JPH107781A - Production of liquid-crystal polyester - Google Patents

Production of liquid-crystal polyester

Info

Publication number
JPH107781A
JPH107781A JP16477096A JP16477096A JPH107781A JP H107781 A JPH107781 A JP H107781A JP 16477096 A JP16477096 A JP 16477096A JP 16477096 A JP16477096 A JP 16477096A JP H107781 A JPH107781 A JP H107781A
Authority
JP
Japan
Prior art keywords
reaction
temperature
liquid crystal
crystal polyester
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16477096A
Other languages
Japanese (ja)
Inventor
Yasunori Ichikawa
保則 市川
Tadahiro Sueyoshi
忠弘 末良
Akihiko Kishimoto
彰彦 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP16477096A priority Critical patent/JPH107781A/en
Publication of JPH107781A publication Critical patent/JPH107781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process in which the interval of reactor cleaning can be prolonged and by which a high-quality liquid-crystal polyester having excellent heat resistance is produced and improved productivity is attained. SOLUTION: The process comprises condensation-polymerizing the feedstock therefor under stirring at a given temp. using a polymerizer having feedstock inlets, a stirrer, and a temp. controller. During the reaction, the temps. of at least those parts of the wall of the polymerizer which are located on the surface of the liquid phase and located above and near the surface are regulated to 70-200 deg.C. Alternatively, a distillate resulting from the reaction is continuously sprayed over that part of the polymerizer wall which is in contact with the gas phase inside the polymerizer and over that part of the stirrer shaft which is in contact with the gas phase, whereby the polymerizer wall and the shaft are kept clean in conducting the polycondensation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶ポリエステルの
製造方法に関する。さらに詳しくは溶融重縮合反応にお
いて効率的に缶内を洗浄することにより、高品質とりわ
け耐熱性に優れた液晶ポリエステルの製造方法に関す
る。
The present invention relates to a method for producing a liquid crystal polyester. More specifically, the present invention relates to a method for producing a liquid crystal polyester having high quality, especially excellent heat resistance, by efficiently cleaning the inside of a can in a melt polycondensation reaction.

【0002】[0002]

【従来の技術】近年プラスチックスの高性能化に対する
要求がますます高まり、種々の新規性能を有するポリマ
ーが数多く開発され市場に供されている。中でも、分子
鎖の平行な配列を特徴とする光学異方性の液晶ポリマー
が優れた流動性と機械的性質を有する点で注目されてい
る。
2. Description of the Related Art In recent years, there has been an increasing demand for higher performance of plastics, and a number of polymers having various new properties have been developed and marketed. Above all, attention has been paid to optically anisotropic liquid crystal polymers characterized by parallel arrangement of molecular chains because of their excellent fluidity and mechanical properties.

【0003】液晶ポリマーの製造方法としては、特開平
1−149825号公報に開示されているように粘度が
上昇すると撹拌数を減少させ、重合反応温度をコントロ
ールさせることや、特開平6−192404号公報に開
示されているように、原料を反応缶に仕込んで反応後、
重合缶へ移行して重縮合反応を行なう重合装置を用いる
ことが知られている。
As a method for producing a liquid crystal polymer, as disclosed in Japanese Patent Application Laid-Open No. 1-149825, when the viscosity increases, the number of agitation is decreased to control the polymerization reaction temperature. As disclosed in the official gazette, after charging the raw materials in a reaction vessel and reacting,
It is known to use a polymerization apparatus that transfers to a polymerization vessel and performs a polycondensation reaction.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
重合方法では品質的に優れた液晶ポリマーを製造するこ
とは出来るが、数バッチ重合すると反応缶内に残留する
モノマー、オリゴマーが繰り返しバッチ重合を行なうこ
とにより熱履歴を受け、正常ポリマーの融点以上、例え
ば350℃でも溶融しない異物になり、重合終了後缶内
から吐出する際にポリマー中に混入し、得られる液晶ポ
リマーの物性に悪影響を及ぼすため定期的に缶内を洗浄
せざるをえないことがわかった。そこで、本発明は缶内
に残留するモノマー、オリゴマー量を少なくして、缶内
の洗浄周期を長くすることにより生産性を向上させ、高
品質とりわけ耐熱性に優れた液晶ポリエステルの製造方
法を提供することにある。
However, a liquid crystal polymer excellent in quality can be produced by the conventional polymerization method, but the monomer and oligomer remaining in the reaction vessel are repeatedly subjected to batch polymerization after several batch polymerization. Due to the heat history, it becomes a foreign substance that does not melt at a temperature higher than the melting point of the normal polymer, for example, 350 ° C., and is mixed into the polymer when discharged from the can after the polymerization, and adversely affects the physical properties of the obtained liquid crystal polymer. It turned out that the inside of the can had to be cleaned regularly. Accordingly, the present invention provides a method for producing a liquid crystal polyester of high quality, especially excellent in heat resistance, by reducing the amount of monomers and oligomers remaining in the can and improving the productivity by extending the cleaning cycle in the can. Is to do.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意検討した結果、本発明に到達した。すな
わち、本発明は原料投入口、撹拌装置および温度管理装
置を有する重合装置を用いて液晶ポリエステル原料を撹
拌しながら重縮合して液晶ポリエステルを製造する際、
少なくとも反応中の反応缶液面およびそれより上の反応
液面付近に位置する部分の温度を、70℃〜200℃の
範囲にコントロールしながら、または、反応缶内気相部
壁面及び撹拌軸の気相部に位置する部分に反応留出液を
吹きかけて戻し、缶内壁面及び撹拌軸を洗浄しながら重
縮合を行なうことを特徴とする液晶ポリエステルの製造
方法、温度管理装置として反応缶のジャケットを用い、
かかるジャケットを2分割以上にし、少なくとも反応中
の反応缶液面およびそれより上の反応缶液面付近を包含
する部分のジャケット温度を70℃〜200℃の範囲に
コントロールする上記液晶ポリエステルの製造方法、反
応缶内気相部壁面及び撹拌軸の気相部に位置する部分に
吹きかけて戻す量が1時間あたり反応中に留出する全留
出液量の3〜10重量%の範囲であることを特徴とする
上記液晶ポリエステルの製造方法、重縮合を脱酢酸反応
により行なうことを特徴とする上記液晶ポリエステルの
製造方法、撹拌が撹拌翼と缶壁面での剪断速度が150
〜1000(1/秒)になるように行なわれる工程が含
まれるものである上記液晶ポリエステルの製造方法、原
料投入後、撹拌しながら所定の重縮合温度になるまで昇
温し、昇温を開始後、重縮合温度に達するまでの時間の
10%以上の時間を、剪断速度が150〜1000(1
/秒)になるように反応物を撹拌するものである上記液
晶ポリエステルの製造方法、液晶ポリマーがエチレンジ
オキシ単位を有する液晶ポリエステルであることを特徴
とする上記液晶ポリエステルの製造方法、および、液晶
ポリエステルが下記(I)、(II)、(III )、(IV)
の構造単位からなる液晶ポリエステルであることを特徴
とする上記液晶ポリエステルの製造方法である。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention. That is, the present invention, when a liquid crystal polyester is produced by performing polycondensation while stirring a liquid crystal polyester raw material using a polymerization apparatus having a raw material input port, a stirring device and a temperature control device,
While controlling the temperature of at least the reaction vessel liquid surface during the reaction and the portion located in the vicinity of the reaction liquid surface above it within the range of 70 ° C. to 200 ° C., or controlling the temperature of the gas phase wall surface and the stirring shaft in the reaction vessel. The reaction distillate is sprayed back to the portion located in the phase portion, and the polycondensation is performed while washing the inner wall surface and the stirring shaft of the can. Use
Such a jacket is divided into two or more portions, and the jacket temperature of a portion including at least the reaction vessel liquid level during the reaction and the vicinity of the reaction vessel liquid level above is controlled within the range of 70 ° C. to 200 ° C. The amount of the gaseous phase in the reaction vessel and the amount of the distillate returned to the part located in the gaseous phase part of the stirring shaft, which is sprayed back during one hour, is in the range of 3 to 10% by weight. The method for producing the liquid crystal polyester, wherein the polycondensation is carried out by a deacetic acid reaction, wherein the stirring is carried out at a shear rate of 150 with a stirring blade and a can wall.
The method for producing the liquid crystal polyester, which includes a step performed so as to have a temperature of up to 1000 (1 / sec), after the raw materials are charged, the temperature is raised to a predetermined polycondensation temperature while stirring, and the temperature is started. Thereafter, a shear rate of 150 to 1000 (1) is used for 10% or more of the time until the polycondensation temperature is reached.
/ Sec), wherein the liquid crystal polyester is a liquid crystal polyester having an ethylenedioxy unit, and the liquid crystal polymer is a liquid crystal polyester having an ethylenedioxy unit. Polyester is the following (I), (II), (III), (IV)
The method for producing a liquid crystal polyester according to the above, wherein the liquid crystal polyester comprises a structural unit of

