JP2006307006A - Method for manufacturing aromatic polyester - Google Patents

Method for manufacturing aromatic polyester Download PDF

Info

Publication number
JP2006307006A
JP2006307006A JP2005131387A JP2005131387A JP2006307006A JP 2006307006 A JP2006307006 A JP 2006307006A JP 2005131387 A JP2005131387 A JP 2005131387A JP 2005131387 A JP2005131387 A JP 2005131387A JP 2006307006 A JP2006307006 A JP 2006307006A
Authority
JP
Japan
Prior art keywords
condensation polymerization
aromatic polyester
partial condenser
aromatic
polymerization tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005131387A
Other languages
Japanese (ja)
Inventor
Shosuke Kondo
祥佐 近藤
Takanori Ito
孝徳 伊藤
Tatsuhiko Matsumoto
辰彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005131387A priority Critical patent/JP2006307006A/en
Publication of JP2006307006A publication Critical patent/JP2006307006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an aromatic polyester by using a reaction vessel for acetylation and a vessel for condensation, wherein the amount of a substance adhered to a partial condenser installed to the condensation vessel and consequently the number of operations for blocking the tube of the partial condenser is reduced and the frequency required to clean the partial condenser is reduced. <P>SOLUTION: The method comprises: transforming an acetylated reaction solution prepared by acetylating an aromatic polyester monomer with acetic anhydride in a reaction vessel; and subjecting the solution to polycondensation by heating to obtain an aromatic polyester. The method is characterized by refluxing a substance, which has low boiling point and effuses from the condensation vessel, by maintaining the temperature of a cooling medium in the partial condenser, which is installed to the condensation vessel, lower than the boiling point of the substance while the acetylated reaction solution is transported from the acetylation reaction vessel to the condensation vessel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、芳香族ポリエステルの製造方法に関する。詳しくは縮重合によって芳香族ポリエステルを製造する際に、縮重合槽に設置した分縮器に付着する付着物を低減させることができる芳香族ポリエステルの製造方法に関する。   The present invention relates to a method for producing an aromatic polyester. Specifically, the present invention relates to a method for producing an aromatic polyester capable of reducing deposits adhering to a partial condenser installed in a condensation polymerization tank when producing an aromatic polyester by condensation polymerization.

芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類および芳香族ジオール類から選ばれる原料モノマー類を無水酢酸でアセチル化して得られる反応生成物を縮重合して芳香族ポリエステルを製造する方法は良く知られており、その際、縮重合槽から留出する低沸物には原料モノマー類あるいはアセチル化モノマー類等の低分子化合物が含まれる。
これら低分子化合物が留出することによって製品得量の低下、製品品質の変動、低分子化合物等の凝縮器への付着による閉塞につながるため、縮重合槽に分縮器を設置し、低沸物の回収量が理論量の50〜90%の間、分縮器から留出する低沸物の温度を80〜150℃に制御して低分子化合物等を回収する方法が提案されている(特許文献1参照。)。
A method for producing an aromatic polyester by polycondensing a reaction product obtained by acetylating a raw material monomer selected from aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids and aromatic diols with acetic anhydride is well known. In this case, the low-boiling product distilled from the condensation polymerization tank includes low-molecular compounds such as raw material monomers or acetylated monomers.
Distillation of these low molecular weight compounds leads to a decrease in product yield, product quality fluctuations, and clogging due to adhesion of low molecular weight compounds to the condenser. A method for recovering low molecular weight compounds and the like by controlling the temperature of the low boilers distilled from the partial condenser to 80 to 150 ° C. while the recovered amount of the product is 50 to 90% of the theoretical amount ( (See Patent Document 1).

しかしながら、特許文献1に記載の方法では、低分子化合物等の付着物が分縮器のチューブに付着することを完全に防止することができず、回分反応を重ねるうちに伝熱能力が低下し、やがてチューブの閉塞を引き起こす。その場合には、運転を停止して定期的な化学洗浄を実施するため、生産性の低下につながっていた。
特開2000−212264号公報
However, the method described in Patent Document 1 cannot completely prevent deposits such as low-molecular compounds from adhering to the tube of the condenser, and the heat transfer capability decreases as the batch reaction is repeated. Over time, it will cause tube obstruction. In that case, the operation was stopped and regular chemical cleaning was performed, leading to a decrease in productivity.
JP 2000-212264 A

本発明の目的は、アセチル化反応槽と縮重合槽を用いる芳香族ポリエステルの製造方法において、縮重合槽に設置した分縮器に付着する付着物を低減させ、結果として分縮器のチューブの閉塞を少なくし、分縮器の洗浄頻度を減少させることができる芳香族ポリエステルの製造方法を提供することにある。   The object of the present invention is to reduce the deposits adhering to the partial condenser installed in the polycondensation tank in the method for producing an aromatic polyester using the acetylation reaction tank and the condensation polymerization tank. It is an object of the present invention to provide a method for producing an aromatic polyester that can reduce clogging and reduce the frequency of cleaning of a partial condenser.

