JP2006307007A - Method for producing aromatic polyester - Google Patents

Method for producing aromatic polyester Download PDF

Info

Publication number
JP2006307007A
JP2006307007A JP2005131388A JP2005131388A JP2006307007A JP 2006307007 A JP2006307007 A JP 2006307007A JP 2005131388 A JP2005131388 A JP 2005131388A JP 2005131388 A JP2005131388 A JP 2005131388A JP 2006307007 A JP2006307007 A JP 2006307007A
Authority
JP
Japan
Prior art keywords
condensation polymerization
polymerization tank
aromatic polyester
temperature
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005131388A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Matsumoto
辰彦 松本
Noriyuki Oka
典幸 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005131388A priority Critical patent/JP2006307007A/en
Publication of JP2006307007A publication Critical patent/JP2006307007A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aromatic polyester with which sticking materials sticking to a wall surface of a vapor-phase part of a polycondensation vessel are reduced and foreign materials in products can resultantly be reduced to simultaneously reduce both clogging frequency of a take-out nozzle of the polycondensation vessel and washing frequency of the polycondensation vessel in the method for producing the aromatic polyester by heating an acetylation reaction solution obtained by acetylating raw material monomers of the aromatic polyester with acetic anhydride and carrying out the polycondensation. <P>SOLUTION: The method for producing the aromatic polyester is characterized as follows. The temperature of the sidewall and upper lid in the vapor-phase part of the polycondensation vessel are heated to a temperature not lower than (liquid temperature in the polycondensation vessel-20°C) during heating and carrying out of the polycondensation reaction in the method for transferring the acetylation reaction solution obtained by acetylating the raw material monomers of the aromatic polyester with the acetic anhydride in an acetylation reaction vessel to the polycondensation vessel, heating the reaction solution and conducting the polycondensation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、芳香族ポリエステルの製造方法に関する。詳しくは縮重合によって芳香族ポリエステルを製造する際に、縮重合槽の気相部の内壁への付着物を低減させることができる芳香族ポリエステルの製造方法に関する。   The present invention relates to a method for producing an aromatic polyester. More specifically, the present invention relates to a method for producing an aromatic polyester capable of reducing deposits on the inner wall of a gas phase portion of a condensation polymerization tank when the aromatic polyester is produced by condensation polymerization.

芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類および芳香族ジオール類から選ばれる原料モノマー類を無水酢酸でアセチル化して得られる反応生成物を縮重合して芳香族ポリエステルを製造する方法は良く知られており、その際、縮重合槽から留出する低沸物には原料モノマー類あるいはアセチル化モノマー類等の低分子化合物が含まれる。
これら低分子化合物が留出することによって製品得量の低下、製品品質の変動、低分子化合物等の凝縮器への付着による閉塞につながるため、縮重合槽に分縮器を設置し、低沸物の回収量が理論量の50〜90%の間、分縮器から留出する低沸物の温度を80〜150℃に制御して低分子化合物等を回収する方法が提案されている(特許文献1参照。)。
A method for producing an aromatic polyester by polycondensing a reaction product obtained by acetylating a raw material monomer selected from aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids and aromatic diols with acetic anhydride is well known. In this case, the low-boiling product distilled from the condensation polymerization tank includes low-molecular compounds such as raw material monomers or acetylated monomers.
Distillation of these low molecular weight compounds leads to a decrease in product yield, product quality fluctuations, and clogging due to adhesion of low molecular weight compounds to the condenser. A method for recovering low molecular weight compounds and the like by controlling the temperature of the low boilers distilled from the partial condenser to 80 to 150 ° C. while the recovered amount of the product is 50 to 90% of the theoretical amount ( (See Patent Document 1).

しかしながら、特許文献1に記載の方法では、低分子化合物等の昇華物が縮重合槽の気相部の壁面に付着するのを防止できず、回分反応を重ねるうちに成長し、やがて反応溶液に脱落し、製品に混入する。付着物は熱履歴により着色、変質しているため、製品に混入すると異物になる。また、付着物の塊が脱落すると、縮重合槽の抜き出しノズルを閉塞させる。従って運転を停止して定期的な化学洗浄を実施しなければならず、生産性の低下につながっていた。
特開2000−212264号公報
However, in the method described in Patent Document 1, it is impossible to prevent sublimates such as low molecular compounds from adhering to the wall surface of the gas phase portion of the condensation polymerization tank, and it grows as the batch reaction is repeated, and eventually becomes a reaction solution. Drop off and mix in product. Since the adhering matter is colored or altered by the heat history, it becomes a foreign matter when mixed in the product. Moreover, when the lump of deposits falls off, the extraction nozzle of the condensation polymerization tank is closed. Therefore, the operation must be stopped and periodic chemical cleaning must be performed, leading to a reduction in productivity.
JP 2000-212264 A

本発明の目的は、芳香族ポリエステルの製造方法において、縮重合槽の気相部内壁への付着物を低減させ、製品の品質を向上させると同時に、縮重合槽の洗浄頻度を減少させることができる芳香族ポリエステルの製造方法を提供することにある。   An object of the present invention is to reduce deposits on the gas phase inner wall of a condensation polymerization tank in a method for producing an aromatic polyester, to improve product quality and at the same time to reduce the frequency of washing the condensation polymerization tank. The object is to provide a method for producing an aromatic polyester.

