JP2006306146A - Heat pump type air-conditioner for vehicle - Google Patents

Heat pump type air-conditioner for vehicle Download PDF

Info

Publication number
JP2006306146A
JP2006306146A JP2005128096A JP2005128096A JP2006306146A JP 2006306146 A JP2006306146 A JP 2006306146A JP 2005128096 A JP2005128096 A JP 2005128096A JP 2005128096 A JP2005128096 A JP 2005128096A JP 2006306146 A JP2006306146 A JP 2006306146A
Authority
JP
Japan
Prior art keywords
air
temperature
refrigerant
heat exchanger
condensed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005128096A
Other languages
Japanese (ja)
Inventor
Yasutaka Kuroda
泰孝 黒田
Seiji Ito
誠司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005128096A priority Critical patent/JP2006306146A/en
Publication of JP2006306146A publication Critical patent/JP2006306146A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type air-conditioner for a vehicle unlikely to have blur on the windshield glass when changing-over is made from the cooling or the dehumidifying operation into the heating operation and capable of shortening the waiting time after the changing-over till blowing-out of a hot wind. <P>SOLUTION: The heat pump type air-conditioner for the vehicle is equipped with a compressor 10, an intra-cabin heat exchanger 16, a decompressor 20, an extra-cabin heat exchanger 23, a four-way selector valve 13, an air exhaust duct 32 formed near the intra-cabin heat exchanger, an air exhaust damper 40 to open and close a passage 41 leading from the intra-cabin heat exchanger to the blowout hole in a casing, and a judging means to judge whether the condensate attached to the intra-cabin heat exchanger has evaporated at the time of changing over from the cooling into the heating operation. While judgement by the judging means is such that the condensate of the intra-cabin heat exchanger is not evaporated, the passage is closed by the air exhaust damper and moistened air is exhausted therefrom, and if it is judged otherwise, the passage is opened by the air exhaust damper and dry air is blown off the blowout hole into the cabin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はヒートポンプ式車両用空調装置に関し、特に冷房運転から暖房運転への切替え時におけるフロントガラスの曇りが防止されるもの関する。   The present invention relates to a heat pump type vehicle air conditioner, and more particularly to a device that prevents fogging of a windshield when switching from cooling operation to heating operation.

エンジンで駆動されるエンジン駆動車では、エンジンを冷却水で冷却する際、冷却水がエンジンの熱で暖められる。従って、この冷却水(温水)の熱を冬季等の暖房の熱源として利用できる。また、冷房時は冷凍サイクルを利用している。しかし、エンジンの冷却水を熱源として利用できない場合や、電池及びモータ等で駆動されるいわゆる電気自動車では、冷凍サイクルをヒートポンプで可逆運転して車室の暖房を行っている。   In an engine-driven vehicle driven by an engine, when the engine is cooled with cooling water, the cooling water is warmed by the heat of the engine. Therefore, the heat of this cooling water (warm water) can be used as a heat source for heating in winter. In addition, a refrigeration cycle is used during cooling. However, when engine cooling water cannot be used as a heat source, or in a so-called electric vehicle driven by a battery and a motor, the refrigeration cycle is reversibly operated by a heat pump to heat the passenger compartment.

ヒートポンプ式車両用空調装置は、冷媒を圧縮する圧縮機と、吹出口を備えたケーシングに収容されその内部を通過する冷媒とケーシング内を流れる空気との間で熱交換する室内熱交換器と、冷媒を減圧膨張させる減圧器と、その内部を通過する冷媒と外気との間で熱交換する室外熱交換器と、冷房運転時と暖房運転時とで冷媒の流れ方向を切り替える四方切替弁とを備えている。   A heat pump vehicle air conditioner includes a compressor that compresses a refrigerant, an indoor heat exchanger that exchanges heat between the refrigerant that is housed in a casing having a blower outlet and passes through the casing, and the air that flows in the casing. A decompressor that decompresses and expands the refrigerant, an outdoor heat exchanger that exchanges heat between the refrigerant that passes through the refrigerant and outside air, and a four-way switching valve that switches a flow direction of the refrigerant during cooling operation and heating operation. I have.

ヒートポンプ式車両用空調装置では、冷房運転時は、室内熱交換器を蒸発器(エバポレータ)として使用しケーシング内の空気から気化熱を奪うとともに、室外熱交換器を凝縮器(コンデンサ)として使用する。これに対して、暖房運転時は、室内熱交換器を凝縮器として使用し凝縮熱をケーシング内の空気に放出するとともに、室外熱交換器を蒸発器として使用する。   In a heat pump type vehicle air conditioner, during cooling operation, an indoor heat exchanger is used as an evaporator (evaporator) to remove heat of vaporization from the air in the casing, and an outdoor heat exchanger is used as a condenser (condenser). . On the other hand, during heating operation, the indoor heat exchanger is used as a condenser to release condensed heat to the air in the casing, and the outdoor heat exchanger is used as an evaporator.

ところで、季節の変わり目や低地走行から高地走行に移ったときなどは、冷房運転から暖房運転への切替えが必要になることがある。この場合、冷房運転時は蒸発器として機能していた室内熱交換器は、暖房運転時は凝縮器として機能することになる。その結果、冷房運転時に室内熱交換器の外表面に付着していた結露水(凝縮水)が、暖房運転に切り替えたことにより室内熱交換器の熱で暖められて急激に蒸発し、水蒸気が発生する。この水蒸気を含む湿った空気がケーシングの吹出口から車室内に吹き出されると、フロントガラス等を曇らせ、運転者の視界を妨げるおそれがある。特に、車室が狭く、外気温度が低く、車室内の空気の湿度が高いほど、フロントガラスが曇り易い。   By the way, at the turn of the season or when shifting from lowland travel to highland travel, it may be necessary to switch from cooling operation to heating operation. In this case, the indoor heat exchanger that functioned as an evaporator during the cooling operation functions as a condenser during the heating operation. As a result, the condensed water (condensate) adhering to the outer surface of the indoor heat exchanger during the cooling operation is warmed by the heat of the indoor heat exchanger due to switching to the heating operation, and rapidly evaporates. appear. When the humid air containing water vapor is blown out from the casing outlet into the passenger compartment, the windshield or the like may be fogged, which may hinder the driver's view. In particular, the windshield is more fogged as the passenger compartment is narrower, the outside air temperature is lower, and the humidity of the air in the passenger compartment is higher.

なお、除湿運転時も室内熱交換器は冷房運転と同様に蒸発器(エバポレータ)として機能するので、除湿運転から暖房運転への切替え時もフロントガラスの曇りの問題が発生するおそれがある。   In addition, since the indoor heat exchanger functions as an evaporator (evaporator) in the dehumidifying operation as well as in the cooling operation, there is a possibility that a problem of fogging of the windshield may occur when switching from the dehumidifying operation to the heating operation.

冷房運転から暖房運転に切り替わった場合のフロントガラスの曇りに対処するため、従来の自動車用空気調和装置(特許文献1参照)は、ケーシングのうち室内熱交換器が収容された部分の近くに、水蒸気を含む湿った空気を排出する空気排出ダクトを形成している。また、ケーシング内の室内熱交換器の下流側に、室内熱交換器と吹出口との間の通路を開閉する空気排出ダンパを配置している。   In order to cope with the fogging of the windshield when the cooling operation is switched to the heating operation, the conventional automobile air conditioner (see Patent Document 1) is close to the portion of the casing in which the indoor heat exchanger is accommodated. An air discharge duct is formed to discharge moist air containing water vapor. Moreover, the air discharge damper which opens and closes the channel | path between an indoor heat exchanger and a blower outlet is arrange | positioned downstream of the indoor heat exchanger in a casing.

この自動車用空気調和装置において、冷房運転等から暖房運転に切り替えたときは、湿った空気を室内熱交換器の近くの空気排出ダクトから排出するとともに、空気排出ダンパで通路を閉じて湿った空気を吹出口に流されないようにしている。そして、所定時間が経過した後空気排出ダンパで通路を開き、乾いた空気を吹出口から車室に吹き出し、これによりフロントガラスの曇りを防止している。
特開平4−252723号公報
In this automotive air conditioner, when switching from cooling operation or the like to heating operation, the moist air is discharged from the air discharge duct near the indoor heat exchanger, and the passage is closed by the air discharge damper to moist air. Is not allowed to flow into the outlet. Then, after a predetermined time has elapsed, a passage is opened by an air discharge damper, and dry air is blown out from the outlet to the passenger compartment, thereby preventing the windshield from being fogged.
JP-A-4-252723

しかし、上記従来の空気調和装置では、冷房運転等から暖房運転への切替え時に、室内熱交換器に常に最大量の凝縮水が付着(保水)していると仮定している。この仮定の下に、実際の凝縮水の付着の有無や付着量(保水量)の多少に拘わらず、この最大量の凝縮水が蒸発乾燥するのに必要な所定時間が経過するまで空気排出ダンパを閉じている。ここで凝縮水の付着量は車両の運転状態に応じて変化し、多いときも少ないときもある。   However, in the conventional air conditioner described above, it is assumed that the maximum amount of condensed water always adheres (holds water) to the indoor heat exchanger when switching from the cooling operation or the like to the heating operation. Under this assumption, the air discharge damper is used until the predetermined time required for the maximum amount of condensed water to evaporate and dry, regardless of whether or not the actual amount of condensed water is attached and the amount of attached water (water holding amount). Is closed. Here, the amount of the condensed water varies depending on the driving state of the vehicle, and may be large or small.

しかし、従来例では例え室内熱交換器上の凝縮水の付着量が少ない場合でも、上記所定時間が経過した後でなければ空気排出ダンパは通路を開かない。その結果、従来の空気調和装置はウォームアップ性能が劣り、冷房運転から暖房運転に切替え後、実際に吹出口から車室内に空調空気(暖風)が吹き出すまで要する時間が長くなるという問題が生じている。   However, in the conventional example, even if the amount of condensed water adhering to the indoor heat exchanger is small, the air discharge damper does not open the passage unless the predetermined time has elapsed. As a result, the conventional air conditioner has poor warm-up performance, and after switching from the cooling operation to the heating operation, it takes a long time until the conditioned air (warm air) blows out from the air outlet into the vehicle interior. ing.

本発明は上記課題に鑑みてなされたもので、冷房運転又は除湿運転から暖房運転に切り替えたときフロントガラスに曇りが発生し難く、しかも切替え後暖風の吹出しまでの待ち時間を短くできるヒートポンプ式車両用空調装置を提供することを目的とする。   The present invention has been made in view of the above problems, and when switching from cooling operation or dehumidifying operation to heating operation, the windshield is less likely to be fogged, and the heat pump type that can shorten the waiting time until warm air blows out after switching An object is to provide a vehicle air conditioner.

本発明者は、室内熱交換器上の凝縮水の有無や付着量の多少によって変化する凝縮水の蒸発、乾燥時期を判定手段によりリアルタイムで判定し、凝縮水の蒸発が終了したと考えられる時点で空気排出ダンパを開放することを着想して、本発明を完成した。   The present inventor determines in real time the evaporation and drying timing of the condensed water, which changes depending on the presence or absence of the condensed water on the indoor heat exchanger and the amount of adhesion, by the determination means, and when the evaporation of the condensed water is considered to have ended The present invention was completed with the idea of opening the air discharge damper.

請求項1に記載の本発明のヒートポンプ式車両用空調装置は、冷媒を圧縮する圧縮機と、吹出口を備えたケーシングに収容されその内部を通過する前記冷媒と前記ケーシング内を流れる空気との間で熱交換する室内熱交換器と、前記冷媒を減圧膨張させる減圧器と、
その内部を通過する前記冷媒と外気との間で熱交換する室外熱交換器と、冷房運転時と暖房運転時とで前記冷媒の流れ方向を切り替える四方切替弁と、前記ケーシングの前記室内熱交換器の近くに形成された空気排出ダクトと、前記室内熱交換器と前記ケーシングの前記吹出口との間の通路を開閉する空気排出ダンパと、前記冷房運転から前記暖房運転への切替え時、前記室内熱交換器に付着した凝縮水が蒸発したかどうかを判定する判定手段と、を備えている。
According to a first aspect of the present invention, there is provided a heat pump type vehicle air conditioner comprising: a compressor that compresses a refrigerant; a refrigerant that is housed in a casing having an outlet and passes through the interior; and air that flows through the casing. An indoor heat exchanger for exchanging heat between them, a decompressor for decompressing and expanding the refrigerant,
An outdoor heat exchanger for exchanging heat between the refrigerant passing through the inside and the outside air, a four-way switching valve for switching the flow direction of the refrigerant during cooling operation and heating operation, and the indoor heat exchange of the casing An air discharge duct formed near a cooler, an air discharge damper that opens and closes a passage between the indoor heat exchanger and the outlet of the casing, and when switching from the cooling operation to the heating operation, Determining means for determining whether or not the condensed water adhering to the indoor heat exchanger has evaporated.

このヒートポンプ式車両用空調装置において、前記判定手段により前記室内熱交換器の前記凝縮水が蒸発していないと判定される間は、前記空気排出ダンパで前記通路を閉鎖し、前記空気排出ダンパから湿った空気を排出する。一方、前記凝縮水が蒸発したと判定された後は、前記空気排出ダンパで前記通路を開放し前記吹出口から乾いた空気を吹き出す。   In this heat pump type vehicle air conditioner, while the determination means determines that the condensed water of the indoor heat exchanger has not evaporated, the air discharge damper closes the passage, and the air discharge damper Exhaust moist air. On the other hand, after it is determined that the condensed water has evaporated, the air discharge damper opens the passage and blows dry air from the outlet.

請求項2に記載のヒートポンプ式車両用空調装置は、前記判定手段の判定結果が入力され、前記空気排出ダンパの作動を制御し、毎回の運転状態を記憶する記憶部を有する制御装置を含むことを特徴とする。請求項3に記載のヒートポンプ式車両用空調装置は、前記判定手段は前記室内熱交換器の近くの空気の湿度を検出する湿度センサを含み、前記空気の湿度が所定値以下になったとき前記凝縮水の蒸発を判定することを特徴とする。   The heat pump type vehicle air conditioner according to claim 2 includes a control unit having a storage unit that receives the determination result of the determination unit, controls the operation of the air exhaust damper, and stores the operation state of each time. It is characterized by. The heat pump type vehicle air conditioner according to claim 3, wherein the determination unit includes a humidity sensor that detects a humidity of air near the indoor heat exchanger, and the humidity of the air becomes a predetermined value or less. It is characterized by determining evaporation of condensed water.

請求項4に記載のヒートポンプ式車両用空調装置は、前記判定手段は第1所定場所の冷媒の温度を検出する第1冷媒温度センサを含み、前記冷媒の温度の上昇率が小から大に変化したとき前記凝縮水の蒸発を判定することを特徴とする。請求項5に記載のヒートポンプ式車両用空調装置は、前記判定手段は第2所定場所の空気の温度を検出する第1空気温度センサを含み、前記空気の温度の上昇率が小から大に変化したとき前記凝縮水の蒸発を判定することを特徴とする。   The heat pump type vehicle air conditioner according to claim 4, wherein the determination unit includes a first refrigerant temperature sensor that detects a temperature of the refrigerant in the first predetermined place, and a rate of increase in the temperature of the refrigerant changes from small to large. In this case, evaporation of the condensed water is determined. 6. The heat pump type vehicle air conditioner according to claim 5, wherein the determination means includes a first air temperature sensor that detects the temperature of air at a second predetermined location, and the rate of increase in the temperature of the air changes from small to large. In this case, evaporation of the condensed water is determined.

請求項6に記載のヒートポンプ式車両用空調装置は、前記判定手段は、第1所定場所の冷媒の温度を検出する第1冷媒温度センサ及び第3所定場所の冷媒の温度を検出する第2冷媒温度センサを含み、前記第1所定場所の前記冷媒の温度と前記第3所定場所の前記冷媒の温度との温度差が大から小に変化したとき前記凝縮水の蒸発を判定することを特徴とする。   The heat pump type vehicle air conditioner according to claim 6, wherein the determination means includes a first refrigerant temperature sensor that detects a temperature of the refrigerant in the first predetermined place and a second refrigerant that detects the temperature of the refrigerant in the third predetermined place. Including a temperature sensor, and determining evaporation of the condensed water when a temperature difference between the temperature of the refrigerant at the first predetermined location and the temperature of the refrigerant at the third predetermined location changes from large to small. To do.

請求項7に記載のヒートポンプ式車両用空調装置は、前記判定手段は、第2所定場所の空気の温度を検出する第1空気温度センサ及び第4所定場所の空気の温度を検出する第2空気温度センサを含み、前記第2所定場所の前記空気の温度と前記第4所定場所の前記空気の温度との温度差が小から大に変化したとき前記凝縮水の蒸発を判定することを特徴とする。   The heat pump type vehicle air conditioner according to claim 7, wherein the determination means includes a first air temperature sensor that detects a temperature of air at a second predetermined location and a second air that detects a temperature of air at a fourth predetermined location. Including a temperature sensor, and determining the evaporation of the condensed water when a temperature difference between the temperature of the air at the second predetermined location and the temperature of the air at the fourth predetermined location changes from small to large. To do.

請求項8に記載のヒートポンプ式車両用空調装置は、前記冷房運転から前記暖房運転への切替え直後の前記第1所定場所の前記冷媒の温度と前記第3所定場所の前記冷媒の温度との温度差、及び前記第2所定場所の前記空気の温度と前記第4所定場所の前記空気の温度との温度差は考慮しないことを特徴とする。請求項9に記載のヒートポンプ式車両用空調装置は、前記ケーシング内の前記室内熱交換器の下流側に配置され前記室内熱交換器を通過した空気を過熱するヒータコア、及び前記ヒータコアの上流側に配置されたエアミックスドアを含むことを特徴とする。   The heat pump type vehicle air conditioner according to claim 8 is a temperature between the temperature of the refrigerant at the first predetermined location and the temperature of the refrigerant at the third predetermined location immediately after switching from the cooling operation to the heating operation. The difference and the temperature difference between the temperature of the air at the second predetermined location and the temperature of the air at the fourth predetermined location are not considered. The heat pump type vehicle air conditioner according to claim 9 is disposed on the downstream side of the indoor heat exchanger in the casing, and overheats the air that has passed through the indoor heat exchanger, and on the upstream side of the heater core. It includes an air mix door arranged.

次に、特許請求の範囲の請求項1から請求項9に記載されたヒートポンプ式車両用空調装置(以下、必要に応じて「空調装置」と呼ぶ)の構成要素の種々の態様を説明する。本発明の車両用空調装置はヒートポンプ式であり、圧縮機、室内熱交換器、減圧器、室外熱交換器及び四方切替弁を備えている。冷凍サイクル内で冷房運転時は冷媒を一方向に循環させ、暖房運転時は冷媒を他方向に循環させる。車両としてはエンジン駆動車及び電気自動車の両方を含む。   Next, various aspects of the constituent elements of the heat pump type vehicle air conditioner (hereinafter referred to as “air conditioner” as necessary) described in claims 1 to 9 of the claims will be described. The vehicle air conditioner of the present invention is of a heat pump type and includes a compressor, an indoor heat exchanger, a decompressor, an outdoor heat exchanger, and a four-way switching valve. The refrigerant is circulated in one direction during the cooling operation in the refrigeration cycle, and the refrigerant is circulated in the other direction during the heating operation. Vehicles include both engine-driven vehicles and electric vehicles.

室内熱交換器が収容されたケーシングは、室内熱交換器の近傍に、室内熱交換器の外表面の凝縮水が蒸発した水蒸気を含む湿った空気を排出する空気排出ダクトを備えている。また、室内熱交換器の近傍又はその下流側に、吹出口に通ずる通路を開閉する空気排水ダンパを備えている。この空気排出ダンパは、冷房運転から暖房運転への切替え時に一旦閉じられ、その後開かれる。空気排出ダンパの開き時期は凝縮水の蒸発との関係で決め、凝縮水の蒸発の終了は判定手段で判定する。これが本発明の最大の特徴である。   The casing in which the indoor heat exchanger is accommodated has an air discharge duct for discharging moist air containing water vapor from which condensed water on the outer surface of the indoor heat exchanger has evaporated in the vicinity of the indoor heat exchanger. Moreover, the air drainage damper which opens and closes the channel | path connected to a blower outlet is provided in the vicinity of the indoor heat exchanger, or its downstream. The air discharge damper is temporarily closed when the cooling operation is switched to the heating operation, and then opened. The opening timing of the air discharge damper is determined by the relationship with the evaporation of the condensed water, and the end of the evaporation of the condensed water is determined by the determination means. This is the greatest feature of the present invention.

室内熱交換器の下流側に、エンジン冷却水等を熱源とし室内熱交換器を通過した空気を加熱するヒータコア及びその上流側のエアミックスドアを含むことができる。エアミックスドアの開閉は空気排出ダンパの開閉と連動させることができる。なお、ヒータコアの代わりに、上記室内熱交換器とは別の第2室内熱交換器を配置しても良い。ヒータコアや第2室内熱交換器は、暖房運転時は室内熱交換器を通過した暖気をさらに加熱し、除湿運転時は室内熱交換器を通過した冷気を加熱する。   On the downstream side of the indoor heat exchanger, a heater core that heats air that has passed through the indoor heat exchanger by using engine cooling water or the like as a heat source, and an air mix door on the upstream side thereof can be included. The opening and closing of the air mix door can be linked to the opening and closing of the air discharge damper. In addition, you may arrange | position the 2nd indoor heat exchanger different from the said indoor heat exchanger instead of a heater core. The heater core and the second indoor heat exchanger further heat the warm air that has passed through the indoor heat exchanger during the heating operation, and heat the cold air that has passed through the indoor heat exchanger during the dehumidifying operation.

空調装置は、外気温度を検出する外気温センサや内気温度を検出する内気温センサ等から信号に基づき、運転状態(暖房、冷房又は除湿)を決める制御装置を含む。運転状態は圧縮機の回転数、四方切替弁の切替えによる冷媒の循環方向などにより決まる。また、制御装置は毎回の運転状態を記憶する記憶部を有し、記憶部は例えば電源のオフ時も運転状態が消失しない不揮発性メモリから成ることができる。これにより、暖房運転、冷房運転及び除湿運転相互間の切替え、特に冷房運転又は除湿運転から暖房運転への切替えを確実に認識できる。   The air conditioner includes a control device that determines an operation state (heating, cooling, or dehumidification) based on signals from an outside air temperature sensor that detects an outside air temperature, an inside air temperature sensor that detects an inside air temperature, and the like. The operating state is determined by the rotational speed of the compressor, the direction of refrigerant circulation by switching the four-way switching valve, and the like. In addition, the control device has a storage unit that stores the operation state of each time, and the storage unit can be composed of, for example, a nonvolatile memory that does not lose the operation state even when the power is turned off. Thereby, switching between heating operation, cooling operation, and dehumidification operation, especially switching from cooling operation or dehumidification operation to heating operation can be reliably recognized.

更に、制御装置には、室内熱交換器の外表面の凝縮水の蒸発を判定する判定手段による判定結果が入力される。判定手段には湿度センサ、第1冷媒温度センサ、室内器空気温度センサ、第2冷媒温度センサ、外気温度センサ等が含まれ、これらのセンサの検出結果(空気の湿度や、冷媒又は空気の温度)に基づき空気排出ダンパ等の作動を制御する。   Furthermore, the determination result by the determination means for determining the evaporation of the condensed water on the outer surface of the indoor heat exchanger is input to the control device. The determination means includes a humidity sensor, a first refrigerant temperature sensor, an indoor unit air temperature sensor, a second refrigerant temperature sensor, an outside air temperature sensor, and the like. Detection results of these sensors (air humidity, refrigerant or air temperature) ) To control the operation of the air exhaust damper and the like.

判定手段には三つのタイプがある。何れのタイプの判定手段も、凝縮水が蒸発(気化)し室内熱交換器の外表面が乾燥したかどうかを判定する点では共通するが、何に基づいて判定するかが異なる。   There are three types of determination means. Both types of determination means are common in that it is determined whether the condensed water has evaporated (vaporized) and the outer surface of the indoor heat exchanger has been dried, but what is determined is different.

第1タイプの判定手段は、室内熱交換器の近くの空気の湿度に基づき凝縮水の蒸発を判定する。凝縮水が蒸発していなければ空気の湿度が高く、蒸発していれば空気の湿度が低いので、湿度センサの検出値に基づき凝縮水の蒸発を判定できる。湿度センサは例えば空気排出ダクト内に配置でき、湿度センサとしては、相対湿度を検出するインピーダンス変化形湿度センサや静電容量変化形湿度センサ等、汎用のものを使用できる。   The first type determination means determines evaporation of condensed water based on the humidity of the air near the indoor heat exchanger. If the condensed water has not evaporated, the humidity of the air is high, and if it has evaporated, the humidity of the air is low. Therefore, the evaporation of the condensed water can be determined based on the detection value of the humidity sensor. The humidity sensor can be disposed in, for example, an air exhaust duct, and a general-purpose sensor such as an impedance change type humidity sensor or a capacitance change type humidity sensor that detects relative humidity can be used as the humidity sensor.

蒸発の判定の際は、例えば湿度センサで検出された湿度が所定値(例えば5%)よりも大きい間は凝縮水は蒸発前(蒸発中)で外表面は湿っていると判定し、空気排出ダンパで通路を閉鎖し空気排出ダクトから湿った空気を排出する。これに対して、検出された湿度が所定値(例えば5%)よりも小さくなれば凝縮水の蒸発は終了し外表面は乾燥したと判定し、空気排出ダンパで通路を開放する。   When determining the evaporation, for example, while the humidity detected by the humidity sensor is higher than a predetermined value (for example, 5%), it is determined that the condensed water is before evaporation (during evaporation) and the outer surface is wet, and the air is discharged. The passage is closed with a damper and the moist air is discharged from the air discharge duct. On the other hand, if the detected humidity becomes lower than a predetermined value (for example, 5%), it is determined that the condensed water has been evaporated and the outer surface has been dried, and the passage is opened by the air discharge damper.

第2タイプの判定手段は、凝縮水の蒸発中は室内熱交換器の熱の一部が蒸発潜熱として利用されるので、空調装置の第1所定場所(例えば室内熱交換器の出口)の冷媒の温度や、空調装置の第2所定場所(例えば室内熱交換器の下流側)の空気の温度の上昇率が一時的に小さくなることを利用し、温度センサで凝縮水の蒸発を判定する。即ち、室内熱交換器の内部の冷媒の温度は、凝縮水が付着していなければ時間の経過につれてほぼ一定の割合で上昇する。一方、凝縮水が付着していれば上記蒸発潜熱の影響で、凝縮水の蒸発中は蒸発前や蒸発後よりも冷媒の温度の上昇率が小さくなる。従って、この冷媒の温度の上昇率を、例えば室内熱交換器の出口から延びた配管中に配置した第1冷媒温度センサ(室内器冷媒温度センサ)で検出すれば、凝縮水の蒸発がわかる。   Since the second type determination means uses a part of the heat of the indoor heat exchanger as the latent heat of evaporation during the evaporation of the condensed water, the refrigerant in the first predetermined location of the air conditioner (for example, the outlet of the indoor heat exchanger) The temperature sensor is used to determine the evaporation rate of the condensed water by using a temporary decrease in the temperature of the air and the rate of increase in the temperature of the air at the second predetermined location of the air conditioner (for example, downstream of the indoor heat exchanger). That is, the temperature of the refrigerant inside the indoor heat exchanger rises at a substantially constant rate as time passes unless condensed water adheres. On the other hand, if condensed water adheres, the rate of increase in the temperature of the refrigerant becomes smaller during evaporation of condensed water than before and after evaporation due to the influence of the latent heat of evaporation. Therefore, if the rate of temperature rise of the refrigerant is detected by, for example, a first refrigerant temperature sensor (indoor unit refrigerant temperature sensor) disposed in a pipe extending from the outlet of the indoor heat exchanger, the evaporation of condensed water can be known.

同様に、室内熱交換器を通過して下流側に流れる空気の温度は、凝縮水が付着していなければ時間の経過につれてほぼ一定の割合で上昇するが、凝縮水が付着していれば、凝縮水の蒸発中は蒸発の前後よりも冷媒の温度の上昇率が小さくなる。この小さい上昇率を、ケーシング内で室内熱交換器の下流側に配置した第1空気温度センサ(室内器空気温度センサ)で検出すれば、凝縮水の蒸発を判定できる。室内器冷媒温度センサ及び室内器空気温度センサとしてはサーミスタ、熱電対又はIC温度センサなど汎用のものを使用できる。   Similarly, the temperature of the air flowing downstream through the indoor heat exchanger rises at a substantially constant rate as time passes unless condensed water adheres, but if condensed water adheres, During the evaporation of the condensed water, the rate of increase in the refrigerant temperature is smaller than before and after the evaporation. If this small increase rate is detected by a first air temperature sensor (indoor unit air temperature sensor) disposed on the downstream side of the indoor heat exchanger in the casing, the evaporation of the condensed water can be determined. As the indoor unit refrigerant temperature sensor and the indoor unit air temperature sensor, general-purpose devices such as a thermistor, a thermocouple, or an IC temperature sensor can be used.

第3タイプの判定手段は、上記第1所定場所の冷媒の温度や上記第2所定場所の空気の温度のように凝縮水の蒸発に応じて変化する冷媒や空気の温度と、その温度変化が凝縮水の蒸発に影響されない第3所定場所の冷媒の温度又は第4所定場所の空気の温度との温度差を利用して、凝縮水の蒸発を判定する。   The third type determination means is configured such that the temperature of the refrigerant or air that changes according to the evaporation of condensed water, such as the temperature of the refrigerant at the first predetermined location or the temperature of the air at the second predetermined location, and the temperature change thereof. The evaporation of the condensed water is determined using the temperature difference between the temperature of the refrigerant at the third predetermined location or the temperature of the air at the fourth predetermined location, which is not affected by the evaporation of the condensed water.

即ち、空調装置の第3所定場所(例えば圧縮機の出口)の冷媒の温度は、殆ど凝縮水の蒸発に影響されることなく、暖房運転開始後の時間の経過につれてほぼ一定の割合で上昇し、しかも全体的に上記室内熱交換器の出口の冷媒の温度よりも高い。その結果、上記室内熱交換器から吐出される冷媒の温度と圧縮機から吐出される冷媒の温度との温度差は、凝縮水の蒸発中は大きくなり、蒸発後は小さくなる。この温度差の変化を利用して凝縮水の蒸発を判定する。   That is, the temperature of the refrigerant at the third predetermined location (for example, the outlet of the compressor) of the air conditioner rises at a substantially constant rate with the passage of time after the start of the heating operation without being affected by the evaporation of the condensed water. Moreover, it is generally higher than the temperature of the refrigerant at the outlet of the indoor heat exchanger. As a result, the temperature difference between the temperature of the refrigerant discharged from the indoor heat exchanger and the temperature of the refrigerant discharged from the compressor increases during the evaporation of the condensed water and decreases after the evaporation. The change in the temperature difference is used to determine the evaporation of the condensed water.

また、空調装置の第4所定場所(例えば外部空気(外気))の温度の変化はその日の気象条件により決まり、暖房運転起動時のような短時間には変化せずほぼ一定である。しかも、この温度は、凝縮水の蒸発前の室内熱交換器の下流側の空気の温度と蒸発後の空気の温度との間になる。その結果、上記室内熱交換器の下流側の空気の温度と外気の温度との温度差は、凝縮水の蒸発中は小さくなり、蒸発後は大きくなる。この温度差の変化を利用して凝縮水の蒸発を判定する。   In addition, the change in the temperature of the fourth predetermined place (for example, outside air (outside air)) of the air conditioner is determined by the weather condition of the day, and does not change in a short time such as when the heating operation is started and is almost constant. Moreover, this temperature is between the temperature of the air on the downstream side of the indoor heat exchanger before evaporation of the condensed water and the temperature of the air after evaporation. As a result, the temperature difference between the temperature of the air on the downstream side of the indoor heat exchanger and the temperature of the outside air decreases during the evaporation of the condensed water and increases after the evaporation. The change in the temperature difference is used to determine the evaporation of the condensed water.

請求項1の本発明のヒートポンプ式車両用空調装置によれば、空調装置の運転状態が冷房運転から暖房運転へ切り替わった時、室内熱交換器への凝縮水の付着の有無や付着量の多少により変わる凝縮水の蒸発時間の長さを、判定手段によりリアルタイムで判定している。その結果、第1に、フロントガラスの曇りが確実に防止される。例えば、凝縮水の付着量が多く蒸発に要する時間が長い場合でも、蒸発前の湿った空気は空気排出ダクトから排出するので、フロントガラスの曇りが防止される。   According to the heat pump type vehicle air conditioner of the first aspect of the present invention, when the operating state of the air conditioner is switched from the cooling operation to the heating operation, the presence or absence of the adhering condensed water to the indoor heat exchanger and the amount of the adhering amount The length of the evaporation time of the condensed water that changes depending on the time is determined in real time by the determination means. As a result, firstly, the fogging of the windshield is reliably prevented. For example, even when the amount of condensed water attached is large and the time required for evaporation is long, the moist air before evaporation is discharged from the air discharge duct, so that the windshield is prevented from being fogged.

第2に、冷房運転から暖房運転への切替り後、吹出口から暖風が吹き出す間での時間を短くできる。例えば、凝縮水の付着量が少なく蒸発に要する時間が短い場合は、蒸発が終了した時点で直ちに蒸発後の乾いた空気を吹出口から車室に吹き出すからである。   Secondly, after switching from the cooling operation to the heating operation, it is possible to shorten the time during which the warm air blows out from the air outlet. For example, when the amount of condensed water adhering is small and the time required for evaporation is short, dry air immediately after evaporation is blown out from the outlet to the passenger compartment immediately after the evaporation is completed.

請求項2のヒートポンプ式車両用空調装置によれば、制御装置は判定手段からの判定結果に基づき空気排出ダンパを最適時期に作動させる。また、毎回の運転状態が記憶部に記憶されているので、冷房運転から暖房運転への切替えを確実に検知できる。請求項3のヒートポンプ式車両用空調装置によれば、凝縮水の蒸発が室内熱交換器の近くに配置した温度センサが検出した湿度で判定できるので、蒸発の判定が容易である。   According to the heat pump type vehicle air conditioner of the second aspect, the control device operates the air discharge damper at the optimum time based on the determination result from the determination means. In addition, since the operation state of each time is stored in the storage unit, switching from the cooling operation to the heating operation can be reliably detected. According to the heat pump type vehicle air conditioner of the third aspect, the evaporation can be determined easily based on the humidity detected by the temperature sensor disposed near the indoor heat exchanger.

請求項4のヒートポンプ式車両用空調装置によれば、凝縮水の蒸発を第1所定場所に配置した第1冷媒温度センサが検出した冷媒温度の上昇率の変化で判定するので、蒸発の判定が正確になる。請求項5のヒートポンプ式車両用空調装置によれば、凝縮水の蒸発を第2所定場所に配置した第1空気温度センサが検出した空気温度の上昇率の変化で判定するので、蒸発の判定が正確になる。   According to the heat pump type vehicle air conditioner of the fourth aspect, since evaporation of the condensed water is determined by a change in the rate of increase in the refrigerant temperature detected by the first refrigerant temperature sensor arranged at the first predetermined location, the determination of evaporation is performed. Become accurate. According to the heat pump type vehicle air conditioner of claim 5, since the evaporation of the condensed water is determined by the change in the rate of increase in the air temperature detected by the first air temperature sensor arranged at the second predetermined location, the determination of evaporation is performed. Become accurate.

請求項6のヒートポンプ式車両用空調装置によれば、凝縮水の蒸発を、第1冷媒温度センサが検出する第1所定場所の冷媒の温度と、第2冷媒温度センサが検出する第3所定場所の冷媒の温度との温度差で判定する。従って、第1所定場所及び第3所定場所の冷媒の温度の上昇率を検知することは不要であり、その分蒸発の判定が容易になる。   According to the heat pump type vehicle air conditioner of claim 6, the temperature of the refrigerant at the first predetermined location detected by the first refrigerant temperature sensor and the third predetermined location detected by the second refrigerant temperature sensor are detected. Judgment is made based on the temperature difference from the refrigerant temperature. Therefore, it is not necessary to detect the rate of increase in the temperature of the refrigerant at the first predetermined place and the third predetermined place, and the determination of evaporation is facilitated accordingly.

請求項7のヒートポンプ式車両用空調装置によれば、凝縮水の蒸発を、第1空気温度センサが検出する第2所定場所の空気の温度と、第2空気温度センサが検出する第4所定場所の空気の温度との温度差で判定する。従って、第2所定場所及び第4所定場所の空気の温度の上昇率を検知することは不要であり、その分蒸発の判定が容易になる。   According to the heat pump type vehicle air conditioner of claim 7, the temperature of the air at the second predetermined location detected by the first air temperature sensor and the fourth predetermined location detected by the second air temperature sensor are detected. Judged by the temperature difference from the air temperature. Therefore, it is not necessary to detect the rate of increase in the temperature of the air at the second predetermined place and the fourth predetermined place, and the determination of evaporation is facilitated accordingly.

請求項8のヒートポンプ式車両用空調装置によれば、冷媒の温度や空気の温度が不安定な切替え直後の温度差は考慮しないので、蒸発の判定がより正確になる。請求項9のヒートポンプ式車両用空調装置によれば、室内熱交換器の下流側のヒータコアを含むので、急速暖房運転や除湿運転が可能である。しかも、除湿運転から暖房運転への切替え時にもフロントガラスの曇りを防止でき、また暖房運転のウォームアップ性能が向上する。   According to the heat pump type vehicle air conditioner of the eighth aspect, since the temperature difference immediately after the switching in which the refrigerant temperature and the air temperature are unstable is not taken into consideration, the determination of evaporation becomes more accurate. According to the heat pump type vehicle air conditioner of the ninth aspect, since the heater core on the downstream side of the indoor heat exchanger is included, rapid heating operation and dehumidifying operation are possible. In addition, the windshield can be prevented from being fogged even when switching from the dehumidifying operation to the heating operation, and the warm-up performance of the heating operation is improved.

以下、最良の形態の実施形態を添付図面を参照しつつ説明する。   The best mode for carrying out the invention will be described below with reference to the accompanying drawings.

<第1実施形態>
(構成)
図1,図2,図3、図4、図5及び図6に第1実施形態を示す。図1において、ヒートポンプ式車両用空調装置は圧縮機10、四方切替弁13、室内熱交換器16、減圧器20、室外熱交換器23、アキュムレータ26及びケーシング30などを含む。
<First Embodiment>
(Constitution)
1, 2, 3, 4, 5, and 6 show a first embodiment. 1, the heat pump type vehicle air conditioner includes a compressor 10, a four-way switching valve 13, an indoor heat exchanger 16, a decompressor 20, an outdoor heat exchanger 23, an accumulator 26, a casing 30, and the like.

圧縮機10は低温低圧のガス冷媒を吸入し、圧縮して高温高圧のガス冷媒を吐出するポンプ手段であり、ここではインバータ制御方式の電動圧縮機を採用しており、その回転数は電子制御装置75により制御される。四方切替弁13は圧縮機10から吐出し減圧される前の高圧冷媒を、室内熱交換器16側に循環させる場合と、室外熱交換器23側に循環させる場合とに切り替えるものである。ここでは、電子制御装置75により制御される電磁式四方切替弁13を採用している。   The compressor 10 is a pump means that sucks in a low-temperature and low-pressure gas refrigerant, compresses it, and discharges the high-temperature and high-pressure gas refrigerant. Here, an inverter-controlled electric compressor is used, and its rotation speed is electronically controlled. Controlled by device 75. The four-way switching valve 13 switches between when the high-pressure refrigerant discharged from the compressor 10 and decompressed is circulated to the indoor heat exchanger 16 side and when circulated to the outdoor heat exchanger 23 side. Here, the electromagnetic four-way switching valve 13 controlled by the electronic control device 75 is employed.

室内熱交換器16は後述するケーシング30内に収容され、その内部を流れる冷媒とケーシング30を流れる空気(以下、必要に応じて「ケーシング内気」と呼ぶ)との間で熱交換する熱交換器である。冷房時は低温低圧の液冷媒を蒸発気化させて内気から熱を奪う蒸発器(エバポレータ)として機能し、暖房時は高温高圧のガス冷媒を凝縮液化させて内気に熱を放出する凝縮器(コンデンサ)として機能する。   The indoor heat exchanger 16 is accommodated in a casing 30 to be described later, and performs heat exchange between a refrigerant flowing inside the casing 30 and air flowing in the casing 30 (hereinafter referred to as “casing inside air” as necessary). It is. During cooling, it functions as an evaporator (evaporator) that evaporates low-temperature and low-pressure liquid refrigerant and removes heat from the inside air. During heating, a condenser (condenser) that condenses and liquefies high-temperature and high-pressure gas refrigerant and releases heat to the inside air ).

減圧器20は、その内部を流れる冷媒を減圧膨張させて冷温低圧の冷媒にするものである。その絞り開度が電子制御装置75により制御され、圧力損失が殆ど発生しない全開状態から冷媒を減圧膨張させる所定開度まで連続的に変化可能である。室外熱交換器23はその内部を流れる冷媒と室外空気(外気)との間で熱交換する熱交換器である。冷房時は高温高圧のガス冷媒を凝縮液化させて外気に熱を放出する凝縮器(コンデンサ)として機能し、暖房時は低温低圧の液冷媒を蒸発気化させて外気から熱を奪う蒸発器(エバポレータ)として機能する。   The decompressor 20 decompresses and expands the refrigerant flowing through the decompressor 20 into a cold / low pressure refrigerant. The throttle opening degree is controlled by the electronic control unit 75, and can be continuously changed from a fully open state in which almost no pressure loss occurs to a predetermined opening degree for decompressing and expanding the refrigerant. The outdoor heat exchanger 23 is a heat exchanger that exchanges heat between the refrigerant flowing inside the outdoor heat exchanger 23 and outdoor air (outside air). During cooling, it functions as a condenser (condenser) that condenses and liquefies high-temperature and high-pressure gas refrigerant and releases heat to the outside air, and during heating, an evaporator (evaporator) that evaporates and vaporizes low-temperature and low-pressure liquid refrigerant to remove heat from the outside air ).

アキュムレータ26は、冷媒をガス冷媒と液冷媒とに分離して余剰の冷媒を液冷媒として蓄えるとともに、ガス冷媒を圧縮機10の吸入側に供給するものである。上記圧縮機10、四方切替弁13、室内熱交換器16、減圧器20、室外熱交換器23及びアキュムレータ26が冷媒循環用配管15上にこの順序で配置されている。   The accumulator 26 separates the refrigerant into a gas refrigerant and a liquid refrigerant, stores excess refrigerant as the liquid refrigerant, and supplies the gas refrigerant to the suction side of the compressor 10. The compressor 10, the four-way switching valve 13, the indoor heat exchanger 16, the decompressor 20, the outdoor heat exchanger 23, and the accumulator 26 are arranged in this order on the refrigerant circulation pipe 15.

次に、ケーシング30につき説明する。ケーシング30は車室内に吹き出す空調空気の通路を形成するもので、その長さ方向(図1で上下方向)中間部に上記室内熱交換器16が配置されている。室内熱交換器16が配置された部分の底部からドレン抜きを兼ねた空気排出ダクト32が分岐し、その他端は車室外に開口している。空気流れ方向(図1で上方向)で室内熱交換器16の下流側に、暖房運転時及び除湿運転時にケーシング内気を加熱するヒータコア34が配置されている。ヒータコア34はその周辺を流れる空気とエンジン又はFCスタック36から供給される冷却水とを熱交換する熱交換器である。   Next, the casing 30 will be described. The casing 30 forms a passage for conditioned air that blows out into the passenger compartment, and the indoor heat exchanger 16 is disposed in an intermediate portion in the length direction (vertical direction in FIG. 1). An air discharge duct 32 that also serves as a drain outlet branches off from the bottom of the portion where the indoor heat exchanger 16 is disposed, and the other end opens to the outside of the passenger compartment. A heater core 34 that heats the inside air of the casing during the heating operation and the dehumidifying operation is disposed downstream of the indoor heat exchanger 16 in the air flow direction (upward in FIG. 1). The heater core 34 is a heat exchanger that exchanges heat between the air flowing around the heater core 34 and the coolant supplied from the engine or the FC stack 36.

ヒータコア34の上流側にエアミックスドア38が回動可能に配置されている。このエアミックスドア38はケーシング30に軸支され、その作動は電子制御装置75で制御される。ヒータコア34の上流側を閉鎖し通路41から後退した閉鎖位置(実線で図示)と、ヒータコア34の上流側を開放し、通路41に突出した開放位置(破線で図示)との間で任意の回動角度を取り得る。この回動角度の調整により室内熱交換器16を通過した空気のうち、ヒータコア34を通過して加熱される暖風と、ヒータコア34を迂回して次述する通路41を流れる冷風との風量割合が調節される。こうして、吹出口から車室に吹き出す空調空気の温度が調整される。   An air mix door 38 is rotatably disposed on the upstream side of the heater core 34. The air mix door 38 is pivotally supported by the casing 30, and its operation is controlled by an electronic control device 75. Between the closed position where the upstream side of the heater core 34 is closed and retracted from the passage 41 (shown by a solid line) and the open position where the upstream side of the heater core 34 is opened and protruded into the passage 41 (shown by a broken line) Can take a moving angle. Of the air that has passed through the indoor heat exchanger 16 by adjusting the rotation angle, the air volume ratio between the warm air that is heated by passing through the heater core 34 and the cold air that bypasses the heater core 34 and flows through the passage 41 described below. Is adjusted. In this way, the temperature of the conditioned air blown out from the outlet to the passenger compartment is adjusted.

ヒータコア34とケーシング30の壁部との間に通路41が形成され、この通路41はケーシング30に回動可能に軸支された空気排出ダンパ40で開閉される。空気排出ダンパ40は電子制御装置75により制御され、通路41を閉鎖する閉鎖位置(実線で図示)又は通路41を開放する開放位置(破線で図示)に回動される。閉鎖位置に回動されるのは室内熱交換器16の外表面の凝縮水の蒸発中であり、開放位置に回動されるのは凝縮水の蒸発後である。詳細は、作用の欄で後述する。   A passage 41 is formed between the heater core 34 and the wall portion of the casing 30, and the passage 41 is opened and closed by an air discharge damper 40 that is pivotally supported by the casing 30. The air discharge damper 40 is controlled by an electronic control unit 75 and is rotated to a closed position (illustrated by a solid line) for closing the passage 41 or an open position (illustrated by a broken line) for opening the passage 41. It is rotated during the evaporation of the condensed water on the outer surface of the indoor heat exchanger 16 and is rotated after the evaporation of the condensed water. Details will be described later in the column of action.

ケーシング30の下流部に、室内熱交換器16やヒータコア34を通過した空調空気を車室に吹き出す複数の吹出口を選択的に開閉する吹出モード切替装置(不図示)が設けられている。また、ケーシング30の上流部に、ケーシング30内に導入する室内空気(内気)及び室外空気(外気)の導入量を調節する内外気切替ユニット42や、ケーシング30内で空気を送風する送風機(ファン)44及びモータ45が設けられている。   A blowing mode switching device (not shown) that selectively opens and closes a plurality of outlets that blow out the conditioned air that has passed through the indoor heat exchanger 16 and the heater core 34 to the passenger compartment is provided in the downstream portion of the casing 30. In addition, an upstream / outside air switching unit 42 that adjusts the amount of indoor air (inside air) and outdoor air (outside air) introduced into the casing 30, or a blower (fan) that blows air inside the casing 30, upstream of the casing 30. ) 44 and a motor 45 are provided.

なお、エアミックスドア38及び空気排出ダンパ40の回動角度、吹出モード切替装置、内外気切替ユニット42及びモータ45の作動は電子制御装置75で制御されている。   Note that the rotation angle of the air mix door 38 and the air discharge damper 40, the blowing mode switching device, the inside / outside air switching unit 42, and the operation of the motor 45 are controlled by the electronic control device 75.

次に、各種センサにつき説明する。まず、上記冷媒循環用配管15上に配置されたセンサとして、圧縮機10から吐出する冷媒の温度を検出する吐出冷媒温度センサ52、圧縮機10から吐出する冷媒の圧力を検出する吐出冷媒圧力センサ54、室内熱交換器16から流出した冷媒の圧力を検出する室内器冷媒圧力センサ56、室内熱交換器16から流出した冷媒の温度を検出する室内器冷媒温度センサ58、及び室外熱交換器23から流出した冷媒の温度を検出する室外器冷媒温度センサ60がある。   Next, various sensors will be described. First, as sensors disposed on the refrigerant circulation pipe 15, a discharge refrigerant temperature sensor 52 that detects the temperature of refrigerant discharged from the compressor 10, and a discharge refrigerant pressure sensor that detects the pressure of refrigerant discharged from the compressor 10. 54, an indoor unit refrigerant pressure sensor 56 that detects the pressure of the refrigerant that has flowed out of the indoor heat exchanger 16, an indoor unit refrigerant temperature sensor 58 that detects the temperature of the refrigerant that has flowed out of the indoor heat exchanger 16, and the outdoor heat exchanger 23. There is an outdoor refrigerant temperature sensor 60 that detects the temperature of the refrigerant flowing out of the refrigerant.

また、ケーシング30の内部及び外部に配置されたセンサとして、室内熱交換器16を通過した直後の空気の温度を検出する室内器空気温度センサ62、空気排出ダクト32内の空気の湿度を検出する湿度センサ64、エンジン又はFCスタック36からヒータコア34に流入する冷却水の温度を検出する水温センサ66、外気温度を検出する外気温センサ68、内気温度を検出する内気温センサ70、及び車室内に注がれる日射を検出する日射センサ72がある。   Further, as sensors disposed inside and outside the casing 30, an indoor unit air temperature sensor 62 that detects the temperature of air immediately after passing through the indoor heat exchanger 16, and the humidity of air in the air discharge duct 32 are detected. A humidity sensor 64, a water temperature sensor 66 for detecting the temperature of the cooling water flowing into the heater core 34 from the engine or FC stack 36, an outside air temperature sensor 68 for detecting the outside air temperature, an inside air temperature sensor 70 for detecting the inside air temperature, and a vehicle interior There is a solar radiation sensor 72 that detects the solar radiation that is poured.

上記各種センサ52,54,56,68,60,62,64,66,68,70及び72からの信号は電子制御装置75に入力される。一部上述したように、電子制御装置75は圧縮機10の回転数、四方切替弁13の切替え、エアミックスドア38の回動、空気排出用ダンパ40及び内外気切り替えユニット42等の作動を制御する。また、空調装置の毎回の運転状態を記憶する記憶部77を内蔵している。   Signals from the various sensors 52, 54, 56, 68, 60, 62, 64, 66, 68, 70 and 72 are input to the electronic control device 75. As described above, the electronic control unit 75 controls the rotation speed of the compressor 10, the switching of the four-way switching valve 13, the rotation of the air mix door 38, the operation of the air discharge damper 40, the inside / outside air switching unit 42, and the like. To do. Moreover, the memory | storage part 77 which memorize | stores the operating state of every time of an air conditioner is incorporated.

(作用)
次に、第1実施形態の作用について、図1から図5を参照しつつ詳細に説明する。図2のフローチャートのステップS10で各種センサ52,54,56,68,60,62,64,66,68,70及び72からの信号を読み取る。例えば外気温度を検出する外気温センサ68及び内気温度を検出する内気温センサ70などの情報から目標吹出温度TAOを算出する。次にステップS11へ進み、例えばTAOが所定値よりも高いかどうかで暖房の必要性を判断する。
(Function)
Next, the operation of the first embodiment will be described in detail with reference to FIGS. 1 to 5. Signals from the various sensors 52, 54, 56, 68, 60, 62, 64, 66, 68, 70 and 72 are read in step S10 of the flowchart of FIG. For example, the target blowing temperature TAO is calculated from information such as the outside air temperature sensor 68 that detects the outside air temperature and the inside air temperature sensor 70 that detects the inside air temperature. Next, it progresses to step S11, and the necessity of heating is judged by whether TAO is higher than a predetermined value, for example.

ステップS11での判断がYESの場合はステップS12へ進み暖房運転を開始する。暖房運転では、冷媒は冷媒循環用配管15内を図3(a)及び(b)に矢印で示すよう循環される。図3(a)は凝縮水の蒸発中の状態を、図3(b)は凝縮水の蒸発後の状態を示す。電子制御装置75が四方切替弁13を、圧縮機10から吐出された高温高圧のガス冷媒が室内熱交換器16側に向かうように切り換える。冷媒は室内熱交換器16でケーシング内気に放熱し、凝縮液化する。これにより、ケーシング内気は室内熱交換器16で加熱される。エアミックスドア38及び空気排出ダンパ40の回動については後述する。   If the determination in step S11 is YES, the process proceeds to step S12 to start the heating operation. In the heating operation, the refrigerant is circulated in the refrigerant circulation pipe 15 as shown by arrows in FIGS. 3 (a) and 3 (b). FIG. 3A shows a state during evaporation of condensed water, and FIG. 3B shows a state after evaporation of condensed water. The electronic control unit 75 switches the four-way switching valve 13 so that the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 is directed to the indoor heat exchanger 16 side. The refrigerant dissipates heat to the air in the casing by the indoor heat exchanger 16 and is condensed and liquefied. Thereby, the inside air of the casing is heated by the indoor heat exchanger 16. The rotation of the air mix door 38 and the air discharge damper 40 will be described later.

室内熱交換器16で凝縮された冷媒は、減圧器20で膨張し低温低圧の霧状状態となり、室外熱交換器23に流入する。冷媒は室外熱交換器23で外気から吸熱し、蒸発気化してガス冷媒となる。次いで、四方切替弁13を経てアキュムレータ26に流入し、液冷媒を分離後、ガス冷媒のみが圧縮機10に吸入される。   The refrigerant condensed in the indoor heat exchanger 16 expands in the decompressor 20 to become a low-temperature and low-pressure mist state, and flows into the outdoor heat exchanger 23. The refrigerant absorbs heat from the outside air in the outdoor heat exchanger 23 and evaporates to become a gas refrigerant. Next, the refrigerant flows into the accumulator 26 through the four-way switching valve 13, and after separating the liquid refrigerant, only the gas refrigerant is sucked into the compressor 10.

上記ステップS13で、空調装置の前回運転が冷房又は除湿かどうかを判断する。この判断は、前回運転が冷房等の場合はまず湿った空気を空気排出ダクト32から排出するために必要となる。なお、前回の運転状態は記憶部77に記憶されている。前回運転が冷房又は除湿の場合はステップS14へ進み、ダンパ閉制御を行う。因みに、冷房の場合、後述する図4に示すように、エアミックスドア38は閉じ、空気排出ダンパ40は開いている。ダンパ閉制御では、図3(a)に示すようにエアミックスドア38を実線で示す閉鎖位置に回動させるとともに、空気排出ダンパ40を実線で示す閉鎖位置に回動させ通路41を閉鎖する。   In step S13, it is determined whether the previous operation of the air conditioner is cooling or dehumidifying. This determination is necessary in order to discharge moist air from the air discharge duct 32 when the previous operation is cooling or the like. The previous operation state is stored in the storage unit 77. When the previous operation is cooling or dehumidifying, the process proceeds to step S14 and damper closing control is performed. Incidentally, in the case of cooling, as shown in FIG. 4 described later, the air mix door 38 is closed and the air discharge damper 40 is opened. In the damper closing control, as shown in FIG. 3A, the air mix door 38 is rotated to the closed position indicated by the solid line, and the air discharge damper 40 is rotated to the closed position indicated by the solid line to close the passage 41.

その結果、水蒸気を含む湿った空気は室内熱交換器16よりも下流側に流れることはできず、図3(a)中矢印xで示すように、空気排水ダクト32から車室外へ排出される。空気排出ダンパ40による通路41の閉鎖、及び空気排出ダクト32からの湿った空気の排出は、次述する湿度センサ64による湿度の検出値が基準値以下となるまで続ける。こうして湿った空気を車室内に吹き出さないことで、フロントガラスの曇りを防止する。なお、ステップS13での判断がNOの場合は前回運転が暖房であり、フロントガラスの曇りの問題は生じないのでリターンする。   As a result, moist air containing water vapor cannot flow downstream from the indoor heat exchanger 16 and is discharged from the air drain duct 32 to the outside of the vehicle compartment as indicated by an arrow x in FIG. . The closing of the passage 41 by the air discharge damper 40 and the discharge of the wet air from the air discharge duct 32 are continued until the humidity detection value by the humidity sensor 64 described below becomes below the reference value. By preventing the moist air from being blown into the passenger compartment, the windshield is prevented from fogging. If the determination in step S13 is NO, the previous operation is heating, and there is no problem with fogging of the windshield, so the process returns.

その後ステップS15へ進み、室内熱交換器16の外表面の凝縮水が蒸発したか否かを判断する。この判断はエアミックスドア38及び空気排出ダンパ40をいつまで閉鎖するか、即ちいつ開放するかを決定するために行なう。凝縮水の蒸発は、湿度センサ64の検出値Hinが基準値Hbase(例えば5%)以下になったか否かで判定し、検出値Hinが基準値Hbase以下であれば蒸発したと判定する。   Then, it progresses to step S15 and it is judged whether the condensed water of the outer surface of the indoor heat exchanger 16 evaporated. This determination is made to determine how long the air mix door 38 and the air discharge damper 40 are to be closed, that is, when to open. The evaporation of the condensed water is determined based on whether or not the detection value Hin of the humidity sensor 64 is equal to or less than a reference value Hbase (for example, 5%). If the detection value Hin is equal to or less than the reference value Hbase, it is determined that the condensed water is evaporated.

第1実施形態における評価結果を示した図5において、付着した凝縮水が蒸発する過程での湿度センサ64の検出値を曲線bで示す。凝縮水が付着していない場合の湿度センサ64の検出値は曲線cで示す。これから分かるように、湿度は暖房運転の開始後しばらくは変化せず一定であるが、その後ほぼ一定の割合で減少する。そして、検出される湿度の値が曲線cのレベルに近い5%になった時点で凝縮水は蒸発したと判定する。詳細は後述する。   In FIG. 5 showing the evaluation results in the first embodiment, the detection value of the humidity sensor 64 in the process of evaporating attached condensed water is shown by a curve b. The detected value of the humidity sensor 64 when the condensed water is not attached is indicated by a curve c. As can be seen, the humidity remains constant for a while after the start of the heating operation, and is constant, but thereafter decreases at a substantially constant rate. Then, it is determined that the condensed water has evaporated when the detected humidity value becomes 5% close to the level of the curve c. Details will be described later.

ステップS16へ進みダンパ開制御を行い、図3(b)に示すようにエアミックスドア38をTAOで決まる所定の中間位置に回動させ、空気排出ダンパ40を破線で開放位置に回動させ通路41を開放する。これにより、通常の暖房運転に戻り、室内熱交換器16で加熱されたケーシング内気の一部はヒータコア34を通過する際更に加熱され、図3(b)中矢印yで示すように、ケーシング内気の残部はヒータコア38を迂回して通路41を流れる。両方のケーシング内気はヒータコア38の下流側で合流した後、吹出口から車室内に吹き出す。なお、ステップS15での判定がNO場合は室内熱交換器16上の凝縮水が蒸発していないので、リターンする。   Proceeding to step S16, damper opening control is performed, and as shown in FIG. 3B, the air mix door 38 is rotated to a predetermined intermediate position determined by TAO, and the air discharge damper 40 is rotated to the open position by a broken line. 41 is released. As a result, the normal heating operation is restored, and a part of the casing air heated by the indoor heat exchanger 16 is further heated when passing through the heater core 34, and as shown by the arrow y in FIG. The remainder of the flow around the heater core 38 flows through the passage 41. Both casing internal airs merge on the downstream side of the heater core 38, and then blow out into the vehicle compartment from the air outlet. If the determination in step S15 is NO, the condensed water on the indoor heat exchanger 16 has not evaporated, and the process returns.

次に、冷房及び除湿について説明する。上記ステップS11での判断がNOの場合はステップS17へ進み、上記目標吹出温度TAOが低いかどうかで冷房の必要性を判断する。冷房が必要と判断されればステップS18の冷房運転へ進む。冷房運転では、冷媒は冷媒循環用配管15内を図4に矢印で示すように循環される。そのために、電子制御装置75が四方切替弁13を、圧縮機10から吐出された高温高圧のガス冷媒が室外熱交換器(コンデンサ)23に向かうように切り替える。冷媒は室外熱交換器23で外気に放熱して凝縮液化し、減圧器20で膨張し低温低圧の霧状状態となり、室内熱交換器(エバポレータ)16に流入する。室内熱交換器16で冷媒とケーシング内気とが熱交換され、冷媒はケーシング内気から気化熱を奪って蒸発気化する。こうして、ケーシング内気が室内熱交換器16で冷却される。   Next, cooling and dehumidification will be described. If the determination in step S11 is NO, the process proceeds to step S17, and the necessity of cooling is determined based on whether the target blowing temperature TAO is low. If it is determined that cooling is necessary, the process proceeds to the cooling operation in step S18. In the cooling operation, the refrigerant is circulated in the refrigerant circulation pipe 15 as indicated by an arrow in FIG. For this purpose, the electronic control unit 75 switches the four-way switching valve 13 so that the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 is directed to the outdoor heat exchanger (condenser) 23. The refrigerant dissipates heat to the outside air in the outdoor heat exchanger 23 to condense and liquefy, expands in the decompressor 20, enters a low-temperature low-pressure mist state, and flows into the indoor heat exchanger (evaporator) 16. The indoor heat exchanger 16 exchanges heat between the refrigerant and the casing inner air, and the refrigerant takes the heat of vaporization from the casing inner air and evaporates. Thus, the inside air of the casing is cooled by the indoor heat exchanger 16.

このとき、エアミックスドア38は実線で示す閉鎖位置にあり、空気排出ダンパ40は破線で示す開放位置にあり通路41を開放している。従って、図4中矢印zで示すように、冷風が通路41を通って吹出口に流れる。冷媒は室内熱交換器16での熱交換により蒸発し、四方切替弁13を介してアキュムレータ26へ流入し、アキュムレータ26でガス冷媒と液冷媒に分離されてガス冷媒のみが圧縮機10に吸入される。   At this time, the air mix door 38 is in a closed position indicated by a solid line, and the air discharge damper 40 is in an open position indicated by a broken line and opens the passage 41. Accordingly, as indicated by an arrow z in FIG. 4, the cold air flows through the passage 41 to the outlet. The refrigerant evaporates by heat exchange in the indoor heat exchanger 16, flows into the accumulator 26 through the four-way switching valve 13, is separated into gas refrigerant and liquid refrigerant by the accumulator 26, and only the gas refrigerant is sucked into the compressor 10. The

なお、上記ステップS17での判断がNOの場合は、ステップS19へ進み除湿の必要性を判断する。除湿が必要と判断されればステップS20へ進んで除湿運転を行う。除湿運転時は、冷媒を冷房運転時と同じ方向に循環させ、室内熱交換器16をエバポレータとして機能させケーシング内気を冷却するとともに、ヒータコア34でケーシング内気を加熱する。そのためにエアミックスドア38はTAOで決まる所定の中間位置に回動させ、空気排出ドア40は実線で示す閉鎖位置に回動させる。すると、ケーシング内気は室内熱交換器16で湿気を除去された後ヒータコア34で加熱され、冷気と暖気との間の温度に温度調整された空調空気が吹出口から吹き出す。なお、ステップ19で除湿が不要と判断された場合は、ステップS21へ進みエアコン停止とする。   If the determination in step S17 is NO, the process proceeds to step S19 to determine the necessity for dehumidification. If it is determined that dehumidification is necessary, the process proceeds to step S20 and a dehumidifying operation is performed. During the dehumidifying operation, the refrigerant is circulated in the same direction as in the cooling operation, the indoor heat exchanger 16 functions as an evaporator to cool the casing inner air, and the heater core 34 heats the casing inner air. For this purpose, the air mix door 38 is rotated to a predetermined intermediate position determined by TAO, and the air discharge door 40 is rotated to a closed position indicated by a solid line. Then, after the moisture in the casing is removed by the indoor heat exchanger 16, the air in the casing is heated by the heater core 34, and the conditioned air whose temperature is adjusted to a temperature between the cold air and the warm air blows out from the outlet. If it is determined in step 19 that dehumidification is unnecessary, the process proceeds to step S21 and the air conditioner is stopped.

次に図5を参照しつつ、上記ステップS15における凝縮水の蒸発の判定につき説明する。図5において、横軸は暖房運転開始後の経過時間であり、縦軸は室内熱交換器16における凝縮水の付着量(保水量)、又は湿度センサ64による検出値である。曲線aは室内熱交換器16の凝縮水の付着量(保水量)を示し、保水量は実測により求めた。曲線bは室内熱交換器16に凝縮水の付着があるときの湿度センサ64による検出値を示し、曲線cは凝縮水の付着がないときの湿度センサ64による検出値を示す。   Next, determination of evaporation of condensed water in step S15 will be described with reference to FIG. In FIG. 5, the horizontal axis represents the elapsed time after the start of the heating operation, and the vertical axis represents the amount of condensed water adhering (water retention amount) in the indoor heat exchanger 16 or the value detected by the humidity sensor 64. Curve a indicates the amount of condensed water adhering to the indoor heat exchanger 16 (water retention amount), and the water retention amount was determined by actual measurement. A curve b indicates a detection value by the humidity sensor 64 when condensed water adheres to the indoor heat exchanger 16, and a curve c indicates a detection value by the humidity sensor 64 when no condensed water adheres.

曲線aから分かるように、保水量は暖房運転開始直後はその値が高く一定であるが、その後は時間の経過につれて次第に減少している。切替え直後に保水量が減少していないのは、この間は室内熱交換器16の熱により凝縮水の温度が上昇中だからである。その後、凝縮水が蒸発するにつれて保水量は時間の経過につれて減少している。   As can be seen from the curve a, the water retention amount has a high and constant value immediately after the start of the heating operation, but thereafter gradually decreases with the passage of time. The reason why the water retention amount does not decrease immediately after the switching is that the temperature of the condensed water is rising due to the heat of the indoor heat exchanger 16 during this period. Thereafter, as the condensed water evaporates, the water retention amount decreases with time.

曲線bから分かるように、湿度センサ64による検出値は暖房運転開始直後はその値が高く一定であるがその後は時間の経過につれて次第に減少しており、その減少傾向は保水量の減少傾向と同じである。なお、室内熱交換器16に凝縮水の付着がないときは、曲線cで示すように、検出値は低いままである。理論上は曲線bが曲率cと交わる時間t1に凝縮水の蒸発が完了していることになる。但し、曲線aから分かるように実際は時間t1よりも早い時間t2で凝縮水は全て蒸発し保水量はゼロになっている。   As can be seen from the curve b, the value detected by the humidity sensor 64 is high and constant immediately after the start of the heating operation, but thereafter gradually decreases with the passage of time, and the decreasing tendency is the same as the decreasing tendency of the water retention amount. It is. When there is no condensed water adhering to the indoor heat exchanger 16, the detected value remains low as shown by the curve c. Theoretically, the evaporation of condensed water is completed at time t1 when the curve b intersects the curvature c. However, as can be seen from the curve a, the condensed water is actually evaporated at a time t2 earlier than the time t1, and the water retention amount is zero.

(効果)
第1実施形態によれば以下の効果が得られる。第1に、空調装置を冷房運転又は除湿運転から暖房運転に切り替えた場合における、フロントガラスの曇りが防止できる。これは、室内熱交換器16の外表面の凝縮水が蒸発、乾燥してしていない間は空気排出ダンパ40で通路41を閉じ、湿った空気を空気排出ダクト32から車外に排出することにより達成された。
(effect)
According to the first embodiment, the following effects can be obtained. First, it is possible to prevent fogging of the windshield when the air conditioner is switched from the cooling operation or the dehumidifying operation to the heating operation. This is because when the condensed water on the outer surface of the indoor heat exchanger 16 is not evaporated and dried, the air discharge damper 40 closes the passage 41 and discharges moist air from the air discharge duct 32 to the outside of the vehicle. Achieved.

第2に、空調装置を冷房運転又は除湿運転から暖房運転に切り替えた後、ケーシング30の吹出口から車室に暖風が吹き出すまでの待ち時間が短くできる。これは、室内熱交換器16に凝縮水の蒸発を湿度センサ64の検出値でリアルタイムで判定し、判定結果に応じて空気排出用ダンパ40による通路41の閉鎖時間長さを決めたことにより達成された。即ち、図5の曲線aから分かるように、曲線bが曲率cのレベル(湿度0%)よりも少し高い湿度5%のレベルに達するのは時間t2よりも早い時間t3である。従って、時間t3の時点で上記ステップS16のダンパ開制御を行えば、時間t2又は時間t1まで待つ場合に比べて、暖風の吹き出しまでの待ち時間が短くなる。なお、湿度5%のレベルで凝縮水の蒸発を判定しているのは、湿度センサ64の応答遅れを考慮したためである。   Second, after the air conditioner is switched from the cooling operation or the dehumidifying operation to the heating operation, the waiting time until the warm air blows out from the outlet of the casing 30 to the vehicle compartment can be shortened. This is achieved by determining the evaporation of the condensed water in the indoor heat exchanger 16 in real time based on the detection value of the humidity sensor 64 and determining the length of time for closing the passage 41 by the air discharge damper 40 according to the determination result. It was done. That is, as can be seen from the curve a in FIG. 5, the curve b reaches the level of 5% humidity slightly higher than the level of the curvature c (humidity 0%) at a time t3 earlier than the time t2. Therefore, if the damper opening control in step S16 is performed at time t3, the waiting time until the warm air blows out becomes shorter than when waiting until time t2 or time t1. The reason why the condensed water is evaporated at a humidity level of 5% is because the response delay of the humidity sensor 64 is taken into consideration.

また、図5の曲線aはある一定量の保水が蒸発する過程を示し、同様に曲線bはある一定量の保水が蒸発する過程での湿度の検出値を示したものである。前述したように、保水量は運転状態に応じて、多い場合もあれば少ない場合もある。従って、例えば実際の保水量がより少ない場合は、二点差線dで示すように湿度センサ64による検出値はより小さくなり、5%のレベルに達するまでの時間は、時間t3よりも早い時間t4になる。この時間t4で上記ダンパ開制御を行えば、更に待ち時間を短くできる。   Further, a curve a in FIG. 5 shows a process in which a certain amount of water retention evaporates, and a curve b similarly shows a detected humidity value in a process in which a certain amount of water retention evaporates. As described above, the water retention amount may be large or small depending on the operation state. Therefore, for example, when the actual water retention amount is smaller, the value detected by the humidity sensor 64 becomes smaller as indicated by the two-dot difference line d, and the time until the level reaches 5% is a time t4 earlier than the time t3. become. If the damper opening control is performed at time t4, the waiting time can be further shortened.

第3に、凝縮水の蒸発の判定手段として湿度センサ64を利用したので、その検出値に基づき凝縮水の蒸発を容易に判定できる。しかも、湿度センサ64をケーシング30から分岐した空気排出ダクト32内に配置したので、空気排出ダクト32から排出される湿った空気の湿度を正確に検出できる。   Third, since the humidity sensor 64 is used as a means for determining the evaporation of the condensed water, the evaporation of the condensed water can be easily determined based on the detected value. Moreover, since the humidity sensor 64 is disposed in the air discharge duct 32 branched from the casing 30, the humidity of the humid air discharged from the air discharge duct 32 can be accurately detected.

<第2実施形態>
図6及び図7に第2実施形態を示す。この第2実施形態では、暖房運転時に室内熱交換器16から吐出した冷媒の温度を検出する室内器冷媒温度センサ58(図1参照)の検出値に基づき、室内熱交換器16の凝縮水の蒸発を判定する。詳述すると、図6中に曲線eで示すように、室内熱交換器16に凝縮水が付着していない(保水がない)場合は、室内熱交換器16から吐出され室内器冷媒温度センサ58で検出される冷媒の温度は、暖房運転開始後の時間の経過につれてほぼ一定の割合で上昇する。
Second Embodiment
6 and 7 show a second embodiment. In the second embodiment, the condensed water of the indoor heat exchanger 16 is based on the detected value of the indoor refrigerant temperature sensor 58 (see FIG. 1) that detects the temperature of the refrigerant discharged from the indoor heat exchanger 16 during the heating operation. Determine evaporation. More specifically, as indicated by a curve e in FIG. 6, when no condensed water adheres to the indoor heat exchanger 16 (no water retention), the indoor heat exchanger 16 discharges the indoor heat exchanger temperature sensor 58. The temperature of the refrigerant detected at 1 rises at a substantially constant rate as time elapses after the heating operation is started.

一方、凝縮水が付着している(保水している)とき室内器冷媒温度センサ58で検出される冷媒の温度の変化を曲線fで示す。f1で示すように、冷媒温度は暖房運転開始後しばらくの間は急に上昇する。この間に室内熱交換器16の外表面の凝縮水の温度が上昇している。その後、f2で示すように冷媒の温度の上昇が緩やかな棚部分が現れる。この間は凝縮水が蒸発しており、熱のうちの一部が蒸発潜熱として消費されているため、冷媒温度の上昇率が小さくなっている。なお、その後f3で示すように冷媒温度が急に上昇するのは、全ての凝縮水が蒸発したからである。第2実施形態は、この凝縮水の蒸発との関係で変化する冷媒温度の上昇率の変化(f2からf3)を利用したものである。   On the other hand, a change in the temperature of the refrigerant detected by the indoor unit refrigerant temperature sensor 58 when condensed water adheres (holds water) is shown by a curve f. As indicated by f1, the refrigerant temperature suddenly rises for a while after the heating operation is started. During this time, the temperature of the condensed water on the outer surface of the indoor heat exchanger 16 is rising. Thereafter, as shown by f2, a shelf portion where the temperature of the refrigerant rises gradually appears. During this time, the condensed water is evaporated and a part of the heat is consumed as latent heat of evaporation, so the rate of increase in the refrigerant temperature is small. The reason why the refrigerant temperature suddenly increases as indicated by f3 is that all condensed water has evaporated. The second embodiment uses a change in the rate of increase in the refrigerant temperature (f2 to f3) that changes in relation to the evaporation of the condensed water.

以下、凝縮水の蒸発の判定を図7のフローチャートを用いて凝縮水の蒸発の判定を説明する。但し、ステップS30〜S34及びS42〜S46は第1実施形態のステップS10〜S14及びS17〜S21と同一であるため、説明を割愛する。ステップS34でダンパ閉制御を行い、空気排出ダンパ40を閉鎖位置に回動し通路41を閉鎖する。そして、水蒸気を含む湿った空気を空気排水ダクト32から車室外へ排出する。   Hereinafter, determination of evaporation of condensed water will be described with reference to the flowchart of FIG. However, Steps S30 to S34 and S42 to S46 are the same as Steps S10 to S14 and S17 to S21 of the first embodiment, and thus description thereof is omitted. In step S34, damper closing control is performed, and the air discharge damper 40 is rotated to the closed position to close the passage 41. And the moist air containing water vapor | steam is discharged | emitted from the air drain duct 32 out of a vehicle interior.

次に、ステップS35にて蒸発潜熱棚検出フラグTEflagが1か否か、即ち室内器冷媒温度センサ58が検出する冷媒温度が図6の曲線fの棚部分f2に入っているかどうかを判断する。棚部分f2に入っていたら(TEflag=1)ステップS36へ進み、入っていなければ(TEflag=0)ステップS40へ進む。   Next, in step S35, it is determined whether or not the latent heat shelf detection flag TEflag is 1, that is, whether or not the refrigerant temperature detected by the indoor unit refrigerant temperature sensor 58 is in the shelf portion f2 of the curve f in FIG. If it is in the shelf portion f2 (TEflag = 1), the process proceeds to step S36, and if not (TEflag = 0), the process proceeds to step S40.

ステップS40で、室内熱交換器16から吐出され室内器冷媒温度センサ58で検出される冷媒温度が棚部分f2に入ったか否かを判断する。具体的には、冷媒温度の現在値TEnow(例えば5秒間の平均値)と、冷媒温度の前回値TEpre(例えば5秒間の平均値)との差が基準値TEbase以下(例えば1℃)か否かを判断する。基準値TEbase以下の場合、棚部分f2に入ったと判断し、ステップS41で蒸発潜熱棚検出フラグTflagを1とする。   In step S40, it is determined whether or not the refrigerant temperature discharged from the indoor heat exchanger 16 and detected by the indoor unit refrigerant temperature sensor 58 has entered the shelf portion f2. Specifically, whether or not the difference between the current value TEnow (for example, an average value for 5 seconds) of the refrigerant temperature and the previous value TEpre (for example, the average value for 5 seconds) of the refrigerant temperature is equal to or less than a reference value TEbase (for example, 1 ° C.). Determine whether. If it is less than or equal to the reference value TEbase, it is determined that the shelf portion f2 has been entered, and the latent heat shelf detection flag Tflag is set to 1 in step S41.

一方、ステップS36で、室内器冷媒温度センサ58が検出する冷媒温度が棚部分f2を抜けたか、つまり室内熱交換器16の凝縮水が蒸発したか否かを判断する。具体的には、室内器冷媒温度センサ58が検出する冷媒温度の現在値TEnow(例えば5秒間の平均値)と冷媒温度の前回値TEpre(例えば5秒間の平均値)との差が基準値TEbase以上(例えば1℃)かどうかを判断する。両者の差が基準値TEbase以上であれば、室内熱交換器16の凝縮水が蒸発し外表面が乾燥したと判断する。そして、ステップS37でダンパ開制御を行い、空気排出ダンパ40を開放位置に回動し通路41を開放し、吹出口から車室内に暖風を吹き出す。その後、ステップS38でTEflagを0にリセットし、ステップS39でTEpreを更新する。   On the other hand, in step S36, it is determined whether or not the refrigerant temperature detected by the indoor unit refrigerant temperature sensor 58 has passed through the shelf portion f2, that is, whether or not the condensed water in the indoor heat exchanger 16 has evaporated. Specifically, the difference between the current value TEnow (for example, the average value for 5 seconds) of the refrigerant temperature detected by the indoor unit refrigerant temperature sensor 58 and the previous value TEpre (for example, the average value for 5 seconds) of the refrigerant temperature is the reference value TEbase. It is judged whether it is above (for example, 1 degreeC). If the difference between the two is equal to or greater than the reference value TEbase, it is determined that the condensed water in the indoor heat exchanger 16 has evaporated and the outer surface has dried. In step S37, damper opening control is performed, the air discharge damper 40 is rotated to the open position, the passage 41 is opened, and warm air is blown into the vehicle interior from the outlet. Thereafter, TEflag is reset to 0 in step S38, and TEpre is updated in step S39.

第2実施形態によれば、上記第1実施形態の第1の効果及び第2の効果と同様の効果が得られる。それらの効果に加えて、室内熱交換器16から吐出され室内器冷媒温度センサ58が検出する冷媒の温度の変化率に基づき凝縮水の蒸発を判定している。そのため、何らかの理由で瞬間的な温度上昇が発生してもダンパ開制御は行わず、凝縮水の蒸発の判定がより正確になる。   According to the second embodiment, the same effects as the first effect and the second effect of the first embodiment can be obtained. In addition to these effects, the evaporation of condensed water is determined based on the change rate of the temperature of the refrigerant discharged from the indoor heat exchanger 16 and detected by the indoor refrigerant temperature sensor 58. Therefore, even if an instantaneous temperature rise occurs for some reason, the damper opening control is not performed, and the determination of evaporation of condensed water becomes more accurate.

<変形例>
なお、第2実施形態の変形例として、室内熱交換器16の下流側のケーシング内気の温度に基づき、凝縮水の蒸発を判定しても良い。室内器空気温度センサ62(図1参照)が検出する室内熱交換器16の下流側の空気の温度は、上記室内器冷媒温度センサ58が検出する冷媒の温度と同様の上昇率で変化する。そこで、室内器空気温度センサ62の検出値が棚部分(図6のf2参照)を抜けた時点で凝縮水が蒸発したと判定する。
<Modification>
As a modification of the second embodiment, the evaporation of the condensed water may be determined based on the temperature of the casing inside air on the downstream side of the indoor heat exchanger 16. The temperature of the air on the downstream side of the indoor heat exchanger 16 detected by the indoor unit air temperature sensor 62 (see FIG. 1) changes at the same rate of increase as the refrigerant temperature detected by the indoor unit refrigerant temperature sensor 58. Therefore, it is determined that the condensed water has evaporated when the detected value of the indoor unit air temperature sensor 62 passes through the shelf portion (see f2 in FIG. 6).

<第3実施形態>
図8及び図9に第3実施形態を示す。この第3実施形態では、室内熱交換器16から吐出され室内器冷媒温度センサ58(図1参照)が検出した冷媒の温度と、圧縮機10から吐出され吐出冷媒温度センサ52(図1参照)が検出した冷媒の温度との温度差に基づき室内熱交換器16の凝縮水の蒸発を判定する。
<Third Embodiment>
8 and 9 show a third embodiment. In the third embodiment, the refrigerant temperature discharged from the indoor heat exchanger 16 and detected by the indoor unit refrigerant temperature sensor 58 (see FIG. 1) and the refrigerant temperature sensor 52 discharged from the compressor 10 and discharged (see FIG. 1). The evaporation of the condensed water in the indoor heat exchanger 16 is determined on the basis of the temperature difference from the refrigerant temperature detected by.

即ち、図8中に曲線iで示すように、室内熱交換器16に凝縮水が付着している場合に室内器冷媒温度センサ58が検出した冷媒温度TEは、暖房運転開始後の急な部分i1、その後のi2で示す緩やか部分(棚部分)、及びその後の急な部分i3を含む。この曲線iの上昇傾向は基本的に上記第2実施形態の曲線fの上昇傾向と同じである。   That is, as indicated by a curve i in FIG. 8, the refrigerant temperature TE detected by the indoor unit refrigerant temperature sensor 58 when the condensed water adheres to the indoor heat exchanger 16 is a steep portion after the heating operation is started. It includes a gentle portion (shelf portion) indicated by i1, and then i2, and a sharp portion i3 thereafter. The upward trend of the curve i is basically the same as the upward trend of the curve f of the second embodiment.

これに対して、吐出冷媒温度センサ52で検出される冷媒温度TDは曲線hで示すように、暖房開始直後は急激に上昇し、その後はほぼ一定の割合で緩やかに上昇し、全体的に上記冷媒温度TEよりも高い。なお、暖房開始直後の急激な上昇は、空調装置の起動時は冷媒が低温低圧状態から圧縮機10で圧縮され、短時間のうちに高温高圧状態に変化されるためである。   On the other hand, the refrigerant temperature TD detected by the discharged refrigerant temperature sensor 52 increases rapidly immediately after the start of heating as shown by a curve h, and then gradually increases at a substantially constant rate. It is higher than the refrigerant temperature TE. The rapid rise immediately after the start of heating is because the refrigerant is compressed from the low temperature and low pressure state by the compressor 10 when the air conditioner is started, and is changed to the high temperature and high pressure state within a short time.

上述した二つの冷媒温度の上昇率の相違の結果、室内熱交換器16から吐出され室内器冷媒温度センサ58で検出される冷媒温度と、圧縮機10から吐出され吐出冷媒温度センサ52で検出される冷媒温度との温度差は、暖房運転開始直後は急激に広がる。その後冷媒温度TEに棚部分i2があるため両者の温度差は大きくなり、急な部分i3では両者の温度差は小さくなる。第3実施形態は、上記二つの冷媒温度の温度差の変化を利用したものである。   As a result of the difference between the two refrigerant temperature rise rates described above, the refrigerant temperature discharged from the indoor heat exchanger 16 and detected by the indoor refrigerant temperature sensor 58 and the refrigerant temperature discharged from the compressor 10 and detected by the discharged refrigerant temperature sensor 52 are detected. The temperature difference from the refrigerant temperature increases rapidly immediately after the start of the heating operation. Thereafter, since there is a shelf portion i2 in the refrigerant temperature TE, the temperature difference between the two becomes large, and at the steep portion i3, the temperature difference between both becomes small. In the third embodiment, a change in temperature difference between the two refrigerant temperatures is used.

以下、図9のフローチャートを用いて凝縮水の蒸発の判定を説明する。但し、ステップS50〜S54及びS61〜S65は第1実施形態のステップS10〜S14及びS17〜S21と同一であるため、説明を割愛する。   Hereinafter, determination of evaporation of condensed water will be described with reference to the flowchart of FIG. However, Steps S50 to S54 and S61 to S65 are the same as Steps S10 to S14 and S17 to S21 of the first embodiment, and thus description thereof is omitted.

ステップS54でダンパ閉制御を行い、空気排出ダンパ40を閉鎖位置に回動し通路41を閉鎖する。そして、水蒸気を含む湿った空気を空気排水ダクト32から車室外へ排出する。次に、ステップS55にて吐出温度検出フラグTDflagが1か否かを判断する。これは、暖房開始開始直後の冷媒温度TDと冷媒温度TEとの温度差がないところを考慮しないためである。基準値を超えたら(TDflag=1)ステップS56へ進み、超えていなければ(TDflag=0)ステップS59へ進む。   In step S54, damper closing control is performed, and the air discharge damper 40 is turned to the closed position to close the passage 41. And the moist air containing water vapor | steam is discharged | emitted from the air drain duct 32 out of a vehicle interior. Next, in step S55, it is determined whether or not the discharge temperature detection flag TDflag is 1. This is because a place where there is no temperature difference between the refrigerant temperature TD and the refrigerant temperature TE immediately after the start of heating is not considered. If the reference value is exceeded (TDflag = 1), the process proceeds to step S56, and if not exceeded (TDflag = 0), the process proceeds to step S59.

ステップS59では圧縮機10から吐出され吐出冷媒温度センサ52で検出される冷媒温度TDが基準値を超えたか否かを判断する。冷媒の温度の値が50℃を超えたら、棚部分i2に入ったのでステップS60で蒸発潜熱棚検出フラグTDflagを1とする。   In step S59, it is determined whether or not the refrigerant temperature TD discharged from the compressor 10 and detected by the discharged refrigerant temperature sensor 52 exceeds a reference value. If the value of the refrigerant temperature exceeds 50 ° C., the shelf portion i2 has been entered, so the latent heat shelf detection flag TDflag is set to 1 in step S60.

ステップS56で、吐出冷媒温度センサ52で検出される冷媒温度TDと、室内熱交換器16から吐出され室内器冷媒温度センサ58で検出される冷媒温度TEとに基づき、室内熱交換器16の凝縮水の蒸発を判定する。具体的には、冷媒温度TDと冷媒温度TEとの温度差が基準値TDbase以下(例えば50℃)となったら冷媒温度の棚部分i2が終わり室内熱交換器16の凝縮水が蒸発したと判定する。そして、ステップS57でダンパ開制御を行い、空気排出ダンパ40を開放位置に回動し通路41を開放する。こうして、暖風を吹出口から車室内に吹き出し、ステップS58でTDflagを0にリセットする。   In step S56, the condensation of the indoor heat exchanger 16 is performed based on the refrigerant temperature TD detected by the discharged refrigerant temperature sensor 52 and the refrigerant temperature TE discharged from the indoor heat exchanger 16 and detected by the indoor refrigerant temperature sensor 58. Determine water evaporation. Specifically, when the temperature difference between the refrigerant temperature TD and the refrigerant temperature TE becomes equal to or less than the reference value TDbase (for example, 50 ° C.), it is determined that the shelf portion i2 of the refrigerant temperature ends and the condensed water in the indoor heat exchanger 16 has evaporated. To do. Then, damper opening control is performed in step S57, and the air discharge damper 40 is rotated to the open position to open the passage 41. In this way, warm air is blown out from the air outlet into the passenger compartment, and TDflag is reset to 0 in step S58.

第3実施形態によれば、第1実施形態の第1の効果及び第2の効果と同様の効果が得られる。これらに加えて、圧縮機10から吐出され吐出冷媒温度センサ52で検出される冷媒温度TDと、室内熱交換器16から吐出され室内器冷媒温度センサ58で検出される冷媒温度TEとの温度差の変化に基づき凝縮水の蒸発を判定しているので、冷媒温度TD及び冷媒温度TEの上昇率を検知することが不要となる。   According to the third embodiment, the same effects as the first effect and the second effect of the first embodiment can be obtained. In addition to these, the temperature difference between the refrigerant temperature TD discharged from the compressor 10 and detected by the discharged refrigerant temperature sensor 52 and the refrigerant temperature TE discharged from the indoor heat exchanger 16 and detected by the indoor unit refrigerant temperature sensor 58. Since the evaporation of the condensed water is determined based on the change of the refrigerant temperature, it is not necessary to detect the rising rate of the refrigerant temperature TD and the refrigerant temperature TE.

<変形例>
第3実施形態の変形例として、室内熱交換器16の下流側の空気温度を検出する室内器空気温度センサ62の温度と、外気温度を検出する外気温センサ68の温度との温度差に基づき、凝縮水の蒸発を判定することもできる。即ち、図10に曲線kで示すように、室内器空気温度センサ62で検出される室内熱交換器16の下流側の空気温度は、暖房運転への切替え後の急な部分k1、その後の棚部分k2及びその後の急な部分k3を含む。この温度の上昇傾向は、上記図6に曲線fで示した室内器冷媒温度センサ58で検出される室内熱交換器16の出口の冷媒の温度の上昇傾向と同じである。
<Modification>
As a modification of the third embodiment, based on the temperature difference between the temperature of the indoor unit air temperature sensor 62 that detects the air temperature downstream of the indoor heat exchanger 16 and the temperature of the outside air temperature sensor 68 that detects the outside air temperature. The evaporation of condensed water can also be determined. That is, as shown by a curve k in FIG. 10, the air temperature downstream of the indoor heat exchanger 16 detected by the indoor air temperature sensor 62 is a steep portion k1 after switching to the heating operation, and the subsequent shelf. It includes a part k2 and a subsequent sharp part k3. This temperature increasing tendency is the same as the temperature increasing tendency of the refrigerant at the outlet of the indoor heat exchanger 16 detected by the indoor refrigerant temperature sensor 58 shown by the curve f in FIG.

これに対して、外気温センサ68で検知される外気の温度は、直線lで示すように、暖房運転の起動時は変化せずほぼ一定であり、しかもこの一定値は上記曲線kの棚部分k2と急な部分k3との境界付近を通る。その結果、室内熱交換器16の下流側の空気の温度と外気の温度との温度差は、凝縮水の蒸発中即ち棚部分k2では小さくなり、蒸発後即ち急な部分k3では大きくなる。従って、この温度差の変化を利用して凝縮水の蒸発を判定することができる。   On the other hand, the temperature of the outside air detected by the outside air temperature sensor 68 does not change at the start of the heating operation, as indicated by the straight line l, and is substantially constant, and this constant value is the shelf portion of the curve k. It passes near the boundary between k2 and the steep part k3. As a result, the temperature difference between the temperature of the air on the downstream side of the indoor heat exchanger 16 and the temperature of the outside air becomes small during the evaporation of the condensed water, that is, the shelf portion k2, and becomes large after the evaporation, that is, the steep portion k3. Therefore, the evaporation of the condensed water can be determined using this change in temperature difference.

本発明の最良の形態の第1実施形態の全体説明図である。1 is an overall explanatory diagram of a first embodiment of the best mode of the present invention. 第1実施形態の作動を説明するフローチャートである。It is a flowchart explaining the action | operation of 1st Embodiment. 第1実施形態の暖房運転時の冷媒の流れを示す説明図であり、(a)は凝縮水の蒸発中、(b)は同じく蒸発後の状態を示す。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of heating operation of 1st Embodiment, (a) is during the evaporation of condensed water, (b) shows the state after evaporation similarly. 第1実施形態の冷房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the air_conditionaing | cooling operation of 1st Embodiment. 第1実施形態の効果を示すグラフである。It is a graph which shows the effect of a 1st embodiment. 第2実施形態の原理を説明するグラフである。It is a graph explaining the principle of 2nd Embodiment. 第2実施形態の作動を説明するフローチャートである。It is a flowchart explaining the action | operation of 2nd Embodiment. 第3実施形態の原理を説明するグラフであるIt is a graph explaining the principle of 3rd Embodiment. 第3実施形態の作動を説明するフローチャートである。It is a flowchart explaining the action | operation of 3rd Embodiment. 第3実施形態の変形例の原理を示すグラフである。It is a graph which shows the principle of the modification of 3rd Embodiment.

符号の説明Explanation of symbols

10:圧縮機 13:四方切替弁
16:室内熱交換器 20:減圧器
23:室外熱交換器 30:ケーシング
32:空気排出ダクト 34:ヒータコア
38:エアミックスドア 40:空気排出用バンパ
41:通路 75:制御装置
77:記憶部
10: Compressor 13: Four-way switching valve 16: Indoor heat exchanger 20: Pressure reducer 23: Outdoor heat exchanger 30: Casing 32: Air exhaust duct 34: Heater core 38: Air mix door 40: Air exhaust bumper 41: Passage 75: Control device 77: Storage unit

Claims (9)

冷媒を圧縮する圧縮機(10)と、
吹出口を備えたケーシング(30)に収容され、その内部を通過する前記冷媒と前記ケーシング内を流れる空気との間で熱交換する室内熱交換器(16)と、
前記冷媒を減圧膨張させる減圧器(20)と、
その内部を通過する前記冷媒と外気との間で熱交換する室外熱交換器(23)と、
冷房運転時と暖房運転時とで前記冷媒の流れ方向を切り替える四方切替弁(13)と、
前記ケーシングの前記室内熱交換器の近くに形成された空気排出ダクト(32)と、
前記室内熱交換器と前記ケーシングの前記吹出口との間の通路(41)を開閉する空気排出ダンパ(40)と、
前記冷房運転から前記暖房運転への切替え時、前記室内熱交換器に付着した凝縮水が蒸発したかどうかを判定する判定手段と、を備え、
前記判定手段により前記室内熱交換器の前記凝縮水が蒸発していないと判定される間は、前記空気排出ダンパで前記通路を閉鎖し前記空気排出ダンパから湿った空気を排出し、
前記凝縮水が蒸発したと判定された後は、前記空気排出ダンパで前記通路を開放し前記吹出口から乾いた空気を吹き出す、ことを特徴とするヒートポンプ式車両用空調装置。
A compressor (10) for compressing the refrigerant;
An indoor heat exchanger (16) that is accommodated in a casing (30) having an outlet and exchanges heat between the refrigerant passing through the inside and air flowing in the casing;
A decompressor (20) for decompressing and expanding the refrigerant;
An outdoor heat exchanger (23) for exchanging heat between the refrigerant passing through the interior and the outside air;
A four-way switching valve (13) for switching the flow direction of the refrigerant during cooling operation and heating operation;
An air discharge duct (32) formed in the casing near the indoor heat exchanger;
An air discharge damper (40) for opening and closing a passage (41) between the indoor heat exchanger and the outlet of the casing;
Determination means for determining whether or not the condensed water adhering to the indoor heat exchanger has evaporated at the time of switching from the cooling operation to the heating operation,
While it is determined by the determination means that the condensed water of the indoor heat exchanger has not evaporated, the air discharge damper closes the passage and discharges moist air from the air discharge damper.
After determining that the condensed water has evaporated, the heat pump vehicle air conditioner is characterized in that the air discharge damper opens the passage and blows dry air from the outlet.
前記判定手段の判定結果が入力され、前記空気排出ダンパの作動を制御し、毎回の運転状態を記憶する記憶部(77)を有する制御装置(75)を含むことを特徴とする請求項1に記載のヒートポンプ式車両用空調装置。   The control device (75) having a storage unit (77) that receives the determination result of the determination means, controls the operation of the air exhaust damper, and stores the operation state of each time. The heat pump type vehicle air conditioner as described. 前記判定手段は前記室内熱交換器の近くの空気の湿度を検出する湿度センサ(64)を含み、前記空気の湿度が所定値以下になったとき前記凝縮水の蒸発を判定することを特徴とする請求項2に記載のヒートポンプ式車両用空調装置。   The determination means includes a humidity sensor (64) for detecting the humidity of the air near the indoor heat exchanger, and determines the evaporation of the condensed water when the humidity of the air falls below a predetermined value. The heat pump type vehicle air conditioner according to claim 2. 前記判定手段は第1所定場所の冷媒の温度を検出する第1冷媒温度センサ(58)を含み、前記冷媒の温度の上昇率が小から大に変化したとき前記凝縮水の蒸発を判定することを特徴とする請求項2に記載のヒートポンプ式車両用空調装置。   The determination means includes a first refrigerant temperature sensor (58) for detecting the temperature of the refrigerant in the first predetermined place, and determines the evaporation of the condensed water when the rate of increase in the temperature of the refrigerant changes from small to large. The heat pump type vehicle air conditioner according to claim 2. 前記判定手段は第2所定場所の空気の温度を検出する第1空気温度センサ(62)を含み、前記空気の温度の上昇率が小から大に変化したとき前記凝縮水の蒸発を判定することを特徴とする請求項2に記載のヒートポンプ式車両用空調装置。   The determination means includes a first air temperature sensor (62) for detecting the temperature of air at a second predetermined location, and determines evaporation of the condensed water when the rate of increase in the temperature of the air changes from small to large. The heat pump type vehicle air conditioner according to claim 2. 前記判定手段は、第1所定場所の冷媒の温度を検出する第1冷媒温度センサ(58)及び第3所定場所の冷媒の温度を検出する第2冷媒温度センサ(52)を含み、前記第1所定場所の前記冷媒の温度と前記第3所定場所の前記冷媒の温度との温度差が大から小に変化したとき前記凝縮水の蒸発を判定することを特徴とする請求項2に記載のヒートポンプ式車両用空調装置。   The determination means includes a first refrigerant temperature sensor (58) for detecting the temperature of the refrigerant at the first predetermined place and a second refrigerant temperature sensor (52) for detecting the temperature of the refrigerant at the third predetermined place. The heat pump according to claim 2, wherein evaporation of the condensed water is determined when a temperature difference between the temperature of the refrigerant at a predetermined location and the temperature of the refrigerant at the third predetermined location changes from large to small. Type vehicle air conditioner. 前記判定手段は、第2所定場所の空気の温度を検出する第1空気温度センサ(62)及び第4所定場所の空気の温度を検出する第2空気温度センサ(68)を含み、前記第2所定場所の前記空気の温度と前記第4所定場所の前記空気の温度との温度差が小から大に変化したとき前記凝縮水の蒸発を判定することを特徴とする請求項2に記載のヒートポンプ式車両用空調装置。   The determination means includes a first air temperature sensor (62) for detecting the temperature of the air at the second predetermined place and a second air temperature sensor (68) for detecting the temperature of the air at the fourth predetermined place. The heat pump according to claim 2, wherein evaporation of the condensed water is determined when a temperature difference between the temperature of the air at a predetermined location and the temperature of the air at the fourth predetermined location changes from small to large. Type vehicle air conditioner. 前記冷房運転から前記暖房運転への切替え直後の前記第1所定場所の前記冷媒の温度と前記第3所定場所の前記冷媒の温度との温度差、及び前記第2所定場所の前記空気の温度と前記第4所定場所の前記空気の温度との温度差は考慮しないことを特徴とする請求項6又は7に記載のヒートポンプ式車両用空調装置。   A temperature difference between the temperature of the refrigerant at the first predetermined location and the temperature of the refrigerant at the third predetermined location immediately after switching from the cooling operation to the heating operation, and the temperature of the air at the second predetermined location The heat pump vehicle air conditioner according to claim 6 or 7, wherein a temperature difference from the temperature of the air at the fourth predetermined place is not taken into consideration. 前記ケーシング内の前記室内熱交換器の下流側に配置され前記室内熱交換器を通過した空気を加熱するヒータコア(34)、及び前記ヒータコアの上流側に配置されたエアミックスドア(38)を含むことを特徴とする請求項3,4,5、6又は8に記載のヒートポンプ式車両用空調装置。   A heater core (34) disposed on the downstream side of the indoor heat exchanger in the casing for heating the air passing through the indoor heat exchanger; and an air mix door (38) disposed on the upstream side of the heater core. The heat pump type vehicle air conditioner according to claim 3, 4, 5, 6 or 8.
JP2005128096A 2005-04-26 2005-04-26 Heat pump type air-conditioner for vehicle Pending JP2006306146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128096A JP2006306146A (en) 2005-04-26 2005-04-26 Heat pump type air-conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128096A JP2006306146A (en) 2005-04-26 2005-04-26 Heat pump type air-conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2006306146A true JP2006306146A (en) 2006-11-09

Family

ID=37473542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128096A Pending JP2006306146A (en) 2005-04-26 2005-04-26 Heat pump type air-conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP2006306146A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032045A (en) * 2011-07-31 2013-02-14 Denso Corp Air conditioning apparatus for vehicle
KR101300555B1 (en) * 2010-12-03 2013-09-03 한라비스테온공조 주식회사 Air conditioning apparatus for automotive vehicles
JP2014061801A (en) * 2012-09-21 2014-04-10 Denso Corp Air conditioner for vehicle
DE102021210633A1 (en) 2021-09-23 2023-03-23 Volkswagen Aktiengesellschaft Improved Heat Pump Arrangement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300555B1 (en) * 2010-12-03 2013-09-03 한라비스테온공조 주식회사 Air conditioning apparatus for automotive vehicles
JP2013032045A (en) * 2011-07-31 2013-02-14 Denso Corp Air conditioning apparatus for vehicle
US9327578B2 (en) 2011-07-31 2016-05-03 Denso Corporation Air-conditioner for vehicle
DE102012212715B4 (en) 2011-07-31 2022-08-11 Denso Corporation Air conditioning for a vehicle
JP2014061801A (en) * 2012-09-21 2014-04-10 Denso Corp Air conditioner for vehicle
DE102021210633A1 (en) 2021-09-23 2023-03-23 Volkswagen Aktiengesellschaft Improved Heat Pump Arrangement

Similar Documents

Publication Publication Date Title
JP4445264B2 (en) Automotive air conditioner heating / cooling cycle, air conditioner, and method for controlling the air conditioner
JP6065637B2 (en) Cooling system
US11179999B2 (en) Heat pump system
US5904052A (en) Brine type air conditioning apparatus
JP2677966B2 (en) Heat pump type air conditioner for vehicles
JP2002200917A (en) Air conditioner for vehicle
JP2010532462A (en) High temperature gas defrosting method and apparatus
JP2005528283A (en) Automotive air conditioner
JP4211186B2 (en) Vehicle heat pump device
JP2008082589A (en) Air conditioner
JP2013159228A (en) Vehicle air conditioner
JP2011005981A (en) Air conditioning device for vehicle
EP1293367A2 (en) Vehicle air conditioner having refrigerant cycle with heating function
KR101803729B1 (en) Defogging method on inner surface of windshield glass for Vehicles
JP4273956B2 (en) How to operate the dehumidifier
JP2006306146A (en) Heat pump type air-conditioner for vehicle
JP2004017684A (en) Air-conditioner for vehicle
JP6134290B2 (en) Air conditioner for vehicles
JP5796535B2 (en) Air conditioner for vehicles
CN111819096B (en) Air conditioner
CN110475683B (en) Air conditioning apparatus
JP2003269820A (en) Drying method and cold air dryer
JP6544287B2 (en) Air conditioner
CN107160968A (en) The method and device of the condenser dehumidifying of automotive air-conditioning system
JP2003211947A (en) Air conditioner for vehicle