JP2006302553A - Manufacturing method of lithium secondary battery cathode plate, and lithium secondary battery using the cathode plate manufactured by the same - Google Patents

Manufacturing method of lithium secondary battery cathode plate, and lithium secondary battery using the cathode plate manufactured by the same Download PDF

Info

Publication number
JP2006302553A
JP2006302553A JP2005119241A JP2005119241A JP2006302553A JP 2006302553 A JP2006302553 A JP 2006302553A JP 2005119241 A JP2005119241 A JP 2005119241A JP 2005119241 A JP2005119241 A JP 2005119241A JP 2006302553 A JP2006302553 A JP 2006302553A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
lithium secondary
drying
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005119241A
Other languages
Japanese (ja)
Other versions
JP4915055B2 (en
Inventor
Tatsuya Hashimoto
達也 橋本
Yasuaki Ichitaka
康晃 一高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005119241A priority Critical patent/JP4915055B2/en
Publication of JP2006302553A publication Critical patent/JP2006302553A/en
Application granted granted Critical
Publication of JP4915055B2 publication Critical patent/JP4915055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a cathode plate is cut at neighboring area of innermost circumference of an electrode plate group where radius of curvature becomes small because flexibility of the cathode plate is sharply reduced, in the case of using LiNi<SB>x</SB>Mn<SB>y</SB>Co<SB>(1-x-y)</SB>O<SB>2</SB>as a cathode activator in exchange for LiCoO<SB>2</SB>. <P>SOLUTION: The manufacturing method of the lithium secondary battery cathode plate formed by painting a paste for the cathode plate prepared by kneading and dispersing a lithium-containing nickel complex oxide as a cathode activator, a binder, and a carboxymethyl cellulose having ammonium salt as functional group on a current collector, and by drying and rolling the paste comprises a process of forming a cathode plate precursor by applying the paste for cathode plate on the current collector, a process of drying the cathode plate precursor, and a process of rolling the cathode plate precursor after drying. The cathode plate precursor is dried at a temperature of 300 to 500°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池の、特にその正極用極板の改良に関する。   The present invention relates to an improvement in a lithium secondary battery, particularly its positive electrode plate.

近年、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられる電池として、リチウムイオンの吸蔵・放出が可能な炭素材料などを負極活物質とし、リチウム遷移金属複合酸化物としてリチウム含有コバルト酸化物から、より高容量化を目的としてリチウム含有ニッケル酸化物等の正極活物質を正極活物質とするリチウム二次電池が実用化されるようになった。   In recent years, as batteries used in portable electronic / communication equipment such as mobile phones and laptop computers, carbon materials capable of occluding and releasing lithium ions are used as negative electrode active materials, and lithium-containing cobalt is used as a lithium transition metal composite oxide. From the oxide, a lithium secondary battery using a positive electrode active material such as lithium-containing nickel oxide as a positive electrode active material has been put into practical use for the purpose of higher capacity.

リチウム含有ニッケル酸化物としてLiNixMnyCo(1-x-y)2、導電材にアセチレンブラック、およびナトリウム塩を官能基としたカルボキシメチルセルロースの水溶液、および結着材を加え、ペースト化する。この正極極板用ペーストを集電体となるアルミニウム箔に塗布し、乾燥した後、所定の密度になるように圧延する。このようにして正極極板を作製する。この正極極板と負極極板を、セパレータを介して、渦巻き状に捲回して極板群を作製する。このようにして作製した極板群を有底ケースに入れ、非水電解液を注入する。有底ケースの開口部と封口板とは、絶縁ガスケットを介してかしめにより封口し、リチウム二次電池とする。 LiNi x Mn y Co (1- xy) O 2 as the lithium-containing nickel oxide, a conductive material acetylene black, and an aqueous solution of carboxymethyl cellulose sodium salt was a functional group, and the binder is added, a paste. The positive electrode plate paste is applied to an aluminum foil serving as a current collector, dried, and then rolled to a predetermined density. In this way, a positive electrode plate is produced. The positive electrode plate and the negative electrode plate are wound in a spiral shape through a separator to produce an electrode plate group. The electrode plate group thus produced is placed in a bottomed case, and a non-aqueous electrolyte is injected. The opening of the bottomed case and the sealing plate are sealed by caulking through an insulating gasket to form a lithium secondary battery.

リチウム二次電池の負極極板用ペーストにおける増粘材の改良について、増粘材としてアンモニウム塩を官能基としたカルボキシメチルセルロースを用いることにより密着性を改善することが提案されている。また、正極活物質としてリチウム含有コバルト酸化物を用い、正極極板用ペーストの増粘材としてアンモニウム塩を官能基としたカルボキシメチルセルロースを用い、正極板を200〜300℃で乾燥することが提案されている(例えば、特許文献1参照のこと)。
特開平11−162451号公報
Regarding the improvement of the thickening material in the paste for the negative electrode plate of the lithium secondary battery, it has been proposed to improve the adhesion by using carboxymethylcellulose having an ammonium salt as a functional group as the thickening material. In addition, it is proposed that lithium-containing cobalt oxide is used as a positive electrode active material, carboxymethyl cellulose having an ammonium salt as a functional group is used as a thickener for a positive electrode plate paste, and the positive electrode plate is dried at 200 to 300 ° C. (For example, refer to Patent Document 1).
JP-A-11-162451

しかしながら、従来の正極極板は、正極活物質としてリチウム含有コバルト酸化物(以下、LiCoO2と略す)を用い、正極極板用ペーストの増粘材としてアンモニウム塩を官能基としたカルボキシメチルセルロース(以下、NH3−CMCと略す)を用い、正極極板を200〜300℃の乾燥処理をしている。この乾燥処理条件ではNH3−CMCが残渣として残っている。このようにNH3−CMCが残渣として残っていても、正極活物質にLiCoO2を用いている場合、正極極板の柔軟性に問題はなかった。 However, a conventional positive electrode plate uses lithium-containing cobalt oxide (hereinafter abbreviated as LiCoO 2 ) as a positive electrode active material, and carboxymethyl cellulose (hereinafter referred to as a functional group) having an ammonium salt as a functional group as a thickener for a positive electrode plate paste. , NH 3 -CMC), and the positive electrode plate is dried at 200 to 300 ° C. Under these drying conditions, NH 3 -CMC remains as a residue. Thus, even if NH 3 —CMC remained as a residue, there was no problem in the flexibility of the positive electrode plate when LiCoO 2 was used as the positive electrode active material.