【0006】[0006]

【化4】 (ただし式中のR1はEmbedded image (However, R1 in the formula is

【化5】 から選ばれた一種以上の基を示し、R2はEmbedded image R2 represents one or more groups selected from

【化6】 から選ばれた一種以上の基を示す。また、式中Xは水素
原子または塩素原子を示し、構造単位(II)および(II
I )の合計と構造単位(IV)は実質的に等モルであ
る)。
Embedded image Represents one or more groups selected from In the formula, X represents a hydrogen atom or a chlorine atom, and the structural units (II) and (II)
The sum of I) and the structural units (IV) are substantially equimolar).

【0007】[0007]

【発明の実施の形態】本発明で製造する液晶ポリエステ
ルは溶融時異方性を形成し得るポリエステルであり、例
えば芳香族オキシカルボニル単位などのオキシカルボニ
ル単位、芳香族ジオキシ単位、エチレンジオキシ単位な
どのジオキシ単位および芳香族ジカルボニル単位などの
ジカルボニル単位などから選ばれた単位からなる溶融異
方性を示すポリエステルなどが挙げられる。本発明の製
造方法はかかる液晶ポリエステルを製造する際に用いら
れるが、なかでもエチレンジオキシ単位を有する液晶ポ
リエステル、特に前記(I)、(II)、(III )、(I
V)の構造単位からなる液晶ポリエステルを製造する際
に顕著にその効果を発揮する。
BEST MODE FOR CARRYING OUT THE INVENTION The liquid crystal polyester produced in the present invention is a polyester capable of forming anisotropy when melted, for example, an oxycarbonyl unit such as an aromatic oxycarbonyl unit, an aromatic dioxy unit, an ethylenedioxy unit and the like. And polyesters exhibiting melt anisotropy comprising units selected from dioxy units and dicarbonyl units such as aromatic dicarbonyl units. The production method of the present invention is used for producing such a liquid crystal polyester. Among them, a liquid crystal polyester having an ethylenedioxy unit, particularly, the above-mentioned (I), (II), (III) and (I)
The effect is remarkably exerted when producing a liquid crystal polyester comprising the structural unit of V).

【0008】上記構造単位(I)はp−ヒドロキシ安息
香酸から生成したポリエステルの構造単位であり、構造
単位(II)は4,4’−ジヒドロキシビフェニル、3,
3’,5,5´−テトラメチル−4,4´−ジヒドロキ
シビフェニル、ハイドロキノン、t−ブチルハイドロキ
ノン、フェニルハイドロキノン、2,6−ジヒドロキシ
ナフタレン、2,7−ジヒドロキシナフタレン、2,2
−ビス(4−ヒドロキシフェニル)プロパンおよび4,
4´−ジヒドロキシジフェニルエーテルから選ばれた芳
香族ジヒドロキシ化合物から生成した構造単位を、構造
単位(III )はエチレングリコールから生成した構造単
位を、構造単位(IV)はテレフタル酸、イソフタル酸、
4,4´−ジフェニルジカルボン酸、2,6−ナフタレ
ンジカルボン酸、1,2−ビス(フェノキシ)エタン−
4,4´−ジカルボン酸、1,2−ビス(2−クロルフ
ェノキシ)エタン−4,4´−ジカルボン酸およびジフ
ェニルエーテルジカルボン酸から選ばれた芳香族ジカル
ボン酸から生成した構造単位を各々示す。これらのうち
特にR1が
The structural unit (I) is a structural unit of a polyester formed from p-hydroxybenzoic acid, and the structural unit (II) is 4,4′-dihydroxybiphenyl,
3 ', 5,5'-tetramethyl-4,4'-dihydroxybiphenyl, hydroquinone, t-butylhydroquinone, phenylhydroquinone, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2
-Bis (4-hydroxyphenyl) propane and 4,
A structural unit generated from an aromatic dihydroxy compound selected from 4'-dihydroxydiphenyl ether, a structural unit (III) is a structural unit generated from ethylene glycol, a structural unit (IV) is terephthalic acid, isophthalic acid,
4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,2-bis (phenoxy) ethane-
Structural units formed from aromatic dicarboxylic acids selected from 4,4'-dicarboxylic acid, 1,2-bis (2-chlorophenoxy) ethane-4,4'-dicarboxylic acid and diphenyletherdicarboxylic acid are shown. Of these, R1 is particularly

【化7】 であるものが構造単位(II)の70モル%以上を、R2
Embedded image Is at least 70 mol% of the structural unit (II)
But

【化8】 であるものが構造単位(IV)の70モル%以上を占める
ものが特に好ましい。
Embedded image Is more preferably 70% or more of the structural unit (IV).

【0009】上記構造単位(I)、(II)、(III )、
(IV)の共重合量は任意である。しかし、流動性の点か
ら次の共重合量であることが好ましい。
The above structural units (I), (II), (III),
The copolymerization amount of (IV) is optional. However, the following copolymerization amount is preferred from the viewpoint of fluidity.

【0010】すなわち、耐熱性、難燃性および機械的特
性の点から上記構造単位(I)および(II)の合計は
(I)、(II)および(III )の合計の60〜95モル
%が好ましく、82〜93モル%がより好ましい。ま
た、構造単位(III )は(I)、(II)および(III )
の合計の40〜5モル%が好ましく、18〜7モル%が
より好ましい。また、構造単位(I)と(II)のモル比
[(I)/(II)]は耐熱性と流動性のバランスの点か
ら好ましくは75/25〜95/5であり、より好まし
くは78/22〜93/7である。また、構造単位(I
V)は構造単位(II)および(III )の合計と実質的に
等モルである。
That is, from the viewpoint of heat resistance, flame retardancy and mechanical properties, the total of the structural units (I) and (II) is 60 to 95 mol% of the total of (I), (II) and (III). Is preferable, and 82 to 93 mol% is more preferable. The structural units (III) are represented by (I), (II) and (III)
Is preferably 40 to 5 mol%, more preferably 18 to 7 mol%. The molar ratio [(I) / (II)] of the structural units (I) and (II) is preferably 75/25 to 95/5, and more preferably 78 from the viewpoint of the balance between heat resistance and fluidity. / 22 to 93/7. The structural unit (I
V) is substantially equimolar to the sum of structural units (II) and (III).

