JP2006307821A - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
JP2006307821A
JP2006307821A JP2005160417A JP2005160417A JP2006307821A JP 2006307821 A JP2006307821 A JP 2006307821A JP 2005160417 A JP2005160417 A JP 2005160417A JP 2005160417 A JP2005160417 A JP 2005160417A JP 2006307821 A JP2006307821 A JP 2006307821A
Authority
JP
Japan
Prior art keywords
generator
impeller
fluid
fluid transport
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005160417A
Other languages
Japanese (ja)
Inventor
Hiroaki Fujii
廣明 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005160417A priority Critical patent/JP2006307821A/en
Publication of JP2006307821A publication Critical patent/JP2006307821A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generation device low in plant cost and in operation cost and efficiently generating electric power independently of a state of the weather or the like by converting pressure of the liquid flowing inside a fluid transportation pipe line and kinetic energy of the flow speed into rotational movement to generate electric power. <P>SOLUTION: A power generator 2 is incorporated inside the liquid transportation pipe line 1, an impeller 3 is directly mounted on the power generator 2 and the power generator 2 is directly driven with the impeller 3 rotated by the liquid flowing in the pipe line 1 to generate electric power. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、流体輸送管路の内部に発電機を組み込み、流体輸送管路を流れる流体(以下、液体という)のエネルギーを利用して発電機の羽根車を回転させ、この回転で発電機を駆動して発電するようにした発電装置に関する。  In the present invention, a generator is incorporated in a fluid transport pipeline, and the impeller of the generator is rotated using the energy of fluid (hereinafter referred to as liquid) flowing through the fluid transport pipeline, and the generator is rotated by this rotation. The present invention relates to a power generator that is driven to generate power.

例えば、公共施設、大型店舖、ホテルやマンション、各種工場等の施設において、内部を所定の流速で各種液体が流れる流体輸送管路が多く存在し、具体的に流体輸送管路としては、給水管、排水管、冷却用水管、洗浄用水管、プラント配管等を挙げることができる。  For example, in facilities such as public facilities, large stores, hotels, condominiums, various factories, etc., there are many fluid transport pipelines through which various liquids flow at a predetermined flow rate. Specific examples of fluid transport pipelines include water supply pipes , Drain pipes, cooling water pipes, cleaning water pipes, plant pipes, and the like.

通常、これらの流体輸送管路で送られる液体は、給水、排水、冷却水、洗浄水、その他の目的に対して使用されているのであり、近年、このような流体輸送管路の内部を流れる液体の持つ運動エネルギーに着目し、液体の持つ運動エネルギーで発電機を駆動する発電装置が提案されている。  Usually, the liquid sent through these fluid transport pipelines is used for water supply, drainage, cooling water, washing water, and other purposes, and in recent years it flows inside such fluid transport pipelines. Focusing on the kinetic energy of the liquid, a power generation device that drives the generator with the kinetic energy of the liquid has been proposed.

従来、流体輸送管路の液体を利用して発電する装置は、図5(a)に示すように、流体輸送管路21の内部に隔壁室22を外部に開放するよう設け、この隔壁室22で支持した回転軸23に流体輸送管路21内を流れる流体で回転する羽根車24を固定し、流体輸送管路21の外部に配置した発電機25と回転軸23をプーリとVベルト等の回転伝達機構26を介して連動し、羽根車24による回転軸23の回転を発電機25に伝達することにより発電するようになっている(例えば特許文献1参照)。  Conventionally, as shown in FIG. 5 (a), an apparatus for generating electricity using the liquid in the fluid transport pipe is provided inside the fluid transport pipe 21 so as to open the partition wall 22 to the outside. The impeller 24 rotated by the fluid flowing in the fluid transport pipe 21 is fixed to the rotary shaft 23 supported by the generator 25, and the generator 25 and the rotary shaft 23 arranged outside the fluid transport pipe 21 are connected to a pulley, a V belt, or the like. Power is generated by interlocking with the rotation transmission mechanism 26 and transmitting the rotation of the rotating shaft 23 by the impeller 24 to the generator 25 (see, for example, Patent Document 1).