しかし、高容量化に伴い正極活物質としてLiNixMnyCo(1-x-y)2を用いた場合、この活物質の形状に起因して正極極板が硬くなったり、正極極板の高密度化に起因して正極極板内部の空隙が少なくなるため、正極極板の柔軟性がLiCoO2と比較して、著しく低下するという問題があった。 However, when using LiNi x Mn y Co (1- xy) O 2 as a positive electrode active material with the high capacity, may become hard and positive electrode plate due to the shape of the active material, the positive electrode plate high Due to the densification, voids inside the positive electrode plate are reduced, and there is a problem that the flexibility of the positive electrode plate is remarkably lowered as compared with LiCoO 2 .

そのため、曲率半径が小さくなる極板群の最内周付近で正極極板が切れるという問題があった。   Therefore, there is a problem that the positive electrode plate is cut near the innermost periphery of the electrode plate group having a small radius of curvature.

正極極板が切れることがなかった極板群を用いてリチウム二次電池を作製したとしても、リチウム二次電池の極板巻回工程時において曲率半径が小さくなる極板群の最内周付近
での切れが発生し、生産での歩留まりも著しく低下するという問題があった。
Even if a lithium secondary battery is manufactured using a plate group in which the positive electrode plate was not cut, the radius of curvature decreases near the innermost circumference of the plate group during the winding process of the lithium secondary battery. There was a problem in that the production yield was significantly reduced.

さらに、電池が構成された後においても充放電で正極極板の膨張・収縮により曲率半径が小さくなる極板群の最内周付近で正極極板が切れるという問題があった。これによりリチウム二次電池の機能を失ってしまうという課題があった。   Further, there is a problem that even after the battery is constructed, the positive electrode plate is cut near the innermost periphery of the electrode plate group in which the radius of curvature decreases due to expansion and contraction of the positive electrode plate due to charge and discharge. Accordingly, there is a problem that the function of the lithium secondary battery is lost.

本発明はこのような従来の課題を解決するものであり、曲率半径が小さくなる極板群の最内周付近で正極極板が切れることなく、生産性ならびに電池特性に優れたリチウム二次電池用正極極板の製造方法を提供するものである。   The present invention solves such a conventional problem, and the positive electrode plate is not cut in the vicinity of the innermost periphery of the electrode plate group having a small radius of curvature, and the lithium secondary battery is excellent in productivity and battery characteristics. A method for producing a positive electrode plate for use is provided.

前記従来の課題を解決するために、本発明のリチウム二次電池用正極極板の製造方法は、
正極活物質としてリチウム含有ニッケル複合酸化物、結着剤、および増粘材としてアンモニウム塩を官能基に持つカルボキシメチルセルロースとを分散媒に混練分散させた正極極板用ペ−ストを、集電体に塗着、乾燥、圧延してなるリチウム二次電池用正極極板の製造方法において、
前記正極活物質として前記リチウム含有ニッケル複合酸化物、前記結着剤、および前記増粘材として前記アンモニウム塩を官能基に持つカルボキシメチルセルロースとを前記分散媒に混練分散して正極極板用ペーストを作製する工程と、
前記正極極板用ペーストを前記集電体に塗着し正極極板前駆体に工程と、
前記正極極板前駆体を乾燥する工程と、
前記正極極板前駆体を乾燥した後、圧延する工程とからなるリチウム二次電池用正極極板の製造方法であって、
前記乾燥を300℃〜500℃の温度で行うリチウム二次電池用正極極板の製造方法である。
In order to solve the conventional problem, a method for producing a positive electrode plate for a lithium secondary battery according to the present invention includes:
A paste for a positive electrode plate in which a lithium-containing nickel composite oxide as a positive electrode active material, a binder, and carboxymethyl cellulose having an ammonium salt as a functional group as a thickener are kneaded and dispersed in a dispersion medium, In the method for producing a positive electrode plate for a lithium secondary battery obtained by coating, drying and rolling on
A positive electrode plate paste obtained by kneading and dispersing the lithium-containing nickel composite oxide as the positive electrode active material, the binder, and carboxymethyl cellulose having the ammonium salt as a functional group as a thickener in the dispersion medium. Manufacturing process;
Applying the positive electrode plate paste to the current collector to form a positive electrode plate precursor;
Drying the positive electrode plate precursor;
A method for producing a positive electrode plate for a lithium secondary battery comprising a step of rolling the positive electrode plate precursor, followed by rolling,
It is a manufacturing method of the positive electrode plate for lithium secondary batteries which performs the said drying at the temperature of 300 to 500 degreeC.

別の発明におけるリチウム二次電池用正極極板の製造方法は、
前記正極活物質として前記リチウム含有ニッケル複合酸化物、前記結着剤、および前記増粘材として前記アンモニウム塩を官能基に持つカルボキシメチルセルロースとを前記分散媒に混練分散して正極極板用ペーストを作製する工程と、
前記正極極板用ペーストを前記集電体に塗着し正極極板前駆体に工程と、
前記正極極板前駆体を乾燥する工程と、
前記正極極板前駆体を乾燥した後、
前記乾燥が前記アンモニウム塩を官能基に持つカルボキシメチルセルロースの官能基のガス化温度以上、かつ増粘材骨格部分の酸化分解温度以下の温度で行うリチウム二次電池用正極極板の製造方法である。
The method for producing a positive electrode plate for a lithium secondary battery in another invention is as follows:
A positive electrode plate paste obtained by kneading and dispersing the lithium-containing nickel composite oxide as the positive electrode active material, the binder, and carboxymethyl cellulose having the ammonium salt as a functional group as a thickener in the dispersion medium. Manufacturing process;
Applying the positive electrode plate paste to the current collector to form a positive electrode plate precursor;
Drying the positive electrode plate precursor;
After drying the positive electrode plate precursor,
In the method for producing a positive electrode plate for a lithium secondary battery, the drying is performed at a temperature equal to or higher than a gasification temperature of a functional group of carboxymethylcellulose having the ammonium salt as a functional group and equal to or lower than an oxidative decomposition temperature of a thickener skeleton. .

増粘材としてアンモニウム塩を官能基に持つカルボキシルメチルセルロース水溶液を用いることにより、乾燥により官能基であるアンモニウム塩がアンモニアガスとして消失するため、正極極板が局所的に固くなることなく柔軟性を維持することができるようになるため、極板群およびリチウム二次電池の生産性を飛躍的に改善することができる。   By using an aqueous solution of carboxyl methyl cellulose having an ammonium salt as a functional group as a thickener, the ammonium salt, which is a functional group, disappears as ammonia gas by drying, so that the positive electrode plate remains flexible without becoming locally hard. Therefore, the productivity of the electrode plate group and the lithium secondary battery can be drastically improved.

