JP2006307112A - Fluorine-containing polyimide resin, method for producing the same, primer, and resin coating method - Google Patents

Fluorine-containing polyimide resin, method for producing the same, primer, and resin coating method Download PDF

Info

Publication number
JP2006307112A
JP2006307112A JP2005134400A JP2005134400A JP2006307112A JP 2006307112 A JP2006307112 A JP 2006307112A JP 2005134400 A JP2005134400 A JP 2005134400A JP 2005134400 A JP2005134400 A JP 2005134400A JP 2006307112 A JP2006307112 A JP 2006307112A
Authority
JP
Japan
Prior art keywords
fluorine
polyimide resin
polyimide
general formula
containing polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005134400A
Other languages
Japanese (ja)
Other versions
JP4719856B2 (en
Inventor
Yoshiyuki Oishi
大石好行
Hitoshi Sato
佐藤仁祉
Shinsuke Kitaoka
北岡伸介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Nippon Fusso Co Ltd
Original Assignee
Iwate University
Nippon Fusso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University, Nippon Fusso Co Ltd filed Critical Iwate University
Priority to JP2005134400A priority Critical patent/JP4719856B2/en
Publication of JP2006307112A publication Critical patent/JP2006307112A/en
Application granted granted Critical
Publication of JP4719856B2 publication Critical patent/JP4719856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorine-containing polyimide resin having a combination of surface characteristics, mechanical properties, heat resistance and adhesivity, to provide a method for producing the polyimide resin, and to provide a primer and a resin coating method respectively. <P>SOLUTION: The fluorine-containing polyimide resin is represented by the general formula (1) (wherein, R is a perfluoroalkenyl or perfluoroalkyl group; Ar is a bivalent aromatic residue; Ar' is a tetravalent aromatic residue; and n is an integer of 10-200). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は含フッ素ポリイミド樹脂、その製造方法、プライマーおよび樹脂被覆方法に関し、とくに表面特性、機械特性、耐熱性、接着性に優れた含フッ素ポリイミド樹脂、その製造方法、プライマーおよび樹脂被覆方法に関するものである。   TECHNICAL FIELD The present invention relates to a fluorine-containing polyimide resin, a production method thereof, a primer, and a resin coating method, and particularly relates to a fluorine-containing polyimide resin excellent in surface characteristics, mechanical properties, heat resistance, and adhesiveness, a production method thereof, a primer and a resin coating method. It is.

ポリイミド樹脂は高い耐熱性や優れた機械強度を有することで知られているが、加工性など改良すべき点がいくつかある。また、既存のフッ素樹脂は耐熱性と高い撥水性など表面特性に優れているが、溶融温度が高いためやはり成形加工性などに問題がある。これらの問題を改良するために、芳香族ジアミンと、ペルフルオロアルケニル基またはペルフルオロアルキル基を含む化合物とを反応させて、側鎖にフッ素化合物を導入した一連のポリマーの提案がなされた(特許文献1〜3参照)。
特開平8−239470号公報 特許第3538689号公報 特許第3025952号公報
Polyimide resins are known to have high heat resistance and excellent mechanical strength, but there are several points to be improved such as workability. Further, existing fluororesins are excellent in surface properties such as heat resistance and high water repellency, but also have problems in molding processability due to high melting temperature. In order to improve these problems, a series of polymers in which an aromatic diamine and a compound containing a perfluoroalkenyl group or a perfluoroalkyl group are reacted to introduce a fluorine compound into a side chain has been proposed (Patent Document 1). To 3).
JP-A-8-239470 Japanese Patent No. 3538891 Japanese Patent No. 3025952

しかしながら、ポリイミド樹脂およびフッ素樹脂の特性を生かした上で、優れた接着性、機械特性、表面特性および耐熱性を兼ね備えた含フッ素ポリイミド樹脂は未だ提案されていない。本発明は、表面特性、機械特性、耐熱性および接着性を兼ね備えた含フッ素ポリイミド樹脂、その製造方法、プライマーおよび樹脂被覆方法を提供することを目的とする。   However, a fluorine-containing polyimide resin having excellent adhesiveness, mechanical properties, surface properties, and heat resistance, taking advantage of the properties of the polyimide resin and the fluororesin, has not yet been proposed. An object of this invention is to provide the fluorine-containing polyimide resin which has surface characteristics, mechanical characteristics, heat resistance, and adhesiveness, its manufacturing method, a primer, and the resin coating method.

本発明の含フッ素ポリイミド樹脂は、一般式(1)   The fluorine-containing polyimide resin of the present invention has the general formula (1)

Figure 2006307112
Figure 2006307112

(式中、Rはペルフルオロアルケニル基又はペルフルオロアルキル基を示し、Arは二価の芳香族残基を示し、Ar’は四価の芳香族残基を示し、nは10〜200の整数を示す。)で表される。上記の化学構造により、本発明の含フッ素ポリイミド樹脂は、表面特性、機械特性、耐熱性および接着性を兼ね備えることができる。 (In the formula, R represents a perfluoroalkenyl group or a perfluoroalkyl group, Ar represents a divalent aromatic residue, Ar ′ represents a tetravalent aromatic residue, and n represents an integer of 10 to 200. .) With the above chemical structure, the fluorine-containing polyimide resin of the present invention can have surface characteristics, mechanical characteristics, heat resistance and adhesiveness.

本発明に係る含フッ素ポリイミド樹脂の製造方法は、一般式(2)の、HN−Ar−NH(2)(Arは前記と同じ。)で表される芳香族ジアミンの一種又は二種以上を一種又は二種以上のシリル化剤でシリル化したものと、一般式(3) Process for producing a fluorinated polyimide resin according to the present invention, the general formula (2), H 2 N- Ar-NH 2 (2) (Ar is the same. Above) one aromatic diamine represented by or two Silylation of one or more species with one or more silylating agents, and general formula (3)

Figure 2006307112
Figure 2006307112

(式中、Xはハロゲン原子を示し、Rは前記に同じ。)で表されるトリアジン二ハロゲン化物の一種または二種以上と、一般式(4) (Wherein X represents a halogen atom and R is the same as above), one or more triazine dihalides represented by the general formula (4)

Figure 2006307112
Figure 2006307112

(式中、Ar’は前記と同じ。)で表される芳香族テトラカルボン酸二無水物の一種または二種以上とを反応させて、一般式(1) (Wherein Ar 'is the same as defined above) is reacted with one or more of the aromatic tetracarboxylic dianhydrides represented by the general formula (1)

Figure 2006307112
Figure 2006307112

(式中、R,Ar,Ar’,nは前記に同じ。)で表される含フッ素ポリイミド樹脂を得る。 (Wherein R, Ar, Ar ′, n are the same as above), a fluorine-containing polyimide resin represented by the following formula is obtained.

また、本発明の含フッ素ポリイミド樹脂は、一般式(2)の、HN−Ar−NH(2)で表される芳香族ジアミンの一種または二種以上を一種または二種以上のシリル化剤でシリル化したものと、一般式(3) In addition, the fluorine-containing polyimide resin of the present invention is one or two or more kinds of silyl of the aromatic diamine represented by the general formula (2) represented by H 2 N—Ar—NH 2 (2). Silylated with an agent, and general formula (3)

Figure 2006307112
Figure 2006307112

(式中、X,Rは前記に同じ。)で表されるトリアジン二ハロゲン化物の一種または二種以上と、一般式(4) (Wherein X and R are the same as defined above) and one or more triazine dihalides represented by the general formula (4)

Figure 2006307112
Figure 2006307112

(式中、Ar’は前記と同じ。)で表される芳香族テトラカルボン酸二無水物の一種または二種以上とを反応させて得られる含フッ素ポリイミド樹脂である。 (Wherein Ar 'is the same as above), and is a fluorine-containing polyimide resin obtained by reacting with one or more of aromatic tetracarboxylic dianhydrides.

本発明のプライマーは、上記の含フッ素ポリイミド樹脂、または上記製造方法で製造された含フッ素ポリイミド樹脂の、一種または二種以上(上記本発明の含フッ素ポリイミド樹脂であれば、本発明の製造方法で製造された含フッ素ポリイミド樹脂の一種と、別の本発明の含フッ素ポリイミド樹脂の一種とを混合したものであってもよく、すなわち本発明の別個の請求項に係る含フッ素ポリイミド樹脂同士を混合してもよい)と、フッ素樹脂とを含むプライマーである。これにより、高度の耐薬品性と、優れた耐熱性とを兼ね備えたプライマーを得ることができる。この結果、たとえばこれまで対応できなかった環境に耐え得るフッ素樹脂被覆を金属表面に形成することが可能になる。   The primer of the present invention is one or more of the above-mentioned fluorine-containing polyimide resins or fluorine-containing polyimide resins produced by the above production method (if the above-mentioned fluorine-containing polyimide resin of the present invention is used, the production method of the present invention). It may be a mixture of one type of fluorine-containing polyimide resin produced in the above and another type of fluorine-containing polyimide resin of the present invention, that is, the fluorine-containing polyimide resins according to separate claims of the present invention. And a primer containing a fluororesin. Thereby, a primer having both high chemical resistance and excellent heat resistance can be obtained. As a result, for example, it becomes possible to form a fluororesin coating on the metal surface that can withstand an environment that has not been able to cope with so far.

本発明の樹脂被覆方法は、上記の含フッ素ポリイミド樹脂、または上記製造方法で製造された含フッ素ポリイミド樹脂の、一種または二種以上(混合する場合は前記と同様である)を、バインダーに用いて、被コート基材にコート樹脂を被覆する。これにより、たとえば金属(被コート基材)にフッ素樹脂コート(コート樹脂)する場合、上記含フッ素ポリイミド樹脂をコート樹脂のプライマーまたはバインダー(下地処理層)として用いることにより、耐熱性、表面特性、機械特性および接着耐久性を兼ね備えたフッ素樹脂コートを形成することができる。   In the resin coating method of the present invention, one or two or more of the above-mentioned fluorine-containing polyimide resins or fluorine-containing polyimide resins produced by the above production method (same as above when mixed) are used as a binder. Then, a coated resin is coated on the substrate to be coated. Thus, for example, when a fluorine resin coating (coating resin) is applied to a metal (coating substrate), by using the fluorine-containing polyimide resin as a primer or binder (undercoat layer) of the coating resin, heat resistance, surface characteristics, A fluororesin coat having both mechanical properties and adhesive durability can be formed.

本発明の含フッ素ポリイミド樹脂は、表面特性、機械特性、耐熱性および接着耐久性を兼ね備えることができ、フッ素樹脂と混合して上記諸特性に優れたプライマーを得ることができる。   The fluorine-containing polyimide resin of the present invention can have surface characteristics, mechanical characteristics, heat resistance and adhesion durability, and can be mixed with a fluororesin to obtain a primer excellent in the above-mentioned various characteristics.

次に本発明の実施の形態について説明する。本発明の含フッ素ポリイミド樹脂は、上記した一般式(1)で表される樹脂である。(1)式中、Rはペルフルオロアルケニル基またはペルフルオロアルキル基を示し、Arは二価の芳香族残基を示し、Ar’は四価の芳香族残基を示し、nは10〜200の整数を示す。上記一般式(1)において、nが10より小さいとフィルムなどに成形した場合に機械的特性や耐熱性等の特性が十分ではなく、nが200を超えると有機溶媒等への溶解性および成形性が不十分となる。   Next, an embodiment of the present invention will be described. The fluorine-containing polyimide resin of the present invention is a resin represented by the above general formula (1). (1) In the formula, R represents a perfluoroalkenyl group or a perfluoroalkyl group, Ar represents a divalent aromatic residue, Ar ′ represents a tetravalent aromatic residue, and n represents an integer of 10 to 200. Indicates. In the above general formula (1), when n is smaller than 10, the properties such as mechanical properties and heat resistance are not sufficient when molded into a film or the like, and when n exceeds 200, solubility in organic solvents and the like are molded. The property becomes insufficient.

上記本実施の形態における含フッ素ポリイミド樹脂は、一般式(2)の、HN−Ar−NH(2)(Arは前記と同じ。)で表される芳香族ジアミンの一種又は二種以上を一種又は二種以上のシリル化剤でシリル化したものと、上記一般式(3)で表されるトリアジン二ハロゲン化物の一種または二種以上と、上記一般式(4)で表される芳香族テトラカルボン酸二無水物の一種または二種以上とを反応させて得られる。(3)式中、X、Rは前記に同じである。また、(4)式中、Ar’は前記と同じものを示す。 The fluorine-containing polyimide resin in the present embodiment is one or two aromatic diamines represented by the general formula (2) represented by H 2 N—Ar—NH 2 (2) (Ar is the same as described above). The above is silylated with one or more silylating agents, one or more triazine dihalides represented by the above general formula (3), and the above general formula (4). Obtained by reacting one or more aromatic tetracarboxylic dianhydrides. (3) In the formula, X and R are the same as described above. In the formula (4), Ar ′ is the same as described above.

一般式(1)および(2)においてArで示される二価の芳香族残基には、下記表1に示される各種の基が含まれる。   In the general formulas (1) and (2), the divalent aromatic residue represented by Ar includes various groups shown in Table 1 below.

Figure 2006307112
Figure 2006307112

上記一般式(2)で表される芳香族ジアミンとしては、具体的にはメタフェニレンジアミン、パラフェニレンジアミン、3,3’−ジアミノビフェニル、4,4’−ジアミノビフェニル、3,3’−メチレンジアニリン、4,4’−メチレンジアニリン、4,4’−イソプロピリデンジアニリン、3,3’−オキシジアニリン、4,4’−オキシジアニリン、3,4’−オキシジアニリン、3,3’−チオジアニリン、4,4’−チオジアニリン、3,3’−カルボニルジアニリン、4,4’−カルボニルジアニリン、3,3’−スルホニルジアニリン、4,4’−スルホニルジアニリン、1,4−ナフタレンジアミン、1,5−ナフタレンジアミン、2,6−ナフタレンジアミン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、2,2−ビス(4−アミノフェノキシフェニル)ヘキサフルオロプロパン、ビス(4−アミノフェノキシフェニル)スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン等を例示することができる。本発明の実施の形態では、これら芳香族ジアミンは1種または2種以上混合して用いられる。   Specific examples of the aromatic diamine represented by the general formula (2) include metaphenylene diamine, paraphenylene diamine, 3,3′-diaminobiphenyl, 4,4′-diaminobiphenyl, and 3,3′-methylene. Dianiline, 4,4′-methylenedianiline, 4,4′-isopropylidenedianiline, 3,3′-oxydianiline, 4,4′-oxydianiline, 3,4′-oxydianiline, 3 , 3′-thiodianiline, 4,4′-thiodianiline, 3,3′-carbonyldianiline, 4,4′-carbonyldianiline, 3,3′-sulfonyldianiline, 4,4′-sulfonyldianiline, 1 , 4-Naphthalenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, 2,2-bis (4-aminophenoxyphenyl) propane 2,2-bis (4-aminophenoxyphenyl) hexafluoropropane, bis (4-aminophenoxyphenyl) sulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 1,3-bis (4-aminophenoxy) ), Benzene, 2,2-bis (4-aminophenyl) hexafluoropropane, and the like. In the embodiment of the present invention, these aromatic diamines are used alone or in combination.