本発明者らは、かかる課題を解決するために、縮重合による芳香族ポリエステルの製造方法について鋭意検討した結果、縮重合槽の気相部壁面の温度を制御することによって、壁面への付着物を削減できることを見出し、本発明を完成した。   In order to solve such problems, the present inventors have intensively studied a method for producing an aromatic polyester by condensation polymerization. As a result, by controlling the temperature of the gas phase wall of the condensation polymerization tank, the deposits on the wall The present invention has been completed.

すなわち本発明は、芳香族ポリエステルの原料モノマー類と無水酢酸をアセチル化反応槽でアセチル化して得られるアセチル化反応溶液を、縮重合槽に移送し、加熱して縮重合させて芳香族ポリエステルを製造する方法において、加熱して縮重合反応を行う間、縮重合槽の気相部の側壁および上蓋の温度を、(縮重合槽内の液温−20℃)以上に加熱することを特徴とする芳香族ポリエステルの製造方法である。   That is, the present invention is to transfer an acetylation reaction solution obtained by acetylating aromatic polyester raw monomers and acetic anhydride in an acetylation reaction tank to a condensation polymerization tank, and subjecting the aromatic polyester to condensation polymerization by heating. In the production method, the temperature of the side wall and the upper lid of the gas phase portion of the condensation polymerization tank is heated to (the liquid temperature in the condensation polymerization tank −20 ° C.) or higher while the condensation polymerization reaction is performed by heating. This is a method for producing an aromatic polyester.

本発明によれば、芳香族ポリエステルの製造方法において、縮重合槽の気相部内壁への付着物を低減させ、付着物が製品中に混入して異物になることを防止し、品質を向上させるとともに、縮重合槽の洗浄頻度を下げることができるため、生産性の向上につながる。   According to the present invention, in the method for producing an aromatic polyester, the amount of deposits on the inner wall of the gas phase portion of the condensation polymerization tank is reduced, and the deposits are prevented from being mixed into the product to become foreign matters, thereby improving the quality. In addition, since the frequency of washing the condensation polymerization tank can be reduced, productivity is improved.

本発明において使用される芳香族ポリエステルの原料モノマー類としては、芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類および芳香族ジオール類が挙げられる。   Examples of the raw material monomers for the aromatic polyester used in the present invention include aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, and aromatic diols.

芳香族ヒドロキシカルボン酸類としては、例えば、下記一般式(1)、
HO−X−COOR1 (1)
(式中、R1は水素、炭素数1〜6のアルキル基または炭素数6〜16のアリール基を表し、Xは2価の芳香族基を表す。)で示されるものが挙げられる。
As aromatic hydroxycarboxylic acids, for example, the following general formula (1),
HO-X-COOR 1 (1)
(Wherein R 1 represents hydrogen, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 16 carbon atoms, and X represents a divalent aromatic group).

芳香族キドロキシルカルボン酸類として具体的には、p−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸メチル、p−ヒドロキシ安息香酸プロピル、p−ヒドロキシ安息香酸フェニル、p−ヒドロキシ安息香酸ベンジル、p−(4−ヒドロキシフェニル)安息香酸、p−(4−ヒドロキシフェニル)安息香酸メチル、2−ヒドロキシ−6−ナフトエ酸、2−ヒドロキシ−6−ナフトエ酸メチルおよび2−ヒドロキシ−6−ナフトエ酸フェニル等が例示される。中でもp−ヒドロキシ安息香酸、2−ヒドロキシ−6−ナフトエ酸等が好適である。   Specific examples of the aromatic hydroxyloxycarboxylic acids include p-hydroxybenzoic acid, p-hydroxybenzoic acid methyl, p-hydroxybenzoic acid propyl, p-hydroxybenzoic acid phenyl, p-hydroxybenzoic acid benzyl, p- (4 -Hydroxyphenyl) benzoic acid, methyl p- (4-hydroxyphenyl) benzoate, 2-hydroxy-6-naphthoic acid, methyl 2-hydroxy-6-naphthoate and phenyl 2-hydroxy-6-naphthoate Is done. Of these, p-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid and the like are preferable.

芳香族ジカルボン酸類としては、例えば、下記一般式(2)、
2−O−CO−Y−CO−O−R2 (2)
(式中、R2は水素、炭素数1〜6のアルキル基または炭素数6〜16のアリール基または炭素数6〜16のアリール基を表し、Yは2価の芳香族基を表す。)で示されるものが挙げられる。
As aromatic dicarboxylic acids, for example, the following general formula (2),
R 2 —O—CO—Y—CO—O—R 2 (2)
(Wherein R 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms, and Y represents a divalent aromatic group.) The thing shown by is mentioned.