本発明によれば、曲率半径が小さくなる極板群の最内周付近で正極極板が切れることなく、繰り返し充放電しても充放電容量の劣化や負荷特性の劣化を極めて小さく抑えることができる。また、正極極板の柔軟性が維持できるため、リチウム二次電池の組立工程途中における正極極板の切れがなくなり、生産性を改善することができる。   According to the present invention, the positive electrode plate is not cut in the vicinity of the innermost circumference of the electrode plate group having a small radius of curvature, and the deterioration of the charge / discharge capacity and the deterioration of the load characteristics can be suppressed to a very low level even after repeated charge / discharge. it can. Further, since the flexibility of the positive electrode plate can be maintained, the positive electrode plate is not cut during the assembly process of the lithium secondary battery, and the productivity can be improved.

本発明のリチウム二次電池用正極極板の製造方法は、正極活物質としてリチウム含有ニッケル複合酸化物、結着剤、および増粘材としてアンモニウム塩を官能基に持つカルボキシメチルセルロース(以下、NH3−CMCと略す)とを分散媒に混練分散させた正極極板用ペ−ストを、集電体に塗着、乾燥、圧延してなるリチウム二次電池用正極極板の製造方法において、
前記正極活物質として前記リチウム含有ニッケル複合酸化物、前記結着剤、および前記増粘材として前記NH3−CMCとを前記分散媒に混練分散して正極極板用ペーストを作製する工程と、
前記正極極板用ペーストを前記集電体に塗着し正極極板前駆体に工程と、
前記正極極板前駆体を乾燥する工程と、
前記正極極板前駆体を乾燥した後、圧延する工程とからなるリチウム二次電池用正極極板の製造方法であって、
前記乾燥を300℃〜500℃の温度で行うリチウム二次電池用正極極板の製造方法で
ある。
The method for producing a positive electrode plate for a lithium secondary battery according to the present invention includes a lithium-containing nickel composite oxide as a positive electrode active material, a binder, and a carboxymethyl cellulose having an ammonium salt as a functional group (hereinafter referred to as NH 3). In the method for producing a positive electrode plate for a lithium secondary battery, the paste for positive electrode plate obtained by kneading and dispersing in a dispersion medium is applied to a current collector, dried and rolled.
A step of preparing a positive electrode plate paste by kneading and dispersing the lithium-containing nickel composite oxide as the positive electrode active material, the binder, and the NH 3 —CMC as the thickener in the dispersion medium;
Applying the positive electrode plate paste to the current collector to form a positive electrode plate precursor;
Drying the positive electrode plate precursor;
A method for producing a positive electrode plate for a lithium secondary battery comprising a step of rolling the positive electrode plate precursor, followed by rolling,
It is a manufacturing method of the positive electrode plate for lithium secondary batteries which performs the said drying at the temperature of 300 to 500 degreeC.

正極活物質としてリチウム含有ニッケル複合酸化物、導電材、結着剤、および増粘材
としてNH3−CMCを溶解した水溶液とを、同時に配合し、混合分散して正極極板用ペ
ーストを作製する。
A lithium-containing nickel composite oxide as a positive electrode active material, a conductive material, a binder, and an aqueous solution in which NH 3 -CMC is dissolved as a thickener are simultaneously blended, mixed and dispersed to prepare a positive electrode plate paste. .

結着剤は、分散媒に混合分散できるものであれば特に限定されるものではないが、例
えば、フッ素系結着剤、アクリルゴム、変性アクリルゴム、スチレン−ブタジエンゴム
、アクリル系重合体、ビニル系重合体等を単独、或いは二種類以上の混合物または共重
合体として用いることができる。フッ素系結着剤としては、例えば、ポリフッ化ビニリ
デン、フッ化ビニリデンと六フッ化プロピレンの共重合体、およびポリテトラフルオロ
エチレン樹脂のディスパージョンが好ましい。
The binder is not particularly limited as long as it can be mixed and dispersed in the dispersion medium. For example, a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber, acrylic polymer, vinyl A polymer or the like can be used alone or as a mixture or copolymer of two or more. As the fluorine-based binder, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, and a dispersion of polytetrafluoroethylene resin are preferable.

塗着方法は、特に限定されるものではない。混合分散させた正極極板用ペーストを、
例えば、スリットダイコーター、リバースロールコーター、リップコーター、ブレード
コーター、ナイフコーター、グラビアコーター、およびディップコーター等を用いて、
塗着することができる。
The application method is not particularly limited. Mixed and dispersed positive electrode plate paste,
For example, using a slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater, dip coater, etc.
Can be painted.

集電体は、例えば、アルミニウム製の箔やラス加工やエッチング処理された箔が好ま
しい。
The current collector is preferably, for example, an aluminum foil or a foil subjected to lath processing or etching.

乾燥条件は、以下に説明する。   The drying conditions will be described below.

増粘材NH3−CMCの官能基となるNH3基が、正極極板中に残渣として残ったまま
では、正極極板が局所的に固くなり柔軟性を維持することができなくなる。また、その
正極極板を使って電池を作製した場合は、充放電サイクルを繰り返したり、高温で保存
したりした時、NH3基に起因したアンモニウムガスが発生する。その結果、充放電サイ
クルや高温保存特性が劣化することとなる。そのため、増粘材NH3−CMCの官能基と
なるNH3基を乾燥工程でガス化させ、正極極板中に残渣として残さないようにしなけれ
ばならない。
NH 3 group which is a functional group of thickeners NH 3-CMC has remained remained as positive electrode residues in the plate, positive electrode plate can no longer be maintained firmly becomes flexibility locally. Further, when a battery is produced using the positive electrode plate, ammonium gas resulting from NH 3 groups is generated when the charge / discharge cycle is repeated or stored at a high temperature. As a result, the charge / discharge cycle and high-temperature storage characteristics deteriorate. Therefore, the NH 3 group which is a functional group of thickeners NH 3-CMC is gasified in the drying step, the positive electrode must be such not to leave as a residue in the plate.

増粘材NH3−CMCの官能基となるNH3基をガス化させる温度として、300℃以
上で乾燥する必要がある。乾燥温度が500℃より大きくなると、増粘材の骨格部分が
酸化分解し、一部は炭化し硬くなるため、正極極板中の柔軟性が低下し、その結果、正
極極板が脆くなることとなる。以上のことから、乾燥温度は300〜500℃が良いこ
ととなる。
It is necessary to dry at 300 ° C. or higher as a temperature for gasifying the NH 3 group that is a functional group of the thickener NH 3 -CMC. When the drying temperature is higher than 500 ° C., the skeleton portion of the thickener is oxidatively decomposed, and part of it is carbonized and hardened, so the flexibility in the positive electrode plate decreases, and as a result, the positive electrode plate becomes brittle. It becomes. From the above, the drying temperature is preferably 300 to 500 ° C.