上記の芳香族ジアミンは、溶媒に溶解され、シリル化剤を添加されシリル化される。芳香族ジアミンの溶媒には、たとえばN−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリドン、テトラメチレンスルホン等の非プロトン性極性溶媒、ベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼン、ベンゾニトリル等の芳香族系溶媒、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、ジクロロベンゼン等のハロゲン系溶媒、テトラヒドロフラン(THF)、ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒を例示することができる。   The above aromatic diamine is dissolved in a solvent and silylated by adding a silylating agent. Examples of the aromatic diamine solvent include aprotic polar solvents such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, and tetramethylene sulfone, benzene, Aromatic solvents such as anisole, diphenyl ether, nitrobenzene, benzonitrile, halogen solvents such as chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, dichlorobenzene, tetrahydrofuran (THF), dioxane And ether solvents such as acetone and ketone solvents such as acetone and methyl ethyl ketone.

上記溶媒に溶解した芳香族ジアミンとシリル化剤との反応は、(反応式)HN-Ar-NH+2X-Si(CH→(CHSiNH-Ar-NHSi(CH+2HX(ここで、Arは前記と同じであり、Xはハロゲン原子を示す。)、または(反応式)HN-Ar-NH+(CHSi-Y-Si(CH→(CHSiNH-Ar-NHSi(CH+YH(ここで、Arは前記と同じであり、Yは、NH,CHCON,CFCONなどを示す。)に基づいて進行する。シリル化剤としては、表2に示すように、クロロシラン、シリルアミン、シリルアミドなどの各タイプがあり、これらを用いることができる。 The reaction between the aromatic diamine dissolved in the solvent and the silylating agent is represented by (reaction formula) H 2 N—Ar—NH 2 + 2X—Si (CH 3 ) 3 → (CH 3 ) 3 SiNH—Ar—NHSi (CH 3 ) 3 + 2HX (wherein Ar is the same as above, X represents a halogen atom), or (reaction formula) H 2 N—Ar—NH 2 + (CH 3 ) 3 Si—Y—Si ( CH 3 ) 3 → (CH 3 ) 3 SiNH—Ar—NHSi (CH 3 ) 3 + YH 2 (where Ar is the same as above, Y represents NH, CH 3 CON, CF 3 CON, etc.). ) Based on. As shown in Table 2, there are various types of silylating agents such as chlorosilane, silylamine, and silylamide, and these can be used.

Figure 2006307112
Figure 2006307112

とくにシリルアミドタイプは好ましく、たとえばN,O−ビス(トリメチルシリル)アセトアミドやN,O−ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)等を用いることができる。系中にアセトアミドやトリフルオロアセトアミドが副生するが不活性であるため容易に除去できる。   The silylamide type is particularly preferable, and for example, N, O-bis (trimethylsilyl) acetamide, N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) or the like can be used. Although acetamide and trifluoroacetamide are by-produced in the system, they are easily removed because they are inactive.

下記一般式(5)で表される、生成したシリル化芳香族ジアミン化合物は、溶解性に優れるため広範囲の重合系を選択することができる。一般式(5)中、TMSはSi(CHを示し、Arは上記芳香族ジアミン由来の二価の芳香族残基である。 Since the produced silylated aromatic diamine compound represented by the following general formula (5) is excellent in solubility, a wide range of polymerization systems can be selected. In the general formula (5), TMS represents Si (CH 3 ) 3 , and Ar is a divalent aromatic residue derived from the aromatic diamine.

Figure 2006307112
Figure 2006307112

また、シリル化芳香族ジアミン化合物を用いる含フッ素ポリイミド樹脂の製造方法では、脱離成分は中性で揮発性のハロシランであるため、酸受容剤を必要とせず、また脱離成分が残存しないため含フッ素ポリイミド樹脂の純度が高くかつ精製が容易である。   In addition, in the method for producing a fluorine-containing polyimide resin using a silylated aromatic diamine compound, since the elimination component is a neutral and volatile halosilane, no acid acceptor is required and no elimination component remains. The fluorine-containing polyimide resin has high purity and is easy to purify.

上記シリル化された芳香族ジアミン化合物としては、たとえば芳香族ジアミンに2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(HFBAPP)を用い、そしてシリル化剤にN,O−ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)を用いた場合、N−シリル化2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(シリル化芳香族ジアミン化合物S1)が得られる。また、たとえば、芳香族ジアミンに4,4’−オキシジアニリン(ODA)を用い、そしてシリル化剤にN,O−ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)を用いた場合、N−シリル化4,4’−オキシジアニリン(シリル化芳香族ジアミン化合物S2)が得られる。いうまでもなくシリル化された芳香族ジアミン化合物は、上記の二種のものに限定されず、上記一般式(5)で表されるものが該当する。   As the silylated aromatic diamine compound, for example, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (HFBAPP) is used as the aromatic diamine, and N, O is used as the silylating agent. When -bis (trimethylsilyl) trifluoroacetamide (BSTFA) is used, N-silylated 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (silylated aromatic diamine compound S1) is obtained. It is done. In addition, for example, when 4,4′-oxydianiline (ODA) is used as the aromatic diamine and N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) is used as the silylating agent, N-silylation 4,4'-oxydianiline (silylated aromatic diamine compound S2) is obtained. Needless to say, the silylated aromatic diamine compound is not limited to the above-mentioned two types, and those represented by the general formula (5) are applicable.

一般式(3)で表されるトリアジン二ハロゲン化物におけるRは、好ましくはペルフルオロヘキセニル基、ペルフルオロヘプテニル基、ペルフルオロオクテニル基、ペルフルオロノネニル基等の炭素数5〜12のペルフルオロアルケニル基を挙げることができる。また、トリフルオロメチル基、ペルフルオロエチル基、ペルフルオロプロピル基、ペルフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、ペルフルオロデシル基など炭素数1〜18の分岐を有することもあるペルフルオロアルキル基であってもよい。また、一般式(3)においてXで表示されるハロゲン原子には、フッ素、塩素、臭素、ヨウ素原子が含まれる。   R in the triazine dihalide represented by the general formula (3) is preferably a perfluoroalkenyl group having 5 to 12 carbon atoms such as a perfluorohexenyl group, a perfluoroheptenyl group, a perfluorooctenyl group, or a perfluorononenyl group. be able to. In addition, a branch having 1 to 18 carbon atoms such as trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, etc. It may be a perfluoroalkyl group which may have Further, the halogen atom represented by X in the general formula (3) includes fluorine, chlorine, bromine and iodine atoms.

一般式(3)で表されるトリアジン二ハロゲン化物のハロゲンが塩素である場合には、塩化シアヌルを用いて、ペルフルオロアルケニルオキシアニリン(またはペルフルオロアルキルオキシアニリン)と反応させるのがよい。塩化シアヌルには、2,4,6位の炭素に塩素が結合しているが、反応における各位置の塩素の脱離は、温度範囲が異なるので脱離を制御できる。4位の炭素の塩素を脱離させるには0〜5℃の反応温度で行えばよい。このとき塩化シアヌルは有機溶媒に溶解した状態とする。有機溶媒には、たとえば、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリドン、テトラメチレンスルホン等の非プロトン性極性溶媒、ベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼン、ベンゾニトリル等の芳香族系溶媒、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、ジクロロベンゼン等のハロゲン系溶媒、テトラヒドロフラン(THF)、ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒を用いることができる。   When the halogen of the triazine dihalide represented by the general formula (3) is chlorine, it may be reacted with perfluoroalkenyloxyaniline (or perfluoroalkyloxyaniline) using cyanuric chloride. In cyanuric chloride, chlorine is bonded to carbons at the 2, 4 and 6 positions, but the elimination of chlorine at each position in the reaction can be controlled because the temperature range is different. What is necessary is just to perform at the reaction temperature of 0-5 degreeC in order to remove | eliminate the chlorine of 4th-position carbon. At this time, cyanuric chloride is dissolved in an organic solvent. Examples of organic solvents include aprotic polar solvents such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, tetramethylene sulfone, benzene, anisole, Aromatic solvents such as diphenyl ether, nitrobenzene, benzonitrile, halogen solvents such as chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, dichlorobenzene, tetrahydrofuran (THF), dioxane, etc. Ether solvents, ketone solvents such as acetone and methyl ethyl ketone can be used.

また、上記の有機溶媒に溶解した状態の塩化シアヌルに加えるペルフルオロアルケニルオキシアニリン(またはペルフルオロアルキルオキシアニリン)も、有機溶媒に溶解した状態とする。ペルフルオロアルケニルオキシアニリン(またはペルフルオロアルキルオキシアニリン)の有機溶媒には、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリドン、テトラメチレンスルホン等の非プロトン性極性溶媒、ベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼン、ベンゾニトリル等の芳香族系溶媒、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、ジクロロベンゼン等のハロゲン系溶媒、テトラヒドロフラン(THF)、ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒を用いることができる。   In addition, perfluoroalkenyloxyaniline (or perfluoroalkyloxyaniline) added to cyanuric chloride in a state dissolved in the organic solvent is also in a state dissolved in the organic solvent. Examples of the organic solvent for perfluoroalkenyloxyaniline (or perfluoroalkyloxyaniline) include N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, and tetramethylene sulfone. Aprotic polar solvents, aromatic solvents such as benzene, anisole, diphenyl ether, nitrobenzene, benzonitrile, halogens such as chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, dichlorobenzene Solvents, ether solvents such as tetrahydrofuran (THF) and dioxane, and ketone solvents such as acetone and methyl ethyl ketone can be used.

上記塩化シアヌルとペルフルオロアルケニルオキシアニリン(またはペルフルオロアルキルオキシアニリン)との反応の際、炭酸ナトリウム水溶液を加えながら、0〜5℃の範囲を大きく超えないように制御する。このあと、たとえば、無水硫酸ナトリウムなどにより脱水する。このようにして、6−(ペルフルオロアルケニルオキシアニリノ)−1,3,5−トリアジン−2,4−ジクロリド(または6−(ペルフルオロアルキルオキシアニリノ)−1,3,5−トリアジン−2,4−ジクロリド)を得ることができる。表3に、塩化シアヌルとp-ペルフルオロノネニルオキシアニリンとを反応させて、モノマーとなる、6-(4-ペルフルオロノネニルオキシアニリノ)-1,3,5-トリアジン-2,4-ジクロリドを得る反応を示す。   In the reaction of the cyanuric chloride and perfluoroalkenyloxyaniline (or perfluoroalkyloxyaniline), the temperature is controlled so as not to greatly exceed the range of 0 to 5 ° C. while adding an aqueous sodium carbonate solution. Thereafter, dehydration is performed using, for example, anhydrous sodium sulfate. In this way 6- (perfluoroalkenyloxyanilino) -1,3,5-triazine-2,4-dichloride (or 6- (perfluoroalkyloxyanilino) -1,3,5-triazine-2, 4-dichloride) can be obtained. In Table 3, 6- (4-perfluorononenyloxyanilino) -1,3,5-triazine-2,4-dichloride is obtained by reacting cyanuric chloride with p-perfluorononenyloxyaniline. The reaction to obtain

Figure 2006307112
Figure 2006307112

上記含フッ素トリアジン二ハロゲン化物が、本実施の形態の含フッ素ポリイミド樹脂のモノマーとなる。このモノマーは、このあと説明する芳香族テトラカルボン酸二無水物とともに、上記シリル化された芳香族ジアミンに加えられ、共重合反応においてポリマーに組み込まれる。   The fluorine-containing triazine dihalide serves as a monomer for the fluorine-containing polyimide resin of the present embodiment. This monomer is added to the silylated aromatic diamine together with the aromatic tetracarboxylic dianhydride described below and incorporated into the polymer in a copolymerization reaction.

一般式(4)で表される芳香族テトラカルボン酸二無水物には、たとえば、表4にあげるものが例示される。   Examples of the aromatic tetracarboxylic dianhydride represented by the general formula (4) include those listed in Table 4.

具体的には、無水ピロメリット酸(PMDA)、ビフェニル−3,4,3’,4’−テトラカルボン酸二無水物(BPDA)、ベンゾフェノン−3,4,3’,4’−テトラカルボン酸二無水物(BTDA)、オキシジフタル酸二無水物(ODPA)、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、ジフェニルスルホン−3,4,3’,4’−テトラカルボン酸二無水物(DSDA)等の一種または二種以上を用いることができる。上記シリル化された芳香族ジアミン化合物に、上記芳香族テトラカルボン酸二無水物と、含フッ素トリアジン二ハロゲン化物(モノマー成分)とを加え、共重合に付することにより、上記一般式(1)で表される含フッ素ポリイミド樹脂を得ることができる。   Specifically, pyromellitic anhydride (PMDA), biphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride (BPDA), benzophenone-3,4,3 ′, 4′-tetracarboxylic acid Dianhydride (BTDA), oxydiphthalic dianhydride (ODPA), 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic dianhydride (6FDA), diphenylsulfone-3,4,3 ′, 1 type, or 2 or more types, such as 4'-tetracarboxylic dianhydride (DSDA), can be used. By adding the aromatic tetracarboxylic dianhydride and the fluorine-containing triazine dihalide (monomer component) to the silylated aromatic diamine compound and subjecting it to copolymerization, the above general formula (1) The fluorine-containing polyimide resin represented by these can be obtained.