【0011】なお、上記好ましいポリエステルを重縮合
する際には上記構造単位(I)〜(IV)を構成する成分
以外に3,3´−ジフェニルジカルボン酸、2,2´−
ジフェニルジカルボン酸などの芳香族ジカルボン酸、ア
ジピン酸、アゼライン酸、セバシン酸、ドデカンジオン
酸などの脂肪族ジカルボン酸、ヘキサヒドロテレフタル
酸などの脂環式ジカルボン酸、クロルハイドロキノン、
メチルハイドロキノン、4,4´−ジヒドロキシジフェ
ニルスルホン、4,4´−ジヒドロキシジフェニルスル
フィド、4,4´−ジヒドロキシベンゾフェノン等の芳
香族ジオール、1,4−ブタンジオール、1,6−ヘキ
サンジオール、ネオペンチルグリコール、1,4−シク
ロヘキサンジオール、1,4−シクロヘキサンジメタノ
ール等の脂肪族、脂環式ジオールおよびm−ヒドロキシ
安息香酸、2,6−ヒドロキシナフトエ酸などの芳香族
ヒドロキシカルボン酸およびp−アミノフェノール、p
−アミノ安息香酸などを液晶性を損なわない程度の量で
さらに共重合せしめることができる。
In the polycondensation of the above-mentioned preferred polyester, 3,3'-diphenyldicarboxylic acid and 2,2'-polyester are used in addition to the components constituting the structural units (I) to (IV).
Aromatic dicarboxylic acids such as aromatic dicarboxylic acids such as diphenyldicarboxylic acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, alicyclic dicarboxylic acids such as hexahydroterephthalic acid, chlorohydroquinone,
Aromatic diols such as methylhydroquinone, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxybenzophenone, 1,4-butanediol, 1,6-hexanediol, neopentyl Aliphatic, alicyclic diols such as glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, and aromatic hydroxycarboxylic acids such as m-hydroxybenzoic acid and 2,6-hydroxynaphthoic acid; and p-amino Phenol, p
-Aminobenzoic acid and the like can be further copolymerized in such an amount as not to impair the liquid crystallinity.

【0012】本発明で製造する液晶ポリエステルはペン
タフルオロフェノール中で対数粘度を測定することが可
能なものもあり、その際には0.1g/dlの濃度で6
0℃で測定した値で0.3dl/g以上が好ましく、
0.5〜3.0dl/gが特に好ましい。
Some liquid crystal polyesters produced in the present invention can measure the logarithmic viscosity in pentafluorophenol.
It is preferably 0.3 dl / g or more as measured at 0 ° C.
Particularly preferred is 0.5 to 3.0 dl / g.

【0013】また、本発明における液晶ポリエステルの
溶融粘度は10〜20,000ポイズが好ましく、特に
20〜10,000ポイズがより好ましい。
The melt viscosity of the liquid crystal polyester in the present invention is preferably from 10 to 20,000 poise, more preferably from 20 to 10,000 poise.

【0014】なお、この溶融粘度は融点(Tm)+10
℃の条件で、ずり速度1,000(1/秒)の条件下で
(株)島津製作所フローテスターCFT−500によっ
て測定した値である。
The melt viscosity is calculated as melting point (Tm) +10
It is a value measured by Shimadzu Corporation flow tester CFT-500 under conditions of a shear rate of 1,000 (1 / second) under the condition of ° C.

【0015】ここで、融点(Tm)とは示差走査熱量計
において、重合を完了したポリマーを室温から20℃/
分の昇温条件で測定した際に観測される吸熱ピーク温度
(Tm1 )の観測後、Tm1 +20℃の温度で5分間保
持した後、20℃/分の降温条件で室温まで一旦冷却し
た後、再度20℃/分の昇温条件で測定した際に観測さ
れる吸熱ピーク温度(Tm2 )を指す。
Here, the melting point (Tm) refers to the difference between room temperature and 20 ° C.
After observing the endothermic peak temperature (Tm1) observed when the temperature was measured under the temperature rising condition for 5 minutes, the temperature was maintained at a temperature of Tm1 + 20 ° C. for 5 minutes, and then cooled once to room temperature under the cooling condition of 20 ° C./min. It refers to the endothermic peak temperature (Tm2) observed when the temperature is measured again at a temperature rising condition of 20 ° C./min.

【0016】なお本発明において、液晶ポリエステルを
重合して製造するための基本的な反応経路としては特に
制限はなく、通常公知の方法により製造することができ
る。原料としては、ヒドロキシカルボン酸、ジヒドロキ
シ化合物、ジカルボン酸、ジオキシ単位とジカルボニル
単位からなるポリエステル、およびそれらの誘導体など
から選ばれた一種以上の単量体を用いることができる。
反応としては例えば液晶ポリエステルを脱酢酸重合を行
なうことにより製造することができる。脱酢酸重合を行
なう場合、ヒドロキシル基含有単量体を原料として用い
る場合、通常原料とともに無水酢酸などのアシル化剤が
添加される。
In the present invention, there is no particular limitation on a basic reaction route for producing a liquid crystal polyester by polymerization, and it can be produced by a generally known method. As the raw material, one or more monomers selected from hydroxycarboxylic acids, dihydroxy compounds, dicarboxylic acids, polyesters comprising dioxy and dicarbonyl units, and derivatives thereof can be used.
The reaction can be produced, for example, by subjecting a liquid crystal polyester to deacetic acid polymerization. In the case of performing deacetic acid polymerization, when using a hydroxyl group-containing monomer as a raw material, an acylating agent such as acetic anhydride is usually added together with the raw material.

【0017】例えば下記(1)方法で代表されるような
ヒドロキシル基をアシル化した化合物を用い、脱酢酸重
縮合を行なう方法、または(2)の方法で代表されるよ
うなヒドロキシル基含有化合物とともに無水酢酸を用
い、ヒドロキシル基をアシル化した後、脱酢酸重縮合を
行なう方法、(2)の方法において、ヒドロキシル基含
有化合物の一部をアシル化した化合物に置換した方法な
どがあるが(2)に代表されるような方法が特に好まし
い。
For example, a method in which a hydroxyl group-acylated compound represented by the following method (1) is used to carry out deacetic acid polycondensation, or together with a hydroxyl group-containing compound represented by the method (2): There is a method in which acetic anhydride is used to acylate the hydroxyl group, followed by deacetic acid polycondensation. In the method (2), there is a method in which a part of the hydroxyl group-containing compound is replaced with an acylated compound. ) Is particularly preferable.

【0018】(1)p−アセトキシ安息香酸および4,
4´−ジアセトキシビフェニル、パラジアセトキシベン
ゼンなどの芳香族ジヒドロキシ化合物のジアシル化物と
テレフタル酸などの芳香族ジカルボン酸、エチレングリ
コールと芳香族ジカルボン酸からのポリエステルやオリ
ゴマあるいは芳香族ジカルボン酸のビス(β−ヒドロキ
シエチル)エステルとを脱酢酸重縮合反応によって製造
する方法。 (2)p−ヒドロキシ安息香酸、4,4´−ジヒドロキ
シビフェニル、ハイドロキノンなどの芳香族ジヒドロキ
シ化合物、無水酢酸、テレフタル酸などの芳香族ジカル
ボン酸およびエチレングリコールと芳香族ジカルボン酸
からのポリエステルやオリゴマあるいは芳香族ジカルボ
ン酸のビス(β−ヒドロキシエチル)エステルとを反応
させてフェノール性水酸基をアシル化した後、脱酢酸重
縮合反応によって製造する方法。
(1) p-acetoxybenzoic acid and 4,
Polyesters and oligomers of diacylated aromatic dihydroxy compounds such as 4'-diacetoxybiphenyl and paradiacetoxybenzene and aromatic dicarboxylic acids such as terephthalic acid, ethylene glycol and aromatic dicarboxylic acids, or bis (β -Hydroxyethyl) ester by a deacetic acid polycondensation reaction. (2) Aromatic dihydroxy compounds such as p-hydroxybenzoic acid, 4,4'-dihydroxybiphenyl and hydroquinone; aromatic dicarboxylic acids such as acetic anhydride and terephthalic acid; and polyesters and oligomers from ethylene glycol and aromatic dicarboxylic acids; A method in which a phenolic hydroxyl group is acylated by reacting with a bis (β-hydroxyethyl) ester of an aromatic dicarboxylic acid and then produced by a deacetic acid polycondensation reaction.