本発明者らは、かかる課題を解決するために、縮重合による芳香族ポリエステルの製造方法について鋭意検討した結果、アセチル化して得られるアセチル化反応溶液をアセチル化反応槽から縮重合槽に移送する間は、縮重合槽に設置した分縮器の冷媒の温度を縮重合槽から留出する低沸物の沸点以下にして低沸物を還流させることによって、分縮器に付着する付着物を低減させることができることを見出し、本発明を完成した。   In order to solve such problems, the present inventors diligently studied a method for producing an aromatic polyester by condensation polymerization. As a result, the acetylation reaction solution obtained by acetylation is transferred from the acetylation reaction tank to the condensation polymerization tank. During this time, the temperature of the refrigerant in the partial condenser installed in the condensation polymerization tank is set to be equal to or lower than the boiling point of the low boiling substance distilled from the condensation polymerization tank, so that the low-boiling substances are refluxed. The present invention has been completed by finding out that it can be reduced.

すなわち本発明は、芳香族ポリエステルの原料モノマー類と無水酢酸をアセチル化反応槽でアセチル化して得られるアセチル化反応溶液を縮重合槽に移送し、加熱して縮重合させて芳香族ポリエステルを製造する方法において、アセチル化反応溶液をアセチル化反応槽から縮重合槽に移送する間は、縮重合槽に設置した分縮器の冷媒の温度を縮重合槽から留出する低沸物の沸点以下にして低沸物を還流させることを特徴とする芳香族ポリエステルの製造方法である。   That is, the present invention produces an aromatic polyester by transferring an acetylation reaction solution obtained by acetylating aromatic polyester raw monomers and acetic anhydride in an acetylation reaction tank to a condensation polymerization tank and heating to cause condensation polymerization. In this method, while the acetylation reaction solution is transferred from the acetylation reaction tank to the condensation polymerization tank, the temperature of the refrigerant of the partial condenser installed in the condensation polymerization tank is equal to or lower than the boiling point of the low boiling point distilled from the condensation polymerization tank. And a method for producing an aromatic polyester, characterized by refluxing low-boiling substances.

本発明によれば、アセチル化反応槽と縮重合槽を用いる芳香族ポリエステルの製造方法において、縮重合槽に設置した分縮器に付着する付着物を低減させ、結果として分縮器のチューブの閉塞を少なくし、分縮器の洗浄頻度を減少させることができるので、生産性の向上につながる。   According to the present invention, in the method for producing an aromatic polyester using an acetylation reaction tank and a condensation polymerization tank, the deposits attached to the partial condenser installed in the condensation polymerization tank are reduced, and as a result, the tube of the partial condenser is reduced. Since the blockage can be reduced and the frequency of cleaning the reducer can be reduced, the productivity can be improved.

本発明において使用される芳香族ポリエステルの原料モノマー類としては、芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類および芳香族ジオール類が挙げられる。   Examples of the raw material monomers for the aromatic polyester used in the present invention include aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, and aromatic diols.

芳香族ヒドロキシカルボン酸類としては、例えば、下記一般式(1)、
HO−X−COOR1 (1)
(式中、R1は水素、炭素数1〜6のアルキル基または炭素数6〜16のアリール基を表し、Xは2価の芳香族基を表す。)で示されるものが挙げられる。
As aromatic hydroxycarboxylic acids, for example, the following general formula (1),
HO-X-COOR 1 (1)
(Wherein R 1 represents hydrogen, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 16 carbon atoms, and X represents a divalent aromatic group).

芳香族キドロキシルカルボン酸類として具体的には、p−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸メチル、p−ヒドロキシ安息香酸プロピル、p−ヒドロキシ安息香酸フェニル、p−ヒドロキシ安息香酸ベンジル、p−(4−ヒドロキシフェニル)安息香酸、p−(4−ヒドロキシフェニル)安息香酸メチル、2−ヒドロキシ−6−ナフトエ酸、2−ヒドロキシ−6−ナフトエ酸メチルおよび2−ヒドロキシ−6−ナフトエ酸フェニル等が例示される。中でもp−ヒドロキシ安息香酸、2−ヒドロキシ−6−ナフトエ酸等が好適である。   Specific examples of the aromatic hydroxyloxycarboxylic acids include p-hydroxybenzoic acid, p-hydroxybenzoic acid methyl, p-hydroxybenzoic acid propyl, p-hydroxybenzoic acid phenyl, p-hydroxybenzoic acid benzyl, p- (4 -Hydroxyphenyl) benzoic acid, methyl p- (4-hydroxyphenyl) benzoate, 2-hydroxy-6-naphthoic acid, methyl 2-hydroxy-6-naphthoate and phenyl 2-hydroxy-6-naphthoate Is done. Of these, p-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid and the like are preferable.

芳香族ジカルボン酸類としては、例えば、下記一般式(2)、
2−O−CO−Y−CO−O−R2 (2)
(式中、R2は水素、炭素数1〜6のアルキル基または炭素数6〜16のアリール基または炭素数6〜16のアリール基を表し、Yは2価の芳香族基を表す。)で示されるものが挙げられる。
As aromatic dicarboxylic acids, for example, the following general formula (2),
R 2 —O—CO—Y—CO—O—R 2 (2)
(In the formula, R 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms, and Y represents a divalent aromatic group.) The thing shown by is mentioned.