上記の製造条件において、一般式(1)で表される含フッ素ポリイミド樹脂の分子量は、一般式(2)で表される芳香族ジアミンと一般式(3)で表されるトリアジン二ハロゲン化物(モノマー成分)と一般式(4)で表される芳香族テトラカルボン酸二無水物の仕込量によって制限され、芳香族テトラカルボン酸二無水物とトリアジン二ハロゲン化物のモル数の総和と芳香族ジアミンのモル数が等しい場合に、高分子量のポリイミド樹脂が得られる。また、この製造方法に使用するシリル化剤の量は、シリル化芳香族ジアミン化合物を生成させるために、芳香族ジアミンに対して2倍モル以上であるが、好ましくは2〜4倍モル用いればよい。   In the above production conditions, the molecular weight of the fluorine-containing polyimide resin represented by the general formula (1) is the aromatic diamine represented by the general formula (2) and the triazine dihalide represented by the general formula (3) ( Monomer component) and aromatic tetracarboxylic dianhydride represented by the general formula (4), the total number of moles of aromatic tetracarboxylic dianhydride and triazine dihalide and aromatic diamine When the number of moles is equal, a high molecular weight polyimide resin is obtained. In addition, the amount of the silylating agent used in this production method is 2 times or more mol with respect to the aromatic diamine in order to form a silylated aromatic diamine compound, but preferably 2 to 4 times mol. Good.

Figure 2006307112
Figure 2006307112

溶媒量は特に限定されないが、得られるポリイミド樹脂の重量%が10重量%〜40重量%になることが好ましい。溶媒量が少ない場合は、ポリイミド樹脂が沈殿し高分子量体を得ることができなくなるし、溶媒量が多すぎる場合も高分子量体が得られないからである。   Although the amount of the solvent is not particularly limited, it is preferable that the obtained polyimide resin has a weight% of 10 wt% to 40 wt%. This is because when the amount of the solvent is small, the polyimide resin is precipitated and a high molecular weight cannot be obtained, and when the amount of the solvent is too large, the high molecular weight cannot be obtained.

重合温度は、室温から300℃の範囲であるが、好ましくは100℃〜180℃がよい。また、重合時間は数分間から数日間であるが、好ましくは3時間〜1日がよい。   The polymerization temperature ranges from room temperature to 300 ° C, preferably 100 ° C to 180 ° C. The polymerization time is from several minutes to several days, preferably 3 hours to 1 day.

窒素ガス導入管、冷却管、ディーンスタークトラップを備えた100mLの三口フラスコに、蒸留精製したN‐メチル‐2‐ピロリドン(NMP)12.5mLと2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン(HFBAPP)2.592g(5mmol)を加え攪拌しながら溶解させた。次に、この溶液を0℃に冷却し、N,O‐ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)3.0mL(11mmol)を加え、0℃で30分、さらに室温で30分攪拌させて、N‐シリル化2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン(シリル化芳香族ジアミン化合物S1)に誘導した。その後、3,3’,4,4’‐ビフェニルテトラカルボン酸二無水物(BPDA)0.736g(2.5mmol)と6‐(4‐ペルフルオロノネニルオキシアニリノ)‐1,3,5‐トリアジン‐2,4‐ジクロリド(モノマー成分)1.718g(2.5mmol)を加え、窒素ガス気流下に室温で4時間、さらに160℃で24時間攪拌し反応させ、副生したトリメチルシリルクロリドとトリメチルシラノールを窒素ガスとともに系外に除去した。   To a 100 mL three-necked flask equipped with a nitrogen gas inlet tube, a condenser tube, and a Dean-Stark trap, 12.5 mL of distilled and purified N-methyl-2-pyrrolidone (NMP) and 2,2-bis [4- (4-aminophenoxy) ) Phenyl] hexafluoropropane (HFBAPP) 2.592 g (5 mmol) was added and dissolved with stirring. Next, this solution was cooled to 0 ° C., N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) (3.0 mL, 11 mmol) was added, and the mixture was stirred at 0 ° C. for 30 minutes and further at room temperature for 30 minutes. N-silylated 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (silylated aromatic diamine compound S1) was derived. Thereafter, 0.736 g (2.5 mmol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 6- (4-perfluorononenyloxyanilino) -1,3,5- Add 1.718 g (2.5 mmol) of triazine-2,4-dichloride (monomer component) and stir for 4 hours at room temperature and 24 hours at 160 ° C. in a nitrogen gas stream to react with trimethylsilyl chloride and trimethyl. Silanol was removed from the system together with nitrogen gas.

反応後、黄色で粘ちょうな重合溶液を400mLのメタノールに投入しポリイミドを析出させ、ろ別後に80℃で9時間減圧乾燥させた。収量は4.68g(収率98%)であった。ポリイミドの赤外吸収スペクトルにより、1781cm−1(イミド結合)、1728cm−1(イミド結合)、1580cm−1(トリアジン環)、1378cm−1(イミド結合)、1246cm−1(C‐F結合)に特性吸収を確認した。 After the reaction, the yellow and viscous polymerization solution was poured into 400 mL of methanol to precipitate polyimide, and after filtration, dried under reduced pressure at 80 ° C. for 9 hours. The yield was 4.68 g (98% yield). According to the infrared absorption spectrum of polyimide, it is 1781 cm −1 (imide bond), 1728 cm −1 (imide bond), 1580 cm −1 (triazine ring), 1378 cm −1 (imide bond), 1246 cm −1 (CF bond). Characteristic absorption was confirmed.

このポリイミドの対数粘度と分子量を以下に示す。
(1)対数粘度:0.60dL/g(濃度0.5g/dLのN‐メチル‐2‐ピロリドン中、30℃で測定)
(2)分子量[ゲル浸透クロマトグラフィーにより、臭化リチウム(10mmol/L)を含むN‐メチル‐2‐ピロリドン溶液を用いて標準ポリスチレン換算で測定]
数平均分子量(Mn):77000
重量平均分子量(Mw):162000
分子量分布(Mw/Mn):2.10
The logarithmic viscosity and molecular weight of this polyimide are shown below.
(1) Logarithmic viscosity: 0.60 dL / g (measured at 30 ° C. in N-methyl-2-pyrrolidone having a concentration of 0.5 g / dL)
(2) Molecular weight [measured by gel permeation chromatography using N-methyl-2-pyrrolidone solution containing lithium bromide (10 mmol / L) in terms of standard polystyrene]
Number average molecular weight (Mn): 77000
Weight average molecular weight (Mw): 162000
Molecular weight distribution (Mw / Mn): 2.10

また、このポリイミドは、N,N‐ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、1,3‐ジメチル‐2‐イミダゾリドン、テトラヒドロフラン、1,4‐ジオキサンに室温で溶解し、クロロホルムに加熱溶解した。   This polyimide was dissolved in N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidone, tetrahydrofuran and 1,4-dioxane at room temperature and dissolved in chloroform by heating.

このポリイミドのN‐メチル‐2‐ピロリドン溶液をガラス板上に流延し、100℃で1時間、200℃で1時間、300℃で1時間減圧乾燥して、黄色で透明なポリイミドフィルムを作製した。このフィルムの赤外吸収スペクトルと元素分析の結果から、ポリイミドフィルムであることを確認した。   This polyimide N-methyl-2-pyrrolidone solution is cast on a glass plate and dried under reduced pressure at 100 ° C for 1 hour, 200 ° C for 1 hour, and 300 ° C for 1 hour to produce a yellow transparent polyimide film. did. From the result of the infrared absorption spectrum and elemental analysis of this film, it was confirmed that it was a polyimide film.

このポリイミドフィルムの特性を以下に示す。
(1)赤外吸収スペクトル:1781cm−1(イミド結合)、1728cm−1(イミド結合)、1378cm−1(イミド結合)
(2)元素分析[(C884529として計算]:
計算値 C,55.36%; H,2.38%; N,5.87%
実測値 C,55.14%; H,2.54%; N,6.04%
(3)ガラス転移温度:226℃[示差走査熱量測定(DSC)]
(4)熱膨張係数:67ppm/℃(70℃〜180℃の温度範囲)
(5)熱分解温度(熱重量測定)
5%重量減少温度:420℃(空気中)、415℃(窒素中)
10%重量減少温度:440℃(空気中)、435℃(窒素中)
(6)引張試験
引張強度:72MPa
破断時の伸び:5%
引張弾性率:3.8MPa
(7)水の接触角:103度
The characteristics of this polyimide film are shown below.
(1) Infrared absorption spectrum: 1781 cm −1 (imide bond), 1728 cm −1 (imide bond), 1378 cm −1 (imide bond)
(2) Elemental analysis [(C 88 H 45 F 29 N 8 O 9) Calculated as n]:
Calculated C, 55.36%; H, 2.38%; N, 5.87%
Found C, 55.14%; H, 2.54%; N, 6.04%
(3) Glass transition temperature: 226 ° C. [Differential scanning calorimetry (DSC)]
(4) Thermal expansion coefficient: 67 ppm / ° C. (temperature range of 70 ° C. to 180 ° C.)
(5) Thermal decomposition temperature (thermogravimetric measurement)
5% weight loss temperature: 420 ° C. (in air), 415 ° C. (in nitrogen)
10% weight loss temperature: 440 ° C. (in air), 435 ° C. (in nitrogen)
(6) Tensile test Tensile strength: 72 MPa
Elongation at break: 5%
Tensile modulus: 3.8 MPa
(7) Water contact angle: 103 degrees

このポリイミドフィルムは、N‐メチル‐2ピロリドンに膨潤し、N,N‐ジメチルホルムアミド、1,3‐ジメチル‐2‐イミダゾリドン、テトラヒドロフラン、1,4‐ジオキサン、クロロホルムに不溶であった。   This polyimide film swelled in N-methyl-2pyrrolidone and was insoluble in N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidone, tetrahydrofuran, 1,4-dioxane and chloroform.

窒素ガス導入管、冷却管、ディーンスタークトラップを備えた100mLの三口フラスコに、蒸留精製したN‐メチル‐2‐ピロリドン(NMP)12.5mLと2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン(HFBAPP)2.592g(5mmol)を加え攪拌しながら溶解させた。次に、この溶液を0℃に冷却し、N,O‐ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)3.0mL(11mmol)を加え、0℃で30分、さらに室温で30分攪拌させて、N‐シリル化2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン(シリル化芳香族ジアミン化合物S1)に誘導した。その後、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)1.111g(2.5mmol)と6‐(4‐ペルフルオロノネニルオキシアニリノ)‐1,3,5‐トリアジン‐2,4‐ジクロリド1.718g(モノマー成分)(2.5mmol)を加え、窒素ガス気流下に室温で4時間、さらに160℃で24時間攪拌し反応させ、副生したトリメチルシリルクロリドとトリメチルシラノールを窒素ガスとともに系外に除去した。   To a 100 mL three-necked flask equipped with a nitrogen gas inlet tube, a condenser tube, and a Dean-Stark trap, 12.5 mL of distilled and purified N-methyl-2-pyrrolidone (NMP) and 2,2-bis [4- (4-aminophenoxy) ) Phenyl] hexafluoropropane (HFBAPP) 2.592 g (5 mmol) was added and dissolved with stirring. Next, this solution was cooled to 0 ° C., N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) (3.0 mL, 11 mmol) was added, and the mixture was stirred at 0 ° C. for 30 minutes and further at room temperature for 30 minutes. N-silylated 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (silylated aromatic diamine compound S1) was derived. Then, 4.11 ′ (hexafluoroisopropylidene) diphthalic dianhydride (6FDA) 1.111 g (2.5 mmol) and 6- (4-perfluorononenyloxyanilino) -1,3,5-triazine -2,4-dichloride (1.718 g, monomer component) (2.5 mmol) was added, and the mixture was allowed to react by stirring at room temperature for 4 hours and then at 160 ° C. for 24 hours under a nitrogen gas stream. By-produced trimethylsilyl chloride and trimethylsilanol Was removed out of the system together with nitrogen gas.

反応後、黄色で粘ちょうな重合溶液を400mLのメタノールに投入しポリイミドを析出させ、ろ別後に80℃で9時間減圧乾燥させた。収量は5.05g(収率98%)であった。ポリイミドの赤外吸収スペクトルにより、1780cm−1(イミド結合)、1727cm−1(イミド結合)、1579cm−1(トリアジン環)、1377cm−1(イミド結合)、1246cm−1(C‐F結合)に特性吸収を確認した。 After the reaction, the yellow and viscous polymerization solution was poured into 400 mL of methanol to precipitate polyimide, and after filtration, dried under reduced pressure at 80 ° C. for 9 hours. The yield was 5.05 g (98% yield). The infrared absorption spectrum of the polyimide, 1780 cm -1 (imide bond), 1727 cm -1 (imide bond), 1579cm -1 (triazine ring), 1377 cm -1 (imide bond), to 1246cm -1 (C-F bond) Characteristic absorption was confirmed.

このポリイミドの対数粘度と分子量を以下に示す。
(1)対数粘度:0.65dL/g(濃度0.5g/dLのN‐メチル‐2‐ピロリドン中、30℃で測定)
(2)分子量[ゲル浸透クロマトグラフィーにより、臭化リチウム(10mmol/L)を含むN‐メチル‐2‐ピロリドン溶液を用いて標準ポリスチレン換算で測定]
数平均分子量(Mn):83000
重量平均分子量(Mw):219000
分子量分布(Mw/Mn):2.64
The logarithmic viscosity and molecular weight of this polyimide are shown below.
(1) Logarithmic viscosity: 0.65 dL / g (measured at 30 ° C. in N-methyl-2-pyrrolidone having a concentration of 0.5 g / dL)
(2) Molecular weight [measured by gel permeation chromatography using N-methyl-2-pyrrolidone solution containing lithium bromide (10 mmol / L) in terms of standard polystyrene]
Number average molecular weight (Mn): 83000
Weight average molecular weight (Mw): 219000
Molecular weight distribution (Mw / Mn): 2.64

また、このポリイミドは、N,N‐ジメチルホルムアミド(DMF)、N‐メチル‐2‐ピロリドン(NMP)、1,3‐ジメチル‐2‐イミダゾリドン(DMI)、テトラヒドロフラン(THF)、1,4‐ジオキサン、クロロホルム(CHCl)に室温で溶解した。 This polyimide is also composed of N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidone (DMI), tetrahydrofuran (THF), 1,4-dioxane. , Dissolved in chloroform (CHCl 3 ) at room temperature.