【0019】この脱酢酸反応は無触媒系で行っても重合
は進行するが、酢酸第一錫、テトラブチルチタネート、
酢酸カリウム、三酸化アンチモン、マグネシウム、酢酸
ナトリウムなどの金属化合物を触媒として添加した方が
好ましい場合もある。
The polymerization proceeds even if this deacetic acid reaction is carried out in the absence of a catalyst, but stannous acetate, tetrabutyl titanate,
In some cases, it may be preferable to add a metal compound such as potassium acetate, antimony trioxide, magnesium, or sodium acetate as a catalyst.

【0020】本発明において、液晶ポリエステルは、原
料投入口、撹拌装置および温度管理装置を有する重合装
置を用いて製造される。
In the present invention, the liquid crystal polyester is produced using a polymerization apparatus having a raw material inlet, a stirrer, and a temperature controller.

【0021】なかでも原料投入口と撹拌装置、ジャケッ
トなどの温度管理装置及び排出口を備えた反応缶と反応
中反応缶から留出する蒸気を凝縮させるためのコンデン
サー、凝縮液受け槽及び、減圧重合時の真空発生装置か
らなる竪型反応装置が好ましく挙げられ、1段で重縮合
を行なうように1基の反応缶を有する装置でもよいが、
2段以上で重縮合を行なうための2缶以上の反応缶を有
する装置が好ましい。さらに、反応缶の縦と横の長さの
比が1より大きく3未満の形状の物が好ましい。
Among them, a reaction vessel equipped with a temperature control device such as a material input port, a stirring device, and a jacket, and a discharge port, a condenser for condensing vapor distilled from the reaction vessel during the reaction, a condensate receiving tank, and a decompression tank A vertical reactor comprising a vacuum generator at the time of polymerization is preferably mentioned, and an apparatus having one reaction vessel so as to perform polycondensation in one stage may be used.
An apparatus having two or more reaction vessels for performing polycondensation in two or more stages is preferred. Further, a reactor having a shape in which the ratio of the length to width of the reactor is greater than 1 and less than 3 is preferred.

【0022】液晶ポリエステルの製造用反応装置として
は上記に示した通りで、上記(1)の方法で製造する場
合は一般的に反応缶は1基で行い、通常、原料モノマー
を投入して常圧あるいは加圧下、窒素雰囲気で200℃
〜400℃となるまで昇温し、昇温開始と同時に撹拌を
開始し、原料モノマーを十分に溶解させた後、減圧およ
び真空下で200℃〜400℃で重縮合する。
The reaction apparatus for producing liquid crystal polyester is as described above. When producing by the method (1), generally one reactor is used, and usually, the raw material monomer is charged and the reaction vessel is charged. 200 ° C in a nitrogen atmosphere under pressure or pressure
The temperature is raised to about 400 ° C., stirring is started at the same time as the temperature rise is started, and after sufficiently dissolving the raw material monomers, polycondensation is performed at 200 ° C. to 400 ° C. under reduced pressure and vacuum.

【0023】上記(2)の方法で製造する場合は一般的
に反応缶は2基以上使って行われる。
In the case of production by the above method (2), generally, two or more reactors are used.

【0024】反応缶を2基使って行う場合、通常、反応
缶1に原料モノマーとアシル化剤を仕込、撹拌しながら
スラリー化後、昇温して130℃〜150℃で1時間ア
シル化後、さらに200℃〜300℃に昇温してアシル
化により生成する留出物および未反応のアシル化剤を留
出させる。次に真空発生装置の付いた反応缶2に移し
て、さらに250℃〜400℃になるまで昇温して減圧
および真空下、250℃〜400℃で重縮合する。
In the case of using two reactors, usually, the raw material monomer and the acylating agent are charged into the reactor 1 and slurried with stirring, and then the temperature is raised and the acylation is carried out at 130 to 150 ° C. for 1 hour. The temperature is further raised to 200 ° C. to 300 ° C. to distill off the distillate produced by the acylation and the unreacted acylating agent. Next, it is transferred to the reaction vessel 2 equipped with a vacuum generator, and the temperature is further raised to 250 ° C. to 400 ° C., and polycondensation is performed at 250 ° C. to 400 ° C. under reduced pressure and vacuum.

【0025】本発明において重要な点は、重合時に、反
応混合物から留出分が留出することによる液面低下、撹
拌による液面の盛り上がりなどにより、モノマー、オリ
ゴマーなどの反応混合物が反応缶壁に付着乾燥し、それ
が加熱され続けることによる所望以外の反応が生じるこ
とを抑制しながら重縮合する点にある。かかる方法とし
て、少なくとも、反応缶液面および反応缶液面付近の
温度をコントロールする方法、具体的には反応中の反応
缶液面およびそれより上の液面付近に位置する部分の温
度を、70℃〜200℃の範囲にコントロールする方
法、もしくは反応混合物が付着する部分、具体的には
反応缶内気相部壁面および撹拌軸の気相部に位置する部
分に反応留出液を吹きかける方法またはその両方を行な
う方法が挙げられる。
It is important in the present invention that the reaction mixture such as monomers and oligomers reacts with the reaction vessel wall due to lowering of the liquid level due to the distillation of the distillate from the reaction mixture during the polymerization and rising of the liquid level due to stirring. And is subjected to polycondensation while suppressing the occurrence of an undesired reaction due to continued heating. As such a method, at least a method of controlling the temperature of the reaction vessel liquid level and the temperature near the reaction vessel liquid level, specifically, the temperature of the reaction vessel liquid level during the reaction and the temperature of the portion located near the liquid level above it, A method of controlling the temperature in the range of 70 ° C. to 200 ° C., or a method of spraying a reaction distillate on a portion where the reaction mixture adheres, specifically on a portion located in the gas phase wall of the gas chamber in the reactor and the gas phase of the stirring shaft, or There is a method of performing both of them.

【0026】以下、これらの点について詳述する。Hereinafter, these points will be described in detail.

【0027】上記少なくとも反応缶液面およびそれよ
り上の液面付近の温度をコントロールする方法は、例え
ば反応缶のジャケットを2分割以上にし、反応中の反応
缶液面及びそれより上の液面付近を包含する位置のジャ
ケット温度を70℃〜200℃、好ましくは100〜2
00℃の範囲にコントロールすることにより行なうこと
ができる。かかる温度コントロールは反応混合物あるい
は反応缶などからの熱伝導を考慮しながら、さらに加熱
する、加熱しない、冷却するのいずれかの方法により行
なうことができる。
The above-mentioned method of controlling the temperature at least in the vicinity of the liquid level of the reaction vessel and the liquid level above the same can be achieved, for example, by dividing the jacket of the reaction vessel into two or more parts, and performing the reaction with the liquid level of the reaction vessel and the liquid level above it. The jacket temperature at the position including the vicinity is 70 ° C to 200 ° C, preferably 100 to 2 ° C.
It can be carried out by controlling the temperature within the range of 00 ° C. Such temperature control can be performed by any method of heating, not heating, or cooling while considering heat conduction from the reaction mixture or the reaction vessel.

【0028】なお、上記反応缶ジャケット温度とは分割
された反応缶各ジャケット部分の熱媒循環ライン出口に
取り付けた温度計により測定した熱媒の温度であるが、
製造しようとする液晶ポリエステルの製造条件によって
加熱も冷却も不要な場合は、熱循環ラインを有しないジ
ャケットまたはそれに相当する設備に置き換えることも
できる。
The temperature of the reaction vessel jacket is the temperature of the heating medium measured by a thermometer attached to the exit of the heating medium circulation line at each of the divided sections of the reaction vessel.
If neither heating nor cooling is required depending on the production conditions of the liquid crystal polyester to be produced, a jacket having no heat circulation line or equipment corresponding thereto can be used.