また、これとは別に、図5(b)に示すように、流体輸送管路21の貫通軸27と、流体輸送管路21内に位置する回転軸28を直角に配置し、貫通軸27と回転軸28を直角歯車29で連動すると共に、回転軸28の先端に流体輸送管路21内を流れる流体で回転する羽根車30を固定し、流体輸送管路21の外部に配置した発電機31と貫通軸27を連動し、羽根車30による回転軸28の回転を直角歯車29と貫通軸27を介して発電機31に伝達することにより発電するようにしたものもある。  Separately from this, as shown in FIG. 5 (b), a through shaft 27 of the fluid transport pipe 21 and a rotation shaft 28 located in the fluid transport pipe 21 are arranged at right angles, A rotating shaft 28 is interlocked by a right angle gear 29, and an impeller 30 that rotates with a fluid flowing in the fluid transport pipe 21 is fixed to the tip of the rotary shaft 28, and a generator 31 disposed outside the fluid transport pipe 21. In some cases, the through shaft 27 is interlocked, and the rotation of the rotary shaft 28 by the impeller 30 is transmitted to the generator 31 through the right-angle gear 29 and the through shaft 27.

特許文献1参照See Patent Document 1

特開2004−225533  JP 2004-225533 A

ところで、上記したような発電装置は、羽根車で発生した回転エネルギーが発電機に対して間接的に伝達されるために、途中でエネルギーロスが発生して回転エネルギーが発電機に伝わるまでに大幅に減少され、その分発電効率が悪くなるという問題がある。  By the way, since the rotational energy generated in the impeller is indirectly transmitted to the generator in the power generator as described above, energy loss occurs in the middle and the rotational energy is significantly transmitted to the generator. Therefore, there is a problem that the power generation efficiency deteriorates accordingly.

そこで、この発明の課題は、流体輸送管路の内部に発電機を組み込んで羽根車を直接発電機の回転軸に取付け、羽根車で発生した回転エネルギーを直接発電機に伝えることにより、エネルギーロスの発生をなくし、発電効率を飛躍的に改善することができる発電装置を提供することにある。  Therefore, an object of the present invention is to reduce the energy loss by incorporating a generator inside the fluid transport pipe, attaching the impeller directly to the rotating shaft of the generator, and transmitting the rotational energy generated by the impeller directly to the generator. It is an object of the present invention to provide a power generator that can dramatically improve power generation efficiency.

上記のような課題を解決するため、請求項1の発明は、流体輸送管路の内部に、この流体輸送管路内を流れる流体によって羽根車が回転し、この羽根車の回転で発電する発電機を組み込み、該発電機で発電した電力を流体輸送管路の外部に取出すようにした構成を採用したものである。  In order to solve the above-described problems, the invention of claim 1 is directed to power generation in which an impeller is rotated by a fluid flowing in the fluid transport pipe and power is generated by the rotation of the impeller. A configuration is adopted in which a machine is incorporated and the electric power generated by the generator is taken out of the fluid transportation pipeline.

請求項2の発明は、請求項1の発明において、上記流体輸送管路の内部に複数台の発電機を、流体の流れ方向に沿って所定の間隔で配置した構成を採用したものである。  According to a second aspect of the present invention, in the first aspect of the invention, a configuration is adopted in which a plurality of generators are arranged at predetermined intervals along the fluid flow direction in the fluid transport pipe.

請求項3の発明は、請求項1または2の発明において、上記流体輸送管路の途中で発電機の羽根車と対応する部分の位置が、羽根車に対して流体の流速を速くするベンチュリー構造になっている構成を採用したものである。  According to a third aspect of the present invention, in the first or second aspect of the present invention, the position of the portion corresponding to the impeller of the generator in the middle of the fluid transport conduit increases the flow velocity of the fluid with respect to the impeller. The structure which becomes is adopted.