こうすることにより、極板群および電池の生産性を飛躍的に改善することができるよ
うになる。
By doing so, the productivity of the electrode plate group and the battery can be drastically improved.

また、乾燥時間は5〜10分間が好ましい。   The drying time is preferably 5 to 10 minutes.

圧延方法は、ロールプレス機によって所定の厚みになるまで数回圧延を行うか、プレ
ス圧を変えて圧延するのが好ましい。
As a rolling method, it is preferable to perform rolling several times with a roll press until a predetermined thickness is reached, or to change the pressing pressure.

正極極板は厚みが0.11〜0.20mmで、柔軟性があることが好ましい。   The positive electrode plate preferably has a thickness of 0.11 to 0.20 mm and is flexible.

本発明の別の実施の形態におけるリチウム二次電池用正極極板の製造方法は、
前記正極活物質として前記リチウム含有ニッケル複合酸化物、前記結着剤、および前記
増粘材としてNH3−CMCとを前記分散媒に混練分散して正極極板用ペーストを作製す
る工程と、
前記正極極板用ペーストを前記集電体に塗着し正極極板前駆体に工程と、
前記正極極板前駆体を乾燥する工程と、
前記正極極板前駆体を乾燥した後、
前記乾燥が前記NH3−CMCの官能基のガス化温度以上、かつ増粘材骨格部の酸化分解
温度以下の温度で行うリチウム二次電池用正極極板の製造方法である。
In another embodiment of the present invention, a method for producing a positive electrode plate for a lithium secondary battery,
A step of preparing a positive electrode plate paste by kneading and dispersing the lithium-containing nickel composite oxide as the positive electrode active material, the binder, and NH 3 -CMC as the thickener in the dispersion medium;
Applying the positive electrode plate paste to the current collector to form a positive electrode plate precursor;
Drying the positive electrode plate precursor;
After drying the positive electrode plate precursor,
In the method for producing a positive electrode plate for a lithium secondary battery, the drying is performed at a temperature not lower than the gasification temperature of the functional group of NH 3 -CMC and not higher than the oxidative decomposition temperature of the thickener skeleton.

増粘材NH3−CMCの官能基となるNH3基が、正極極板中に残渣として残ったまま
では、正極極板が局所的に固くなり柔軟性を維持することができなくなる。そのため、
増粘材NH3−CMCの官能基となるNH3基を乾燥工程でガス化させ、正極極板中に残
渣として残さないようにしなければならない。そのため、増粘材であるNH3−CMCの
官能基部分を消失させることができる温度以上で乾燥することにより、正極極板中に官
能機であるNH3基を残渣として残さないようすることができる。
NH 3 group which is a functional group of thickeners NH 3-CMC has remained remained as positive electrode residues in the plate, positive electrode plate can no longer be maintained firmly becomes flexibility locally. for that reason,
The NH 3 group which is a functional group of thickeners NH 3-CMC is gasified in the drying step, the positive electrode must be such not to leave as a residue in the plate. Therefore, by drying at a temperature higher than the temperature at which the functional group portion of NH 3 —CMC that is a thickener can be eliminated, the NH 3 group that is a functional machine is not left as a residue in the positive electrode plate. it can.

また、増粘材の骨格自体を酸化分解してしまう温度で乾燥すると、一部が炭化するこ
とで硬くなり、その結果、正極極板が脆くなることとなる。そのため、増粘材の骨格が
酸化分解する温度以下の温度で乾燥しなければならない。
Further, when the skeleton of the thickener is dried at a temperature that causes oxidative decomposition, a portion of the thickener hardens due to carbonization, and as a result, the positive electrode plate becomes brittle. Therefore, it must be dried at a temperature below the temperature at which the skeleton of the thickener is oxidatively decomposed.

以上のことから、乾燥温度は、増粘材であるNH3−CMCの官能基部分を消失させる
ことができる消失温度以上の温度、かつ骨格部分の酸化分解温度以下の温度で乾燥しな
ければならない。
From the above, the drying temperature must be dried at a temperature equal to or higher than the disappearance temperature at which the functional group portion of NH 3 -CMC, which is a thickening material, can be lost, and lower than the oxidative decomposition temperature of the skeleton portion. .

こうすることにより、極板群および電池の生産性を飛躍的に改善することができるよ
うになる。
By doing so, the productivity of the electrode plate group and the battery can be drastically improved.

この正極極板を使用したリチウム二次電池は繰り返し充放電の使用において、充放電
容量の劣化や負荷特性の劣化を小さく抑えることができる。
The lithium secondary battery using this positive electrode plate can suppress deterioration of charge / discharge capacity and load characteristics when using repeated charge / discharge.

極板群は、正極極板5と負極極板6とを、セパレータ7を介して、渦巻き状に捲回し
て作製されている。このような極板群は有底電池ケースに挿入されている。有底電地ケ
ースに挿入した極板群には非水電解液が注入されている。
The electrode plate group is produced by winding the positive electrode plate 5 and the negative electrode plate 6 in a spiral shape with a separator 7 interposed therebetween. Such an electrode plate group is inserted into the bottomed battery case. A non-aqueous electrolyte is injected into the electrode plate group inserted into the bottomed electric case.

正極極板5に正極リード3を溶接により接続され、負極極板6に負極リード9を溶接
により接続されている。極板群の上端部には上部絶縁板4が配置され、極板群の下端部
には下部絶縁板10が配置されている。有底電池ケース8の開口部と封口板1は、絶縁
ガスケット2を介してかしめにより封口されている。このようにして直径17mm、高
さ50mmの円筒形リチウム二次電池を作製する。
The positive electrode lead 3 is connected to the positive electrode plate 5 by welding, and the negative electrode lead 9 is connected to the negative electrode plate 6 by welding. An upper insulating plate 4 is disposed at the upper end of the electrode plate group, and a lower insulating plate 10 is disposed at the lower end of the electrode plate group. The opening of the bottomed battery case 8 and the sealing plate 1 are sealed by caulking through an insulating gasket 2. In this way, a cylindrical lithium secondary battery having a diameter of 17 mm and a height of 50 mm is produced.

この負極極板用ペーストを、集電体として厚さ15μmの銅箔の両面に、ダイコータ
ーを用いて塗布した。その後、所定の温度で乾燥した後、厚み0.2mmになるように
圧延し、所定の寸法に切断しシート状の負極極板6を作製した。
This negative electrode plate paste was applied to both sides of a 15 μm thick copper foil as a current collector using a die coater. Then, after drying at a predetermined temperature, the sheet was rolled to a thickness of 0.2 mm, cut to a predetermined dimension, and a sheet-like negative electrode plate 6 was produced.