【0029】好ましくは反応缶ジャケット分割を3分割
とし、反応中の液面が反応缶のジャケット下段より上
で、反応缶ジャケット中段内で反応中の液面が変動する
ようにし、反応缶ジャケット上段は気相部とする方がよ
い。この際ジャケット上段の温度は製造に支障のない限
り特に制限はないが、ジャケット中断より高めから液相
部と同程度とすることが好ましい。また、これらのジャ
ケットをさらに分割した形態のものも使用できる。
Preferably, the reaction vessel jacket is divided into three sections so that the liquid level during the reaction is higher than the lower section of the jacket of the reaction vessel and the liquid level during the reaction fluctuates in the middle section of the reaction vessel jacket. Is preferably a gas phase part. At this time, the temperature of the upper stage of the jacket is not particularly limited as long as the production is not hindered. Further, those in which these jackets are further divided can also be used.

【0030】なお、本発明でいう反応缶液面より上の液
面付近とは、反応混合物から留出分が留出することによ
る液面低下、撹拌による液面の盛り上がり、その他の理
由から、モノマー、オリゴマーなどの反応混合物が反応
缶壁に付着する部分をいう。
The term "in the vicinity of the liquid level above the liquid level in the reaction vessel" as used in the present invention means that the liquid level decreases due to the distillation of the distillate from the reaction mixture, the liquid level rises due to agitation, and other reasons. A portion where a reaction mixture such as a monomer and an oligomer adheres to the reaction vessel wall.

【0031】の方法では、反応缶液相部の温度は、上
記液面付近の温度とは別に所望の重縮合温度、すなわち
反応の進行に応じて必要な温度となるように管理するこ
とが必要である。ジャケットを用いる場合には液相部の
反応缶ジャケット温度は、前記反応缶液面付近のジャケ
ットとは独立に、反応の進行に従って昇温させ反応留出
液を留出させ、反応を完結させることが重要である。
In the above method, it is necessary to control the temperature of the liquid phase portion of the reaction vessel so as to be a desired polycondensation temperature, that is, a necessary temperature in accordance with the progress of the reaction, separately from the temperature near the liquid level. It is. When a jacket is used, the temperature of the reaction vessel jacket in the liquid phase portion is raised independently of the jacket near the liquid level of the reaction vessel to evaporate the reaction distillate as the reaction proceeds, thereby completing the reaction. is important.

【0032】次に上記反応混合物が付着する部分に反
応留出液を吹きかける方法は、例えば重合装置に反応留
出液をコンデンサーにより凝縮させて受ける留出液受け
槽、これに付属した反応留出液を反応缶内に誘導するポ
ンプ、およびそれを反応缶気相部壁面および撹拌軸の気
相部に反応留出液を吹きかけるため、反応缶気相部にノ
ズルを設け、留出液受け槽に凝縮させて留出した反応留
出液を取り付けたノズルから、ポンプにより、反応混合
物が付着した反応缶内壁および撹拌軸、特に反応により
留出液が留出して液面が低下する部分の反応缶内壁面及
び撹拌軸に吹きかけて戻し、缶内壁面及び撹拌軸に付着
したモノマー、オリゴマーなどの反応混合物を洗浄しな
がら乾きを防止することにより行なわれる。
Next, a method of spraying the reaction distillate to the portion where the reaction mixture adheres is, for example, a distillate receiving tank which receives the reaction distillate condensed by a condenser in a polymerization apparatus, and a reaction distillate attached thereto. A pump for guiding the liquid into the reaction vessel, and a nozzle provided in the reaction vessel gas phase for spraying the reaction distillate on the gas phase wall of the reaction vessel gas phase wall and the gas phase section of the stirring shaft; The reaction distillate condensed and distilled off from the nozzle is attached to the inner wall of the reaction vessel to which the reaction mixture has adhered and the stirring shaft by the pump, especially the reaction where the distillate distills out due to the reaction and the liquid level drops. This is carried out by spraying back onto the inner wall surface of the can and the stirring shaft and washing the reaction mixture such as monomer and oligomer attached to the inner wall surface of the can and the stirring shaft, while preventing drying.

【0033】吹きかける留出液の1時間当たりの量は、
1時間あたり留出液受け槽へ留出する全量の3〜10重
量%、特に3〜7重量%の範囲で行なうことが好まし
い。
The amount of the distillate to be sprayed per hour is:
It is preferable to carry out in the range of 3 to 10% by weight, particularly 3 to 7% by weight of the total amount distilled out to the distillate receiving tank per hour.

【0034】特に好ましいのは、上記の方法により反
応缶液面付近の温度をコントロールし、かつの方法に
より反応混合物が付着する部分に反応留出液を吹きかけ
る方法である。
Particularly preferred is a method in which the temperature near the liquid surface of the reaction vessel is controlled by the above-mentioned method, and a reaction distillate is sprayed on the portion where the reaction mixture adheres by the above-mentioned method.

【0035】本発明で全体を同じ温度で加熱あるいは液
面およびそれより上に位置する部分の温度が200℃を
越える温度とした上に、さらに、反応留出液を吹きかけ
ないと、反応により液面が低下する缶内壁面及び撹拌軸
に付着した反応混合物中のモノマー、オリゴマーなどが
乾いて滞留して熱履歴を受け、例えば350℃でも溶融
しない異物が生成するため重合終了後缶内から吐出する
際にポリマー中に混入するため缶内を洗浄する周期が短
くなる。また、液面およびそれより上に位置する部分の
温度が70℃未満としたり、反応留出液の戻す量を多く
する場合、缶壁面あるいは撹拌軸に付着したモノマー、
オリゴマーなどの異物化の点では重大な問題を引き起こ
さないものの、反応缶での反応時間が長くなり生産性が
低下すること及び、重縮合反応が不十分となり目的の品
質のポリマーが得られなくなる。
In the present invention, the whole is heated at the same temperature or the temperature of the liquid surface and the portion located above the liquid surface is set to a temperature exceeding 200 ° C. In addition, if the reaction distillate is not sprayed, the liquid Monomers and oligomers in the reaction mixture adhering to the inner wall surface of the can and the stirrer shaft, which have a reduced surface, dry and stay and receive heat history. For example, foreign matter that does not melt even at 350 ° C. is generated. The cleaning cycle of the can is shortened because it is mixed into the polymer during the cleaning. Further, when the temperature of the liquid surface and a portion located above the liquid surface are set to less than 70 ° C. or when the amount of the reaction distillate to be returned is increased, the monomer adhering to the can wall or the stirring shaft,
Although it does not cause a serious problem in terms of foreign matter such as oligomers, the reaction time in the reaction vessel becomes longer and the productivity is reduced, and the polycondensation reaction becomes insufficient and a polymer of the desired quality cannot be obtained.

【0036】本発明の製造方法においては、通常、液晶
ポリマーの重縮合時、撹拌して行なわれるが、その際に
撹拌翼と缶壁面での剪断速度が150〜1000(1/
秒)、特に200〜700(1/秒)で行なう工程が含
まれることが好ましい。特にポリエステルオリゴマーを
生成するまでの重縮合初期反応時、さらに昇温開始時か
ら所定の重縮合温度に達するまでの時間の10%以上、
好ましくは50%以上の時間を剪断速度が150〜10
00(1/秒)、特に200〜700(1/秒)で行な
われることが好ましい。ここで撹拌翼と缶壁面での剪断
速度とは下記式より求められた値を言う。
In the production method of the present invention, the polycondensation of the liquid crystal polymer is usually carried out with stirring, and at this time, the shear rate between the stirring blade and the wall of the can is 150 to 1000 (1/1).
Second), particularly preferably 200 to 700 (1 / second). In particular, at the time of the initial reaction of polycondensation until the formation of the polyester oligomer, more than 10% of the time from the start of heating to the time of reaching the predetermined polycondensation temperature,
Preferably, the shear rate is 150 to 10 for 50% or more of the time.
It is preferably performed at a rate of 00 (1 / sec), particularly 200 to 700 (1 / sec). Here, the shear rate between the stirring blade and the can wall means a value obtained from the following equation.