ここで、上記流体輸送管路としては、各種工場の施設において、給排水管やプラント配管のほか、これと同様、内部を液体が流れる流体輸送管路として、工事現場、水道設備、公共施設、大型店舗、ホテルやマンション等の給水管、排水管、冷却用水管、洗浄用水管、給湯用管等を挙げることができる。  Here, as the above-mentioned fluid transport pipeline, in addition to water supply and drainage pipes and plant piping in the facilities of various factories, as well as this, fluid transport pipelines through which liquid flows are used in construction sites, water supply facilities, public facilities, Water supply pipes, drain pipes, cooling water pipes, cleaning water pipes, hot water supply pipes, etc. for stores, hotels and condominiums can be mentioned.

この発明によると、流体輸送管路の内部に発電機を組み込み、この管路内を流れる液体によって回転が生じる羽根車で発電機を直接駆動することにより発電するようにしたので、流体輸送管路の内部を流れる液体の持つ運動エネルギーを羽根車の回転運動に変換して直接発電機を駆動することができ、エネルギーロスの発生をなくし、発電効率を飛躍的に改善することができる。  According to the present invention, since the generator is incorporated in the fluid transport pipe and the generator is directly driven by the impeller that is rotated by the liquid flowing in the pipe, the fluid transport pipe is used. The kinetic energy of the liquid flowing in the interior of the motor can be converted into the rotational motion of the impeller, and the generator can be directly driven, so that no energy loss is generated and the power generation efficiency can be dramatically improved.

また、流体輸送管路を流れる液体で発電機の羽根車を回転させるので、流体輸送管路本来の給、排水機能を全く阻害することがなく、流体輸送管路のあらゆる箇所から低コストでクリーンな電力を得ることができる。  In addition, since the generator impeller is rotated by the liquid flowing through the fluid transport pipeline, the original supply and drainage functions of the fluid transport pipeline are not obstructed at all, and it can be cleaned at low cost from any part of the fluid transport pipeline. Power can be obtained.

更に、流体輸送管路内に発電機を収納することにより、発電機に対して液体による冷却効果が得られ、発電機の耐久性を向上させることができる。  Further, by storing the generator in the fluid transport pipeline, a cooling effect by the liquid can be obtained for the generator, and the durability of the generator can be improved.

以下、この発明の実施の形態を添付図面に基づいて説明する。  Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1はこの発明の発電装置を用いた発電方法の基本構成を示し、液体が流れる流体輸送管路1の内部にロケット型の発電機2を組み込み、発電機2にはこの管路1内を流れる水流によって回転が付与される羽根車3を設け、この羽根車3の回転で発電機2を直接駆動することにより発電し、発電した電力を流体輸送管路1の外部に取出すようにしたものである。  FIG. 1 shows a basic configuration of a power generation method using a power generation apparatus of the present invention. A rocket-type generator 2 is incorporated in a fluid transport pipe 1 through which a liquid flows, and the generator 2 includes the inside of the pipe 1. An impeller 3 that is rotated by a flowing water flow is provided, and the generator 2 is directly driven by the rotation of the impeller 3 to generate electric power, and the generated electric power is taken out of the fluid transport pipeline 1. It is.

図2において、上記流体輸送管路1は、垂直となる本管1aに対して入側端と出側端が連通するバイパス管1bを垂直に設け、このバイパス管1bの内部途中に発電機2を組み込み、バイパス管1bの入側端と出側端及び本管1aのバイパス管1bが分岐する入側端の下流側の位置とにそれぞれ開閉弁4、5、6が設けられている。  In FIG. 2, the fluid transport pipe 1 is provided with a bypass pipe 1b in which the inlet end and the outlet end communicate with the main pipe 1a which is vertical, and the generator 2 is provided in the middle of the bypass pipe 1b. On-off valves 4, 5 and 6 are respectively provided at the downstream side of the inlet side end and the outlet side end of the bypass pipe 1 b and the inlet side end where the bypass pipe 1 b of the main pipe 1 a branches.