この芳香族ジカルボン酸類として具体的には、テレフタル酸、イソフタル酸、4,4’−ジカルボキシジフェニル、1,2−ビス(4−カルボキシフェノキシ)エタン、2,5−ジカルボキシナフタレン、2,6−カルボキシナフタレン、1,4−ジカルボキシナフタレン、1,5−ジカルボキシナフタレン、テレフタル酸ジメチル、イソフタル酸ジメチル、テレフタル酸ジフェニル、イソフタル酸ジフェニル、4,4’−ジメトキシカルボニルジフェニル、2,6−ジメトキシカルボニルナフタレン、1,4−ジクロロカルボニルナフタレンおよび1,5−ジフェノキシカルボニルナフタレン等が例示される。中でも、テレフタル酸、イソフタル酸および2,6−ジカルボキシナフタレン等が好適である。   Specific examples of the aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 4,4′-dicarboxydiphenyl, 1,2-bis (4-carboxyphenoxy) ethane, 2,5-dicarboxynaphthalene, 2,6 -Carboxynaphthalene, 1,4-dicarboxynaphthalene, 1,5-dicarboxynaphthalene, dimethyl terephthalate, dimethyl isophthalate, diphenyl terephthalate, diphenyl isophthalate, 4,4'-dimethoxycarbonyldiphenyl, 2,6-dimethoxy Examples thereof include carbonylnaphthalene, 1,4-dichlorocarbonylnaphthalene and 1,5-diphenoxycarbonylnaphthalene. Of these, terephthalic acid, isophthalic acid, 2,6-dicarboxynaphthalene, and the like are preferable.

芳香族ジオール類としては、例えば、下記一般式(3)、
HO−Z−OH (3)
(式中、Zは2価の芳香族基を表す。)で示されるものが挙げられる。
As aromatic diols, for example, the following general formula (3),
HO-Z-OH (3)
(Wherein Z represents a divalent aromatic group).

この芳香族ジオール類として具体的には、ヒドロキノン、レゾルシン、カテコール、4,4’−ジヒドロキシジフェニル、4,4’−ヒドロキシベンゾフェノン、4,4’−ジヒドロキシジフェニルメタン、4,4’−ジヒドロキシジフェニルエタン、4,4’−ジヒドロキシジフェニルエーテル、2,2−ビス(4−ヒドロキシフェニル)プロパン、4,4’−ヒドロキシジフェニルスルフォン、4,4’−ジヒドロキシジフェニルスルフィド、2,6−ジヒドロキシナフタレンおよび1,5−ヒドロキシナフタレン等が例示される。中でも、ヒドロキノン、レゾルシン、4,4’−ジヒドロキシジフェニル、2,2−ビス(4−ヒドロキシフェニル)プロパンおよび4,4’−ジヒドロキシジフェニルスルフォン等が好適である。   Specific examples of the aromatic diols include hydroquinone, resorcin, catechol, 4,4′-dihydroxydiphenyl, 4,4′-hydroxybenzophenone, 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylethane, 4,4'-dihydroxydiphenyl ether, 2,2-bis (4-hydroxyphenyl) propane, 4,4'-hydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, 2,6-dihydroxynaphthalene and 1,5- Examples thereof include hydroxynaphthalene and the like. Of these, hydroquinone, resorcin, 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 4,4'-dihydroxydiphenylsulfone, and the like are preferable.

芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類および芳香族ジオール類の使用比率は特に限定されないが、芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類及び芳香族ジオール類の合計100モルに対して、通常、芳香族ヒドロキシカルボン酸類が30〜80モル、芳香族ジカルボン酸類が10〜35モル、芳香族ジオール類が10〜35モルの範囲から選ばれる。   The use ratio of the aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids and aromatic diols is not particularly limited, but the aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids and aromatic diols are usually added to a total of 100 moles. An aromatic hydroxycarboxylic acid is selected in the range of 30 to 80 mol, an aromatic dicarboxylic acid in an amount of 10 to 35 mol, and an aromatic diol in an amount of 10 to 35 mol.