【0037】剪断速度(1/秒)=2×2×3.14×
撹拌数(回転/秒)×缶内径×缶内径/(缶内径×缶内
径−撹拌翼外径×撹拌翼外径) また、所定の重縮合温度に達した後も、通常、引き続き
撹拌が行われるがその際、昇温途中の剪断速度よりも剪
断速度を小さくすることがより好ましい。なお、所定の
重縮合温度とは、重合度2〜4程度のポリエステルオリ
ゴマーを生成する初期反応後、高重合度化のための重縮
合を開始する温度、例えば昇温しながら初期反応を行な
い、減圧、または真空下で重縮合する方法においては、
減圧、または真空下で重縮合を開始する温度を意味す
る。かかる所定の重縮合温度は用いる液晶ポリエステル
原料の組合せに応じて最適温度を適宜設定されるもので
ある。
Shear rate (1 / sec) = 2 × 2 × 3.14 ×
Stirring number (rotation / second) x can inner diameter x can inner diameter / (can inner diameter x can inner diameter-stirrer outer diameter x stirrer outer diameter) In addition, usually after continuing to a predetermined polycondensation temperature, stirring is continued. However, at this time, it is more preferable that the shear rate is lower than the shear rate during the temperature rise. The predetermined polycondensation temperature refers to a temperature at which polycondensation for increasing the degree of polymerization is started after the initial reaction for producing a polyester oligomer having a degree of polymerization of about 2 to 4, for example, an initial reaction is performed while increasing the temperature, In the method of polycondensation under reduced pressure or vacuum,
The temperature at which polycondensation starts under reduced pressure or vacuum. The predetermined polycondensation temperature is appropriately set to an optimum temperature according to the combination of the liquid crystal polyester raw materials to be used.

【0038】これにより耐熱性に優れた高品質の液晶ポ
リマーが効率よく製造できる。
Thus, a high-quality liquid crystal polymer having excellent heat resistance can be efficiently produced.

【0039】[0039]

【実施例】以下、実施例により本発明をさらに詳述す
る。
The present invention will be described in more detail with reference to the following examples.

【0040】実施例1 内容積1.6m、缶の内径1.2m、缶内壁面とヘリ
カル翼撹拌機との距離が1cmでジャケットが3分割さ
れた反応缶1と内容積0.8m、缶の内径1.1m缶
内壁面と撹拌翼との距離が2cmのボトム翼を有した中
心軸のないダブルヘリカル翼撹拌機の反応缶2の2缶を
使い、次のように重合した。
Example 1 A reactor 1 having an inner volume of 1.6 m 3 , an inner diameter of the can of 1.2 m, a distance between the inner wall surface of the can and the helical blade stirrer of 1 cm, and a jacket divided into three, and an inner volume of 0.8 m 3. The inner diameter of the can was 1.1 m, and the distance between the inner wall surface of the can and the stirring blade was 2 cm.

【0041】反応缶1にp−ヒドロキシ安息香酸220
kg、4,4’−ジヒドロキシビフェニル27.8k
g、ポリエチレンテレフタレート47.8kg、テレフ
タル酸24.8kgおよび無水酢酸211.8kgを仕
込んだ。この時缶内液面は3分割された反応缶1のジャ
ケットの中段範囲内にあることを確認した。缶内を30
回転/分で5分間撹拌後、昇温し同時に60回転/分ま
で上げ、0.75時間で缶内温度が140℃に到達後、
140℃で1時間反応後反応缶1ジャケット下段温度を
150℃から270℃まで、反応缶1ジャケット上段は
150℃から195℃まで5時間かけて昇温し缶内温度
を250℃とした。その間中段は130℃でコントロー
ルしながら反応缶1ジャケット下、上段の昇温により留
出する反応留出液(沸点118℃)を留出液受け槽を経
由しダイヤフラムポンプで反応缶1気相部に取り付けた
ノズルにより10kg/h(1時間当たりの全留出液量
の4.0重量%に相当)で缶内の反応缶1のジャケット
中段部缶内壁面及び撹拌軸に吹きかけて戻しながら反応
させた。この時の缶内液面も仕込み時と同様反応缶1の
ジャケット中段範囲内にあった。その後反応缶2に移行
して、撹拌数を30回転/分で撹拌しながら2時間かけ
て250℃から320℃にし、重合缶を1Torrまで
減圧し、320℃で2時間撹拌を続け重縮合反応を完了
した。その後反応缶2内を2kg/cmに加圧後口金
を経由してポリマをストランド状に吐出してペレットに
した。その他の運転条件は表1に記載の条件で行った。
このポリマーの理論構造式を下記する。
In reaction vessel 1, p-hydroxybenzoic acid 220
kg, 4,4'-dihydroxybiphenyl 27.8k
g, 47.8 kg of polyethylene terephthalate, 24.8 kg of terephthalic acid and 211.8 kg of acetic anhydride. At this time, it was confirmed that the liquid level in the can was in the middle range of the jacket of the reaction vessel 1 divided into three parts. 30 in the can
After stirring at 5 rpm for 5 minutes, the temperature was raised and increased to 60 rpm at the same time, and after the temperature in the can reached 140 ° C in 0.75 hours,
After reacting at 140 ° C. for 1 hour, the temperature in the lower stage of the reactor 1 jacket was raised from 150 ° C. to 270 ° C., and the temperature in the upper stage of the reactor 1 jacket was raised from 150 ° C. to 195 ° C. over 5 hours to raise the internal temperature of the reactor to 250 ° C. In the meantime, the reaction distillate (boiling point 118 ° C.), which is distilled by raising the temperature in the upper stage under the jacket of the reactor 1 while being controlled at 130 ° C. in the middle stage, is passed through the distillate receiving tank, and the diaphragm is pumped by the diaphragm pump. At a pressure of 10 kg / h (corresponding to 4.0% by weight of the total amount of distillate per hour) by a nozzle attached to the reactor, the reaction was performed by spraying back onto the inner wall surface of the can at the middle stage of the jacket of the reaction can 1 and the stirring shaft. I let it. The liquid level in the can at this time was also in the middle range of the jacket of the reaction can 1 as in the preparation. Thereafter, the reactor was moved to the reactor 2 and the stirring speed was changed from 250 ° C. to 320 ° C. over 2 hours while stirring at 30 rpm, the pressure of the polymerization reactor was reduced to 1 Torr, and stirring was continued at 320 ° C. for 2 hours to continue the polycondensation reaction. Completed. After that, the inside of the reaction can 2 was pressurized to 2 kg / cm 2 , and then the polymer was discharged in the form of a strand via a die to form pellets. Other operating conditions were as described in Table 1.
The theoretical structural formula of this polymer is shown below.

【0042】[0042]

【化9】 k/l/m/n=80/7.5/12.5/20 上記の方法で、上記組成のポリマーを繰り返しバッチ重
合したところ、30バッチ重合した際に、正常ポリマー
の融点以上である350℃でも溶融しない異物が生成
し、重合終了後の吐出ポリマー中に混入する現象が、現
れたため繰り返し重合を中断して缶内を洗浄した。
Embedded image k / l / m / n = 80 / 7.5 / 12.5 / 20 When the polymer having the above composition was repeatedly batch-polymerized by the above-described method, it was found that when the polymer was polymerized in 30 batches, the melting point of the polymer was 350 ° C. or more. The phenomenon that foreign matter which did not melt even at ℃ was generated and was mixed in the discharged polymer after the completion of the polymerization appeared, so that the polymerization was repeatedly interrupted and the inside of the can was washed.

【0043】比較例1 実施例1と同じでジャケットが分割されていない反応缶
1と実施例1と同じ反応缶2の2缶を使い、次のように
重合した。
COMPARATIVE EXAMPLE 1 Two reactors, the same as in Example 1 but without a jacket and the same as in Example 1, were used for polymerization as follows.