上記発電機2は、図3に示すように、バイパス管1bの内径よりも小径となる上下に長い円筒型ケーシング7を複数の取付け金具8でバイパス管1bと同軸心の配置に固定し、バイパス管1bとケーシング7の間に液体の流動空間を確保し、前記ケーシング7の内部に、発電に必要な固定コイルや回転コイル等を収納し、ケーシング7の上端を水流の抵抗を少なくする紡錘部9にしてロケット型にすると共に、ケーシング7の下端から突出する回転コイルの回転軸10にスクリュウのような羽根車3が直接取付けられている。  As shown in FIG. 3, the generator 2 has a cylindrical casing 7 that is vertically smaller than the inner diameter of the bypass pipe 1 b and is fixed in a coaxial arrangement with the bypass pipe 1 b by a plurality of mounting brackets 8. A spindle part that secures a liquid flow space between the tube 1b and the casing 7, houses a fixed coil, a rotating coil, etc. necessary for power generation inside the casing 7, and reduces the resistance of water flow at the upper end of the casing 7 The impeller 3 such as a screw is directly attached to the rotating shaft 10 of the rotating coil protruding from the lower end of the casing 7.

上記羽根車3が水流によって回転することで発電機2が駆動され、発電機2によって発生した電力は、バイパス管1bを水密に貫通するコード11でバイパス管1bの外部に取出すようになっている。  The generator 2 is driven by rotating the impeller 3 by a water flow, and the electric power generated by the generator 2 is taken out of the bypass pipe 1b by a cord 11 penetrating the bypass pipe 1b in a watertight manner. .

ちなみに、発電機2は、直径が80mm、長さが500mmの大きさを有し、ロケット型にすることによって、水流に対する抵抗の発生を少なくしている。  Incidentally, the generator 2 has a diameter of 80 mm and a length of 500 mm, and reduces the generation of resistance to water flow by using a rocket type.

上記バイパス管1bにおいて、発電機2の羽根車3と対応する部分の位置が、羽根車3に対して流体の流速を速くするため管径の一部を絞ったベンチュリー構造部12になっている。  In the bypass pipe 1 b, the position of the portion corresponding to the impeller 3 of the generator 2 is a venturi structure portion 12 in which a part of the pipe diameter is narrowed in order to increase the flow velocity of the fluid with respect to the impeller 3. .

このベンチュリー構造部12の内径には、図示省略したが水流に回転を与える旋回羽根を設けるようにしてもよい。  Although not shown, swirl vanes that rotate the water flow may be provided on the inner diameter of the venturi structure portion 12.

上記発電機2の発電による電力は、例えば整流器や制御装置13を介して蓄電装置14に蓄え、インバータ15で交流に変換して各種電気機器や照明、工事現場の機器等の電源として使用する。  The electric power generated by the generator 2 is stored in the power storage device 14 via, for example, a rectifier or the control device 13 and converted into alternating current by the inverter 15 to be used as a power source for various electric devices, lighting, construction site devices, and the like.

ここで、上記流体輸送管路1としては、各種工場の冷却水配管、工業用水配管、排水管、マンション、ホテル、大型ビル等の排水管、ポンプアップされた水を蓄える受水槽に接続された給水管等を挙げることができる。  Here, the fluid transport pipe 1 is connected to a cooling water pipe of various factories, an industrial water pipe, a drain pipe, a drain pipe of a condominium, a hotel, a large building, and a water receiving tank for storing pumped water. A water supply pipe etc. can be mentioned.

図2に示す例は、垂直配置となるバイパス管1bの内部に複数台の発電機2を、流体の流れ方向に沿って所定の間隔で直列の多段に配置し、液体の持つ流動エネルギーを有効に利用するようにしたものである。  In the example shown in FIG. 2, a plurality of generators 2 are arranged in a series of multistages at predetermined intervals along the fluid flow direction inside the bypass pipe 1b that is vertically arranged, and the fluid flow energy is effective. It is intended to be used.

また、図4に示す例は、液体がポンプで圧送される水平の本管1aに水平のバイパス管1bを設け、このバイパス管1b内に複数の発電機2を組み込んだものである。  In the example shown in FIG. 4, a horizontal bypass pipe 1 b is provided in a horizontal main pipe 1 a to which liquid is pumped by a pump, and a plurality of generators 2 are incorporated in the bypass pipe 1 b.