この芳香族ジカルボン酸類として具体的には、テレフタル酸、イソフタル酸、4,4’−ジカルボキシジフェニル、1,2−ビス(4−カルボキシフェノキシ)エタン、2,5−ジカルボキシナフタレン、2,6−カルボキシナフタレン、1,4−ジカルボキシナフタレン、1,5−ジカルボキシナフタレン、テレフタル酸ジメチル、イソフタル酸ジメチル、テレフタル酸ジフェニル、イソフタル酸ジフェニル、4,4’−ジメトキシカルボニルジフェニル、2,6−ジメトキシカルボニルナフタレン、1,4−ジクロロカルボニルナフタレンおよび1,5−ジフェノキシカルボニルナフタレン等が例示される。中でも、テレフタル酸、イソフタル酸および2,6−ジカルボキシナフタレン等が好適である。   Specific examples of the aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 4,4′-dicarboxydiphenyl, 1,2-bis (4-carboxyphenoxy) ethane, 2,5-dicarboxynaphthalene, 2,6 -Carboxynaphthalene, 1,4-dicarboxynaphthalene, 1,5-dicarboxynaphthalene, dimethyl terephthalate, dimethyl isophthalate, diphenyl terephthalate, diphenyl isophthalate, 4,4'-dimethoxycarbonyldiphenyl, 2,6-dimethoxy Examples thereof include carbonylnaphthalene, 1,4-dichlorocarbonylnaphthalene and 1,5-diphenoxycarbonylnaphthalene. Of these, terephthalic acid, isophthalic acid, 2,6-dicarboxynaphthalene, and the like are preferable.

芳香族ジオール類としては、例えば、下記一般式(3)、
HO−Z−OH (3)
(式中、Zは2価の芳香族基を表す。)で示されるものが挙げられる。
As aromatic diols, for example, the following general formula (3),
HO-Z-OH (3)
(Wherein Z represents a divalent aromatic group).

この芳香族ジオール類として具体的には、ヒドロキノン、レゾルシン、カテコール、4,4’−ジヒドロキシジフェニル、4,4’−ヒドロキシベンゾフェノン、4,4’−ジヒドロキシジフェニルメタン、4,4’−ジヒドロキシジフェニルエタン、4,4’−ジヒドロキシジフェニルエーテル、2,2−ビス(4−ヒドロキシフェニル)プロパン、4,4’−ヒドロキシジフェニルスルフォン、4,4’−ジヒドロキシジフェニルスルフィド、2,6−ジヒドロキシナフタレンおよび1,5−ヒドロキシナフタレン等が例示される。中でも、ヒドロキノン、レゾルシン、4,4’−ジヒドロキシジフェニル、2,2−ビス(4−ヒドロキシフェニル)プロパンおよび4,4’−ジヒドロキシジフェニルスルフォン等が好適である。   Specific examples of the aromatic diols include hydroquinone, resorcin, catechol, 4,4′-dihydroxydiphenyl, 4,4′-hydroxybenzophenone, 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylethane, 4,4'-dihydroxydiphenyl ether, 2,2-bis (4-hydroxyphenyl) propane, 4,4'-hydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, 2,6-dihydroxynaphthalene and 1,5- Examples thereof include hydroxynaphthalene. Of these, hydroquinone, resorcin, 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 4,4'-dihydroxydiphenylsulfone, and the like are preferable.

芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類および芳香族ジオール類の使用比率は特に限定されないが、芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類及び芳香族ジオール類の合計100モルに対して、通常、芳香族ヒドロキシカルボン酸類が30〜80モル、芳香族ジカルボン酸類が10〜35モル、芳香族ジオール類が10〜35モルの範囲から選ばれる。   The use ratio of the aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids and aromatic diols is not particularly limited, but the aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids and aromatic diols are usually added to a total of 100 moles. An aromatic hydroxycarboxylic acid is selected in the range of 30 to 80 mol, an aromatic dicarboxylic acid in an amount of 10 to 35 mol, and an aromatic diol in an amount of 10 to 35 mol.

図1は本発明で使用する装置の一例の概略図である。アセチル化反応槽1に芳香族ポリエステルの原料モノマー類と無水酢酸を供給し、加熱、還流下にアセチル化反応を行う。アセチル化して得られるアセチル化反応溶液を移送管3を経て縮重合槽2に移送し、ジャケット10で加熱して縮重合させる。縮重合反応中、縮重合槽から留出する低沸物の大半は、分縮器4を経由して凝縮器5にて冷却・凝縮されて凝縮液8が回収され、低沸物に含まれる低分子化合物等は、殆ど分縮器で凝縮されて縮重合槽に回収され、凝縮器から未凝縮ガス9が排出される。縮重合槽の気相部の側壁および上蓋には加熱・冷却手段が取り付けられており、アセチル化反応溶液の受け入れ時には冷却され、加熱して縮重合する間は加熱される。縮重合反応終了後、縮重合槽2から芳香族ポリエステル7が抜き出される。
なお、縮重合槽の気相部の側壁および上蓋は、縮重合槽の上部で、ジャケットで覆われていない部分である。
FIG. 1 is a schematic view of an example of an apparatus used in the present invention. Aromatic polyester raw material monomers and acetic anhydride are supplied to the acetylation reaction tank 1, and an acetylation reaction is carried out under heating and reflux. The acetylation reaction solution obtained by acetylation is transferred to the condensation polymerization tank 2 through the transfer pipe 3 and heated by the jacket 10 for condensation polymerization. During the condensation polymerization reaction, most of the low-boiling substances distilled from the condensation polymerization tank are cooled and condensed by the condenser 5 via the partial condenser 4, and the condensate 8 is recovered and contained in the low-boiling substances. Most of the low molecular weight compounds are condensed in the partial condenser and collected in the condensation polymerization tank, and the uncondensed gas 9 is discharged from the condenser. Heating / cooling means are attached to the side wall and the upper lid of the gas phase portion of the condensation polymerization tank. The means is cooled when the acetylation reaction solution is received, and is heated during the condensation polymerization by heating. After completion of the condensation polymerization reaction, the aromatic polyester 7 is extracted from the condensation polymerization tank 2.
In addition, the side wall and upper cover of the gas phase part of the condensation polymerization tank are portions that are not covered with a jacket at the upper part of the condensation polymerization tank.