【0044】反応缶1に実施例1と同量の原料を仕込
み、缶内を60回転/分で撹拌しながら昇温し、140
℃で1時間反応後ジャケット温度を150℃から270
℃まで5時間かけて昇温し缶内温度を250℃とし、反
応させた。ジャケット昇温後留出する反応留出液は反応
缶に戻さず全て留出液受け槽に回収した。その後反応缶
2に移行して、実施例1と同様に重合してペレットにし
た。その他の運転条件は表1に記載の条件で行った。
The same amount of the raw material as in Example 1 was charged into the reaction vessel 1, and the temperature was increased while stirring the inside of the vessel at 60 revolutions / minute.
After reacting for 1 hour at 150 ° C, the jacket temperature was increased from 150 ° C to 270 ° C.
The temperature was raised to 5 ° C. over 5 hours to raise the temperature in the can to 250 ° C., and the reaction was carried out. The reaction distillate distilled out after the jacket temperature was raised was all collected in the distillate receiving tank without returning to the reactor. Thereafter, the mixture was transferred to the reactor 2 and polymerized into pellets in the same manner as in Example 1. Other operating conditions were as described in Table 1.

【0045】実施例1と同様のポリマー組成で繰り返し
バッチ重合すると18バッチ目で正常ポリマーの融点以
上の物が吐出ポリマー中に混入して異物となる現象が現
われたため繰り返し重合を中断して缶内を洗浄した。
When batch polymerization was repeated with the same polymer composition as in Example 1, a phenomenon in which a substance having a melting point higher than that of the normal polymer mixed into the discharged polymer and became a foreign substance appeared in the 18th batch. Was washed.

【0046】比較例2 実施例1と同じでジャケットが分割されていない反応缶
1と実施例1と同じ反応缶2の2缶を使い、次のように
重合した。実施例1と同量の原料を反応缶1に仕込み、
反応缶1の撹拌速度を20回転/分とし、以下の重合は
比較例1と同様に行なった。なお、20回転/分の反応
缶1の撹拌による撹拌翼と缶壁面での剪断速度は127
(1/秒)であった。その他の運転条件は表1に記載の
条件で行った。
COMPARATIVE EXAMPLE 2 Two reactors, the same reactor 1 as in Example 1 and the jacket was not divided and the same reactor 2 as in Example 1, were used, and the polymerization was carried out as follows. The same amount of raw material as in Example 1 was charged into a reaction vessel 1,
The stirring rate of the reaction vessel 1 was set to 20 revolutions / minute, and the following polymerization was carried out in the same manner as in Comparative Example 1. In addition, the shearing speed between the stirring blade and the wall surface of the reactor by stirring the reactor 1 at 20 revolutions / minute is 127.
(1 / sec). Other operating conditions were as described in Table 1.

【0047】実施例1と同様のポリマー組成で繰り返し
バッチ重合すると10バッチ目で正常ポリマーの融点以
上の物が反応終了後の吐出ポリマー中に混入して異物と
なる現象が現われたため繰り返し重合を中断して缶内を
洗浄した。
When repeated batch polymerization was carried out with the same polymer composition as in Example 1, a phenomenon in which a substance having a melting point equal to or higher than that of a normal polymer was mixed into the discharged polymer after the completion of the reaction in the tenth batch to form a foreign substance appeared, and the repeated polymerization was interrupted. Then, the inside of the can was washed.

【0048】実施例2 実施例1と同じ反応缶1と実施例1と同じ反応缶2の2
缶を使い、次のように重合した。実施例1と同量の原料
を反応缶1に仕込、反応缶1の撹拌20回転/分で撹拌
したこと以外は実施例1と同じ条件で繰り返し重合し
た。その他の運転条件は表1記載の条件で行ったとこ
ろ、25バッチ目で正常ポリマーの融点以上の物が重合
終了後の吐出ポリマー中に混入して異物となる現象が現
われたため繰り返し重合を中断して缶内を洗浄した。
Example 2 The same reaction vessel 1 as in Example 1 and 2 of reaction vessel 2 as in Example 1
Using a can, polymerization was carried out as follows. The same amount of the raw material as in Example 1 was charged into the reaction vessel 1, and the polymerization was repeated under the same conditions as in Example 1 except that the reaction vessel 1 was stirred at 20 revolutions / minute. Other operating conditions were as shown in Table 1. In the 25th batch, a substance having a melting point higher than the melting point of the normal polymer was mixed into the discharged polymer after polymerization was completed to form a foreign substance. To clean the inside of the can.

【0049】実施例3 実施例1と同じ反応缶1と実施例1と同じ反応缶2の2
缶を使い、次のように重合した。
Example 3 The same reaction vessel 1 as in Example 1 and the same reaction vessel 2 as in Example 1
Using a can, polymerization was carried out as follows.

【0050】実施例1と同量の原料を反応缶1に仕込、
反応缶1への反応留出液の戻し量を3kg/h(全留出
液量の1.2重量%相当)で行なったこと以外は実施例
1と同じ条件で繰り返し重合した。その他の運転条件は
表1記載の条件で行ったところ、22バッチ目で正常ポ
リマーの融点以上の物が重合終了後の吐出ポリマー中に
混入して異物となる現象が現われたため繰り返し重合を
中断して缶内を洗浄した。
The same amount of the raw material as in Example 1 was charged into the reaction vessel 1,
Polymerization was repeated under the same conditions as in Example 1 except that the amount of the reaction distillate returned to the reaction vessel 1 was 3 kg / h (corresponding to 1.2% by weight of the total distillate amount). The other operating conditions were as shown in Table 1. In the 22nd batch, a substance having a melting point higher than the melting point of the normal polymer was mixed into the discharged polymer after the completion of the polymerization to form a foreign substance. To clean the inside of the can.

【0051】[0051]

【表1】 項目 実施例1 比較例1 比較例2 実施例2 実施例3 反応缶1ジャケッ ト分割温度コント 3分割温度コ 分割無し 分割無し 実施例1 実施例1ロール ントロール と同じ と同じ 反応留出液 戻し量 10kg/h 戻さず 戻さず 10kg/h 3kg/h 反応缶1撹拌剪断速度 (1/秒) 380 380 127 127 380 反応缶2へ移行時留出量(対全量) 82重量% 85重量% 83重量% 80重量% 82重量% 昇温開始から所定 の重縮合温度に到達するまでの時間 7.0時間 6.5時間 6.75時間 7.2時間 7.0時間 剪断速度 150〜10 00(1/秒)での撹 拌時間の割合(対 所定重縮合温度に達するまでの時間) 100% 100% 100% 100% 100% 異物発生までのバッチ数 30バッチ 18バッチ 10バッチ 25バッチ 22バッチ Table 1 Item Example 1 Comparative example 1 Comparative example 2 Example 2 Example 3 Reactor 1 jacket division temperature control 3 division temperature control No division No division Example 1 Example 1 Same as control Discharge amount 10 kg / h No return No return 10 kg / h 3 kg / h Reactor 1 stirring speed (1 / sec) 380 380 127 127 380 Distillation amount (total amount) when transferred to reactor 2 82% by weight 85撹in wt% 83 wt% 80 wt% 82 wt% time 7.0 hours 6.5 hours 6.75 hours 7.2 hours 7.0 hours shear rate from the start to warm to arrival reaches a predetermined polycondensation temperature from 150 to 10 00 (1 / sec) ratio (vs. predetermined polycondensation time to reach the focus temperature) of 100% to 100% 100% 100% 100% foreign materials generated batch number 30 batch 18 batch 10 batch 25 batch 22 batch between拌時

【0052】[0052]