このポリイミドのN‐メチル‐2‐ピロリドン溶液をガラス板上に流延し、100℃で1時間、200℃で1時間、300℃で1時間減圧乾燥して、黄色で透明なポリイミドフィルムを作製した。このフィルムの赤外吸収スペクトルと元素分析の結果から、ポリイミドフィルムであることを確認した。   This polyimide N-methyl-2-pyrrolidone solution is cast on a glass plate and dried under reduced pressure at 100 ° C for 1 hour, 200 ° C for 1 hour, and 300 ° C for 1 hour to produce a yellow transparent polyimide film. did. From the result of the infrared absorption spectrum and elemental analysis of this film, it was confirmed that it was a polyimide film.

このポリイミドフィルムの特性を以下に示す。
(1)赤外吸収スペクトル:1780cm−1(イミド結合)、1727cm−1(イミド結合)、1377cm−1(イミド結合)
(2)元素分析[(C914535として計算]:
計算値 C,53.07%; H,2.20%; N,5.44%
実測値 C,53.02%; H,2.20%; N,5.71%
(3)ガラス転移温度:227℃(示差走査熱量測定)
(4)熱膨張係数:82ppm/℃(80℃〜150℃の温度範囲)
(5)熱分解温度(熱重量測定)
5%重量減少温度:410℃(空気中)、405℃(窒素中)
10%重量減少温度:435℃(空気中)、430℃(窒素中)
(6)引張試験
引張強度:71MPa
破断時の伸び:14%
引張弾性率:3.7MPa
(7)水の接触角:102度
The characteristics of this polyimide film are shown below.
(1) Infrared absorption spectrum: 1780 cm -1 (imide bond), 1727 cm -1 (imide bond), 1377 cm -1 (imide bond)
(2) Elemental analysis [(C 91 H 45 F 35 N 8 O 9) Calculated as n]:
Calculated C, 53.07%; H, 2.20%; N, 5.44%
Found C, 53.02%; H, 2.20%; N, 5.71%
(3) Glass transition temperature: 227 ° C. (differential scanning calorimetry)
(4) Thermal expansion coefficient: 82 ppm / ° C. (temperature range of 80 ° C. to 150 ° C.)
(5) Thermal decomposition temperature (thermogravimetric measurement)
5% weight loss temperature: 410 ° C. (in air), 405 ° C. (in nitrogen)
10% weight loss temperature: 435 ° C (in air), 430 ° C (in nitrogen)
(6) Tensile test Tensile strength: 71 MPa
Elongation at break: 14%
Tensile modulus: 3.7 MPa
(7) Water contact angle: 102 degrees

このポリイミドフィルムは、N‐メチル‐2‐ピロリドン、1,3‐ジメチル‐2‐イミダゾリドンに加熱溶解し、N,N‐ジメチルホルムアミド、テトラヒドロフラン、1,4‐ジオキサン、クロロホルムに不溶であった。   This polyimide film was dissolved by heating in N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidone, and was insoluble in N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane and chloroform.

窒素ガス導入管、冷却管、ディーンスタークトラップを備えた100mLの三口フラスコに、蒸留精製したN‐メチル‐2‐ピロリドン(NMP)12.5mLと2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン(HFBAPP)2.592g(5mmol)を加え攪拌しながら溶解させた。次に、この溶液を0℃に冷却し、N,O‐ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)3.0mL(11mmol)を加え、0℃で30分、さらに室温で30分攪拌させて、N‐シリル化2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン(シリル化芳香族ジアミン化合物S1)に誘導した。その後、3,4,3’,4’‐ベンゾフェノンテトラカルボン酸二無水物(BTDA)0.806g(2.5mmol)と6‐(4‐ペルフルオロノネニルオキシアニリノ)‐1,3,5‐トリアジン‐2,4‐ジクロリド(モノマー成分)1.718g(2.5mmol)を加え、窒素ガス気流下に室温で4時間、さらに160℃で24時間攪拌し反応させ、副生したトリメチルシリルクロリドとトリメチルシラノールを窒素ガスとともに系外に除去した。   To a 100 mL three-necked flask equipped with a nitrogen gas inlet tube, a condenser tube, and a Dean-Stark trap, 12.5 mL of distilled and purified N-methyl-2-pyrrolidone (NMP) and 2,2-bis [4- (4-aminophenoxy) ) Phenyl] hexafluoropropane (HFBAPP) 2.592 g (5 mmol) was added and dissolved with stirring. Next, this solution was cooled to 0 ° C., N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) (3.0 mL, 11 mmol) was added, and the mixture was stirred at 0 ° C. for 30 minutes and further at room temperature for 30 minutes. N-silylated 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (silylated aromatic diamine compound S1) was derived. Thereafter, 0.806 g (2.5 mmol) of 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride (BTDA) and 6- (4-perfluorononenyloxyanilino) -1,3,5- Add 1.718 g (2.5 mmol) of triazine-2,4-dichloride (monomer component) and stir for 4 hours at room temperature and 24 hours at 160 ° C. in a nitrogen gas stream to react with trimethylsilyl chloride and trimethyl. Silanol was removed from the system together with nitrogen gas.

反応後、茶色で粘ちょうな重合溶液を400mLのメタノールに投入しポリイミドを析出させ、ろ別後に80℃で9時間減圧乾燥させた。収量は4.79g(収率99%)であった。ポリイミドの赤外吸収スペクトルにより、1781cm−1(イミド結合)、1728cm−1(イミド結合)、1580cm−1(トリアジン環)、1378cm−1(イミド結合)、1247cm−1(C‐F結合)に特性吸収を確認した。 After the reaction, a brown and viscous polymerization solution was poured into 400 mL of methanol to precipitate polyimide, and after filtration, dried under reduced pressure at 80 ° C. for 9 hours. The yield was 4.79 g (99% yield). According to the infrared absorption spectrum of polyimide, it is 1781 cm −1 (imide bond), 1728 cm −1 (imide bond), 1580 cm −1 (triazine ring), 1378 cm −1 (imide bond), 1247 cm −1 (CF bond). Characteristic absorption was confirmed.

このポリイミドの対数粘度を以下に示す。
(1)対数粘度:1.08dL/g(濃度0.5g/dLのN‐メチル‐2‐ピロリドン中、30℃で測定)
また、このポリイミドは、N‐メチル‐2‐ピロリドンに室温で溶解し、1,3‐ジメチル‐2‐イミダゾリドンに加熱溶解し、N,N‐ジメチルホルムアミド、テトラヒドロフラン、1,4‐ジオキサン、クロロホルムに膨潤した。
The logarithmic viscosity of this polyimide is shown below.
(1) Logarithmic viscosity: 1.08 dL / g (measured at 30 ° C. in N-methyl-2-pyrrolidone having a concentration of 0.5 g / dL)
This polyimide is dissolved in N-methyl-2-pyrrolidone at room temperature, dissolved in 1,3-dimethyl-2-imidazolidone with heating, and dissolved in N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane and chloroform. Swelled.

このポリイミドのN‐メチル‐2‐ピロリドン溶液をガラス板上に流延し、100℃で1時間、200℃で1時間、300℃で1時間減圧乾燥して、茶色で透明なポリイミドフィルムを作製した。このフィルムの赤外吸収スペクトルと元素分析の結果からポリイミドフィルムであることを確認した。   This polyimide N-methyl-2-pyrrolidone solution is cast on a glass plate and dried under reduced pressure at 100 ° C for 1 hour, 200 ° C for 1 hour, and 300 ° C for 1 hour to produce a brown transparent polyimide film. did. The film was confirmed to be a polyimide film from the results of infrared absorption spectrum and elemental analysis.

このポリイミドフィルムの特性を以下に示す。
(1)赤外吸収スペクトル:1781cm−1(イミド結合)、1728cm−1(イミド結合)、1378cm−1(イミド結合)
(2)元素分析[(C89452910として計算]
計算値 C,55.18%; H,2.34%; N,5.78%
実測値 C,55.27%; H,2.43%; N,6.15%
(3)ガラス転移温度:226℃(示差走査熱量測定)
(4)熱膨張係数:測定不能であった。
(5)熱分解温度(熱重量測定)
5%重量減少温度:410℃(空気中)、410℃(窒素中)
10%重量減少温度:435℃(空気中)、430℃(窒素中)
(6)水の接触角:104度
The characteristics of this polyimide film are shown below.
(1) Infrared absorption spectrum: 1781 cm −1 (imide bond), 1728 cm −1 (imide bond), 1378 cm −1 (imide bond)
(2) Elemental analysis [(C 89 H 45 F 29 N 8 O 10) Calculated as n]
Calculated C, 55.18%; H, 2.34%; N, 5.78%
Found C, 55.27%; H, 2.43%; N, 6.15%
(3) Glass transition temperature: 226 ° C. (differential scanning calorimetry)
(4) Thermal expansion coefficient: Measurement was impossible.
(5) Thermal decomposition temperature (thermogravimetric measurement)
5% weight loss temperature: 410 ° C. (in air), 410 ° C. (in nitrogen)
10% weight loss temperature: 435 ° C (in air), 430 ° C (in nitrogen)
(6) Contact angle of water: 104 degrees

このポリイミドフィルムは、N‐メチル‐2‐ピロリドン、1,3‐ジメチル‐2‐イミダゾリドンに加熱溶解し、N,N‐ジメチルホルムアミドに膨潤し、テトラヒドロフラン、1,4‐ジオキサン、クロロホルムに不溶であった。   This polyimide film was dissolved in N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidone by heating, swollen in N, N-dimethylformamide, and insoluble in tetrahydrofuran, 1,4-dioxane and chloroform. It was.

窒素ガス導入管、冷却管、ディーンスタークトラップを備えた100mLの三口フラスコに、蒸留精製したN‐メチル‐2‐ピロリドン(NMP)12.5mLと2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン(HFBAPP)2.592g(5mmol)を加え攪拌しながら溶解させた。次に、この溶液を0℃に冷却し、N,O‐ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)3.0mL(11mmol)を加え、0℃で30分、さらに室温で30分攪拌させて、N‐シリル化2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン(シリル化芳香族ジアミン化合物S1)に誘導した。その後、4,4’‐オキシジフタル酸二無水物(ODPA)0.776g(2.5mmol)と6‐(4‐ペルフルオロノネニルオキシアニリノ)‐1,3,5‐トリアジン‐2,4‐ジクロリド(モノマー成分)1.718g(2.5mmol)を加え、窒素気流下に室温で4時間、さらに160℃で24時間攪拌し反応させ、副生したトリメチルシリルクロリドとトリメチルシラノールを窒素ガスとともに系外に除去した。   To a 100 mL three-necked flask equipped with a nitrogen gas inlet tube, a condenser tube, and a Dean-Stark trap, 12.5 mL of distilled and purified N-methyl-2-pyrrolidone (NMP) and 2,2-bis [4- (4-aminophenoxy) ) Phenyl] hexafluoropropane (HFBAPP) 2.592 g (5 mmol) was added and dissolved with stirring. Next, this solution was cooled to 0 ° C., N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) (3.0 mL, 11 mmol) was added, and the mixture was stirred at 0 ° C. for 30 minutes and further at room temperature for 30 minutes. N-silylated 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (silylated aromatic diamine compound S1) was derived. Then, 0.74 g (2.5 mmol) of 4,4′-oxydiphthalic dianhydride (ODPA) and 6- (4-perfluorononenyloxyanilino) -1,3,5-triazine-2,4-dichloride (Monomer component) 1.718 g (2.5 mmol) was added, and the mixture was stirred and reacted at room temperature for 4 hours and further at 160 ° C. for 24 hours under a nitrogen stream. Removed.

反応後、黄色で粘ちょうな重合溶液を400mLのメタノールに投入しポリイミドを析出させ、ろ別後に80℃で9時間減圧乾燥させた。収量は4.72g(収率98%)であった。ポリイミドの赤外吸収スペクトルにより、1780cm−1(イミド結合)、1727cm−1(イミド結合)、1579cm−1(トリアジン環)、1377cm−1(イミド結合)、1246cm−1(C‐F結合)に特性吸収を確認した。 After the reaction, the yellow and viscous polymerization solution was poured into 400 mL of methanol to precipitate polyimide, and after filtration, dried under reduced pressure at 80 ° C. for 9 hours. The yield was 4.72 g (98% yield). The infrared absorption spectrum of the polyimide, 1780 cm -1 (imide bond), 1727 cm -1 (imide bond), 1579cm -1 (triazine ring), 1377 cm -1 (imide bond), to 1246cm -1 (C-F bond) Characteristic absorption was confirmed.

このポリイミドの対数粘度と分子量を以下に示す。
(1)対数粘度:0.70dL/g(濃度0.5g/dLのN‐メチル‐2‐ピロリドン中、30℃で測定)
(2)分子量[ゲル浸透クロマトグラフィーにより、臭化リチウム(10mmol/L)を含むN‐メチル‐2‐ピロリドン溶液を用いて標準ポリスチレン換算で測定]
数平均分子量(Mn):106000
重量平均分子量(Mw):217000
分子量分布(Mw/Mn):2.05
The logarithmic viscosity and molecular weight of this polyimide are shown below.
(1) Logarithmic viscosity: 0.70 dL / g (measured at 30 ° C. in N-methyl-2-pyrrolidone having a concentration of 0.5 g / dL)
(2) Molecular weight [measured by gel permeation chromatography using N-methyl-2-pyrrolidone solution containing lithium bromide (10 mmol / L) in terms of standard polystyrene]
Number average molecular weight (Mn): 106000
Weight average molecular weight (Mw): 217000
Molecular weight distribution (Mw / Mn): 2.05

また、このポリイミドは、N,N‐ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、1,3‐ジメチル‐2‐イミダゾリドン、テトラヒドロフラン、1,4‐ジオキサン、クロロホルムに室温で溶解した。   This polyimide was dissolved in N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidone, tetrahydrofuran, 1,4-dioxane and chloroform at room temperature.