図1は本発明で使用する装置の一例の概略図である。アセチル化反応槽1に芳香族ポリエステルの原料モノマー類と無水酢酸を供給し、加熱、還流下にアセチル化反応を行う。アセチル化して得られるアセチル化反応溶液を移送管3を経て縮重合槽2に移送し、加熱して縮重合させる。縮重合反応中、縮重合槽から留出する低沸物の大半は、分縮器4を経由して凝縮器5にて冷却・凝縮されて凝縮液8が回収され、低沸物に含まれる低分子化合物等は、殆ど分縮器で凝縮されて縮重合槽に回収され、凝縮器から未凝縮ガス9が排出される。縮重合反応終了後、縮重合槽2から芳香族ポリエステル7が抜き出される。   FIG. 1 is a schematic view of an example of an apparatus used in the present invention. Aromatic polyester raw material monomers and acetic anhydride are supplied to the acetylation reaction tank 1, and an acetylation reaction is carried out under heating and reflux. The acetylation reaction solution obtained by acetylation is transferred to the condensation polymerization tank 2 through the transfer pipe 3, and is heated to cause condensation polymerization. During the condensation polymerization reaction, most of the low-boiling substances distilled from the condensation polymerization tank are cooled and condensed by the condenser 5 via the partial condenser 4, and the condensate 8 is recovered and contained in the low-boiling substances. Most of the low molecular weight compounds are condensed in the partial condenser and collected in the condensation polymerization tank, and the uncondensed gas 9 is discharged from the condenser. After completion of the condensation polymerization reaction, the aromatic polyester 7 is extracted from the condensation polymerization tank 2.

アセチル化反応は還流下に行われ、その温度および圧力は特に限定されないが、通常、常圧下、140〜150℃で実施される。アセチル化反応は、還流が開始してから、0.5〜5時間実施される。アセチル化して得られるアセチル化反応溶液には、通常、未反応原料モノマー類、アセチル化反応生成物、酢酸および未反応の無水酢酸等が含まれる。
アセチル化反応槽の材質は、上記アセチル化反応溶液に耐腐食性があることが好ましく、通常、GL製等が用いられる。
The acetylation reaction is carried out under reflux, and the temperature and pressure are not particularly limited, but are usually carried out at 140 to 150 ° C. under normal pressure. The acetylation reaction is carried out for 0.5 to 5 hours after the start of reflux. The acetylation reaction solution obtained by acetylation usually contains unreacted raw material monomers, acetylation reaction products, acetic acid, unreacted acetic anhydride, and the like.
As the material for the acetylation reaction tank, the acetylation reaction solution preferably has corrosion resistance, and GL or the like is usually used.

アセチル化反応溶液は、縮重合槽に移送され、加熱され縮重合反応が行なわれる。
本発明においては、アセチル化反応溶液には、予め一部の原料モノマー類がアセチル化された原料モノマー類を、溶媒として酢酸に溶解した溶液であってもよい。
アセチル化された原料モノマー類として、例えば、p−アセトキシ安息香酸や4,4’−ジアセトキシジフェニル等が挙げられる。
The acetylation reaction solution is transferred to a condensation polymerization tank and heated to carry out a condensation polymerization reaction.
In the present invention, the acetylation reaction solution may be a solution in which raw material monomers in which some raw material monomers are acetylated in advance are dissolved in acetic acid as a solvent.
Examples of the acetylated raw material monomers include p-acetoxybenzoic acid and 4,4′-diacetoxydiphenyl.

縮重合槽の材質はアセチル化反応溶液等に対して耐腐食性であることが好ましく、具体的にはSUS316、SUS316L、2相ステンレス、ニッケル−モリブデン系合金、不浸透黒鉛、チタン、ジルコニウム、GLおよびタンタル等が例示される。ニッケル−モリブデン系合金の具体例としては、ハステロイ−B(三菱マテリアル(株)登録商標)、ハステロイ−C(三菱マテリアル(株)登録商標)等が挙げられる。
縮重合槽およびその翼の形状は公知のものを使用すれば良く、具体的には、縦型の撹拌槽などの場合、多段のパドル翼、タービン翼、ダブルヘリカム翼、錨形翼、櫛形翼等が用いられる。
The material of the condensation polymerization tank is preferably resistant to corrosion with respect to the acetylation reaction solution. Specifically, SUS316, SUS316L, duplex stainless steel, nickel-molybdenum alloy, impervious graphite, titanium, zirconium, GL And tantalum and the like. Specific examples of the nickel-molybdenum-based alloy include Hastelloy-B (registered trademark of Mitsubishi Materials Corporation), Hastelloy-C (registered trademark of Mitsubishi Materials Corporation), and the like.
The condensation polymerization tank and its blade shape may be of a known type. Specifically, in the case of a vertical stirring tank, etc., multistage paddle blades, turbine blades, double helicam blades, saddle blades, comb blades, etc. Is used.

上記のとおり、アセチル化反応は140〜150℃で実施され、反応終了後、アセチル化反応溶液は、略そのままの温度で、アセチル化反応槽から縮重合槽へ移送される。移送中、縮重合槽に移送された反応溶液の温度が140℃〜250℃に維持されるように縮重合槽は加熱して行なわれる。   As described above, the acetylation reaction is performed at 140 to 150 ° C., and after completion of the reaction, the acetylation reaction solution is transferred from the acetylation reaction tank to the condensation polymerization tank at substantially the same temperature. During the transfer, the condensation polymerization tank is heated so that the temperature of the reaction solution transferred to the condensation polymerization tank is maintained at 140 ° C to 250 ° C.