【発明の効果】本発明によれば液晶ポリエステルの生産
性が向上し、耐熱性に優れた高品質のポリマーが得られ
る。
According to the present invention, the productivity of liquid crystal polyester is improved, and a high quality polymer having excellent heat resistance can be obtained.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】原料投入口、撹拌装置および温度管理装置
を有する重合装置を用いて液晶ポリエステル原料を撹拌
しながら重縮合して液晶ポリエステルを製造する際、少
なくとも反応中の反応缶液面およびそれより上の反応液
面付近に位置する部分の温度を、70℃〜200℃の範
囲にコントロールしながら、または、反応缶内気相部壁
面及び撹拌軸の気相部に位置する部分に反応留出液を吹
きかけて戻し、缶内壁面及び撹拌軸を洗浄しながら重縮
合を行なうことを特徴とする液晶ポリエステルの製造方
法。
When a liquid crystal polyester is produced by subjecting a liquid crystal polyester material to polycondensation while stirring using a polymerization apparatus having a raw material inlet, a stirring device, and a temperature control device, at least the liquid surface of the reaction vessel during the reaction and the liquid level. While controlling the temperature of the portion located near the upper surface of the reaction solution within the range of 70 ° C. to 200 ° C., or distilling out the reaction gas at the portion located at the gas phase wall in the reactor and the gas phase of the stirring shaft A method for producing a liquid crystal polyester, comprising spraying a liquid back and performing polycondensation while washing an inner wall surface and a stirring shaft of the can.
【請求項2】温度管理装置として反応缶のジャケットを
用い、かかるジャケットを2分割以上にし、少なくとも
反応中の反応缶液面およびそれより上の反応缶液面付近
を包含する部分のジャケット温度を70℃〜200℃の
範囲にコントロールする請求項1記載の液晶ポリエステ
ルの製造方法。
2. A jacket for a reaction vessel is used as a temperature control device. The jacket is divided into two or more sections, and the jacket temperature of at least a portion including the liquid level of the reaction vessel during reaction and the vicinity of the liquid level of the reaction vessel above it is controlled. The method for producing a liquid crystal polyester according to claim 1, wherein the temperature is controlled within a range of 70C to 200C.
【請求項3】反応缶内気相部壁面及び撹拌軸の気相部に
位置する部分に吹きかけて戻す量が反応中に留出する全
留出液量の3〜10重量%の範囲であることを特徴とす
る請求項1記載の液晶ポリエステルの製造方法。
3. The amount of the vapor returned to the wall of the gas phase part in the reaction vessel and the part located in the gas phase part of the stirring shaft is in the range of 3 to 10% by weight of the total distillate distilled out during the reaction. The method for producing a liquid crystal polyester according to claim 1, wherein
【請求項4】重縮合を脱酢酸反応により行なうことを特
徴とする請求項1記載の液晶ポリエステルの製造方法。
4. The method according to claim 1, wherein the polycondensation is carried out by a deacetic acid reaction.
【請求項5】撹拌が撹拌翼と缶壁面での剪断速度が15
0〜1000(1/秒)になるように行なわれる工程が
含まれるものである請求項1記載の液晶ポリエステルの
製造方法。
5. The stirring is performed at a shear rate of 15 between the stirring blade and the wall surface of the can.
2. The method for producing a liquid crystal polyester according to claim 1, which comprises a step performed so as to be 0 to 1000 (1 / second).
【請求項6】原料投入後、撹拌しながら所定の重縮合温
度になるまで昇温し、昇温を開始後、重縮合温度に達す
るまでの時間の10%以上の時間を、剪断速度が150
〜1000(1/秒)になるように反応物を撹拌するも
のである請求項5記載の液晶ポリエステルの製造方法。
6. After the raw materials are charged, the temperature is raised to a predetermined polycondensation temperature while stirring, and after the temperature rise is started, the shear rate is set to 150% or more of the time required to reach the polycondensation temperature.
6. The method for producing a liquid crystal polyester according to claim 5, wherein the reaction product is stirred so as to have a flow rate of about 1000 (1 / second).
【請求項7】液晶ポリエステルがエチレンジオキシ単位
を有する液晶ポリエステルであることを特徴とする請求
項1記載の液晶ポリエステルの製造方法。
7. The method according to claim 1, wherein the liquid crystal polyester is a liquid crystal polyester having an ethylenedioxy unit.
【請求項8】液晶ポリマーが下記(I)、(II)、(II
I )、(IV)の構造単位からなる液晶ポリエステルであ
ることを特徴とする請求項7項記載の液晶ポリエステル
の製造方法。 【化1】 (但し式中のR1は 【化2】 から選ばれた1種以上の基を示し、R2は 【化3】 から選ばれた1種以上の基を示す。また、式中Xは水素
原子または塩素原子を示し、構造単位(II)および(II
I )の合計と構造単位(IV)は実質的に等モルであ
る。)
8. The liquid crystal polymer according to the following (I), (II) or (II)
The method for producing a liquid crystal polyester according to claim 7, which is a liquid crystal polyester comprising the structural units (I) and (IV). Embedded image (However, R1 in the formula is Wherein R2 represents one or more groups selected from And at least one group selected from In the formula, X represents a hydrogen atom or a chlorine atom, and the structural units (II) and (II)
The sum of I) and the structural units (IV) are substantially equimolar. )
JP16477096A 1996-06-25 1996-06-25 Production of liquid-crystal polyester Pending JPH107781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16477096A JPH107781A (en) 1996-06-25 1996-06-25 Production of liquid-crystal polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16477096A JPH107781A (en) 1996-06-25 1996-06-25 Production of liquid-crystal polyester

Publications (1)

Publication Number Publication Date
JPH107781A true JPH107781A (en) 1998-01-13

Family

ID=15799611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16477096A Pending JPH107781A (en) 1996-06-25 1996-06-25 Production of liquid-crystal polyester

Country Status (1)

Country Link
JP (1) JPH107781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090747A1 (en) * 2010-12-27 2012-07-05 東レ株式会社 Process for production of liquid crystalline polyester resin, and apparatus for production of liquid crystalline polyester resin
JP2012149241A (en) * 2010-12-27 2012-08-09 Toray Ind Inc Process for producing liquid crystalline polyester resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090747A1 (en) * 2010-12-27 2012-07-05 東レ株式会社 Process for production of liquid crystalline polyester resin, and apparatus for production of liquid crystalline polyester resin
JP2012149241A (en) * 2010-12-27 2012-08-09 Toray Ind Inc Process for producing liquid crystalline polyester resin
CN103201310A (en) * 2010-12-27 2013-07-10 东丽株式会社 Process for production of liquid crystalline polyester resin, and apparatus for production of liquid crystalline polyester resin
US8916673B2 (en) 2010-12-27 2014-12-23 Toray Industries, Inc. Process for producing liquid crystalline polyester resin and apparatus for producing liquid crystalline polyester resin

Similar Documents

Publication Publication Date Title
JP4932080B2 (en) Method for producing liquid crystal polymer
US5616680A (en) Process for producing liquid crystal polymer
JP2894543B2 (en) Method for increasing the rate of direct esterification of diacids with glycols
JPH11501693A (en) Continuous production of thermoplastic polyester.
JPH107781A (en) Production of liquid-crystal polyester
JP3484595B2 (en) Method for producing liquid crystal polyester
JP4357966B2 (en) Process for producing aromatic polymer
US6201102B1 (en) Method of producing an aromatic polyester
US5854375A (en) Melt polymerization process for preparing aromatic polyesters
JP3116512B2 (en) Batch continuous polymerization of liquid crystalline polyester
JPS62132922A (en) Novel full-aromatic polyether ester and its production
JP3572887B2 (en) Method for producing liquid crystal polyester
JP2002265577A (en) Method of cleaning liquid crystal resin melt polymerization apparatus
JP3033200B2 (en) Method for producing liquid crystalline polyester
JPH06192403A (en) Method of continuous batch polymerization of liquid crystalline polyester
JPH1017659A (en) Production of liquid crystal polyester
JP2666567B2 (en) Polyester production method
Higashi et al. Direct polyesterification with thionyl chloride in pyridine improved by a modification of monomer sequences in copolymers
JP2023172360A (en) Method for producing liquid crystalline resin
JP3257096B2 (en) Method for producing liquid crystalline polyester
JP3697752B2 (en) Method for producing liquid crystal polymer
Higashi et al. Direct polyesterification by use of phosphorus oxychloride and LiCl in pyridine
JPH07113057B2 (en) Aromatic polyester and method for producing the same
JPH07107094B2 (en) Method for producing copolyester
JP2002265578A (en) Method of cleaning liquid crystal resin melt polymerization apparatus