非水電解液は、炭酸エチレン30vol%、炭酸ジエチル50vol%、およびプロ
ピオン酸メチル20vol%を混合した非水溶媒に、電解質塩として六フッ化リン酸リ
チウム(以下、LiPF6と略す)を1mol/Lの濃度になるように溶解したものであ
る。
The non-aqueous electrolytic solution was prepared by mixing 1 mol / liter of lithium hexafluorophosphate (hereinafter abbreviated as LiPF 6 ) as an electrolyte salt in a non-aqueous solvent obtained by mixing 30 vol% ethylene carbonate, 50 vol% diethyl carbonate, and 20 vol% methyl propionate. It is dissolved so as to have a concentration of L.

有底電池ケース8は、耐電解液性のあるステンレス鋼板からなり、このステンレス鋼
板を深絞りによって成型されている。
The bottomed battery case 8 is made of a stainless steel plate having an electrolytic solution resistance, and this stainless steel plate is formed by deep drawing.

(実施例1)
正極活物質としてLiNixMnyCo(1-x-y)2粉末(X=Y=0.33)を50重
量部、導電材としてアセチレンブラック(以下、ABと略す)を1.5重量部、結着剤
としてポリテトラフルオロエチレン(以下、PTFEと略す)50重量部を含むディス
パージョン溶液を7重量部、およびNH3−CMC1重量部を含む水溶液41.5重量部
とを配合し混合分散して正極極板用ペーストを作製した。
Example 1
LiNi x Mn y Co (1- xy) O 2 powder (X = Y = 0.33) 50 parts by weight as a positive electrode active material, acetylene black as a conductive material (hereinafter, referred to as AB) and 1.5 parts by weight, 7 parts by weight of a dispersion solution containing 50 parts by weight of polytetrafluoroethylene (hereinafter abbreviated as PTFE) as a binder and 41.5 parts by weight of an aqueous solution containing 1 part by weight of NH 3 -CMC are mixed and dispersed. Thus, a positive electrode plate paste was prepared.

この正極極板用ペーストを、集電体として厚み20μmのアルミニウム(以下、Al
と略す)箔の両面に、ダイコーターを用いて塗布した。
This positive electrode plate paste was used as a current collector for aluminum having a thickness of 20 μm (hereinafter referred to as Al
It was applied on both sides of the foil using a die coater.

その後、所定の温度で乾燥した後、NH3−CMCの官能基部分がガス化し消失する温
度である300℃で10分間正極板を乾燥した。
Then, after drying at a predetermined temperature, the positive electrode plate was dried at 300 ° C., which is a temperature at which the functional group portion of NH 3 —CMC gasifies and disappears, for 10 minutes.

この後、厚み0.17mmになるように圧延し、所定の寸法に切断してシート状の正
極極板5を作製した。
Then, it rolled so that it might become thickness 0.17mm, and cut | disconnected to the predetermined dimension, and the sheet-like positive electrode plate 5 was produced.

このようにして作製した正極極板5を実施例正極極板1とし、この正極極板5を用い
た電池を実施例電池1とした。
The positive electrode plate 5 produced in this manner was used as an example positive electrode plate 1, and a battery using the positive electrode plate 5 was used as an example battery 1.

(実施例2)
正極極板の作製において、塗工後の乾燥温度を400℃とした以外は、実施例1と同
じ製造方法で得た正極極板を実施例正極極板2とし、これを用いた電池を実施例電池2
とした。
(Example 2)
In the production of the positive electrode plate, the positive electrode plate obtained by the same production method as in Example 1 was used as Example positive electrode plate 2 except that the drying temperature after coating was set to 400 ° C., and a battery using the same was used. Example battery 2
It was.

(実施例3)
正極極板の作製において、塗工後の乾燥温度を500℃とした以外は、実施例1と同
じ製造方法で得た正極極板を実施例正極極板3とし、これを用いた電池を実施例電池3
とした。
(Example 3)
In the production of the positive electrode plate, the positive electrode plate obtained by the same production method as in Example 1 was used as Example positive electrode plate 3 except that the drying temperature after coating was 500 ° C. Example battery 3
It was.

(比較例1)
正極極板の作製において、増粘材としてナトリウム塩を官能基に持つカルボキシルメ
チルセルロース(以下、Na−CMCと略す)を用いた以外は、実施例1と同じ製造方
法で得た正極極板を比較例正極極板1とし、これを用いた電池を比較例電池1とした。
(Comparative Example 1)
In the production of the positive electrode plate, the positive electrode plate obtained by the same production method as in Example 1 was compared except that carboxymethyl cellulose having a sodium salt as a functional group (hereinafter abbreviated as Na-CMC) was used as a thickener. An example positive electrode plate 1 was used, and a battery using the same was used as a comparative example battery 1.

(比較例2)
正極極板の作製において、塗工後の乾燥温度を200℃とした以外は、実施例1と同

製造方法で得た正極極板を比較例正極極板2とし、これを用いた電池を比較例電池2と
した。
(Comparative Example 2)
In the production of the positive electrode plate, a positive electrode plate obtained by the same production method as in Example 1 was used as a comparative positive electrode plate 2 except that the drying temperature after coating was 200 ° C., and a battery using this was compared. An example battery 2 was obtained.

(比較例3)
正極極板の作製において、塗工後の乾燥温度を600℃とした以外は、実施例1と同
じ製造方法で得た正極極板を比較例正極極板3とし、これを用いた電池を比較例電池3
とした。
(Comparative Example 3)
In the production of the positive electrode plate, a positive electrode plate obtained by the same production method as in Example 1 was used as a comparative positive electrode plate 3 except that the drying temperature after coating was set to 600 ° C., and a battery using this was compared. Example battery 3
It was.

このようにして得られた実施例正極極板1〜3、比較例正極極板1〜3について、折
り曲げ試験を行った。
A bending test was performed on the positive electrode plates 1 to 3 and the positive electrode plates 1 to 3 of the comparative example thus obtained.

折り曲げ試験の方法は以下の通りである。   The method of the bending test is as follows.

試験には幅30mm×長さ100mmの正極極板を用いた。正極極板の幅方向に沿っ
て、直径2mmの丸棒を配置させた。正極極板の長さ方向に100回折り曲げを繰り返
した。
A positive electrode plate having a width of 30 mm and a length of 100 mm was used for the test. A round bar having a diameter of 2 mm was disposed along the width direction of the positive electrode plate. The bending was repeated 100 times in the length direction of the positive electrode plate.