縮重合槽には低沸物を冷却・凝縮する凝縮器の間に分縮器が設置されおり、従来は、アセチル化反応溶液を移送している間も、縮重合反応の進行時と同様に、低沸物の大半は、分縮器を経由して凝縮器にて冷却・凝縮させているが、本発明においては、分縮器の冷媒の温度を縮重合槽から留出する低沸物の沸点以下、好ましくは80℃以下にして低沸物を還流させる。このことによって、低沸物は全還流され、分縮器が洗われ、分縮器に付着している付着物は低減される。分縮器の冷媒温度の代わりに、分縮器出口のガス温度を100℃以下に制御しても良く、このことによって低沸物は同様に全還流される。   In the condensation polymerization tank, a partial condenser is installed between the condensers that cool and condense the low-boiling substances. Conventionally, during the transfer of the acetylation reaction solution, the condensation polymerization reaction proceeds as well. Most of the low-boiling substances are cooled and condensed by the condenser via the partial condenser, but in the present invention, the low-boiling substances are distilled from the condensation polymerization tank at the temperature of the refrigerant of the partial condenser. The low boiling point is refluxed at a temperature not higher than that, preferably not higher than 80 ° C. As a result, the low-boiling substances are totally refluxed, the partial condenser is washed, and the deposits adhering to the partial condenser are reduced. Instead of the refrigerant temperature of the partial condenser, the gas temperature at the outlet of the partial condenser may be controlled to 100 ° C. or lower, whereby the low-boiling substances are similarly totally refluxed.

アセチル化反応溶液の縮重合槽への移送中、縮重合槽に移送された反応溶液の温度が140℃未満であると、還流する低沸物の量が少なくなる傾向にあり、分縮器の洗浄効果が少なくなり、250℃を越えると、低沸分中に低分子量化合物が多くなり好ましくない。   During the transfer of the acetylation reaction solution to the condensation polymerization tank, if the temperature of the reaction solution transferred to the condensation polymerization tank is less than 140 ° C., the amount of low-boiling substances to be refluxed tends to decrease. If the cleaning effect is reduced and the temperature exceeds 250 ° C., low molecular weight compounds increase in the low boiling point, which is not preferable.

アセチル化反応溶液の移送時間は、通常、5〜30分である。移送時間を長くしたり、移送完了後に全還流を続けると、分縮器の洗浄効果は高くなるが、回分反応サイクルが延び、生産性を低下させるので好ましくなく、通常、移送完了後、加熱し、低沸物を留出させながら、縮重合反応を行わせる。   The transfer time of the acetylation reaction solution is usually 5 to 30 minutes. If the transfer time is lengthened or the total reflux is continued after completion of the transfer, the cleaning effect of the partial condenser is increased, but this is not preferable because the batch reaction cycle is extended and the productivity is lowered. The polycondensation reaction is carried out while distilling low boilers.

縮重合槽から留出される低沸物には、低分子化合物、酢酸および未反応の無水酢酸等が挙げられる。低分子化合物とは、具体的には芳香族カルボン酸類等の原料モノマー類およびアセチル化されたモノマー類等の芳香族ポリエステルの構成成分である。また、他にも重合反応によって生じる水、アルコール類、フェノール類が含まれることもある。   Examples of the low boilers distilled from the condensation polymerization tank include low molecular weight compounds, acetic acid, and unreacted acetic anhydride. The low molecular compound is specifically a constituent component of an aromatic polyester such as raw material monomers such as aromatic carboxylic acids and acetylated monomers. In addition, water, alcohols and phenols generated by the polymerization reaction may be included.

アセチル化反応溶液を縮重合槽に移送する間は溶液の温度が低いために、低沸物中に含まれる低分子化合物は少ない。この段階で留出するのは、主にアセチル化反応で生成した酢酸および未反応の無水酢酸である。したがって移送中に留出した低沸物を分縮器で還流させることで、分縮器に付着している付着物を洗浄し、低減することができる。   Since the temperature of the solution is low during the transfer of the acetylation reaction solution to the condensation polymerization tank, the low molecular weight compound contained in the low boiling point product is small. Distilled at this stage is mainly acetic acid produced by acetylation reaction and unreacted acetic anhydride. Therefore, the low-boiling substance distilled during the transfer is refluxed by the partial condenser, so that the adhering substance adhering to the partial condenser can be washed and reduced.

縮重合反応は、通常、低沸物を留出させながら、常圧下、徐々に縮重合槽内の溶液を350℃まで昇温させて行う。芳香族ポリエステルの種類によっては、更に、引き続き同温度を維持したまま、0.5〜5時間程度保持する。
縮重合の溶液の最終温度が270℃未満で維持されると縮重合が遅くなる傾向にあり、350℃を越えて維持されると、得られた芳香族ポリエステルの分解などの副反応が生じる傾向にある。
The polycondensation reaction is usually carried out by gradually heating the solution in the polycondensation tank to 350 ° C. under normal pressure while distilling low boiling substances. Depending on the type of aromatic polyester, it is further maintained for about 0.5 to 5 hours while maintaining the same temperature.
If the final temperature of the polycondensation solution is maintained below 270 ° C., the polycondensation tends to be slow, and if maintained above 350 ° C., side reactions such as decomposition of the resulting aromatic polyester tend to occur. It is in.