アセチル化反応は還流下に行われ、その温度および圧力は特に限定されないが、通常、常圧下、140〜150℃で実施される。アセチル化反応は、還流が開始してから、0.5〜5時間実施される。アセチル化して得られるアセチル化反応溶液には、通常、未反応原料モノマー類、アセチル化反応生成物、酢酸および未反応の無水酢酸等が含まれる。
アセチル化反応槽の材質は、上記アセチル化反応溶液に耐腐食性があることが好ましく、通常、GL製等が用いられる。
The acetylation reaction is carried out under reflux, and the temperature and pressure are not particularly limited, but are usually carried out at 140 to 150 ° C. under normal pressure. The acetylation reaction is carried out for 0.5 to 5 hours after the start of reflux. The acetylation reaction solution obtained by acetylation usually contains unreacted raw material monomers, acetylation reaction products, acetic acid, unreacted acetic anhydride, and the like.
As the material for the acetylation reaction tank, the acetylation reaction solution preferably has corrosion resistance, and GL or the like is usually used.

アセチル化反応溶液は、縮重合槽に移送され、加熱され縮重合反応が行なわれる。
本発明においては、アセチル化反応溶液には、予め一部の原料モノマー類がアセチル化された原料モノマー類を、溶媒として酢酸に溶解した溶液であってもよい。
アセチル化された原料モノマー類として、例えば、p−アセトキシ安息香酸や4,4’−ジアセトキシジフェニル等が挙げられる。
The acetylation reaction solution is transferred to a condensation polymerization tank and heated to carry out a condensation polymerization reaction.
In the present invention, the acetylation reaction solution may be a solution in which raw material monomers in which some raw material monomers are acetylated in advance are dissolved in acetic acid as a solvent.
Examples of the acetylated raw material monomers include p-acetoxybenzoic acid and 4,4′-diacetoxydiphenyl.

縮重合槽の材質はアセチル化反応溶液等に対して耐腐食性であることが好ましく、具体的にはSUS316、SUS316L、2相ステンレス、ニッケル−モリブデン系合金、不浸透黒鉛、チタン、ジルコニウム、GLおよびタンタル等が例示される。ニッケル−モリブデン系合金の具体例としては、ハステロイ−B(三菱マテリアル(株)登録商標)、ハステロイ−C(三菱マテリアル(株)登録商標)等が挙げられる。
縮重合槽およびその翼の形状は公知のものを使用すれば良く、具体的には、縦型の撹拌槽などの場合、多段のパドル翼、タービン翼、ダブルヘリカム翼、錨形翼、櫛形翼等が用いられる。
The material of the condensation polymerization tank is preferably resistant to corrosion with respect to the acetylation reaction solution. Specifically, SUS316, SUS316L, duplex stainless steel, nickel-molybdenum alloy, impervious graphite, titanium, zirconium, GL And tantalum and the like. Specific examples of the nickel-molybdenum-based alloy include Hastelloy-B (registered trademark of Mitsubishi Materials Corporation), Hastelloy-C (registered trademark of Mitsubishi Materials Corporation), and the like.
The condensation polymerization tank and its blade shape may be of a known type. Specifically, in the case of a vertical stirring tank, etc., multistage paddle blades, turbine blades, double helicam blades, saddle blades, comb blades, etc. Is used.

上記のとおり、アセチル化反応は140〜150℃で実施され、反応終了後、アセチル化反応溶液は、略そのままの温度で、アセチル化反応槽から縮重合槽へ移送される。移送中、縮重合槽に移送された反応溶液の温度が140℃〜250℃に維持されるように縮重合槽は加熱して行なわれる。   As described above, the acetylation reaction is performed at 140 to 150 ° C., and after completion of the reaction, the acetylation reaction solution is transferred from the acetylation reaction tank to the condensation polymerization tank at substantially the same temperature. During the transfer, the condensation polymerization tank is heated so that the temperature of the reaction solution transferred to the condensation polymerization tank is maintained at 140 ° C to 250 ° C.

アセチル化反応溶液を縮重合槽へ移送する間、縮重合槽の液面から低沸物の蒸気が発生する。低沸物の一部は縮重合槽の気相部壁面、すなわち側壁および上蓋表面で冷却され還流する。気相部壁面の温度を100℃以下、好ましくは80℃以下にすることによって、還流量を増加させ、前の回分反応で生成した内壁への付着物を洗浄するのが好ましい。   While the acetylation reaction solution is transferred to the condensation polymerization tank, low boiling point vapor is generated from the liquid surface of the condensation polymerization tank. A part of the low-boiling substances is cooled and refluxed on the wall surface of the gas phase portion of the condensation polymerization tank, that is, the side wall and the upper lid surface. By setting the temperature of the wall surface of the gas phase part to 100 ° C. or lower, preferably 80 ° C. or lower, it is preferable to increase the reflux amount and wash the deposits on the inner wall generated by the previous batch reaction.