この発明の発電装置は、上記のような構成であり、開閉弁4と5を開いて本管1aの開閉弁6を閉じ、バイパス管1bに流体を流すと、水流によって羽根車3が回転し、この羽根車3で回転コイルが駆動されることにより発電機2に発電が生じ、発電機2の発電による電力は、例えば各種電気機器や照明、工事現場の機器等の電源として使用する。  The power generator of the present invention is configured as described above. When the on-off valves 4 and 5 are opened to close the on-off valve 6 of the main pipe 1a and a fluid is passed through the bypass pipe 1b, the impeller 3 is rotated by the water flow. When the impeller 3 drives the rotating coil, power is generated in the generator 2, and the electric power generated by the generator 2 is used as a power source for various electric devices, lighting, construction sites, and the like.

上記発電機2は、バイパス管1bを流れる流体に浸漬状態になるので、冷却効果が向上し、耐久性が飛躍的に伸びると共に、発電機2の回転軸10に羽根車3が直接固定されているので、回転の伝達効率が非常によく、羽根車3で発生した回転エネルギーを直接発電機2に伝えることにより、エネルギーロスの発生がなく、効率的な発電が行えると共に、発電機2を多段に配置することにより、発電能力の更に大幅な向上が図れることになる。  Since the generator 2 is immersed in the fluid flowing through the bypass pipe 1b, the cooling effect is improved, the durability is dramatically increased, and the impeller 3 is directly fixed to the rotating shaft 10 of the generator 2. Therefore, the transmission efficiency of rotation is very good. By directly transmitting the rotational energy generated in the impeller 3 to the generator 2, there is no energy loss and efficient power generation is possible. By arranging them in this way, the power generation capacity can be further greatly improved.

この発明の発電装置の基本構造を示す縦断正面図Longitudinal front view showing the basic structure of the power generator of the present invention この発明の発電装置を示す縦断正面図Longitudinal front view showing the power generator of the present invention 発電装置の要部を拡大した縦断正面図、(b)は同横断平面図Longitudinal front view enlarging the main part of the power generator, (b) is a cross-sectional plan view 流体輸送管路が水平となる発電装置の他の例を示す斜視図The perspective view which shows the other example of the electric power generating apparatus with which a fluid conveyance pipe line becomes horizontal (a)は流体輸送管路を利用した従来の発電装置を示す縦断正面図、(b)は同他の例を示す縦断正面図(A) is a longitudinal front view showing a conventional power generator using a fluid transportation pipeline, and (b) is a longitudinal front view showing another example.

符号の説明Explanation of symbols

1 流体輸送管路
2 発電機
3 羽根車
4、5、6 開閉弁
7 ケーシング
8 取付け金具
9 紡錘部
10 回転軸
11 コード
12 ベンチュリー構造部
DESCRIPTION OF SYMBOLS 1 Fluid transport line 2 Generator 3 Impeller 4, 5, 6 On-off valve 7 Casing 8 Mounting bracket 9 Spindle part 10 Rotating shaft 11 Cord 12 Venturi structure part

Claims (3)

流体輸送管路の内部に、この流体輸送管路内を流れる流体によって羽根車が回転し、この羽根車の回転で発電する発電機を組み込み、該発電機で発電した電力を流体輸送管路の外部に取出すようにしたことを特徴とする発電装置。  An impeller is rotated by the fluid flowing in the fluid transport conduit inside the fluid transport pipeline, and a generator that generates electric power by the rotation of the impeller is incorporated, and the electric power generated by the generator is supplied to the fluid transport conduit. A power generator characterized by being taken out to the outside. 上記流体輸送管路の内部に複数台の発電機を、流体の流れ方向に沿って所定の間隔で配置したことを特徴とする請求項1に記載の発電装置。  The power generator according to claim 1, wherein a plurality of generators are arranged in the fluid transport pipe line at a predetermined interval along a fluid flow direction. 上記流体輸送管路の途中で発電機の羽根車と対応する部分の位置が、羽根車に対して流体の流速を速くするベンチュリー構造になっていることを特徴とする請求項1又は2に記載の発電装置。  The position of the part corresponding to the impeller of a generator in the middle of the said fluid conveyance pipe line is a venturi structure which makes the flow velocity of the fluid quick with respect to an impeller. Power generator.
JP2005160417A 2005-04-27 2005-04-27 Power generation device Pending JP2006307821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160417A JP2006307821A (en) 2005-04-27 2005-04-27 Power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160417A JP2006307821A (en) 2005-04-27 2005-04-27 Power generation device