縮重合反応中は、留出する低沸物の一部は分縮器で凝縮して還流しつつ、低沸物の大半は、分縮器を経由して凝縮器にて冷却・凝縮されてタンク等に回収される。低沸物に含まれる低分子化合物は、殆ど分縮器で凝縮されて縮重合槽に回収される。低沸物の理論回収量に対して、凝縮器で回収された低沸物の回収量が50重量%から90重量%になるまでの間、分縮器から凝縮器へ留出する低沸物の温度を80〜150℃程度、好ましくは100〜150℃の温度範囲に制御することが好ましい。ここで低沸物の理論回収量とは、原料モノマー類のエステル基がすべて縮重合されたと仮定して得られる酢酸重量、未反応の無水酢酸重量および原料モノマー類のエステル基がすべて縮重合されたと仮定して得られるアルコール、フェノール等の重量の合計を表す。   During the condensation polymerization reaction, a portion of the low-boiling product distilled out is condensed and refluxed by the partial condenser, and most of the low-boiling product is cooled and condensed by the condenser via the partial condenser. Collected in a tank or the like. Most of the low molecular compounds contained in the low-boiling substances are condensed in the partial condenser and recovered in the condensation polymerization tank. Low boiling product distilled from the condenser to the condenser until the low boiling product recovered by the condenser reaches 50 to 90% by weight with respect to the theoretical recovery of low boiling product Is preferably controlled within a temperature range of about 80 to 150 ° C, preferably 100 to 150 ° C. Here, the theoretically recovered amount of low-boilers is the weight of acetic acid, the weight of unreacted acetic anhydride, and the ester groups of raw material monomers, all obtained by condensation polymerization. It represents the total weight of alcohol, phenol, etc. obtained on the assumption.

縮重合槽の溶液温度が250℃以上で反応末期になると、縮重合槽から留出する低沸物中の低分子化合物が増加するが反応で生成する酢酸の量は減少する。このことは分縮器での還流量の減少につながり、分縮器チューブへ低分子化合物が付着し易くなる。付着物はそのまま残り、回分反応を繰り返すうちに次第に分縮器を閉塞するが、アセチル化反応溶液をアセチル化反応槽から縮重合槽に移送する間、縮重合槽に設置した分縮器の冷媒の温度を縮重合槽から留出する低沸物の沸点以下にして低沸物を還流させることによって、付着物を洗浄し、付着物の量を低減させ、分縮器の閉塞を低下させることができる。   When the solution temperature in the condensation polymerization tank reaches 250 ° C. or more and the end of the reaction is reached, the amount of low molecular compounds in the low-boiling product distilled from the condensation polymerization tank increases, but the amount of acetic acid produced by the reaction decreases. This leads to a decrease in the amount of reflux in the partial condenser, and the low molecular weight compound tends to adhere to the partial condenser tube. The adhering material remains as it is, and gradually closes the condenser while repeating the batch reaction. While transferring the acetylation reaction solution from the acetylation reaction tank to the condensation polymerization tank, the refrigerant of the condenser installed in the condensation polymerization tank. By reducing the boiling point of the low-boiling product to the boiling point of the low-boiling product distilled from the condensation polymerization tank, washing the deposits, reducing the amount of deposits, and reducing the blockage of the partial condenser Can do.

以下、本発明を実施例で更に具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these.

実施例1
図1に示す装置で芳香族ポリエステルの製造を行った。
p−ヒドロキシ安息香酸1,000kg(7,240モル)、4,4’−ジヒドロキシジフェニル435kg(2,336モル)、テレフタル酸300kg(1,806モル)、イソフタル酸100kg(602モル)および無水酢酸1347kg(13,194モル)を、櫂型攪拌機を有する4mのアセチル化反応槽に仕込んだ。窒素ガス雰囲気下、攪拌しつつ加熱し、溶液温度145℃にて全還流状態で3時間反応を行い、アセチル化反応を完了した。
Example 1
Aromatic polyester was produced using the apparatus shown in FIG.
1,000 kg (7,240 mol) of p-hydroxybenzoic acid, 435 kg (2,336 mol) of 4,4′-dihydroxydiphenyl, 300 kg (1,806 mol) of terephthalic acid, 100 kg (602 mol) of isophthalic acid and acetic anhydride 1347 kg (13,194 mol) was charged into a 4 m 3 acetylation reactor equipped with a vertical stirrer. The mixture was heated with stirring in a nitrogen gas atmosphere, and the reaction was carried out at a solution temperature of 145 ° C. for 3 hours in a total reflux state to complete the acetylation reaction.