縮重合反応は、通常、低沸物を留出させながら、常圧下、徐々に縮重合槽内の溶液を350℃まで昇温させて行う。芳香族ポリエステルの種類によっては、更に、引き続き同温度を維持したまま、0.5〜5時間程度保持する。
縮重合の溶液の最終温度が270℃未満で維持されると縮重合が遅くなる傾向にあり、350℃を越えて維持されると、得られた芳香族ポリエステルの分解などの副反応が生じる傾向にある。
The polycondensation reaction is usually carried out by gradually heating the solution in the polycondensation tank to 350 ° C. under normal pressure while distilling low boiling substances. Depending on the type of aromatic polyester, it is further maintained for about 0.5 to 5 hours while maintaining the same temperature.
If the final temperature of the polycondensation solution is maintained below 270 ° C., the polycondensation tends to be slow, and if maintained above 350 ° C., side reactions such as decomposition of the resulting aromatic polyester tend to occur. It is in.

縮重合槽から留出する低沸物には、低分子化合物、酢酸および未反応の無水酢酸等が挙げられる。低分子化合物とは、具体的には芳香族カルボン酸類等の原料モノマー類およびアセチル化されたモノマー類等の芳香族ポリエステルの構成成分である。また、他にも重合反応によって生じる水、アルコール類、フェノール類が含まれることもある。   Examples of the low boilers distilled from the condensation polymerization tank include low molecular weight compounds, acetic acid and unreacted acetic anhydride. The low molecular compound is specifically a constituent component of an aromatic polyester such as raw material monomers such as aromatic carboxylic acids and acetylated monomers. In addition, water, alcohols and phenols generated by the polymerization reaction may be included.

加熱して縮重合反応を行う間、縮重合槽の気相部の側壁および上蓋の温度が(縮重合槽内の液温−20℃)以上になるように加熱して行う。その温度は150℃〜350℃の範囲が好ましい。側壁および上蓋の温度が(縮重合槽内の液温−20℃)より低いと、低沸分の蒸気中に含まれる低分子化合物が気相部内壁表面で析出し、付着する。側壁および上蓋の温度が350℃を越える場合でも付着防止効果はあるが、熱源の種類に制約を受け、エネルギーコストも高くなるので、350℃以下で行うのが望ましい。   While conducting the condensation polymerization reaction by heating, the heating is carried out so that the temperature of the side wall and the upper lid of the gas phase portion of the condensation polymerization tank becomes equal to or higher than the liquid temperature in the condensation polymerization tank -20 ° C. The temperature is preferably in the range of 150 ° C to 350 ° C. When the temperature of the side wall and the upper lid is lower than (the liquid temperature in the condensation polymerization tank −20 ° C.), the low molecular weight compound contained in the low boiling point vapor is deposited on the inner wall surface of the gas phase portion and adheres. Even when the temperature of the side wall and the upper lid exceeds 350 ° C., there is an effect of preventing adhesion, but it is preferable to carry out at 350 ° C. or lower because it is restricted by the type of heat source and the energy cost increases.

アセチル化反応槽から縮重合槽へ移送する間は液温が低いため、低沸物は、ほぼ全て酢酸、無水酢酸であり、低分子化合物は含まれない。液温が上昇すると、低沸分中に含まれる低分子化合物の量が増加し、とりわけ240℃以上で著しく、気相部内壁表面に低分子化合物が多量に付着する。しかし側壁および上蓋の温度を(縮重合槽内の液温−20℃)以上の温度に加熱することによって付着を低減することができる。更に、側壁および上蓋の温度を縮重合槽から留出する低分子化合物の融点以上に加熱するのが好ましい。このことによって低分子化合物が溶融し、付着は起こり難い。縮重合反応中に付着し易い低分子化合物として、具体的には原料モノマー類のp−ヒドロキシ安息香酸(融点:216℃)、4,4−ジヒドロキシジフェニル(融点:280℃)、アセチル化されたモノマー類のp−アセトキシ安息香酸(融点:194℃)、4,4−ジアセトキシジフェニル(融点:160℃)等であり、側壁および上蓋の温度をこれらの融点以上、具体的には約300℃以上に加熱するのが好ましい。
なお、側壁および上蓋の温度を、縮重合槽内の溶液の温度上昇に合せて上昇さても良いし、予め高い温度にしておいても良い。
Since the liquid temperature is low during the transfer from the acetylation reaction tank to the condensation polymerization tank, the low boiling substances are almost all acetic acid and acetic anhydride, and low molecular compounds are not included. As the liquid temperature rises, the amount of low-molecular compounds contained in the low boiling point increases, particularly at 240 ° C. or higher, and a large amount of low-molecular compounds adhere to the inner wall surface of the gas phase. However, adhesion can be reduced by heating the temperature of the side wall and the upper lid to a temperature equal to or higher than (the liquid temperature in the condensation polymerization tank-20 ° C). Furthermore, it is preferable to heat the temperature of the side wall and the upper lid to be equal to or higher than the melting point of the low molecular weight compound distilled from the condensation polymerization tank. As a result, the low molecular weight compound melts and adhesion is unlikely to occur. Specific examples of the low molecular weight compound that easily adheres during the polycondensation reaction include p-hydroxybenzoic acid (melting point: 216 ° C.), 4,4-dihydroxydiphenyl (melting point: 280 ° C.), and acetylated monomers. Monomers such as p-acetoxybenzoic acid (melting point: 194 ° C.), 4,4-diacetoxydiphenyl (melting point: 160 ° C.) and the like, and the temperature of the side wall and the lid is above these melting points, specifically about 300 ° C. It is preferable to heat above.
In addition, the temperature of the side wall and the upper lid may be increased in accordance with the temperature increase of the solution in the condensation polymerization tank, or may be set to a high temperature in advance.