Publications (1)

Publication Number Publication Date
JP2006307821A true JP2006307821A (en) 2006-11-09

Family

ID=37474981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160417A Pending JP2006307821A (en) 2005-04-27 2005-04-27 Power generation device

Country Status (1)

Country Link
JP (1) JP2006307821A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2451632A (en) * 2007-08-03 2009-02-11 John Vipond Turbine mounted in water supply pipe
WO2010122186A1 (en) * 2009-04-21 2010-10-28 Astuy Diaz De Mendibil Jose Ignacio Electricity generator that utilizes hydraulic jumps
JP2012132335A (en) * 2010-12-20 2012-07-12 Bellsion:Kk Fluid rotary wheel
KR101284275B1 (en) 2010-08-06 2013-07-08 주식회사 금성이앤씨 Tube turbine for small hydropower generation
JP2013189888A (en) * 2012-03-13 2013-09-26 Sekisui Chem Co Ltd Small hydraulic power generating apparatus
JP6130965B1 (en) * 2016-12-20 2017-05-17 株式会社Wge Fluid machine, power generator and pressure booster
KR101992780B1 (en) * 2019-04-02 2019-09-30 정연태 Small hydropower generating apparatus installed in drain pipe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2451632A (en) * 2007-08-03 2009-02-11 John Vipond Turbine mounted in water supply pipe
WO2010122186A1 (en) * 2009-04-21 2010-10-28 Astuy Diaz De Mendibil Jose Ignacio Electricity generator that utilizes hydraulic jumps
KR101284275B1 (en) 2010-08-06 2013-07-08 주식회사 금성이앤씨 Tube turbine for small hydropower generation
JP2012132335A (en) * 2010-12-20 2012-07-12 Bellsion:Kk Fluid rotary wheel
JP2013189888A (en) * 2012-03-13 2013-09-26 Sekisui Chem Co Ltd Small hydraulic power generating apparatus
JP6130965B1 (en) * 2016-12-20 2017-05-17 株式会社Wge Fluid machine, power generator and pressure booster
WO2018117118A1 (en) * 2016-12-20 2018-06-28 株式会社Wge Fluid machine
KR101992780B1 (en) * 2019-04-02 2019-09-30 정연태 Small hydropower generating apparatus installed in drain pipe

Similar Documents

Publication Publication Date Title
JP2006307821A (en) Power generation device
JP4444279B2 (en) production equipment
KR101296759B1 (en) Generation device using velocity of flow
US20110204627A1 (en) Electrical generating device with potential energy of water or fluid
US20220055080A1 (en) Rechargeable high power washer and jetter
US11174833B2 (en) Pipe-flow driven electric power generator device
WO2013000101A1 (en) Fluid pipeline structure having power-generating function
KR101505558B1 (en) Power generator using flexible tube
KR101937123B1 (en) Apparatus for cleaning of pipe
JP2006144587A (en) Power generating device
JP2006214363A (en) Branch water suction/feed member, and water suction/feed construction method
JP2010226803A (en) Hydraulic power generating apparatus
KR101576867B1 (en) Hydraulic generating apparatus
JP6028244B2 (en) Water turbine device and hydroelectric power generation device
KR101515470B1 (en) Fluid Transferring Apparatus for Inverted Siphon
TW201211384A (en) Fluid pipeline structure with multiple power generation functions
US829707A (en) Machine for treating air.
JP2006194121A (en) Conversion device for converting water fall energy to power and power generating device using the same
JP4873112B2 (en) Power generator
CN117803069B (en) Sewer pipe cleaning device
JP2009047007A (en) Power generation system
JP5148347B2 (en) Liquid drive pump
KR20030091629A (en) Generating System utilize flow materiality in Pipe
JP2021014739A (en) Rotary hydraulic power generating system
US20130049370A1 (en) In-Line Water Generator