アセチル化反応溶液を、櫂型攪拌機を有する4.5mの縮重合槽に約20分間かけて移送した。移送中、縮重合槽のジャケット温度を200℃とし、溶液温度は145℃であった。縮重合槽には縦型多管式熱交換器を分縮器として設置し、移送中の分縮器の冷媒温度は80℃に設定した。分縮器の出口ガス温度は80〜100℃で推移した。
凝縮器下部のサイトグラスで、凝縮液が出ていないことを確認した。すなわち縮重合槽から留出した低沸物は、分縮器で全還流されていることが確認できた。
移送完了後、分縮器の冷媒の温度を110℃に変更し、攪拌下、副生する低沸物を留出させながら溶液を300℃まで昇温し、300℃で60分保持した。その後、縮重合槽を密閉し、窒素で0.1MPaに加圧し、その状態でベルトクーラーを用いて冷却しながら芳香族ポリエステルの抜取りを行った。
The acetylation reaction solution was transferred to a 4.5 m 3 condensation polymerization tank equipped with a vertical stirrer over about 20 minutes. During the transfer, the jacket temperature of the condensation polymerization tank was 200 ° C., and the solution temperature was 145 ° C. In the condensation polymerization tank, a vertical multi-tube heat exchanger was installed as a partial condenser, and the refrigerant temperature of the partial condenser being transferred was set to 80 ° C. The outlet gas temperature of the partial condenser changed at 80 to 100 ° C.
The sight glass at the bottom of the condenser confirmed that no condensate had come out. That is, it was confirmed that the low boiling product distilled from the condensation polymerization tank was totally refluxed by the partial condenser.
After completion of the transfer, the temperature of the refrigerant in the partial condenser was changed to 110 ° C., and while stirring, the solution was heated to 300 ° C. while distilling out low-boiling substances, and held at 300 ° C. for 60 minutes. Thereafter, the condensation polymerization tank was sealed, pressurized to 0.1 MPa with nitrogen, and the aromatic polyester was removed while cooling with a belt cooler in this state.

上記と同様にして回分縮重合反応を30回繰り返した後、分縮器を開放点検したところ、チューブ130本中、3本(2%)に閉塞傾向がみられた。   After repeating the batch condensation polymerization reaction 30 times in the same manner as described above, when the opening of the partial condenser was checked, 3 (2%) of 130 tubes showed a tendency to block.

比較例1
アセチル化反応液を縮重合槽に移送する間の分縮器の冷媒温度を110℃に設定した以外は、実施例1と同様に行った。移送中、分縮器の出口ガス温は約120℃であり、縮重合槽から留出した酢酸の一部が凝縮器で凝縮していることをサイトグラスで確認した。
Comparative Example 1
The same procedure as in Example 1 was performed except that the refrigerant temperature of the partial condenser during the transfer of the acetylation reaction liquid to the condensation polymerization tank was set to 110 ° C. During the transfer, the outlet gas temperature of the partial condenser was about 120 ° C., and it was confirmed with a sight glass that a part of acetic acid distilled from the condensation polymerization tank was condensed in the condenser.

上記と同様にして回分縮重合反応を30回繰り返した後、分縮器を開放点検したところ、チューブ130本中、46本(35%)に閉塞傾向がみられた。   After repeating the batch condensation polymerization reaction 30 times in the same manner as described above, when the opening of the partial condenser was checked, 46 (35%) of 130 tubes showed a tendency to block.

本発明で使用する装置の一例の概略図である。It is the schematic of an example of the apparatus used by this invention.

符号の説明Explanation of symbols

1 アセチル化反応槽
2 縮重合槽
3 移送管
4 分縮器
5 凝縮器
6 サイトグラス
7 芳香族ポリエステル
8 凝縮液
9 未凝縮ガス



DESCRIPTION OF SYMBOLS 1 Acetylation reaction tank 2 Condensation polymerization tank 3 Transfer pipe 4 Partial condenser 5 Condenser 6 Sight glass 7 Aromatic polyester 8 Condensate 9 Uncondensed gas



Claims (5)

芳香族ポリエステルの原料モノマー類と無水酢酸をアセチル化反応槽でアセチル化して得られるアセチル化反応溶液を縮重合槽に移送し、加熱して縮重合させて芳香族ポリエステルを製造する方法において、アセチル化反応溶液をアセチル化反応槽から縮重合槽に移送する間は、縮重合槽に設置した分縮器の冷媒の温度を縮重合槽から留出する低沸物の沸点以下にして低沸物を還流させることを特徴とする芳香族ポリエステルの製造方法。   In the method of producing an aromatic polyester by transferring an acetylation reaction solution obtained by acetylating aromatic polyester raw material monomers and acetic anhydride in an acetylation reaction tank to a condensation polymerization tank and heating the condensation polymerization, During the transfer of the acetylation reaction solution from the acetylation reaction tank to the condensation polymerization tank, the temperature of the refrigerant in the partial condenser installed in the condensation polymerization tank is reduced below the boiling point of the low boiling substance distilled from the condensation polymerization tank. A process for producing an aromatic polyester, characterized in that the process is refluxed. 分縮器の冷媒の温度を80℃以下とすることを特徴とする請求項1記載の芳香族ポリエステルの製造方法。   The method for producing an aromatic polyester according to claim 1, wherein the temperature of the refrigerant in the partial condenser is 80 ° C or lower. 低沸物を全還流させることを特徴とする請求項1記載の芳香族ポリエステルの製造方法。   2. The method for producing an aromatic polyester according to claim 1, wherein the low-boiling substances are totally refluxed. 分縮器の出口ガス温度を100℃以下とすることを特徴とする請求項1記載の芳香族ポリエステルの製造方法。   The method for producing an aromatic polyester according to claim 1, wherein the outlet gas temperature of the partial condenser is 100 ° C or lower. 原料モノマー類が芳香族キドロキシルカルボン酸類、芳香族ジカルボン酸類および芳香族ジオール類である請求項1記載の芳香族ポリエステルの製造方法。