その後、丸棒に接触させた正極極板の幅方向に発生したクラックの長さを目視で観察
した。クラック率を以下の式から算出し、その結果を表1に示した。
Then, the length of the crack generated in the width direction of the positive electrode plate brought into contact with the round bar was visually observed. The crack rate was calculated from the following formula, and the results are shown in Table 1.

クラック率[%]=(クラックの入った長さ[mm]÷極板全幅の長さ[mm])×
100
また、実施例電池1〜3、比較例電池1〜3のサイクル寿命特性と高温保存特性の試
験を行った。
Crack rate [%] = (Length with crack [mm] ÷ Length of electrode plate width [mm]) ×
100
In addition, the cycle life characteristics and high-temperature storage characteristics of Example batteries 1 to 3 and Comparative example batteries 1 to 3 were tested.

サイクル寿命特性の試験方法は以下の通りである。   The test method for cycle life characteristics is as follows.

充電は定電流500mAで行い、円筒形リチウム二次電池の電圧が4.1Vになった
時点で定電圧4.1Vで充電した。このような充電を合計2時間行った。放電は20℃
で定電流720mAで、円筒形リチウム二次電池の電圧が3.0Vになった時点で放電
を終了した。その結果を図2に示した。
Charging was performed at a constant current of 500 mA, and charging was performed at a constant voltage of 4.1 V when the voltage of the cylindrical lithium secondary battery reached 4.1 V. Such charging was performed for a total of 2 hours. Discharge at 20 ° C
Then, the discharge was terminated when the voltage of the cylindrical lithium secondary battery became 3.0 V at a constant current of 720 mA. The results are shown in FIG.

高温保存特性の試験方法は以下の通りである。   The test method for the high temperature storage characteristics is as follows.

充電は定電流500mAで行い、円筒形リチウム二次電池の電圧が4.1Vになった
時点で定電圧4.1Vで充電した。このように充電した円筒形リチウム二次電池を60
℃20日間保存した。その後、常温で数回充放電(円筒形リチウム二次電池の電圧が4
.1Vになった時点で定電圧4.1Vで充電した。このような充電を合計2時間行った
。放電は20℃で定電流720mAで、円筒形リチウム二次電池の電圧が3.0Vにな
った時点で放電を終了した。)を行った後、定電流720mAで円筒形リチウム二次電
池の電圧が3.0Vに達するまでの電池容量を求めた。保存前の電池容量に対する割合
を表2に示した。
Charging was performed at a constant current of 500 mA, and charging was performed at a constant voltage of 4.1 V when the voltage of the cylindrical lithium secondary battery reached 4.1 V. The cylindrical lithium secondary battery charged in this way
C. Stored for 20 days. Then, charge and discharge several times at room temperature (the voltage of the cylindrical lithium secondary battery is 4
. When the voltage reached 1V, the battery was charged at a constant voltage of 4.1V. Such charging was performed for a total of 2 hours. The discharge was performed at 20 ° C. with a constant current of 720 mA, and the discharge was terminated when the voltage of the cylindrical lithium secondary battery reached 3.0V. ), The battery capacity until the voltage of the cylindrical lithium secondary battery reached 3.0 V at a constant current of 720 mA was determined. The ratio to the battery capacity before storage is shown in Table 2.

表1の結果より、比較例1にように増粘材にNa−CMCを用いた場合は、乾燥後に
正極極板中に官能基であるNa基がガス化せず、残渣として残ることから、正極極板の
柔軟性が低下し、クラックが発生した。
From the results in Table 1, when Na-CMC is used as the thickener as in Comparative Example 1, the Na group that is a functional group is not gasified in the positive electrode plate after drying, and remains as a residue. The flexibility of the positive electrode plate was reduced and cracks were generated.

また、比較例2のように乾燥温度が200℃と低い場合は、NH3−CMCについても
十分にNH3基がアンモニウムガスとして分解が進行しないため、正極極板の柔軟性が
低下しクラックが発生した。
In addition, when the drying temperature is as low as 200 ° C. as in Comparative Example 2, NH 3 -CMC is not sufficiently decomposed as NH 3 groups as ammonium gas, so that the flexibility of the positive electrode plate is reduced and cracks are generated. did.

また、ガス化が不十分なため表2に示すように保存後の容量劣化が大きくなった。   Moreover, since gasification was inadequate, the capacity | capacitance deterioration after storage became large as shown in Table 2.

さらに、比較例3にように乾燥温度が600℃と高い場合は、増粘材自信が酸化分解
してしまうため正極極板が脆くなり、クラックが発生したものと考えられる。
Further, when the drying temperature is as high as 600 ° C. as in Comparative Example 3, it is considered that the positive electrode plate becomes brittle and cracks occur because the thickener self-degradation is oxidatively decomposed.

実施例2と3は、乾燥温度が400℃と500℃とNH3−CMCの消失温度以上であ
るが、骨格の分解温度でないため、正極極板の柔軟性は維持しておりクラックの発生率
も低くなっている。
In Examples 2 and 3, the drying temperatures are 400 ° C. and 500 ° C. and the disappearance temperature of NH 3 -CMC, but since it is not the decomposition temperature of the skeleton, the flexibility of the positive electrode plate is maintained and the occurrence rate of cracks Is also low.

このことから、乾燥温度は300〜500℃が好ましく、増粘材NH3−CMCの消失
温度以上かつ増粘材の骨格部分の酸化分解温度以下が好ましいと言える。
From this, it can be said that the drying temperature is preferably 300 to 500 ° C., and is preferably higher than the disappearance temperature of the thickener NH 3 -CMC and lower than the oxidative decomposition temperature of the skeleton portion of the thickener.

図2の結果より、実施例1〜3は比較例1〜3に比べ、充放電サイクルを繰り返して
も容量の劣化が少なくサイクル特性に優れていることがわかった。
From the results of FIG. 2, it was found that Examples 1 to 3 were superior to Comparative Examples 1 to 3 in that the capacity was less deteriorated even when the charge / discharge cycle was repeated, and the cycle characteristics were excellent.

この結果から、正極極板のクラック発生率とサイクル特性には相関関係があると言え
る。
From this result, it can be said that there is a correlation between the crack generation rate of the positive electrode plate and the cycle characteristics.

このように、増粘材にNH3−CMCを用いた正極極板は、柔軟性に富み、充放電サイ
クルに伴う正極活物質の膨張・収縮にも追従できる空間を有しているものと考えられる
Thus, the positive electrode plate using NH 3 -CMC as the thickener is rich in flexibility and has a space that can follow the expansion and contraction of the positive electrode active material accompanying the charge / discharge cycle. It is done.