このポリイミドのN‐メチル‐2‐ピロリドン溶液をガラス板上に流延し、100℃で1時間、200℃で1時間、300℃で1時間減圧乾燥して、黄色で透明なポリイミドフィルムを作製した。このフィルムの赤外吸収スペクトルと元素分析の結果からポリイミドフィルムであることを確認した。   This polyimide N-methyl-2-pyrrolidone solution is cast on a glass plate and dried under reduced pressure at 100 ° C for 1 hour, 200 ° C for 1 hour, and 300 ° C for 1 hour to produce a yellow transparent polyimide film. did. The film was confirmed to be a polyimide film from the results of infrared absorption spectrum and elemental analysis.

このポリイミドフィルムの特性を以下に示す。
(1)赤外吸収スペクトル:1780cm−1(イミド結合)、1727cm−1(イミド結合)、1377cm−1(イミド結合)
(2)元素分析[(C88452910として計算]:
計算値 C,54.90%; H,2.36%; N,5.82%
実測値 C,54.70%; H,2.66%; N,6.24%
(3)ガラス転移温度:218℃(示差走査熱量測定)
(4)熱膨張係数:71ppm/℃(80℃〜150℃の温度範囲)
(5)熱分解温度(熱重量測定)
5%重量減少温度:410℃(空気中)、410℃(窒素中)
10%重量減少温度:440℃(空気中)、430℃(窒素中)
(6)引張試験
引張強度:71MPa
破断時の伸び:3%
引張弾性率:3.7MPa
(7)水の接触角:101度
The characteristics of this polyimide film are shown below.
(1) Infrared absorption spectrum: 1780 cm -1 (imide bond), 1727 cm -1 (imide bond), 1377 cm -1 (imide bond)
(2) Elemental analysis [calculated as (C 88 H 45 F 29 N 8 O 10) n]:
Calculated C, 54.90%; H, 2.36%; N, 5.82%
Found C, 54.70%; H, 2.66%; N, 6.24%
(3) Glass transition temperature: 218 ° C. (differential scanning calorimetry)
(4) Thermal expansion coefficient: 71 ppm / ° C. (temperature range of 80 ° C. to 150 ° C.)
(5) Thermal decomposition temperature (thermogravimetric measurement)
5% weight loss temperature: 410 ° C. (in air), 410 ° C. (in nitrogen)
10% weight loss temperature: 440 ° C. (in air), 430 ° C. (in nitrogen)
(6) Tensile test Tensile strength: 71 MPa
Elongation at break: 3%
Tensile modulus: 3.7 MPa
(7) Water contact angle: 101 degrees

このポリイミドフィルムは、N,N‐ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、1,3‐ジメチル‐2‐イミダゾリドンに膨潤し、テトラヒドロフラン、1,4‐ジオキサン、クロロホルムに不溶であった。   This polyimide film swelled in N, N-dimethylformamide, N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidone and was insoluble in tetrahydrofuran, 1,4-dioxane and chloroform.

窒素ガス導入管、冷却管、ディーンスタークトラップを備えた100mLの三口フラスコに、蒸留精製したN‐メチル‐2‐ピロリドン(NMP)12.5mLと2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン(HFBAPP)2.592g(5mmol)を加え攪拌しながら溶解させた。次に、この溶液を0℃に冷却し、N,O‐ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)3.0mL(11mmol)を加え、0℃で30分、さらに室温で30分攪拌させて、N‐シリル化2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン(シリル化芳香族ジアミン化合物S1)に誘導した。その後、3,3’,4,4’‐ジフェニルスルホンテトラカルボン酸二無水物(DSDA)0.896g(2.5mmol)と6‐(4‐ペルフルオロノネニルオキシアニリノ)‐1,3,5‐トリアジン‐2,4‐ジクロリド(モノマー成分)1.718g(2.5mmol)を加え、窒素ガス気流下に室温で4時間、さらに160℃で24時間攪拌し反応させ、副生したトリメチルシリルクロリドとトリメチルシラノールを窒素ガスとともに系外に除去した。   To a 100 mL three-necked flask equipped with a nitrogen gas inlet tube, a condenser tube, and a Dean-Stark trap, 12.5 mL of distilled and purified N-methyl-2-pyrrolidone (NMP) and 2,2-bis [4- (4-aminophenoxy) ) Phenyl] hexafluoropropane (HFBAPP) 2.592 g (5 mmol) was added and dissolved with stirring. Next, this solution was cooled to 0 ° C., N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) (3.0 mL, 11 mmol) was added, and the mixture was stirred at 0 ° C. for 30 minutes and further at room temperature for 30 minutes. N-silylated 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (silylated aromatic diamine compound S1) was derived. Thereafter, 0.896 g (2.5 mmol) of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA) and 6- (4-perfluorononenyloxyanilino) -1,3,5 -Triazine-2,4-dichloride (monomer component) 1.718 g (2.5 mmol) was added, and the mixture was stirred at room temperature for 4 hours and further at 160 ° C. for 24 hours under a nitrogen gas stream. Trimethylsilanol was removed out of the system together with nitrogen gas.

反応後、茶色で粘ちょうな重合溶液を400mLのメタノールに投入しポリイミドを析出させ、ろ別後に80℃で9時間減圧乾燥させた。収量は4.83g(収率98%)であった。ポリイミドの赤外吸収スペクトルにより、1781cm−1(イミド結合)、1728cm−1(イミド結合)、1580cm−1(トリアジン環)、1378cm−1(イミド結合)、1247cm−1(C‐F結合)に特性吸収を確認した。 After the reaction, a brown and viscous polymerization solution was poured into 400 mL of methanol to precipitate polyimide, and after filtration, dried under reduced pressure at 80 ° C. for 9 hours. The yield was 4.83 g (98% yield). According to the infrared absorption spectrum of polyimide, it is 1781 cm −1 (imide bond), 1728 cm −1 (imide bond), 1580 cm −1 (triazine ring), 1378 cm −1 (imide bond), 1247 cm −1 (CF bond). Characteristic absorption was confirmed.

このポリイミドの対数粘度と分子量を以下に示す。
(1)対数粘度:0.68dL/g(濃度0.5g/dLのN‐メチル‐2‐ピロリドン中、30℃で測定)
(2)分子量[ゲル浸透クロマトグラフィーにより、臭化リチウム(10mmol/L)を含むN‐メチル‐2‐ピロリドン溶液を用いて標準ポリスチレン換算で測定]
数平均分子量(Mn):69000
重量平均分子量(Mw):150000
分子量分布(Mw/Mn):2.17
The logarithmic viscosity and molecular weight of this polyimide are shown below.
(1) Logarithmic viscosity: 0.68 dL / g (measured at 30 ° C. in N-methyl-2-pyrrolidone having a concentration of 0.5 g / dL)
(2) Molecular weight [measured by gel permeation chromatography using N-methyl-2-pyrrolidone solution containing lithium bromide (10 mmol / L) in terms of standard polystyrene]
Number average molecular weight (Mn): 69000
Weight average molecular weight (Mw): 150,000
Molecular weight distribution (Mw / Mn): 2.17

また、このポリイミドは、N,N‐ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、1,3‐ジメチル‐2‐イミダゾリドン、テトラヒドロフラン、1,4‐ジオキサン、クロロホルムに室温で溶解した。   This polyimide was dissolved in N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidone, tetrahydrofuran, 1,4-dioxane and chloroform at room temperature.

このポリイミドのN‐メチル‐2‐ピロリドン溶液をガラス板上に流延し、100℃で1時間、200℃で1時間、300℃で1時間減圧乾燥して、茶色で透明なポリイミドフィルムを作製した。このフィルムの赤外吸収スペクトルと元素分析の結果からポリイミドフィルムであることを確認した。   This polyimide N-methyl-2-pyrrolidone solution is cast on a glass plate and dried under reduced pressure at 100 ° C for 1 hour, 200 ° C for 1 hour, and 300 ° C for 1 hour to produce a brown transparent polyimide film. did. The film was confirmed to be a polyimide film from the results of infrared absorption spectrum and elemental analysis.

このポリイミドフィルムの特性を以下に示す。
(1)赤外吸収スペクトル:1781cm−1(イミド結合)、1728cm−1(イミド結合)、1378cm−1(イミド結合)
(2)元素分析[(C88452911S)として計算]:
計算値 C,53.56%; H,2.30%; N,5.68%
実測値 C,53.81%; H,2.35%; N,5.92%
(3)ガラス転移温度:229℃(示差走査熱量測定)
(4)熱膨張係数:80ppm/℃(80℃〜160℃の温度範囲)
(5)熱分解温度(熱重量測定)
5%重量減少温度:410℃(空気中)、410℃(窒素中)
10%重量減少温度:435℃(空気中)、430℃(窒素中)
(6)引張試験
引張強度:80MPa
破断時の伸び:6%
引張弾性率:3.5MPa
(7)水の接触角:102度
The characteristics of this polyimide film are shown below.
(1) Infrared absorption spectrum: 1781 cm −1 (imide bond), 1728 cm −1 (imide bond), 1378 cm −1 (imide bond)
(2) Elemental analysis [calculated as (C 88 H 45 F 29 N 8 O 11 S) n ]:
Calculated C, 53.56%; H, 2.30%; N, 5.68%
Found C, 53.81%; H, 2.35%; N, 5.92%
(3) Glass transition temperature: 229 ° C. (differential scanning calorimetry)
(4) Thermal expansion coefficient: 80 ppm / ° C. (temperature range of 80 ° C. to 160 ° C.)
(5) Thermal decomposition temperature (thermogravimetric measurement)
5% weight loss temperature: 410 ° C. (in air), 410 ° C. (in nitrogen)
10% weight loss temperature: 435 ° C (in air), 430 ° C (in nitrogen)
(6) Tensile test Tensile strength: 80 MPa
Elongation at break: 6%
Tensile modulus: 3.5 MPa
(7) Water contact angle: 102 degrees

このポリイミドフィルムは、N‐メチル‐2‐ピロリドン、1,3‐ジメチル‐2‐イミダゾリドンに加熱溶解し、N,N‐ジメチルホルムアミド、テトラヒドロフラン、1,4‐ジオキサン、クロロホルムに不溶であった。   This polyimide film was dissolved by heating in N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidone, and was insoluble in N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane and chloroform.

窒素ガス導入管、冷却管、ディーンスタークトラップを備えた100mLの三口フラスコに、蒸留精製したN‐メチル‐2‐ピロリドン(NMP)12.5mLと4,4’‐オキシジアニリン(ODA)1.001g(5mmol)を加え攪拌しながら溶解させた。次に、この溶液を0℃に冷却し、N,O‐ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)3.0mL(11mmol)を加え、0℃で30分、さらに室温で30分攪拌させて、N‐シリル化4,4’‐オキシジアニリン(シリル化芳香族ジアミン化合物S2)に誘導した。その後、4,4’‐(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)1.111g(2.5mmol)と6‐(4‐ペルフルオロノネニルオキシアニリノ)‐1,3,5‐トリアジン‐2,4‐ジクロリド(モノマー成分)1.718g(2.5mmol)を加え、窒素ガス気流下に室温で4時間、さらに160℃で24時間攪拌し反応させ、副生したトリメチルシリルクロリドとトリメチルシラノールを窒素ガスとともに系外に除去した。   In a 100 mL three-necked flask equipped with a nitrogen gas inlet tube, a condenser tube, and a Dean-Stark trap, 12.5 mL of distilled and purified N-methyl-2-pyrrolidone (NMP) and 4,4′-oxydianiline (ODA) 001 g (5 mmol) was added and dissolved while stirring. Next, this solution was cooled to 0 ° C., N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) (3.0 mL, 11 mmol) was added, and the mixture was stirred at 0 ° C. for 30 minutes and further at room temperature for 30 minutes. N-silylated 4,4'-oxydianiline (silylated aromatic diamine compound S2) was derived. Then, 1.111 g (2.5 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) and 6- (4-perfluorononenyloxyanilino) -1,3,5-triazine 1.718 g (2.5 mmol) of 2,4-dichloride (monomer component) was added, and the mixture was reacted by stirring at room temperature for 4 hours and further at 160 ° C. for 24 hours under a nitrogen gas stream. By-product trimethylsilyl chloride and trimethylsilanol were reacted. Was removed out of the system together with nitrogen gas.

反応後、黄色で粘ちょうな重合溶液を400mLのメタノールに投入しポリイミドを析出させ、ろ別後に80℃で9時間減圧乾燥させた。収量は3.49g(収率98%)であった。ポリイミドの赤外吸収スペクトルにより、1780cm−1(イミド結合)、1727cm−1(イミド結合)、1579cm−1(トリアジン環)、1377cm−1(イミド結合)、1246cm−1(C‐F結合)に特性吸収を確認した。 After the reaction, the yellow and viscous polymerization solution was poured into 400 mL of methanol to precipitate polyimide, and after filtration, dried under reduced pressure at 80 ° C. for 9 hours. The yield was 3.49 g (98% yield). The infrared absorption spectrum of the polyimide, 1780 cm -1 (imide bond), 1727 cm -1 (imide bond), 1579cm -1 (triazine ring), 1377 cm -1 (imide bond), to 1246cm -1 (C-F bond) Characteristic absorption was confirmed.

このポリイミドの対数粘度と分子量を以下に示す。
(1)対数粘度:0.65dL/g(濃度0.5g/dLのN‐メチル‐2‐ピロリドン中、30℃で測定)
(2)分子量[ゲル浸透クロマトグラフィーにより、臭化リチウム(10mmol/L)を含むN‐メチル‐2‐ピロリドン溶液を用いて標準ポリスチレン換算で測定]
数平均分子量(Mn):94000
重量平均分子量(Mw):186000
分子量分布8Mw/Mn):1.98
また、このポリイミドは、N,N‐ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、1,3‐ジメチル‐2‐イミダゾリドンに室温で溶解し、テトラヒドロフラン、1,4‐ジオキサンに加熱溶解し、クロロホルムには不溶であった。
The logarithmic viscosity and molecular weight of this polyimide are shown below.
(1) Logarithmic viscosity: 0.65 dL / g (measured at 30 ° C. in N-methyl-2-pyrrolidone having a concentration of 0.5 g / dL)
(2) Molecular weight [measured by gel permeation chromatography using a N-methyl-2-pyrrolidone solution containing lithium bromide (10 mmol / L) in terms of standard polystyrene]
Number average molecular weight (Mn): 94000
Weight average molecular weight (Mw): 186000
Molecular weight distribution 8 Mw / Mn): 1.98
This polyimide is dissolved in N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidone at room temperature, dissolved in tetrahydrofuran and 1,4-dioxane, and dissolved in chloroform. Was insoluble.

このポリイミドのN‐メチル‐2‐ピロリドン溶液をガラス板上に流延し、100℃で1時間、200℃で1時間、300℃で1時間減圧乾燥して、黄色で透明なポリイミドフィルムを作製した。このフィルムの赤外吸収スペクトルと元素分析の結果からポリイミドフィルムであることを確認した。   This polyimide N-methyl-2-pyrrolidone solution is cast on a glass plate and dried under reduced pressure at 100 ° C for 1 hour, 200 ° C for 1 hour, and 300 ° C for 1 hour to produce a yellow transparent polyimide film. did. The film was confirmed to be a polyimide film from the results of infrared absorption spectrum and elemental analysis.

このポリイミドフィルムの特性を以下に示す。
(1)赤外吸収スペクトル:1780cm−1(イミド結合)、1727cm−1(イミド結合)、1377cm−1(イミド結合)
(2)元素分析[(C612923として計算]:
計算値 C,51.49%; H,2.05%; N,7.88%
実測値 C,51.27%; H,2.15%; N,8.08%
(3)ガラス転移温度:255℃(示差走査熱量測定)
(4)熱膨張係数:84ppm/℃(80℃〜150℃の温度範囲)
(5)熱分解温度(熱重量測定)
5%重量減少温度:420℃(空気中)、410℃(窒素中)
10%重量減少温度:440℃(空気中)、430℃(窒素中)
(6)引張試験
引張強度:97MPa
破断時の伸び:5%
引張弾性率:4.2MPa
(7)水の接触角:104度
The characteristics of this polyimide film are shown below.
(1) Infrared absorption spectrum: 1780 cm -1 (imide bond), 1727 cm -1 (imide bond), 1377 cm -1 (imide bond)
(2) Elemental analysis [calculated as (C 61 H 29 F 23 N 8 O 7 ) n ]:
Calculated C, 51.49%; H, 2.05%; N, 7.88%
Found C, 51.27%; H, 2.15%; N, 8.08%
(3) Glass transition temperature: 255 ° C. (differential scanning calorimetry)
(4) Thermal expansion coefficient: 84 ppm / ° C. (temperature range of 80 ° C. to 150 ° C.)
(5) Thermal decomposition temperature (thermogravimetric measurement)
5% weight loss temperature: 420 ° C. (in air), 410 ° C. (in nitrogen)
10% weight loss temperature: 440 ° C. (in air), 430 ° C. (in nitrogen)
(6) Tensile test Tensile strength: 97 MPa
Elongation at break: 5%
Tensile modulus: 4.2 MPa
(7) Water contact angle: 104 degrees

このポリイミドフィルムは、N‐メチル‐2‐ピロリドンに加熱溶解し、N,N‐ジメチルホルムアミド、1,3‐ジメチル‐2‐イミダゾリドンに膨潤し、テトラヒドロフラン、1,4‐ジオキサン、クロロホルムに不溶であった。   This polyimide film was dissolved by heating in N-methyl-2-pyrrolidone, swollen in N, N-dimethylformamide and 1,3-dimethyl-2-imidazolidone, and insoluble in tetrahydrofuran, 1,4-dioxane and chloroform. It was.

窒素ガス導入管、冷却管、ディーンスタークトラップを備えた100mLの三口フラスコに、蒸留精製したN‐メチル‐2‐ピロリドン(NMP)12.5mLと4,4’‐オキシジアニリン(ODA)1.001g(5mmol)を加え攪拌しながら溶解させた。次に、この溶液を0℃に冷却し、N,O‐ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)3.0mL(11mmol)を加え、0℃で30分、さらに室温で30分攪拌させて、N‐シリル化4,4’‐オキシジアニリン(シリル化芳香族ジアミン化合物S2)に誘導した。その後、4,4’‐オキシジフタル酸二無水物(ODPA)0.776g(2.5mmol)と6‐(4‐ペルフルオロノネニルオキシアニリノ)‐1,3,5‐トリアジン‐2,4‐ジクロリド(モノマー成分)1.718g(2.5mmol)を加え、窒素気流下に室温で4時間、さらに160℃で24時間攪拌し反応させ、副生したトリメチルシリルクロリドとトリメチルシラノールを窒素ガスとともに系外に除去した。   In a 100 mL three-necked flask equipped with a nitrogen gas inlet tube, a condenser tube, and a Dean-Stark trap, 12.5 mL of distilled and purified N-methyl-2-pyrrolidone (NMP) and 4,4′-oxydianiline (ODA) 001 g (5 mmol) was added and dissolved while stirring. Next, this solution was cooled to 0 ° C., N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) (3.0 mL, 11 mmol) was added, and the mixture was stirred at 0 ° C. for 30 minutes and further at room temperature for 30 minutes. N-silylated 4,4'-oxydianiline (silylated aromatic diamine compound S2) was derived. Then, 0.74 g (2.5 mmol) of 4,4′-oxydiphthalic dianhydride (ODPA) and 6- (4-perfluorononenyloxyanilino) -1,3,5-triazine-2,4-dichloride (Monomer component) 1.718 g (2.5 mmol) was added, and the mixture was stirred and reacted at room temperature for 4 hours and further at 160 ° C. for 24 hours under a nitrogen stream. Removed.

反応後、黄色で粘ちょうな重合溶液を400mLのメタノールに投入しポリイミドを析出させ、ろ別後に80℃で9時間減圧乾燥させた。収量は3.16g(収率98%)であった。ポリイミドの赤外吸収スペクトルにより、1780cm−1(イミド結合)、1727cm−1(イミド結合)、1579cm−1(トリアジン環)、1377cm−1(イミド結合)、1246cm−1(C‐F結合)に特性吸収を確認した。 After the reaction, the yellow and viscous polymerization solution was poured into 400 mL of methanol to precipitate polyimide, and after filtration, dried under reduced pressure at 80 ° C. for 9 hours. The yield was 3.16 g (98% yield). The infrared absorption spectrum of the polyimide, 1780 cm -1 (imide bond), 1727 cm -1 (imide bond), 1579cm -1 (triazine ring), 1377 cm -1 (imide bond), to 1246cm -1 (C-F bond) Characteristic absorption was confirmed.

このポリイミドの対数粘度と分子量を以下に示す。
(1)対数粘度:0.63dL/g(濃度0.5g/dLのN‐メチル‐2‐ピロリドン中、30℃で測定)
(2)分子量[ゲル浸透クロマトグラフィーにより、臭化リチウム(10mmol/L)を含むN‐メチル‐2‐ピロリドン溶液を用いて標準ポリスチレン換算で測定]
数平均分子量(Mn):101000
重量平均分子量(Mw):216000
分子量分布(Mw/Mn):2.14
The logarithmic viscosity and molecular weight of this polyimide are shown below.
(1) Logarithmic viscosity: 0.63 dL / g (measured at 30 ° C. in N-methyl-2-pyrrolidone having a concentration of 0.5 g / dL)
(2) Molecular weight [measured by gel permeation chromatography using N-methyl-2-pyrrolidone solution containing lithium bromide (10 mmol / L) in terms of standard polystyrene]
Number average molecular weight (Mn): 101000
Weight average molecular weight (Mw): 216000
Molecular weight distribution (Mw / Mn): 2.14

また、このポリイミドは、N,N‐ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、1,3‐ジメチル‐2‐イミダゾリドンに室温で溶解し、テトラヒドロフラン、1,4‐ジオキサンに加熱溶解し、クロロホルムには不溶であった。   This polyimide is dissolved in N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidone at room temperature, dissolved in tetrahydrofuran and 1,4-dioxane, and dissolved in chloroform. Was insoluble.

このポリイミドのN‐メチル‐2‐ピロリドン溶液をガラス板上に流延し、100℃で1時間、200℃で1時間、300℃で1時間減圧乾燥して、黄色で透明なポリイミドフィルムを作製した。このフィルムの赤外吸収スペクトルと元素分析の結果からポリイミドフィルムであることを確認した。   This polyimide N-methyl-2-pyrrolidone solution is cast on a glass plate and dried under reduced pressure at 100 ° C for 1 hour, 200 ° C for 1 hour, and 300 ° C for 1 hour to produce a yellow transparent polyimide film. did. The film was confirmed to be a polyimide film from the results of infrared absorption spectrum and elemental analysis.

このポリイミドフィルムの特性を以下に示す。
(1)赤外吸収スペクトル:1780cm−1(イミド結合)、1727cm−1(イミド結合)、1377cm−1(イミド結合)
(2)元素分析[(C582917として計算]:
計算値 C,54.05%; H,2.27%; N,8.69%
実測値 C,53.79%; H,2.47%; N,8.88%
(3)ガラス転移温度:243℃(示差走査熱量測定)
(4)熱膨張係数:80ppm/℃(80℃〜150℃の温度範囲)
(5)熱分解温度(熱重量測定)
5%重量減少温度:420℃(空気中)、410℃(窒素中)
10%重量減少温度:440℃(空気中)、430℃(窒素中)
(6)引張試験
引張強度:93MPa
破断時の伸び:5%
引張弾性率:4.3MPa
(7)水の接触角:103度
The characteristics of this polyimide film are shown below.
(1) Infrared absorption spectrum: 1780 cm -1 (imide bond), 1727 cm -1 (imide bond), 1377 cm -1 (imide bond)
(2) Elemental analysis [(C 58 H 29 F 17 N 8 O 8 ) calculated as n ]:
Calculated C, 54.05%; H, 2.27%; N, 8.69%
Found C, 53.79%; H, 2.47%; N, 8.88%
(3) Glass transition temperature: 243 ° C. (differential scanning calorimetry)
(4) Thermal expansion coefficient: 80 ppm / ° C. (temperature range of 80 ° C. to 150 ° C.)
(5) Thermal decomposition temperature (thermogravimetric measurement)
5% weight loss temperature: 420 ° C. (in air), 410 ° C. (in nitrogen)
10% weight loss temperature: 440 ° C (in air), 430 ° C (in nitrogen)
(6) Tensile test Tensile strength: 93 MPa
Elongation at break: 5%
Tensile modulus: 4.3 MPa
(7) Water contact angle: 103 degrees

このポリイミドフィルムは、N,N‐ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、1,3‐ジメチル‐2‐イミダゾリドンに膨潤し、テトラヒドロフラン、1,4‐ジオキサン、クロロホルムに不溶であった。   This polyimide film swelled in N, N-dimethylformamide, N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidone and was insoluble in tetrahydrofuran, 1,4-dioxane and chloroform.

本発明の実施例8では、上記本発明の実施例2および4で製造した含フッ素ポリイミド樹脂について、プライマーまたはバインダー(下地処理層または接着剤)として用いたときの、塗膜そのものの撥水性、耐熱性、耐久性および耐薬品性を調査した。本発明例の試験体は、表5に示す2種類の含フッ素ポリイミド樹脂である。これら2種類の含フッ素ポリイミド樹脂は、上述のように、N,N‐ジメチルホルムアミド(DMF)、N‐メチル‐2‐ピロリドン(NMP)、1,3‐ジメチル‐2‐イミダゾリドン(DMI)、テトラヒドロフラン(THF)、1,4‐ジオキサン、クロロホルム(CHCl)に室温で溶解したものである。 In Example 8 of the present invention, the water-repellent properties of the coating film itself when used as a primer or binder (undercoat layer or adhesive) for the fluorine-containing polyimide resins produced in Examples 2 and 4 of the present invention, The heat resistance, durability and chemical resistance were investigated. The specimens of the examples of the present invention are two types of fluorine-containing polyimide resins shown in Table 5. These two types of fluorine-containing polyimide resins are N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidone (DMI), tetrahydrofuran as described above. (THF), 1,4-dioxane, chloroform (CHCl 3 ) dissolved at room temperature.

Figure 2006307112
Figure 2006307112

芳香族テトラカルボン酸二無水物として、実施例2では4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)を用い、実施例4では4,4’−オキシジフタル酸二無水物(ODPA)を用いている。これら2種類の含フッ素ポリイミド樹脂の製造においては、芳香族ジアミンにHFBAPPを用い、そのHFBAPPのシリル化剤にN,O−ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)を用いた。上記シリル化された芳香族ジアミンに、芳香族テトラカルボン酸二無水物とともに加えるモノマー成分には6−(4−ペルフルオロノネニルオキシアニリノ)−1,3,5−トリアジン−2,4−ジクロリドを用いた。また、実施例2において製造した含フッ素ポリイミド樹脂をHFBAPP/6FDAと、また実施例4において製造した含フッ素ポリイミド樹脂をHFBAPP/ODPAと、それぞれ略記する。これら2種の樹脂の基本物性値である、ガラス転移温度Tg(DSC:示差走査熱量測定による)、5%重量減の温度Td5(空気中または窒素ガス中)、線膨張係数CTEは、実施例2および4においてすでに示したが、表5に再掲する。 As an aromatic tetracarboxylic dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was used in Example 2, and 4,4′-oxydiphthalic dianhydride was used in Example 4. (ODPA) is used. In the production of these two types of fluorine-containing polyimide resins, HFBAPP was used as the aromatic diamine, and N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) was used as the silylating agent for HFBAPP. The monomer component added to the silylated aromatic diamine together with the aromatic tetracarboxylic dianhydride is 6- (4-perfluorononenyloxyanilino) -1,3,5-triazine-2,4-dichloride. Was used. Further, the fluorine-containing polyimide resin produced in Example 2 is abbreviated as HFBAPP / 6FDA, and the fluorine-containing polyimide resin produced in Example 4 is abbreviated as HFBAPP / ODPA. The basic physical properties of these two resins, glass transition temperature Tg (DSC: by differential scanning calorimetry), 5% weight loss temperature Td 5 (in air or nitrogen gas), linear expansion coefficient CTE As already shown in Examples 2 and 4, it is reproduced in Table 5.

表6に施工条件を示す。被コート基体としてはステンレス鋼板SUS304を用い、そのSUS304板にブラスト処理を施し、その上に上記2種類の含フッ素ポリイミド樹脂フィルムを配して、表6に示す条件で加熱した。被コート基体はどのような材料でもよく、たとえば金属、セラミックスでもよい。金属の場合、たとえばステンレス鋼を含む各種鋼材、アルミニウムなどを対象にすることができる。   Table 6 shows the construction conditions. A stainless steel plate SUS304 was used as the substrate to be coated, the SUS304 plate was blasted, the two types of fluorine-containing polyimide resin films were placed thereon, and heated under the conditions shown in Table 6. The substrate to be coated may be any material, for example, metal or ceramic. In the case of a metal, for example, various steel materials including stainless steel, aluminum and the like can be targeted.

Figure 2006307112
Figure 2006307112

上記の試験体を用いて、水の接触角、碁盤目試験(JISK6894)および描画試験(JISK6894)を行った。結果は表7に示すとおりであった。なお、表7に示す比較例は、ポリイミドディスパーション、低温硬化タイプポリイミドおよびシリコーン変性ポリイミドの3種類である。   A contact angle of water, a cross-cut test (JISK6894), and a drawing test (JISK6894) were performed using the above test specimens. The results were as shown in Table 7. In addition, the comparative example shown in Table 7 is three types, a polyimide dispersion, a low temperature curing type polyimide, and a silicone modified polyimide.

Figure 2006307112
Figure 2006307112

表7によれば、本発明例の2種類の含フッ素ポリイミド樹脂は、水との接触角が90°以上あり、シリコーン変性ポリイミド樹脂より撥水性が高いことが判明した。また、ポリイミドディスパーションおよび低温硬化タイプポリイミドに比較して、歴然と表面エネルギーが低いことがわかる。   According to Table 7, it was found that the two types of fluorine-containing polyimide resins of the examples of the present invention had a contact angle with water of 90 ° or more and higher water repellency than the silicone-modified polyimide resin. It can also be seen that the surface energy is clearly lower than that of polyimide dispersion and low-temperature curing type polyimide.

また、本発明例は、碁盤目試験においていずれも100/100(試験後に密着していた桝目の数/切込みを入れた桝目の数(JISK6894))を得ることができた。また、本発明例は、描画試験ではいずれも、上記JISK6894に規定する最高点である5点を得ることができた。一方、比較例のポリイミドディスパーションは、碁盤目試験および描画試験では、本発明例と比べて遜色ない結果が得られたものの、低温硬化タイプポリイミドでは、碁盤目試験結果は0/100であり、また描画試験結果は3点であり、大きく劣化している。シリコーン変性ポリイミドについては碁盤目試験および描画試験ともに本発明例と遜色ない結果が得られた。   In addition, each of the inventive examples was able to obtain 100/100 (number of squares in close contact after the test / number of squares with cuts (JIS K6894)) in the cross-cut test. In addition, in the examples of the present invention, in the drawing test, it was possible to obtain 5 points which are the highest points specified in the above JISK6894. On the other hand, in the polyimide dispersion of the comparative example, in the cross-cut test and the drawing test, a result comparable to that of the present invention example was obtained, but in the low-temperature curing type polyimide, the cross-cut test result is 0/100, In addition, the drawing test result is 3 points, which is greatly deteriorated. As for the silicone-modified polyimide, results similar to those of the examples of the present invention were obtained in both the cross-cut test and the drawing test.

また、耐薬品テストを行った結果を表8に示す。薬品としては、NMP(N−メチル−2−ピロリドン)および15体積%次亜塩素酸ナトリウム水溶液(キッチンハイター)を用い、これら薬品に試験体を浸漬後に、碁盤目試験(JISK6894)を行った。   Table 8 shows the results of the chemical resistance test. As the chemicals, NMP (N-methyl-2-pyrrolidone) and 15% by volume sodium hypochlorite aqueous solution (Kitchen Hiter) were used, and after immersing the test specimens in these chemicals, a cross-cut test (JISK6894) was performed.

Figure 2006307112
Figure 2006307112

表8によれば、比較例のポリイミドディスパーションは、NMP浸漬後の碁盤目試験で100/100の良好な結果を得ることができたが、15体積%次亜塩素酸ナトリウム水溶液には完全に溶解した。また、低温硬化タイプポリイミドではNMP浸漬において激しい膨潤が生じ、15体積%次亜塩素酸ナトリウム水溶液浸漬ではやや軟化が生じ、いずれの薬液浸漬後も碁盤目試験は試験不能であった。これに対して、本発明例では、HFBAPP/ODPAでやや脱色が生じ、HFBAPP/6FDAでは15体積%次亜塩素酸ナトリウム水溶液に浸漬後にブリスターが数個認められる場合もあるが、問題はなかった。そのあと行った碁盤目試験では、本発明例の2種類はともに、NMPおよび15体積%次亜塩素酸ナトリウム水溶液に対して、十分な耐剥離性があることを証明した。   According to Table 8, the polyimide dispersion of the comparative example was able to obtain a 100/100 good result in the cross cut test after NMP immersion, but it was completely in the 15 volume% sodium hypochlorite aqueous solution. Dissolved. Moreover, in the low temperature curing type polyimide, severe swelling occurred in the NMP immersion, and softening occurred slightly in the 15 volume% sodium hypochlorite aqueous solution immersion, and the cross-cut test was impossible after any chemical solution immersion. On the other hand, in the example of the present invention, decoloration occurred slightly in HFBAPP / ODPA, and in HFBAPP / 6FDA, several blisters were sometimes observed after being immersed in a 15% by volume sodium hypochlorite aqueous solution, but there was no problem. . Subsequent cross-cut testing demonstrated that both of the inventive examples had sufficient peel resistance against NMP and 15% by volume sodium hypochlorite aqueous solution.

上記のHFBAPP/ODPAおよびHFBAPP/6FDAはフッ素原子を含有するので、本来、ほかのフッ素樹脂との接着性は高い。したがって、本発明の実施例8により、上記2種類の含フッ素ポリイミド樹脂のフィルムは、金属等の被コート基材の上に、フッ素樹脂コーティングの下地処理層として非常に有効であることが検証された。   Since the above HFBAPP / ODPA and HFBAPP / 6FDA contain a fluorine atom, the adhesiveness with other fluororesins is high. Therefore, according to Example 8 of the present invention, it was verified that the above-mentioned two types of fluorine-containing polyimide resin films are very effective as a base treatment layer for fluororesin coating on a substrate to be coated such as metal. It was.

本発明の実施例9では、上記の含フッ素ポイミド樹脂とフッ素樹脂とを含むプライマーを用いて、SUS304ステンレス鋼板にフッ素樹脂被覆を行った例を説明する。まず、SUS304ステンレス鋼板に静電粉体塗装により、上記の含フッ素ポイミド樹脂とフッ素樹脂とを含むプライマーを塗装した。含フッ素ポイミド樹脂に混合するフッ素樹脂としてはPFA(ペルフルオロアルコキシ)樹脂のACX-30(ダイキン工業株式会社製)を用いた。次いで公知の方法により、フッ素樹脂層を焼成する工程を数回繰り返し、603μm〜627μmの厚みの被膜を得た。上記のようにステンレス鋼板にフッ素樹脂被覆した複合板をパネルと呼ぶこととする。   In Example 9 of the present invention, an example in which a SUS304 stainless steel plate is coated with a fluororesin using a primer containing the above-described fluorine-containing polyimide resin and fluororesin will be described. First, the primer containing said fluorine-containing polyimide resin and fluororesin was apply | coated to the SUS304 stainless steel plate by electrostatic powder coating. As the fluororesin mixed with the fluoropolyimide resin, PFA (perfluoroalkoxy) resin ACX-30 (manufactured by Daikin Industries, Ltd.) was used. Next, the step of firing the fluororesin layer was repeated several times by a known method to obtain a film having a thickness of 603 μm to 627 μm. A composite plate in which a stainless steel plate is coated with a fluororesin as described above is called a panel.

上記パネルにおけるフッ素樹脂被覆層の密着力を測定した結果を表9に示す。表9によれば、プライマーにHFBAPP/ODPAの含フッ素ポリイミド樹脂を用いた場合、いずれの配合比においても十分な密着力を得ることができなかった。これに対して、プライマーにHFBAPP/6FDAの含フッ素ポリイミド樹脂を用いた場合、どの配合比でも十分な初期密着力を得ることができた。なお、皮膜破断とは、皮膜強度>密着力、を示しており、皮膜破断と判定されたものは、上記の場合、HFBAPP/6FDAの配合比が4:6〜9:1の範囲で、1.76kgf/5mm以上の密着力を有している。   Table 9 shows the results of measuring the adhesion of the fluororesin coating layer in the panel. According to Table 9, when HFBAPP / ODPA fluorine-containing polyimide resin was used as a primer, sufficient adhesion could not be obtained at any compounding ratio. On the other hand, when the fluorine-containing polyimide resin of HFBAPP / 6FDA was used as the primer, sufficient initial adhesion could be obtained at any compounding ratio. The film rupture indicates film strength> adhesive strength. In the above case, the film rupture is determined to be 1 in the range of HBAPP / 6FDA in the range of 4: 6 to 9: 1. .76kgf / 5mm or more.

Figure 2006307112
Figure 2006307112

より高い密着力を得るためのプライマーの配合比(フッ素樹脂と上記含フッ素ポリイミド樹脂との比)を調査するために、パネルを蒸気滅菌器に143℃/60minの条件でさらした。その結果、ACX-30:(HFBAPP/6FDA)が6:4の配合比の場合、高い密着力を保持することが判明した。本発明例として上記配合比6:4にて薬剤への浸透試験を行うこととした。TG/DTA(示差熱熱量同時測定装置)を用いて、上記表9の密着力測定の試験体(パネル)を得たのと同様の施工条件下で作製した試験体について測定を行い、重量減少および熱量変化の挙動を調査した。上記TG/DTAによる測定結果によれば、微量ながら重量減少が続いているが、急激な重量減少が認められず、耐熱性は十分あり、また初期密着力が十分なことから、浸透試験に検討を進めた。比較例には、PPS(ポリフェニレンサルファイド)樹脂とPFA樹脂ACX-30との混合系プライマーを選定した。PPS樹脂としては、W-220F(呉羽化学工業株式会社製)を用いた。   The panel was exposed to a steam sterilizer at a temperature of 143 ° C./60 min in order to investigate the blending ratio of the primer for obtaining higher adhesion (ratio of fluororesin to the above-mentioned fluorine-containing polyimide resin). As a result, it was found that when the ACX-30: (HFBAPP / 6FDA) has a blending ratio of 6: 4, high adhesion is maintained. As an example of the present invention, the penetration test into the drug was conducted at the above-mentioned mixing ratio of 6: 4. Using a TG / DTA (differential calorific value simultaneous measurement device), the test specimen prepared under the same construction conditions as the test specimen (panel) for measuring the adhesion force shown in Table 9 was measured, and the weight was reduced. And the behavior of calorie change was investigated. According to the above TG / DTA measurement results, the weight continues to decrease in a small amount, but no rapid weight loss is observed, heat resistance is sufficient, and initial adhesion is sufficient. Advanced. For the comparative example, a mixed system primer of PPS (polyphenylene sulfide) resin and PFA resin ACX-30 was selected. As the PPS resin, W-220F (manufactured by Kureha Chemical Industry Co., Ltd.) was used.

浸透試験は、樹脂ライニングの耐食性試験で一般的に用いられているライニングテスタ(株式会社山崎精機研究所製)を用いて行った。本ライニングテスタでは、ライニング被膜の耐薬品性や耐浸透性を卓上で試験するに際し、実機の使用条件を想定した薬液、温度、温度勾配等の条件を設定でき、耐食劣化に関連する経時的な薬液や水分の浸透拡散度合いを調べることができる。密着力測定したパネルと同様の施工条件にてフッ素樹脂被覆を行ったパネルを試験体とした。薬剤を60〜70%充填し、水平配置した耐熱ガラス製の円筒セルの両端に、上記パネルを円筒セルを塞ぐように取り付け、所定の温度で薬剤の液相と気相とに暴露して所定の試験時間を経過させた。   The penetration test was performed using a lining tester (manufactured by Yamazaki Seiki Laboratory Co., Ltd.) generally used in a corrosion resistance test for resin lining. In this lining tester, when testing the chemical resistance and penetration resistance of the lining film on the table, conditions such as chemical solution, temperature, temperature gradient, etc. assuming the use conditions of the actual machine can be set, and over time related to corrosion resistance deterioration The degree of permeation and diffusion of chemicals and water can be examined. A panel coated with fluororesin under the same construction conditions as the panel for which adhesion was measured was used as a test specimen. The panel is attached to both ends of a heat-resistant cylindrical glass cell horizontally filled with 60 to 70% of the drug so as to close the cylindrical cell, and exposed to the liquid phase and gas phase of the drug at a predetermined temperature. The test time was passed.

浸透試験の結果を示す表10によれば、本発明例Aでは、128.5hまで異常は認められず、216h10min経過時点で液相浸漬部に細かいブリスターを複数認めた。これに対して、比較例Bでは、128.5h時点で気液両相にて直径3mm程度のブリスターが生じた。また、216h10min経過時点では、これらブリスターは大きくなり、また新たなブリスターの発生を認めた。   According to Table 10 showing the results of the penetration test, in Example A of the present invention, no abnormality was observed up to 128.5 h, and a plurality of fine blisters were observed in the liquid phase immersion portion when 216 h10 min had elapsed. On the other hand, in Comparative Example B, blisters having a diameter of about 3 mm were generated in both gas-liquid phases at 128.5 h. Moreover, when 216h10min passed, these blisters became large and generation | occurrence | production of a new blister was recognized.

Figure 2006307112
Figure 2006307112

また、図1は、本発明例Aのパネルの浸透試験後の状態およびその状態での破壊検査による密着力分布を示す図である。パネル1は、パネル取付孔2を挿通するねじ等の止め具により、浸透試験装置の円筒セルを塞ぐように取り付けられて試験に供され、薬剤の気相および液相に、円状の円筒セル当接部3の内側において接していた。図1において、直径2mm程度のブリスターが液相と接触した部分に発生しているが、1箇所で密着力が消失しただけで、他の箇所では0.07kgf/5mm以上の密着力を保持していた。また、図2は、比較例Bのパネルの浸透試験後の状態およびその状態での破壊検査による密着力分布を示す図である。参照符号の意味は、図1と同じである。図2によれば、直径7mm程度の大サイズのブリスターが液相または気相と接触した部分に発生し、また多くの箇所で密着力が消失していた。   FIG. 1 is a view showing a state of the panel of Example A of the present invention after the penetration test and an adhesion distribution by a destructive inspection in that state. The panel 1 is attached to a cylindrical cell of the penetrating test apparatus with a stopper such as a screw inserted through the panel mounting hole 2 and used for the test. A circular cylindrical cell is used for the gas phase and liquid phase of the drug. The contact was made inside the contact part 3. In FIG. 1, a blister having a diameter of about 2 mm is generated at a portion in contact with the liquid phase, but the adhesion force disappears at one location, and the adhesion strength at 0.07 kgf / 5 mm or more is maintained at the other location. It was. Moreover, FIG. 2 is a figure which shows the state after the penetration test of the panel of the comparative example B, and adhesion distribution by the destructive inspection in the state. The meaning of the reference numerals is the same as in FIG. According to FIG. 2, a large blister having a diameter of about 7 mm was generated in a portion in contact with the liquid phase or the gas phase, and the adhesion was lost in many places.

その毒性のために使用廃止の傾向がある六価クロムを含むプライマーの薬剤浸透試験では、概ね200h〜250h経過時点で直径2mm程度のブリスターが発生することを考慮すると、本発明例Aにおけるプライマーは、六価クロム含有プライマーの代替品として大きな可能性を有する。   In the drug penetration test of a primer containing hexavalent chromium that tends to be abolished due to its toxicity, the primer in Example A of the present invention is considered in consideration that blisters having a diameter of about 2 mm are generated at about 200 to 250 hours. It has great potential as an alternative to hexavalent chromium-containing primers.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明に係る含フッ素ポリイミド樹脂は、被コート基材にフッ素樹脂等を被覆する場合に、耐熱性、耐薬品性、撥水性、機械強度、耐久性および接着性を兼ね備えたプライマーまたはバインダーとして下地処理層に用いることができるので、この分野で大きく貢献することが期待される。   The fluorine-containing polyimide resin according to the present invention is a primer or binder having heat resistance, chemical resistance, water repellency, mechanical strength, durability, and adhesiveness when a coated substrate is coated with a fluorine resin or the like. Since it can be used for the treatment layer, it is expected to contribute greatly in this field.

本発明例Aのパネルの浸透試験後の状態およびその状態での破壊検査による密着力分布を示す図である。It is a figure which shows the state after the penetration test of the panel of the example A of this invention, and adhesion distribution by the destructive inspection in the state. 比較例Bのパネルの浸透試験後の状態およびその状態での破壊検査による密着力分布を示す図である。It is a figure which shows the state after the penetration test of the panel of the comparative example B, and adhesion distribution by the destructive inspection in the state.

符号の説明Explanation of symbols

1 パネル、2 パネル取付孔、3 円筒セル当接部。   1 panel, 2 panel mounting hole, 3 cylindrical cell contact part.

Claims (5)

一般式(1)
Figure 2006307112
(式中、Rはペルフルオロアルケニル基またはペルフルオロアルキル基を示し、Arは二価の芳香族残基を示し、Ar’は四価の芳香族残基を示し、nは10〜200の整数を示す。)で表される、含フッ素ポリイミド樹脂。
General formula (1)
Figure 2006307112
(In the formula, R represents a perfluoroalkenyl group or a perfluoroalkyl group, Ar represents a divalent aromatic residue, Ar ′ represents a tetravalent aromatic residue, and n represents an integer of 10 to 200. )), A fluorine-containing polyimide resin.
一般式(2)の、HN−Ar−NH(2)(Arは前記と同じ。)で表される芳香族ジアミンの一種または二種以上を一種または二種以上のシリル化剤でシリル化したものと、一般式(3)
Figure 2006307112
(式中、Xはハロゲン原子を示し、Rは前記に同じ。)で表されるトリアジン二ハロゲン化物の一種または二種以上と、一般式(4)
Figure 2006307112
(式中、Ar’は前記と同じ。)で表される芳香族テトラカルボン酸二無水物の一種または二種以上とを反応させて、一般式(1)
Figure 2006307112
(式中、R,Ar,Ar’,nは前記に同じ。)で表される樹脂を得る、含フッ素ポリイミド樹脂の製造方法。
One or two or more of the aromatic diamines represented by the general formula (2) represented by H 2 N—Ar—NH 2 (2) (Ar is the same as described above) are used as one or more silylating agents. Silylated compounds and general formula (3)
Figure 2006307112
(Wherein X represents a halogen atom and R is the same as above), one or more triazine dihalides represented by the general formula (4)
Figure 2006307112
(In the formula, Ar ′ is the same as described above) is reacted with one or more of the aromatic tetracarboxylic dianhydrides represented by the general formula (1)
Figure 2006307112
(Wherein R, Ar, Ar ′, n are the same as above), a method for producing a fluorine-containing polyimide resin.
一般式(2)の、HN−Ar−NH(2)で表される芳香族ジアミンの一種または二種以上を一種または二種以上のシリル化剤でシリル化したものと、一般式(3)
Figure 2006307112
(式中、X,Rは前記に同じ。)で表されるトリアジン二ハロゲン化物の一種または二種以上と、一般式(4)
Figure 2006307112
(式中、Ar’は前記と同じ。)で表される芳香族テトラカルボン酸二無水物の一種または二種以上とを反応させて得られる、含フッ素ポリイミド樹脂。
In the general formula (2), one or two or more of aromatic diamines represented by H 2 N—Ar—NH 2 (2) are silylated with one or two or more silylating agents, and the general formula (3)
Figure 2006307112
(Wherein X and R are the same as defined above) and one or more triazine dihalides represented by the general formula (4)
Figure 2006307112
(In the formula, Ar ′ is the same as described above) A fluorine-containing polyimide resin obtained by reacting with one or two or more of aromatic tetracarboxylic dianhydrides.
前記請求項1もしくは3の含フッ素ポリイミド樹脂、または請求項2の製造方法で製造された含フッ素ポリイミド樹脂の、一種または二種以上と、フッ素樹脂とを含む、プライマー。   A primer comprising one or more of the fluorine-containing polyimide resin according to claim 1 or 3 or the fluorine-containing polyimide resin produced by the production method according to claim 2 and a fluorine resin. 前記請求項1もしくは3の含フッ素ポリイミド樹脂、または請求項2の製造方法で製造された含フッ素ポリイミド樹脂の、一種または二種以上を、バインダーに用いて、被コート基材にコート樹脂を被覆する、樹脂被覆方法。   The coated substrate is coated with one or more of the fluorine-containing polyimide resin according to claim 1 or 3 or the fluorine-containing polyimide resin produced by the production method according to claim 2 as a binder. Resin coating method.
JP2005134400A 2005-05-02 2005-05-02 Fluorine-containing polyimide resin, production method thereof, primer, and resin coating method Active JP4719856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134400A JP4719856B2 (en) 2005-05-02 2005-05-02 Fluorine-containing polyimide resin, production method thereof, primer, and resin coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134400A JP4719856B2 (en) 2005-05-02 2005-05-02 Fluorine-containing polyimide resin, production method thereof, primer, and resin coating method

Publications (2)

Publication Number Publication Date
JP2006307112A true JP2006307112A (en) 2006-11-09
JP4719856B2 JP4719856B2 (en) 2011-07-06

Family

ID=37474359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134400A Active JP4719856B2 (en) 2005-05-02 2005-05-02 Fluorine-containing polyimide resin, production method thereof, primer, and resin coating method

Country Status (1)

Country Link
JP (1) JP4719856B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031102A (en) * 2008-07-28 2010-02-12 Iwate Univ Polyimide and method for manufacturing the same
WO2011099555A1 (en) * 2010-02-10 2011-08-18 宇部興産株式会社 Polyimide film, polyimide laminate comprising same, and polyimide/metal laminate comprising same
JP2014005228A (en) * 2012-06-22 2014-01-16 Iwate Univ Aromatic diamine compound and method of producing the same, and aromatic polyimide synthetic resin
JP2015017232A (en) * 2013-07-12 2015-01-29 株式会社日本触媒 Fluorine-containing polyimide resin composition for coating, and film and coating film obtained therefrom
WO2017094643A1 (en) * 2015-11-30 2017-06-08 日産化学工業株式会社 Triazine ring-containing polymer and film-forming composition containing same
JP2021064467A (en) * 2019-10-10 2021-04-22 東京応化工業株式会社 Manufacturing method of substrate for organic el panel, substrate for organic el panel and negative photosensitive resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177067A (en) * 1981-04-24 1982-10-30 Du Pont Mitsui Fluorochem Co Ltd Primer for fluororesin coating material
JPS61293227A (en) * 1985-06-21 1986-12-24 Chisso Corp Production of s-triazine ring-containing soluble polyimidesiloxane precursor
JPH0477583A (en) * 1990-07-13 1992-03-11 Hitachi Ltd Low-viscosity varnish and production of electronic device using the same
JPH07228838A (en) * 1994-02-15 1995-08-29 Hitachi Chem Co Ltd Fluorine-based coating agent
JPH0987385A (en) * 1995-09-19 1997-03-31 Neos Co Ltd Polyamine resin and its production
JPH10287745A (en) * 1997-04-16 1998-10-27 Otsuka Chem Co Ltd Fluorocarbon resin
JP2003053261A (en) * 2001-08-10 2003-02-25 Daikin Ind Ltd Method for producing fluororesin coating film, fluororesin coating film and processed article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177067A (en) * 1981-04-24 1982-10-30 Du Pont Mitsui Fluorochem Co Ltd Primer for fluororesin coating material
JPS61293227A (en) * 1985-06-21 1986-12-24 Chisso Corp Production of s-triazine ring-containing soluble polyimidesiloxane precursor
JPH0477583A (en) * 1990-07-13 1992-03-11 Hitachi Ltd Low-viscosity varnish and production of electronic device using the same
JPH07228838A (en) * 1994-02-15 1995-08-29 Hitachi Chem Co Ltd Fluorine-based coating agent
JPH0987385A (en) * 1995-09-19 1997-03-31 Neos Co Ltd Polyamine resin and its production
JPH10287745A (en) * 1997-04-16 1998-10-27 Otsuka Chem Co Ltd Fluorocarbon resin
JP2003053261A (en) * 2001-08-10 2003-02-25 Daikin Ind Ltd Method for producing fluororesin coating film, fluororesin coating film and processed article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OISHI,Y. ET AL: "Synthesis and properties of aromatic polyimides containing perfluoroalkenyl groups", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 18, no. 2, JPN6011000069, 2005, pages 341 - 344, ISSN: 0001820393 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031102A (en) * 2008-07-28 2010-02-12 Iwate Univ Polyimide and method for manufacturing the same
WO2011099555A1 (en) * 2010-02-10 2011-08-18 宇部興産株式会社 Polyimide film, polyimide laminate comprising same, and polyimide/metal laminate comprising same
JP2014111382A (en) * 2010-02-10 2014-06-19 Ube Ind Ltd Polyimide films, and polyimide laminate and polyimide/metal laminate thereof
JP5533890B2 (en) * 2010-02-10 2014-06-25 宇部興産株式会社 Polyimide film, and these polyimide laminates and polyimide metal laminates
TWI560212B (en) * 2010-02-10 2016-12-01 Ube Industries Polyimide films, and polyimide laminate and polyimide metal laminate using these films
JP2014005228A (en) * 2012-06-22 2014-01-16 Iwate Univ Aromatic diamine compound and method of producing the same, and aromatic polyimide synthetic resin
JP2015017232A (en) * 2013-07-12 2015-01-29 株式会社日本触媒 Fluorine-containing polyimide resin composition for coating, and film and coating film obtained therefrom
WO2017094643A1 (en) * 2015-11-30 2017-06-08 日産化学工業株式会社 Triazine ring-containing polymer and film-forming composition containing same
JPWO2017094643A1 (en) * 2015-11-30 2018-09-13 日産化学株式会社 Triazine ring-containing polymer and film-forming composition containing the same
JP7077622B2 (en) 2015-11-30 2022-05-31 日産化学株式会社 Triazine ring-containing polymer and a film-forming composition containing the same
JP2021064467A (en) * 2019-10-10 2021-04-22 東京応化工業株式会社 Manufacturing method of substrate for organic el panel, substrate for organic el panel and negative photosensitive resin composition

Also Published As

Publication number Publication date
JP4719856B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4719856B2 (en) Fluorine-containing polyimide resin, production method thereof, primer, and resin coating method
KR102529151B1 (en) Composition for preparing article including polyimide or poly(amide-imide) copolymer, article obtained therefrom, and display device including same
JP5727885B2 (en) Polyimide and polyimide film
CN107698759B (en) Polyimide, polyamic acid solution, and polyimide film
CN109897180B (en) Polyamide acid solution, transparent polyimide resin film using same, and transparent substrate
US20070270562A1 (en) Siloxane-modified hyperbranched polyimide
US20120190802A1 (en) Polyimide polymer from non-stoichiometric components
Farr Synthesis and characterization of novel polyimide gas-separation membrane material systems
EP0328027A2 (en) Novel soluble polyimidesiloxanes and methods for their preparation and use
TW201512345A (en) Polyimide precursor and polyimide
CN109153785B (en) High heat copolyimides, articles made therefrom, and methods of making copolyimide articles
CN110099946A (en) Transparent polyimide film
JPWO2019163703A1 (en) Polyimide precursor resin composition
JP7050382B2 (en) Polyimide film and its manufacturing method
JP4767931B2 (en) Flame retardant polyimide silicone resin composition
EP0456515A1 (en) Polyimides and thermosetting resin compositions containing the same
Tsay et al. Synthesis and properties of fluorinated polyamideimides with high solubility
WO2020141614A2 (en) Polyimide, polyamic acid, resin solution, coating agent, and polyimide film
JPH02255836A (en) New polyimidesiloxane,and its manufacture and use
JPS62185715A (en) Colorless polyimide film
EP0520236A2 (en) Polyimides based on 9-aryl-9(perfluoroalkyl)-xanthene-2,3,6,7-dianhydride or 9,9&#39;-bis(perfluoroalkyl)xanthene-2,3,6,7-dianhydride and benzidine derivatives
JP5941429B2 (en) Polyamic acid and polyimide
JP6638744B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
JP2553110B2 (en) Method for producing polyimide with good moldability
JPH06271673A (en) Siloxane-modified polyamide-imide resin and resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4719856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250