2. The process for producing an aromatic polyester according to claim 1, wherein the raw material monomers are aromatic hydroxylcarboxylic acids, aromatic dicarboxylic acids and aromatic diols.


JP2005131387A 2005-04-28 2005-04-28 Method for manufacturing aromatic polyester Pending JP2006307006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131387A JP2006307006A (en) 2005-04-28 2005-04-28 Method for manufacturing aromatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131387A JP2006307006A (en) 2005-04-28 2005-04-28 Method for manufacturing aromatic polyester

Publications (1)

Publication Number Publication Date
JP2006307006A true JP2006307006A (en) 2006-11-09

Family

ID=37474264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131387A Pending JP2006307006A (en) 2005-04-28 2005-04-28 Method for manufacturing aromatic polyester

Country Status (1)

Country Link
JP (1) JP2006307006A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271398A (en) * 1992-03-27 1993-10-19 Kawasaki Steel Corp Production of aromatic liquid crystal polyester
JP2000191762A (en) * 1998-12-25 2000-07-11 Sumitomo Chem Co Ltd Production of aromatic polyester
JP2000212264A (en) * 1999-01-21 2000-08-02 Sumitomo Chem Co Ltd Production of aromatic polyester
WO2003062299A1 (en) * 2002-01-18 2003-07-31 Polyplastics Co., Ltd. Process for producing aromatic polymer
JP2004263044A (en) * 2003-02-28 2004-09-24 Sumitomo Chem Co Ltd Method for producing aromatic polyester
JP2004331829A (en) * 2003-05-08 2004-11-25 Sumitomo Chem Co Ltd Process for producing aromatic polyester

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271398A (en) * 1992-03-27 1993-10-19 Kawasaki Steel Corp Production of aromatic liquid crystal polyester
JP2000191762A (en) * 1998-12-25 2000-07-11 Sumitomo Chem Co Ltd Production of aromatic polyester
JP2000212264A (en) * 1999-01-21 2000-08-02 Sumitomo Chem Co Ltd Production of aromatic polyester
WO2003062299A1 (en) * 2002-01-18 2003-07-31 Polyplastics Co., Ltd. Process for producing aromatic polymer
JP2004263044A (en) * 2003-02-28 2004-09-24 Sumitomo Chem Co Ltd Method for producing aromatic polyester
JP2004331829A (en) * 2003-05-08 2004-11-25 Sumitomo Chem Co Ltd Process for producing aromatic polyester

Similar Documents

Publication Publication Date Title
WO2010073512A1 (en) Method for producing glycolide
JP4967385B2 (en) Cleaning method for aromatic polyester production equipment
JP4134325B2 (en) Process for producing aromatic polyester
JP5811084B2 (en) Aromatic polyester production apparatus and method for producing aromatic polyester
JP4870251B2 (en) Process for producing aromatic polyester
JP2006307006A (en) Method for manufacturing aromatic polyester
US20120253003A1 (en) Method for producing liquid crystal polyester
JP2006307007A (en) Method for producing aromatic polyester
JP3622546B2 (en) Method for producing aromatic polyester
JP5109658B2 (en) Method for producing esterified product
US8916673B2 (en) Process for producing liquid crystalline polyester resin and apparatus for producing liquid crystalline polyester resin
JP2004263044A (en) Method for producing aromatic polyester
JP4357966B2 (en) Process for producing aromatic polymer
JP2006299027A (en) Method for producing aromatic polyester
JP2010174207A (en) Method for producing liquid crystal polyester
JP3732439B2 (en) Method for producing liquid crystalline polymer
JP2009221406A (en) Method for producing liquid-crystalline polyester
JP2005272776A (en) Preparation process of thermotropic liquid crystalline polymer
JP2002265577A (en) Method of cleaning liquid crystal resin melt polymerization apparatus
JP2006299028A (en) Method for producing aromatic polyester
JPH05271398A (en) Production of aromatic liquid crystal polyester
JP2013007005A (en) Method for producing liquid crystal polyester
JP5658906B2 (en) Method and apparatus for producing polytrimethylene terephthalate
JP5297948B2 (en) Cleaning method for liquid crystal polymer melt polymerization equipment
JP2004043451A (en) Method for producing (meth)acrylic acids

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Effective date: 20080131

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A621 Written request for application examination

Effective date: 20080310

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD05 Notification of revocation of power of attorney

Effective date: 20080514

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A977 Report on retrieval

Effective date: 20101117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329