縮重合槽の側壁および上蓋の加熱・冷却手段としては、オイル、電気ヒーター、スチーム、水等を用いる。熱媒、冷媒が流れるチューブや電気ヒーターの伝熱管を外壁表面に金具等で固定する方法が一般的であるが、外壁をジャケット構造にする方法も有効である。チューブや伝熱管の上部は伝熱セメント、断熱材等で覆う。また、上蓋に付属のノズルについても同様にすれば、より好ましい。   Oil, an electric heater, steam, water, or the like is used as a heating / cooling means for the side wall and upper lid of the condensation polymerization tank. A method of fixing a tube through which a heat medium or refrigerant flows or a heat transfer tube of an electric heater to the outer wall surface with a metal fitting or the like is common, but a method of making the outer wall into a jacket structure is also effective. Cover the top of the tube or heat transfer tube with heat transfer cement, heat insulating material, etc. In addition, it is more preferable if the nozzle attached to the upper lid is similarly formed.

縮重合槽の側壁および上蓋の温度は、通常外壁表面に接触させた温度センサーで行う。
温度センサーの位置は、表面温度を代表する箇所に取り付ける。温度測定精度を上げるために複数設置するのが好ましい。
The temperature of the side wall and upper lid of the condensation polymerization tank is usually measured by a temperature sensor brought into contact with the outer wall surface.
The position of the temperature sensor is attached to a location that represents the surface temperature. It is preferable to install a plurality of them in order to increase the temperature measurement accuracy.

以下、本発明を実施例で更に具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these.

実施例1
図1に示す装置で芳香族ポリエステルの製造を行った。
p−ヒドロキシ安息香酸1,000kg(7,240モル)、4,4’−ジヒドロキシジフェニル435kg(2,336モル)、テレフタル酸300kg(1,806モル)、イソフタル酸100kg(602モル)および無水酢酸1347kg(13,194モル)を、櫂型攪拌機を有する4mのアセチル化反応槽に仕込んだ。窒素ガス雰囲気下、攪拌しつつ加熱し、溶液温度145℃にて全還流状態で3時間反応を行い、アセチル化反応を完了した。
Example 1
Aromatic polyester was produced using the apparatus shown in FIG.
1,000 kg (7,240 mol) of p-hydroxybenzoic acid, 435 kg (2,336 mol) of 4,4′-dihydroxydiphenyl, 300 kg (1,806 mol) of terephthalic acid, 100 kg (602 mol) of isophthalic acid and acetic anhydride 1347 kg (13,194 mol) was charged into a 4 m 3 acetylation reactor equipped with a vertical stirrer. The mixture was heated with stirring in a nitrogen gas atmosphere, and the reaction was carried out at a solution temperature of 145 ° C. for 3 hours in a total reflux state to complete the acetylation reaction.

縮重合槽は、櫂型攪拌機を有する4.5mの槽であり、ジャケット面以外の側面と上蓋表面には熱媒チューブを巻き、保温材で覆った。また、温度センサーを上蓋に1箇所取り付け、表面温度が測定できるようにした。
アセチル化反応溶液を、縮重合槽に約20分間かけて移送した。移送中、縮重合槽のジャケット温度を200℃とした。溶液温度は145℃であった。移送中は、上蓋表面の温度が80〜100℃になるように、熱媒チューブの温度をコントロールした。アセチル化反応液を移送完了後、熱媒チューブの温度を320℃に設定した。その後、縮重合槽の溶液を300℃まで昇温した。上蓋の温度は昇温開始時200℃であったが内溶液とともに上昇し、内溶液が250℃のときに310℃に到達し、以後は抜き出し終了まで約310℃で保持された。この過程において、上蓋の温度は常に(縮重合槽内の液温−20℃)よりも高かった。内溶液を300℃で5時間保持した後、ベルトクーラーを用いて冷却しながら芳香族ポリエステルの抜取りを行った。
The condensation polymerization tank was a 4.5 m 3 tank having a vertical stirrer, and a heat medium tube was wound around the side surface other than the jacket surface and the upper lid surface and covered with a heat insulating material. A temperature sensor was attached to the upper lid at one location so that the surface temperature could be measured.
The acetylation reaction solution was transferred to the condensation polymerization tank over about 20 minutes. During the transfer, the jacket temperature of the condensation polymerization tank was set to 200 ° C. The solution temperature was 145 ° C. During the transfer, the temperature of the heat medium tube was controlled so that the temperature of the upper lid surface was 80 to 100 ° C. After completing the transfer of the acetylation reaction solution, the temperature of the heat medium tube was set to 320 ° C. Thereafter, the solution in the condensation polymerization tank was heated to 300 ° C. The temperature of the upper lid was 200 ° C. at the start of temperature rise, but increased with the inner solution, reached 310 ° C. when the inner solution was 250 ° C., and thereafter maintained at about 310 ° C. until the end of extraction. In this process, the temperature of the upper lid was always higher than (liquid temperature in the condensation polymerization tank −20 ° C.). After keeping the inner solution at 300 ° C. for 5 hours, the aromatic polyester was extracted while cooling with a belt cooler.

上記と同様にして回分縮重合反応を30回繰り返した。その後、縮重合槽を開放点検したところ、上蓋面積の約20%に付着がみられた。また、30〜35回の回分縮重合反応を行う間、抜き出しノズルの閉塞は発生しなかった。   The batch condensation polymerization reaction was repeated 30 times in the same manner as described above. Then, when the condensation polymerization tank was opened and inspected, adhesion was observed in about 20% of the upper lid area. Further, during the batch condensation polymerization reaction of 30 to 35 times, the extraction nozzle was not clogged.

比較例1
縮重合槽の上蓋の温度コントロールを行わない以外は、実施例1と同様に行った。縮重合槽の上蓋の温度は、常に(縮重合槽内の液温−20℃)よりも低く、液温の上昇に伴って100℃から200℃まで上昇した。
Comparative Example 1
This was carried out in the same manner as in Example 1 except that the temperature of the upper lid of the condensation polymerization tank was not controlled. The temperature of the upper lid of the condensation polymerization tank was always lower than (the liquid temperature in the condensation polymerization tank −20 ° C.) and increased from 100 ° C. to 200 ° C. as the liquid temperature increased.

上記と同様にして回分縮重合反応を10回繰り返した後、分縮器を開放点検したところ、上蓋のほぼ全面に付着がみられた。また、10〜15回の回分縮重合反応を行うと、抜き出しノズルの閉塞が発生し、縮重合槽の化学洗浄を実施した。   After repeating the batch condensation polymerization reaction 10 times in the same manner as described above, when the opening of the partial condenser was inspected, adhesion was observed on almost the entire upper lid. Further, when the batch condensation polymerization reaction was performed 10 to 15 times, the extraction nozzle was clogged, and the condensation polymerization tank was chemically washed.

本発明で使用する装置の一例の概略図である。It is the schematic of an example of the apparatus used by this invention.

符号の説明Explanation of symbols

1 アセチル化反応槽
2 縮重合槽
3 移送管
4 分縮器
5 凝縮器
6 サイトグラス
7 芳香族ポリエステル
8 凝縮液
9 未凝縮ガス
10 ジャケット
11 加熱・冷却手段

DESCRIPTION OF SYMBOLS 1 Acetylation reaction tank 2 Condensation polymerization tank 3 Transfer pipe 4 Condenser 5 Condenser 6 Sight glass 7 Aromatic polyester 8 Condensate 9 Uncondensed gas 10 Jacket 11 Heating / cooling means

Claims (5)

芳香族ポリエステルの原料モノマー類と無水酢酸をアセチル化反応槽でアセチル化して得られるアセチル化反応溶液を、縮重合槽に移送し、加熱して縮重合させて芳香族ポリエステルを製造する方法において、加熱して縮重合反応を行う間、縮重合槽の気相部の側壁および上蓋の温度を、(縮重合槽内の液温−20℃)以上に加熱することを特徴とする芳香族ポリエステルの製造方法。   In a method for producing an aromatic polyester by transferring an acetylation reaction solution obtained by acetylating raw material monomers and acetic anhydride of an aromatic polyester in an acetylation reaction tank to a condensation polymerization tank and heating and condensation polymerization, While performing the condensation polymerization reaction by heating, the temperature of the side wall and the upper lid of the gas phase portion of the condensation polymerization tank is heated to (liquid temperature in the condensation polymerization tank-20 ° C) or more. Production method. アセチル化反応槽から縮重合槽へアセチル化反応溶液を移送する間、縮重合槽の気相部の壁面および上蓋の温度を100℃以下にすることを特徴とする請求項1記載の芳香族ポリエステルの製造方法。   2. The aromatic polyester according to claim 1, wherein the temperature of the wall surface and upper lid of the gas phase portion of the condensation polymerization tank is set to 100 ° C. or lower during the transfer of the acetylation reaction solution from the acetylation reaction tank to the condensation polymerization tank. Manufacturing method. 縮重合槽を加熱して縮重合反応を行う間、縮重合槽の気相部の壁面および上蓋の温度を、150℃〜350℃の範囲で(縮重合槽内の液温−20℃)以上に加熱することを特徴とする請求項1記載の芳香族ポリエステルの製造法。   While conducting the condensation polymerization reaction by heating the condensation polymerization tank, the temperature of the wall surface and upper lid of the gas phase portion of the condensation polymerization tank is in the range of 150 ° C. to 350 ° C. (liquid temperature in the condensation polymerization tank −20 ° C.) or more. The method for producing an aromatic polyester according to claim 1, wherein the aromatic polyester is heated to a high temperature. 縮重合槽を加熱して縮重合反応を行う間、縮重合槽の気相部の壁面および上蓋の温度を、縮重合槽から留出する低分子化合物の融点以上に加熱することを特徴とする請求項1記載の芳香族ポリエステルの製造方法。   While performing the condensation polymerization reaction by heating the condensation polymerization tank, the temperature of the wall surface and the upper lid of the gas phase portion of the condensation polymerization tank is heated to the melting point of the low molecular weight compound distilled from the condensation polymerization tank. The manufacturing method of the aromatic polyester of Claim 1. 原料モノマー類が芳香族キドロキシルカルボン酸類、芳香族ジカルボン酸類および芳香族ジオール類である請求項1記載の芳香族ポリエステルの製造方法。

2. The process for producing an aromatic polyester according to claim 1, wherein the raw material monomers are aromatic hydroxylcarboxylic acids, aromatic dicarboxylic acids and aromatic diols.

JP2005131388A 2005-04-28 2005-04-28 Method for producing aromatic polyester Pending JP2006307007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131388A JP2006307007A (en) 2005-04-28 2005-04-28 Method for producing aromatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131388A JP2006307007A (en) 2005-04-28 2005-04-28 Method for producing aromatic polyester

Publications (1)

Publication Number Publication Date
JP2006307007A true JP2006307007A (en) 2006-11-09

Family

ID=37474265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131388A Pending JP2006307007A (en) 2005-04-28 2005-04-28 Method for producing aromatic polyester

Country Status (1)

Country Link
JP (1) JP2006307007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530793A (en) * 2009-06-17 2012-12-06 三星精密化学株式会社 Method for producing wholly aromatic liquid crystal polyester resin having a constant melt viscosity, and method for producing wholly aromatic liquid crystal polyester resin compound
CN114763681A (en) * 2021-01-14 2022-07-19 刘露 Wholly aromatic polyester paper and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333445A (en) * 1995-06-05 1996-12-17 Hoechst Celanese Corp Production of liquid crystal polymer
JP2000191762A (en) * 1998-12-25 2000-07-11 Sumitomo Chem Co Ltd Production of aromatic polyester
WO2003062299A1 (en) * 2002-01-18 2003-07-31 Polyplastics Co., Ltd. Process for producing aromatic polymer
JP2004331829A (en) * 2003-05-08 2004-11-25 Sumitomo Chem Co Ltd Process for producing aromatic polyester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333445A (en) * 1995-06-05 1996-12-17 Hoechst Celanese Corp Production of liquid crystal polymer
JP2000191762A (en) * 1998-12-25 2000-07-11 Sumitomo Chem Co Ltd Production of aromatic polyester
WO2003062299A1 (en) * 2002-01-18 2003-07-31 Polyplastics Co., Ltd. Process for producing aromatic polymer
JP2004331829A (en) * 2003-05-08 2004-11-25 Sumitomo Chem Co Ltd Process for producing aromatic polyester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530793A (en) * 2009-06-17 2012-12-06 三星精密化学株式会社 Method for producing wholly aromatic liquid crystal polyester resin having a constant melt viscosity, and method for producing wholly aromatic liquid crystal polyester resin compound
CN114763681A (en) * 2021-01-14 2022-07-19 刘露 Wholly aromatic polyester paper and preparation method thereof

Similar Documents

Publication Publication Date Title
US4453010A (en) Production of hydroxy arylophenones
GB1558910A (en) Continuous process for the production of polybutylene terephthalates
TW201223999A (en) Method of preparing wholly aromatic liquid crystalline polyester amide resin and method of preparing wholly aromatic liquid crystalline polyester amide resin compound by using wholly aromatic liquid crystalline polyester amide resin prepared using the sa
JP2004517991A (en) Method for producing polyester based on 1,4-cyclohexanedimethanol and isophthalic acid
JP4967385B2 (en) Cleaning method for aromatic polyester production equipment
JP2006307007A (en) Method for producing aromatic polyester
JP4134325B2 (en) Process for producing aromatic polyester
JP2847188B2 (en) Method for producing aromatic polyester
JP6029201B2 (en) Method for producing liquid crystalline polyester
JP4870251B2 (en) Process for producing aromatic polyester
JP3622546B2 (en) Method for producing aromatic polyester
JP2830118B2 (en) Aromatic polyester and method for producing the same
JP2006299027A (en) Method for producing aromatic polyester
CN103201310B (en) Process for production of liquid crystalline polyester resin, and apparatus for production of liquid crystalline polyester resin
TWI360537B (en)
JP2010174207A (en) Method for producing liquid crystal polyester
JP2006307006A (en) Method for manufacturing aromatic polyester
JP2006299028A (en) Method for producing aromatic polyester
JP2004263044A (en) Method for producing aromatic polyester
JP4357966B2 (en) Process for producing aromatic polymer
JP2004083777A (en) Liquid crystalline polyester and method for producing the same
CN106574043B (en) Batch process for preparing polybutylene terephthalate
JP3484595B2 (en) Method for producing liquid crystal polyester
JPH0721545Y2 (en) Batch polymerization equipment for aromatic polyester production
JPH107781A (en) Production of liquid-crystal polyester

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Effective date: 20080131

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A621 Written request for application examination

Effective date: 20080310

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD05 Notification of revocation of power of attorney

Effective date: 20080514

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A977 Report on retrieval

Effective date: 20101117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329