本発明によれば、正極極板の柔軟性が良好で切れることがないため、小型電子機器用
電源や産業用用途における電源としても有用である。
According to the present invention, since the positive electrode plate has good flexibility and does not break, it is useful as a power source for small electronic devices and a power source for industrial applications.

本発明の実施例に用いた円筒形リチウム二次電池の概略縦断面図Schematic longitudinal sectional view of a cylindrical lithium secondary battery used in an example of the present invention 円筒形リチウム二次電池のサイクル寿命特性図Cycle life characteristic diagram of cylindrical lithium secondary battery

符号の説明Explanation of symbols

1 封口板
2 絶縁ガスケット
3 正極リード
4 上部絶縁板
5 正極極板
6 負極極板
7 セパレータ
8 有底電池ケース
9 負極リード
10 下部絶縁板
DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Insulating gasket 3 Positive electrode lead 4 Upper insulating plate 5 Positive electrode plate 6 Negative electrode plate 7 Separator 8 Bottomed battery case 9 Negative electrode lead 10 Lower insulating plate

Claims (3)

正極活物質としてリチウム含有ニッケル複合酸化物、結着剤、および増粘材としてアンモニウム塩を官能基に持つカルボキシメチルセルロースとを分散媒に混練分散させた正極極板用ペ−ストを、集電体に塗着、乾燥、圧延してなるリチウム二次電池用正極極板の製造方法において、
前記正極活物質として前記リチウム含有ニッケル複合酸化物、前記結着剤、および前記増粘材として前記アンモニウム塩を官能基に持つカルボキシメチルセルロースとを前記分散媒に混練分散して正極極板用ペーストを作製する工程と、
前記正極極板用ペーストを前記集電体に塗着し正極極板前駆体に工程と、
前記正極極板前駆体を乾燥する工程と、
前記正極極板前駆体を乾燥した後、圧延する工程とからなるリチウム二次電池用正極極板の製造方法であって、
前記乾燥を300℃〜500℃の温度で行うリチウム二次電池用正極極板の製造方法。
A paste for a positive electrode plate in which a lithium-containing nickel composite oxide as a positive electrode active material, a binder, and carboxymethyl cellulose having an ammonium salt as a functional group as a thickener are kneaded and dispersed in a dispersion medium, In the method for producing a positive electrode plate for a lithium secondary battery obtained by coating, drying and rolling on
A positive electrode plate paste obtained by kneading and dispersing the lithium-containing nickel composite oxide as the positive electrode active material, the binder, and carboxymethyl cellulose having the ammonium salt as a functional group as a thickener in the dispersion medium. Manufacturing process;
Applying the positive electrode plate paste to the current collector to form a positive electrode plate precursor;
Drying the positive electrode plate precursor;
A method for producing a positive electrode plate for a lithium secondary battery comprising a step of rolling the positive electrode plate precursor, followed by rolling,
The manufacturing method of the positive electrode plate for lithium secondary batteries which performs the said drying at the temperature of 300 to 500 degreeC.
正極活物質としてリチウム含有ニッケル複合酸化物、結着剤、および増粘材としてアンモニウム塩を官能基に持つカルボキシメチルセルロースを分散媒に混練分散させた正極極板用ペ−ストを、集電体に塗着、乾燥、圧延してなるリチウム二次電池用正極極板の製造方法において、
前記正極活物質として前記リチウム含有ニッケル複合酸化物、前記結着剤、および前記増粘材として前記アンモニウム塩を官能基に持つカルボキシメチルセルロースとを前記分散媒に混練分散して正極極板用ペーストを作製する工程と、
前記正極極板用ペーストを前記集電体に塗着し正極極板前駆体に工程と、
前記正極極板前駆体を乾燥する工程と、
前記正極極板前駆体を乾燥した後、
前記乾燥が前記アンモニウム塩を官能基に持つカルボキシメチルセルロースの官能基部分のガス化温度以上、かつ増粘材の骨格部分の酸化分解温度以下の温度で行うリチウム二次電池用正極極板の製造方法。
A paste for a positive electrode plate in which a lithium-containing nickel composite oxide as a positive electrode active material, a binder, and carboxymethyl cellulose having a functional group of an ammonium salt as a thickener is kneaded and dispersed in a dispersion medium is used as a current collector. In the method for producing a positive electrode plate for a lithium secondary battery obtained by coating, drying and rolling,
A positive electrode plate paste obtained by kneading and dispersing the lithium-containing nickel composite oxide as the positive electrode active material, the binder, and carboxymethyl cellulose having the ammonium salt as a functional group as a thickener in the dispersion medium. Manufacturing process;
Applying the positive electrode plate paste to the current collector to form a positive electrode plate precursor;
Drying the positive electrode plate precursor;
After drying the positive electrode plate precursor,
A method for producing a positive electrode plate for a lithium secondary battery, wherein the drying is performed at a temperature not lower than the gasification temperature of the functional group portion of carboxymethyl cellulose having the ammonium salt as a functional group and not higher than the oxidative decomposition temperature of the skeleton portion of the thickener. .
請求項1または2に記載の製法方法による正極極板、炭素材料を活物質とする負極極板、セパレータ及びリチウム塩を有機溶媒に溶解した非水電解液とを備えたリチウム二次電池。

A lithium secondary battery comprising: a positive electrode plate produced by the production method according to claim 1; a negative electrode plate made of a carbon material as an active material; a separator; and a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent.

JP2005119241A 2005-04-18 2005-04-18 Method for producing positive electrode plate for lithium secondary battery, and lithium secondary battery using positive electrode plate by this production method Expired - Fee Related JP4915055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119241A JP4915055B2 (en) 2005-04-18 2005-04-18 Method for producing positive electrode plate for lithium secondary battery, and lithium secondary battery using positive electrode plate by this production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119241A JP4915055B2 (en) 2005-04-18 2005-04-18 Method for producing positive electrode plate for lithium secondary battery, and lithium secondary battery using positive electrode plate by this production method

Publications (2)

Publication Number Publication Date
JP2006302553A true JP2006302553A (en) 2006-11-02
JP4915055B2 JP4915055B2 (en) 2012-04-11

Family

ID=37470626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119241A Expired - Fee Related JP4915055B2 (en) 2005-04-18 2005-04-18 Method for producing positive electrode plate for lithium secondary battery, and lithium secondary battery using positive electrode plate by this production method

Country Status (1)

Country Link
JP (1) JP4915055B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147114A (en) * 2006-12-13 2008-06-26 Matsushita Electric Ind Co Ltd Manufacturing method of lithium-ion secondary battery positive electrode plate and lithium-ion secondary battery
JP2009524900A (en) * 2005-10-11 2009-07-02 エクセラトロン ソリッド ステート,エルエルシー Lithium battery manufacturing method
WO2010074293A1 (en) * 2008-12-22 2010-07-01 住友化学株式会社 Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
JP5111369B2 (en) * 2006-06-16 2013-01-09 シャープ株式会社 Positive electrode, manufacturing method thereof, and lithium secondary battery using the positive electrode
US9012077B2 (en) 2009-11-20 2015-04-21 Samsung Sdi Co., Ltd. Positive electrode including a binder for rechargeable lithium battery and rechargeable lithium battery including the same
CN114335541A (en) * 2021-12-29 2022-04-12 蜂巢能源科技股份有限公司 Positive electrode slurry and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363866A (en) * 1991-06-06 1992-12-16 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH1064546A (en) * 1996-08-21 1998-03-06 Toray Ind Inc Electrode and secondary battery using it
JPH11162451A (en) * 1997-11-27 1999-06-18 Matsushita Electric Ind Co Ltd Lithium secondary battery, manufacture of paste for negative electrode of lithium secondary battery, and lithium secondary battery having paste for negative electrode prepared by its manufacture
JPH11204108A (en) * 1998-01-19 1999-07-30 Matsushita Electric Ind Co Ltd Manufacture of positive electrode plate for nonaqueous electrolyte secondary battery
JP2000021407A (en) * 1998-06-30 2000-01-21 Toshiba Corp Lithium secondary battery
JP2001135305A (en) * 1999-11-01 2001-05-18 Matsushita Electric Ind Co Ltd Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery
JP2003157852A (en) * 2001-11-19 2003-05-30 Denso Corp Method of manufacturing positive electrode for lithium battery and positive electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363866A (en) * 1991-06-06 1992-12-16 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH1064546A (en) * 1996-08-21 1998-03-06 Toray Ind Inc Electrode and secondary battery using it
JPH11162451A (en) * 1997-11-27 1999-06-18 Matsushita Electric Ind Co Ltd Lithium secondary battery, manufacture of paste for negative electrode of lithium secondary battery, and lithium secondary battery having paste for negative electrode prepared by its manufacture
JPH11204108A (en) * 1998-01-19 1999-07-30 Matsushita Electric Ind Co Ltd Manufacture of positive electrode plate for nonaqueous electrolyte secondary battery
JP2000021407A (en) * 1998-06-30 2000-01-21 Toshiba Corp Lithium secondary battery
JP2001135305A (en) * 1999-11-01 2001-05-18 Matsushita Electric Ind Co Ltd Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery
JP2003157852A (en) * 2001-11-19 2003-05-30 Denso Corp Method of manufacturing positive electrode for lithium battery and positive electrode

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524900A (en) * 2005-10-11 2009-07-02 エクセラトロン ソリッド ステート,エルエルシー Lithium battery manufacturing method
JP5111369B2 (en) * 2006-06-16 2013-01-09 シャープ株式会社 Positive electrode, manufacturing method thereof, and lithium secondary battery using the positive electrode
JP2008147114A (en) * 2006-12-13 2008-06-26 Matsushita Electric Ind Co Ltd Manufacturing method of lithium-ion secondary battery positive electrode plate and lithium-ion secondary battery
WO2010074293A1 (en) * 2008-12-22 2010-07-01 住友化学株式会社 Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
JP2010170993A (en) * 2008-12-22 2010-08-05 Sumitomo Chemical Co Ltd Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
KR20110111416A (en) * 2008-12-22 2011-10-11 스미또모 가가꾸 가부시키가이샤 Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
US20110256442A1 (en) * 2008-12-22 2011-10-20 Sumitomo Chemical Company, Limited Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
CN102257658A (en) * 2008-12-22 2011-11-23 住友化学株式会社 Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
KR101633948B1 (en) * 2008-12-22 2016-06-27 스미또모 가가꾸 가부시키가이샤 Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
US10377640B2 (en) 2008-12-22 2019-08-13 Sumitomo Chemical Company, Limited Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
US9012077B2 (en) 2009-11-20 2015-04-21 Samsung Sdi Co., Ltd. Positive electrode including a binder for rechargeable lithium battery and rechargeable lithium battery including the same
CN114335541A (en) * 2021-12-29 2022-04-12 蜂巢能源科技股份有限公司 Positive electrode slurry and preparation method and application thereof

Also Published As

Publication number Publication date
JP4915055B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP6691112B2 (en) Mixed material cathode for secondary alkaline batteries
JP5153200B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH11283608A (en) Electrode for battery, manufacture thereof and battery
JP2010021132A (en) Charging method and charging-discharging method of lithium ion secondary battery
JP4915055B2 (en) Method for producing positive electrode plate for lithium secondary battery, and lithium secondary battery using positive electrode plate by this production method
CN107112500B (en) Positive active material slurry including rubber-based binder and positive electrode prepared therefrom
JP2014179336A (en) Electrode for magnesium secondary battery, and magnesium secondary battery including the same
JP4876535B2 (en) Manufacturing method of positive electrode plate for lithium secondary battery and lithium secondary battery using positive electrode by this manufacturing method
JP4929701B2 (en) Non-aqueous electrolyte secondary battery
JP4250809B2 (en) Lithium secondary battery and method of manufacturing positive electrode plate thereof
CN108140788A (en) Partition board for lithium secondary battery and the lithium secondary battery including the partition board
CN107331830B (en) Composite positive electrode of lithium-sulfur battery and preparation method thereof
JP2006269321A (en) Winding type non-aqueous electrolyte secondary battery
JP2007173064A (en) Nonaqueous electrolyte solution secondary battery and its manufacturing method
KR20170068492A (en) Binder, use thereof and method for producing electrode
JP2008198408A (en) Nonaqueous electrolyte secondary battery
JP5131723B2 (en) Method for producing positive electrode for lithium secondary battery, positive electrode and lithium secondary battery
KR20170034774A (en) Preparing methode for lithium secondary battery having improved low temperature property and lithium secondary battery
JP2010277701A (en) Secondary battery and its manufacturing method
JP5154104B2 (en) Lithium ion secondary battery and method of manufacturing positive electrode plate thereof
CN108565495A (en) high-voltage lithium ion battery
KR20160146759A (en) Binder,electrode and electrochemical device
JP5272810B2 (en) Capacitors
KR101748914B1 (en) Lithium electrode, method for the same and lithium battery compring the same
CN109052471B (en) Method for preparing lithium vanadate porous film by electrostatic spraying and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees