust control device for engine
EP3757382A1 (en) Straddled vehicle
JP7369820B2 (en) saddle type vehicle
JP4126881B2 (en) Intake control device for fuel injection engine
JP2002242680A (en) Intake control device for fuel injection engine
US20070199543A1 (en) Internal combustion engine
JP2007120480A (en) Internal combustion engine equipped with secondary air supply device and breather device
JP2007231793A (en) Internal combustion engine
JP4611269B2 (en) Intake system sensor arrangement structure of internal combustion engine
JP3925551B2 (en) Intake control device for fuel injection engine
JP5874244B2 (en) Secondary air supply device for internal combustion engine
JP3925550B2 (en) Intake control device for fuel injection engine
WO2021199224A1 (en) Control device for four-stroke internal combustion engines
JP2021055598A (en) Engine system
WO2017188144A1 (en) Engine control device
JP2010223133A (en) Operation control device of multicylinder internal combustion engine
JP2024030702A (en) Oil passage structure of internal combustion engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4704368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees