JP2006301447A - Scanning line bending measurement apparatus and optical scanner - Google Patents

Scanning line bending measurement apparatus and optical scanner Download PDF

Info

Publication number
JP2006301447A
JP2006301447A JP2005125717A JP2005125717A JP2006301447A JP 2006301447 A JP2006301447 A JP 2006301447A JP 2005125717 A JP2005125717 A JP 2005125717A JP 2005125717 A JP2005125717 A JP 2005125717A JP 2006301447 A JP2006301447 A JP 2006301447A
Authority
JP
Japan
Prior art keywords
scanning line
light
line bending
scanning
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005125717A
Other languages
Japanese (ja)
Inventor
Kohei Shinpo
晃平 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005125717A priority Critical patent/JP2006301447A/en
Publication of JP2006301447A publication Critical patent/JP2006301447A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning line bending measurement apparatus at a low cost and with accuracy with which the bending of a scanning line is measured at many points on a scanning line and to provide an optical scanner in which the scanning line bending measurement apparatus is built. <P>SOLUTION: The scanning line bending measurement apparatus with which the bending of the scanning line at respective heights of an image is measured on the basis of the output of a light receiving means is provided with: a first light guide means 2 having an incident face which is long in a main scanning direction; a second light guide means 3 arranged in the vicinity of the first light guide means 2 dislocated in a subscanning direction; a first and a second light receiving means 4 and 5 which receive light beams emitted from the end part of the first and the second light guide means 2 and 3, respectively, and transform the received light quantity into electric signals; and a calculation means 21 which calculates the amount of bending of the scanning line at respective heights of image from the output of the first and the second light receiving means 4 and 5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、レーザプリンタ、デジタル複写機、ファクシミリ等の画像形成装置、特にデジタルカラー画像形成装置における光走査装置の走査線曲がりを測定する走査線曲がり測定装置、及び走査線曲がりを測定する機能を組み込んだ光走査装置に関するものである。   The present invention relates to an image forming apparatus such as a laser printer, a digital copying machine, and a facsimile, in particular, a scanning line bending measuring apparatus for measuring a scanning line bending of an optical scanning apparatus in a digital color image forming apparatus, and a function of measuring the scanning line bending. The present invention relates to an integrated optical scanning device.

近年、倍率誤差、走査線曲りに対する高精度化の要求が高まっている。特に、複数の光走査装置を含む画像形成装置を有し、複数の色のトナーを順次記録紙上に転写することで、単色の電子写真装置と同等の印刷速度でフルカラー印刷を行う電子写真装置(以下、タンデム方式)では、各色の印字位置の相対的なずれが、出力画像の品質に大きな影響を与えることが知られている(例えば、特許文献1及び3参照)。
光走査装置は光源から出射された光束を回転多面体鏡などの偏向手段で偏向して走査光束とし、fθレンズなどの光学系で集光させて、像面に光スポットを形成する。像面近傍で光スポットが走査した軌跡を走査線と呼ぶ。
走査線は直線で、光スポットは走査線上を等速に移動することが好ましい。しかし、光学系の形状精度や各光学素子の取り付け誤差、各部材の熱膨張などの影響で誤差が生じる。ここでは、走査線上各位置における光スポットの移動速度の変動を倍率誤差、そして走査線の直線からのずれを走査線曲りという。
特許文献1には、走査線の曲がり、傾きを測定する傾き測定手段と、測定結果に応じて画像データを補間して補正する画像形成装置が記載されている。しかし、特許文献1に記載されている走査線の曲がり及び傾きを測定する測定手段は複数の位置ずれ検出部を主走査方向に高精度に位置決めして並べたものである。
従来では、走査線曲がりを測定する測定手段は、所定の点におけるスポット光の位置ずれを測定する検出手段を走査線上の複数の点に設置して、その位置ずれの分布である走査線曲がりを測定していた。
特許文献2には、光走査装置の防塵ガラスの第1面で反射した光束を複数の検出手段で検出し、これを基に低コストで経時的なドット位置補正を行う光走査装置が開示されている。また、特許文献3には、光走査装置の走査線の曲り、及び傾きを測定して、これに応じて画像データを補正する画像形成装置が開示されている。
特開平9−90695号公報 特開2003−315708公報 特許第3556349号
In recent years, there is an increasing demand for higher accuracy with respect to magnification error and scanning line bending. In particular, an electrophotographic apparatus having an image forming apparatus including a plurality of optical scanning devices and performing full-color printing at a printing speed equivalent to that of a single-color electrophotographic apparatus by sequentially transferring a plurality of color toners onto a recording sheet. Hereinafter, in the tandem system), it is known that the relative shift of the print position of each color greatly affects the quality of the output image (see, for example, Patent Documents 1 and 3).
The optical scanning device deflects a light beam emitted from a light source by a deflecting unit such as a rotating polyhedral mirror to form a scanning light beam, and collects the light beam by an optical system such as an fθ lens to form a light spot on the image plane. A trajectory scanned by a light spot in the vicinity of the image plane is called a scanning line.
The scanning line is a straight line, and the light spot preferably moves on the scanning line at a constant speed. However, errors occur due to the influence of the shape accuracy of the optical system, the mounting error of each optical element, the thermal expansion of each member, and the like. Here, fluctuation in the moving speed of the light spot at each position on the scanning line is referred to as a magnification error, and deviation from the straight line of the scanning line is referred to as scanning line bending.
Japanese Patent Application Laid-Open No. 2004-228561 describes an inclination measuring unit that measures the bending and inclination of a scanning line, and an image forming apparatus that interpolates and corrects image data according to the measurement result. However, the measuring means for measuring the bending and inclination of the scanning line described in Patent Document 1 is a plurality of misregistration detection units arranged with high accuracy in the main scanning direction.
Conventionally, the measuring means for measuring the scanning line bending is provided with detecting means for measuring the positional deviation of the spot light at a predetermined point at a plurality of points on the scanning line, and the scanning line bending which is the distribution of the positional deviation is obtained. I was measuring.
Patent Document 2 discloses an optical scanning device that detects a light beam reflected by the first surface of the dust-proof glass of the optical scanning device with a plurality of detection means, and performs dot position correction over time based on this by low cost. ing. Patent Document 3 discloses an image forming apparatus that measures the bend and inclination of a scanning line of an optical scanning device and corrects image data accordingly.
JP-A-9-90695 JP 2003-315708 A Japanese Patent No. 3556349

しかしながら、上述した特許文献1では、より空間周波数の高い成分を補正するには、多数の検出部を設ける必要があり、精度、コストの両面で不利である。また、特許文献2及び特許文献3でも、複数の検出手段を並べて設置するため、空間分解能の高い成分まで倍率誤差や走査線曲がりを測定するには、多数の検出手段を高精度で並べる必要があり、精度、コストともに不利になってしまう。
そこで、本発明の目的は、上述した実情を考慮して低コスト且つ高精度で、走査線の多数の点において走査線曲りを測定する走査線曲り測定装置及び走査線曲がりを測定する機能を組み込んだ光走査装置を提供することにある。
However, in Patent Document 1 described above, in order to correct a component having a higher spatial frequency, it is necessary to provide a large number of detection units, which is disadvantageous in terms of both accuracy and cost. Also, in Patent Document 2 and Patent Document 3, since a plurality of detection means are arranged side by side, in order to measure magnification error and scanning line bending up to a component with high spatial resolution, it is necessary to arrange a large number of detection means with high accuracy. Yes, both accuracy and cost are disadvantageous.
Accordingly, an object of the present invention is to incorporate a scanning line bending measuring apparatus that measures scanning line bending at a large number of points on a scanning line and a function for measuring scanning line bending with low cost and high accuracy in consideration of the above-described circumstances. It is to provide an optical scanning device.

上記目的を達成するため、請求項1に記載の発明は、各像高での走査線曲がりを測定する走査線曲がり測定装置において、主走査方向に長い入射面を有する第1の導光手段と、該第1の導光手段の近傍であって副走査方向にずらした位置に配置された第2の導光手段と、前記第1及び第2の導光手段それぞれの端部から出射する光を受光し、且つ、受光量を電気信号に変換する第1及び第2の受光手段と、前記第1及び第2の受光手段からの出力に基づいて、前記各像高での走査線曲がり量を演算する演算手段と、を備えることを特徴とする。
また請求項2に記載の発明は、前記第1及び第2の導光手段は、少なくとも出射面が鏡面に微小な凹凸を多数付けた面である請求項1記載の走査線曲がり測定装置を特徴とする。
また請求項3に記載の発明は、前記第1及び第2の導光手段は、前記第1及び第2の受光手段が設置されている端部以外の端部の反射率が高い請求項1又は2記載の走査線曲がり測定装置を特徴とする。
また請求項4に記載の発明は、各像高での走査線曲がりを測定する走査線曲がり測定装置において、主走査方向に長い棒状の第1の導光手段と、該第1の導光手段の近傍であって副走査方向にずらした位置に配置された第2の導光手段と、前記第1の導光手段の両端から出射する光を受光し、且つ、受光量を電気信号に変換する第1及び第3の受光手段と、前記第2の導光手段の両端から出射する光を受光し、且つ受光量を電気信号に変換する第2及び第4の受光手段と、前記第1〜第4の各受光手段からの出力に基づいて、前記各像高での走査線曲がり量を演算する演算手段と、を備えることを特徴とする。
また請求項5に記載の発明は、前記第1及び第2の導光手段の入射面近傍に、前記主走査方向に等ピッチで設けられた複数の開口を有する空間光変調手段を設け、前記演算手段が走査線曲がり及び倍率誤差を求める請求項1乃至請求項4のいずれか1項記載の走査線曲がり測定装置を特徴とする。
In order to achieve the above object, the invention according to claim 1 is a scanning line bending measuring apparatus for measuring a scanning line bending at each image height, and a first light guide means having a long incident surface in the main scanning direction; The second light guide means disposed in the vicinity of the first light guide means and shifted in the sub-scanning direction, and the light emitted from the respective end portions of the first and second light guide means , And the first and second light receiving means for converting the received light amount into an electrical signal, and the scanning line bending amount at each image height based on the outputs from the first and second light receiving means. And an arithmetic means for calculating.
The invention according to claim 2 is characterized in that the first and second light guide means have at least an exit surface which is a surface with a large number of minute irregularities on a mirror surface. And
According to a third aspect of the present invention, in the first and second light guiding means, the reflectance of an end portion other than the end portion where the first and second light receiving means are installed is high. Alternatively, the scanning line bending measuring device described in 2 is characterized.
According to a fourth aspect of the present invention, in the scanning line bending measuring apparatus for measuring the scanning line bending at each image height, a rod-shaped first light guiding unit that is long in the main scanning direction, and the first light guiding unit. The second light guide means arranged in the vicinity of the center and shifted in the sub-scanning direction, and light emitted from both ends of the first light guide means are received, and the amount of received light is converted into an electrical signal First and third light receiving means, second and fourth light receiving means for receiving light emitted from both ends of the second light guiding means and converting the amount of received light into an electrical signal, and the first Calculating means for calculating the scanning line bending amount at each image height based on the output from each of the fourth light receiving means.
According to a fifth aspect of the present invention, there is provided spatial light modulation means having a plurality of openings provided at equal pitches in the main scanning direction in the vicinity of the incident surfaces of the first and second light guide means, 5. The scanning line bending measuring apparatus according to claim 1, wherein the calculating means obtains scanning line bending and magnification error.

また請求項6に記載の発明は、前記各受光手段からの出力に対してローパスフィルタ処理を行うローパスフィルタを備え、前記演算手段は、前記各受光手段からの出力に対して前記ローパスフィルタによりローパスフィルタ処理を行ってから、走査線曲りを求める請求項1乃至請求項4のいずれか1項記載の走査線曲がり測定装置を特徴とする。
また請求項7に記載の発明は、請求項1乃至請求項6のいずれか1項記載の走査線曲がり測定装置を含む光走査装置であって、光源と、該光源から出射された光束を偏向する偏向手段と、該偏向手段により偏向した光束を像面で集光する結像光学系と、透明部材とを備え、前記結像光学系を通過した光束の一部が前記透明部材を通過して被照射面に照射し、他の一部が前記透明部材で反射し、反射光束が前記走査線曲がり測定装置に入射されることを特徴とする。
また請求項8に記載の発明は、前記透明部材は平行平板であり、その入射面の反射率が出射面の反射率よりも大きくなるように表面処理の条件を設定した請求項7記載の光走査装置を特徴とする。
また請求項9に記載の発明は、前記演算手段から出力された走査線曲がりの測定結果を基に、走査光学系の光学部品を機械的に調整することにより、走査線曲がりを略直線状にする走査線曲がり調整手段を有する請求項7又は請求項8記載の光走査装置を特徴とする。
また請求項10に記載の発明は、前記演算手段から出力された走査線曲がりの測定結果を基に、走査線曲りを相殺するように出力する画像データを補正するリサンプリングを行ってスポット位置を補正する請求項7又は請求項8記載の光走査装置を特徴とする。
According to a sixth aspect of the invention, there is provided a low-pass filter that performs low-pass filter processing on the output from each light receiving means, and the arithmetic means performs low-pass filtering on the output from each light receiving means by the low-pass filter. The scanning line bending measuring apparatus according to any one of claims 1 to 4, wherein the scanning line bending is obtained after performing the filtering process.
The invention according to claim 7 is an optical scanning device including the scanning line bending measuring device according to any one of claims 1 to 6, wherein the light source and a light beam emitted from the light source are deflected. Deflection means, an imaging optical system for condensing the light beam deflected by the deflection means on the image plane, and a transparent member, and a part of the light beam that has passed through the imaging optical system passes through the transparent member. The irradiated surface is irradiated, the other part is reflected by the transparent member, and the reflected light beam is incident on the scanning line bending measuring device.
According to an eighth aspect of the invention, the transparent member is a parallel plate, and the surface treatment conditions are set so that the reflectance of the incident surface is larger than the reflectance of the outgoing surface. Features a scanning device.
According to the ninth aspect of the present invention, the scanning line bending is made substantially linear by mechanically adjusting the optical components of the scanning optical system based on the measurement result of the scanning line bending output from the arithmetic means. 9. An optical scanning device according to claim 7 or 8, further comprising a scanning line bending adjusting means.
According to a tenth aspect of the present invention, the spot position is determined by performing resampling for correcting the image data to be output so as to cancel the scanning line curve, based on the measurement result of the scanning line curve output from the arithmetic means. The optical scanning device according to claim 7 or 8 is corrected.

本発明によれば、走査線曲がり測定装置は構成要素が少なく、演算も簡単なため、低コストで走査線上の多数の点における副走査位置ずれ量の分布、つまり走査線曲がりを測定可能であるため、より高精度に走査線の直線性を求められる光走査装置の評価をすることが可能となる。   According to the present invention, since the scanning line bending measuring apparatus has few components and is easy to calculate, it is possible to measure the distribution of sub-scanning positional deviation amounts at a large number of points on the scanning line, that is, the scanning line bending, at low cost. Therefore, it becomes possible to evaluate an optical scanning device that requires the linearity of the scanning line with higher accuracy.

以下、図面を参照して本発明の実施形態を詳細に説明する。
図1は本発明の光走査装置に適用される走査線曲がり測定装置の第1の実施形態を示す概略斜視図である。
図1において、走査線曲がり測定装置10の支持部材1には直線上の凸部1aがあり、これに沿って第1の導光部材2と第2の導光部材3が取り付けられている。
第1の導光部材2の片側端部には第1の受光手段4が、第2の導光部材3の片側端部には第2の受光手段5が取り付けられている。第1及び第2の受光手段4、5には演算手段21が接続されている。
図2は本実施形態に係る光走査装置の主走査方向の断面図、図3は副走査方向の断面図であり、これら図2及び図3を参照して走査線曲がりの測定動作について説明する。
これら図2及び図3において光源11から出射した光束は、コリメータレンズ12、開口絞り13、シリンドリカルレンズ14を透過して、ポリゴンモータ15の反射面上に線像を形成する。ポリゴンモータ15からの反射光束は結像光学系16を透過して像面17に点像を形成する。
像面17から所定量だけ焦点をずらした(デフォーカスした)位置に走査線曲がり測定装置10を設置する。このように像面17から所定量だけデフォーカスして設置すると、光束幅が数百μmから数mmに広がって、導光部材2、3に入射するので、像面17の湾曲など光軸方向の光学特性の影響を受けにくくなるので良い。
走査線曲がり測定装置10の導光部材2、3に光束が到達すると、その表面を透過して裏面の一部で乱反射する。乱反射した光束の一部は、導光部材2、3の中を伝播して受光手段4、5に到達する。
第1及び第2の受光手段4、5は、その光量に応じて第1及び第2の電気信号U1、U2を出力する。この第1及び第2の電気信号U1、U2は図1に示す演算手段21に送られる。
演算手段21は、具体的には一般的なオペアンプなどを用いたアナログ回路で実現しても良いし、A/D変換器を介してデジタル量に変換して、コンピュータのソフトウエアで実現しても良い。
図4は演算手段の説明に対応する機能ブロック図である。
図4において演算手段21は2つの電気信号U1、U2の比Uを求める。例えば、以下の式に示すような演算を行うと良い。
U=(U2−U1)/(U2+U1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic perspective view showing a first embodiment of a scanning line bending measuring device applied to the optical scanning device of the present invention.
In FIG. 1, the support member 1 of the scanning line bending measuring device 10 has a linear convex portion 1 a, and a first light guide member 2 and a second light guide member 3 are attached along this.
A first light receiving means 4 is attached to one end portion of the first light guide member 2, and a second light receiving means 5 is attached to one end portion of the second light guide member 3. A computing means 21 is connected to the first and second light receiving means 4 and 5.
2 is a cross-sectional view in the main scanning direction of the optical scanning device according to the present embodiment, and FIG. 3 is a cross-sectional view in the sub-scanning direction. The scanning line bending measurement operation will be described with reference to FIGS. .
2 and 3, the light beam emitted from the light source 11 passes through the collimator lens 12, the aperture stop 13, and the cylindrical lens 14 to form a line image on the reflection surface of the polygon motor 15. The reflected light beam from the polygon motor 15 passes through the imaging optical system 16 and forms a point image on the image plane 17.
The scanning line bending measuring device 10 is installed at a position where the focus is shifted (defocused) from the image plane 17 by a predetermined amount. In this way, when the image plane 17 is defocused and installed by a predetermined amount, the light flux width increases from several hundred μm to several mm and enters the light guide members 2 and 3. This is good because it is less susceptible to the effects of the optical characteristics.
When the light beam reaches the light guide members 2 and 3 of the scanning line bending measuring device 10, the light beam is transmitted through the front surface and irregularly reflected at a part of the back surface. A part of the irregularly reflected light beam propagates through the light guide members 2 and 3 and reaches the light receiving means 4 and 5.
The 1st and 2nd light-receiving means 4 and 5 output the 1st and 2nd electrical signal U1 and U2 according to the light quantity. The first and second electric signals U1 and U2 are sent to the calculating means 21 shown in FIG.
Specifically, the arithmetic means 21 may be realized by an analog circuit using a general operational amplifier or the like, or converted into a digital quantity via an A / D converter and realized by computer software. Also good.
FIG. 4 is a functional block diagram corresponding to the description of the calculation means.
In FIG. 4, the calculating means 21 calculates | requires ratio U of two electric signals U1 and U2. For example, an operation as shown in the following equation may be performed.
U = (U2-U1) / (U2 + U1)

図5は第1及び第2の電気信号U1、U2の出力を説明する模式図である。
ここで、図5を用いて出力信号について説明する。
光束は照射される走査方向の位置から第1及び第2の導光部材2、3を伝播して受光手段4、5(図1参照)に到達する。この場合、光量は減衰するが、その減衰の度合いは第1及び第2の導光部材2、3でほとんど変わらない。
従って、走査線曲りがない場合、電気信号(出力信号)U1と出力信号U2は走査線全域にわたってほぼ同じ値を出力するので、演算手段の出力Uは常に0となる。この状態は図5に示す(c)の状態となる。光束が第1の導光部材2側にずれた場合、図5に示す(b)の状態となり、光束のずれ量にしたがって出力信号U1が出力信号U2より大きくなる。
出力信号U1、U2の比は走査線上どの位置でも一定となるので、前述の演算によって走査線の位置に関係なく副走査方向のスポット位置ずれ量が求まる。光束の位置ずれと第1及び第2の受光手段4、5の各出力信号U1、U2、演算手段21の出力信号Uの関係は図5に示すようになり(c)近傍に略線形の範囲ができる。
つまり、演算手段21の出力信号Uは、副走査方向のスポット位置誤差に対応した出力となる。この略線形の範囲の傾きを示すセンサ(図示せず)の感度は、走査線曲がり測定装置10をどれだけ像面17からデフォーカスして設置するかにより調整することができる。
実際の走査線曲がりの測定動作について図1乃至図5を参照して説明する。
光源11を全点灯させて、ポリゴンミラー15を回転させながら演算手段21の出力信号Uを1走査内で逐次記憶する。
走査線は略一定の走査速度で移動するから横軸の時間を対応する主走査方向位置に変換とすると、走査線の各位置での副走査方向のスポット位置ずれ量の分布、即ち像面17の湾曲が得られる。
また走査線上の所定の位置のみに光源11を点灯するように光走査装置を駆動させ、そのときの演算手段21の出力信号Uを記憶する。これを複数の位置で行うことでも像面17の湾曲が得られる。
FIG. 5 is a schematic diagram for explaining the output of the first and second electric signals U1 and U2.
Here, the output signal will be described with reference to FIG.
The light beam propagates from the irradiated position in the scanning direction through the first and second light guide members 2 and 3 and reaches the light receiving means 4 and 5 (see FIG. 1). In this case, although the amount of light is attenuated, the degree of attenuation hardly changes between the first and second light guide members 2 and 3.
Therefore, when there is no bend in the scanning line, the electric signal (output signal) U1 and the output signal U2 output substantially the same value over the entire scanning line, so the output U of the computing means is always zero. This state is the state (c) shown in FIG. When the light beam is shifted to the first light guide member 2 side, the state shown in FIG. 5B is obtained, and the output signal U1 becomes larger than the output signal U2 in accordance with the shift amount of the light beam.
Since the ratio between the output signals U1 and U2 is constant at any position on the scanning line, the spot position deviation amount in the sub-scanning direction can be obtained by the above-described calculation regardless of the position of the scanning line. The relationship between the positional deviation of the light beam, the output signals U1 and U2 of the first and second light receiving means 4 and 5, and the output signal U of the calculating means 21 is as shown in FIG. Can do.
That is, the output signal U of the computing means 21 is an output corresponding to the spot position error in the sub-scanning direction. The sensitivity of a sensor (not shown) indicating the inclination of the substantially linear range can be adjusted by defocusing the scanning line bending measuring device 10 from the image plane 17.
The actual scanning line bending measurement operation will be described with reference to FIGS.
The light source 11 is fully turned on and the output signal U of the computing means 21 is sequentially stored within one scan while the polygon mirror 15 is rotated.
Since the scanning line moves at a substantially constant scanning speed, if the time on the horizontal axis is converted into the corresponding position in the main scanning direction, the distribution of the spot position deviation amount in the sub-scanning direction at each position of the scanning line, that is, the image plane 17. Can be obtained.
Further, the optical scanning device is driven so that the light source 11 is turned on only at a predetermined position on the scanning line, and the output signal U of the computing means 21 at that time is stored. The curvature of the image plane 17 can also be obtained by performing this at a plurality of positions.

第1及び第2の導光部材2、3は、光束の一部を裏面で乱反射させ、それを第1及び第2の受光素子4、5まで伝播させる。このため、第1及び第2の導光部材2、3は少なくともその裏面の鏡面に多数の微小な凹凸を付けたものとしている。
このようにすると、凹凸部(図示せず)が入射光束を乱反射させ、鏡面部(図示せず)が乱反射した光束を全反射して第1及び第2の受光素子4、5へ向けて伝播させるので到達する光量が増えるので好都合である。
第1及び第2の導光部材2、3の表面が鏡面であるため、十分な光量が裏面まで到達し、裏面は鏡面に微小な凹凸を付けてあるため凹凸部で光束の一部が乱反射し、その光束は第1及び第2の導光部材2、3の側面及び表面及び裏面の鏡面部に到達するときの入射角が十分大きいので全反射する。
従って、効率良く第1及び第2の導光部材2、3の端部まで光束が伝播し、第1及び第2の受光素子4、5での受光量が増えるため、より安定して走査線曲りを測定可能である。
ここで、第1及び第2の導光部材2、3は、第1及び第2の受光素子4、5に近い部分では遠い部分に比べてより光束を伝播させる機能を要求される。そのため、第1及び第2の受光素子4、5から遠い部分に比べて凹凸部の占める面積が少なく、鏡面部の占める面積が多い構成にすると、第1及び第2の受光素子4、5から遠い部分に光束が入射したときの第1及び第2の受光素子4、5での受光量の減衰が小さくなるので好都合である。
第1及び第2の導光部材2、3の第1及び第2の受光素子4、5の設置してある端部以外の端部は、金属膜を付けるなどで反射率を高めておくと、第1及び第2の受光素子4、5で受光する光量が増えるのでさらに都合が良い。
このように第1及び第2の導光部材2、3の第1及び第2の受光素子4、5側以外の端部の反射率を高め、より大量の光を受光素子4、5に導くことで、より多くの光束が受光素子4、5に向けて伝播するようになり、受光素子4、5での受光量が多くなる。したがって、出力信号を安定化させ、信号のSN比が向上して、より安定して走査線曲りを測定可能となる。
本発明では2本の導光部材2、3を精度良く直線に近接して設置するところに特徴があり、その手段としてここでは支持部材1の凸部1aに沿わせるような構成としたが、この条件に適うものであれば他の方法でも良い。例えば、2本の溝にそれぞれの導光部材を埋め込んで設置するような構成でも良い。
The first and second light guide members 2 and 3 diffusely reflect a part of the light beam on the back surface and propagate it to the first and second light receiving elements 4 and 5. For this reason, the 1st and 2nd light guide members 2 and 3 shall add many micro unevenness | corrugations to the mirror surface of the back surface at least.
In this way, the uneven portion (not shown) diffuses the incident light beam, and the mirror surface portion (not shown) totally reflects the light beam and propagates toward the first and second light receiving elements 4 and 5. This is advantageous because the amount of light that reaches it increases.
Since the surfaces of the first and second light guide members 2 and 3 are mirror surfaces, a sufficient amount of light reaches the back surface, and since the back surface has minute unevenness on the mirror surface, part of the light beam is irregularly reflected by the uneven portions. The light flux is totally reflected because the incident angle when it reaches the side surfaces of the first and second light guide members 2 and 3 and the mirror surface portions of the front and back surfaces is sufficiently large.
Therefore, the light beam efficiently propagates to the end portions of the first and second light guide members 2 and 3 and the amount of light received by the first and second light receiving elements 4 and 5 increases, so that the scanning line can be more stably performed. The bend can be measured.
Here, the first and second light guide members 2 and 3 are required to have a function of propagating a light beam in a portion closer to the first and second light receiving elements 4 and 5 than in a portion far away. For this reason, when the configuration is such that the uneven area occupies a smaller area than the first and second light receiving elements 4 and 5 and the mirror surface area occupies a larger area, the first and second light receiving elements 4 and 5 This is advantageous because the attenuation of the amount of light received by the first and second light receiving elements 4 and 5 when the light beam enters a distant portion is small.
When the end portions of the first and second light guide members 2 and 3 other than the end portions where the first and second light receiving elements 4 and 5 are installed have a high reflectance by attaching a metal film or the like. Since the amount of light received by the first and second light receiving elements 4 and 5 increases, it is more convenient.
In this manner, the reflectance of the end portions of the first and second light guide members 2 and 3 other than the first and second light receiving elements 4 and 5 is increased, and a larger amount of light is guided to the light receiving elements 4 and 5. As a result, more light flux propagates toward the light receiving elements 4 and 5, and the amount of light received by the light receiving elements 4 and 5 increases. Therefore, the output signal is stabilized, the signal-to-noise ratio of the signal is improved, and the scan line bending can be measured more stably.
In the present invention, the two light guide members 2 and 3 are characterized in that they are placed close to a straight line with high accuracy, and as a means for this, here the configuration is such that the projections 1a of the support member 1 are aligned. Other methods may be used as long as these conditions are met. For example, the structure which embeds and installs each light guide member in two grooves may be sufficient.

図6は走査線曲がり測定装置の第2の実施形態を示す概略斜視図である。
図6において、第1の導光部材2の両端部には、それぞれ第1の受光手段4と第3の受光手段6が取り付けられている。同様に第2の導光部材3の両端部には、それぞれ第2の受光手段5と第4の受光手段7が取り付けられている。
各受光手段4、5、6、7からの出力信号U1、U2、U3、U4は図示しない演算手段に送られる。演算手段は、以下のような演算を行う。
U=(U2+U4−(U1+U3))/(U1+U2+U3+U4)
これにより、走査線の位置による受光量の偏りが緩和され、信号のSNが高まる。この走査線曲がり測定装置10は、導光部材2、3の両端から出射される光の和を電気信号に変えることに特徴がある。
従って、例えば導光部材2、3の両端部にそれぞれ光ファイバを接続して、それぞれの光ファイバの両端部から出射する光を1つの受光素子で受光するような構成でも良い。
このように走査線曲がり測定装置10は、主走査方向に長い棒状の第1の導光部材2と、この第1の導光部材2の近傍で副走査方向にずれた位置に配置された第2の導光部材3と、第1の導光部材2の両端から出射する光を受光し、受光量を電気信号に変換する第1及び第2の受光素子4、5とを含んでいる。
さらに第2の導光部材3の両端から出射する光を受光し、且つ受光量を電気信号に変換する第3及び第4の受光素子6、7と、各受光手段からの出力より各像高での走査線曲がり量を求める演算手段(図1参照)よりなる。
導光部材2、3の両端からの出射光を受光素子4、5、6、7に導くことで、導光部材2、3の両端部から出射した光を受光して、電気信号に変換できるので、より安定して走査線曲りを測定可能である。
FIG. 6 is a schematic perspective view showing a second embodiment of the scanning line bending measuring apparatus.
In FIG. 6, a first light receiving means 4 and a third light receiving means 6 are attached to both ends of the first light guide member 2, respectively. Similarly, the second light receiving means 5 and the fourth light receiving means 7 are attached to both ends of the second light guide member 3, respectively.
Output signals U1, U2, U3, U4 from the respective light receiving means 4, 5, 6, 7 are sent to a calculating means (not shown). The calculation means performs the following calculation.
U = (U2 + U4- (U1 + U3)) / (U1 + U2 + U3 + U4)
Thereby, the deviation of the amount of received light due to the position of the scanning line is alleviated, and the SN of the signal is increased. This scanning line bending measuring device 10 is characterized in that the sum of the light emitted from both ends of the light guide members 2 and 3 is changed into an electric signal.
Therefore, for example, a configuration in which optical fibers are connected to both ends of the light guide members 2 and 3 and light emitted from both ends of each optical fiber is received by one light receiving element may be used.
In this way, the scanning line bending measuring device 10 is arranged in a bar-shaped first light guide member 2 that is long in the main scanning direction and a position that is shifted in the sub-scanning direction in the vicinity of the first light guide member 2. 2 light guide members 3 and first and second light receiving elements 4 and 5 that receive light emitted from both ends of the first light guide member 2 and convert the amount of received light into an electrical signal.
Further, the light output from both ends of the second light guide member 3 is received, and the third and fourth light receiving elements 6 and 7 for converting the amount of received light into electric signals, and the output from each light receiving means, each image height. The calculation means (refer FIG. 1) which calculates | requires the amount of scanning line bends in FIG.
By guiding the emitted light from both ends of the light guide members 2 and 3 to the light receiving elements 4, 5, 6 and 7, the light emitted from both ends of the light guide members 2 and 3 can be received and converted into electrical signals. Therefore, the scanning line bending can be measured more stably.

図7は走査線曲がり測定装置の第3の実施形態を示す概略斜視図である。
図7を用いて、第3の実施形態について説明する。第1及び第2の導光部材2、3の上に等ピッチで開口が開けられたマスク8を設置する。また、演算手段(図1参照)は前述の演算結果Uとともに第1及び第2の受光手段4、5の出力信号U1、U2の和信号U1+U2を出力する。
マスク8の開口は等ピッチで作成してあるので、倍率誤差が無い場合は、和信号U1+U2は一定の時間間隔のパルスとなるが、倍率誤差がある場合はパルスの時間間隔に誤差が生じる。従って、各主走査位置で時間間隔を計測することによって各主走査位置での速度分布を得る。
具体的には、和信号U1+U2を図示しないコンパレータ等でパルス化し、各パルス間の時間を基準クロックでカウントし、マスク8のピッチを時間間隔で除算すること、もしくは規定時間内にカウントされるパルス数に相当する距離を前記規定時間で除算することで実現できる。
なお、前記規定時間はCPUやDSPの割込み処理によって実現できる。この速度分布から理想的な速度を引き、速度誤差分布、つまり倍率誤差を得ることができる。従って、本実施形態では走査線曲りと倍率誤差の両方を測定可能となる。ここで、各受光手段4、5、6、7からの出力は、図示していないが低帯域(ローパス)フィルタ処理を行ってから演算処理を行うと、電気的ノイズの影響を低減できてさらに好都合である。また、速度誤差分布も差分データなので、ローパスフィルタ処理をするとノイズの影響を低減できてなお好都合である。
このように本実施形態の走査線曲がり測定装置は、第1及び第2の導光部材2、3の入射面近傍に主走査方向に等ピッチで設けられた複数の開口を有する空間光変調手段(マスク)8を設け、演算手段が走査線曲がり及び倍率誤差を求める。
空間変調手段であるマスク8を付加することで、出力信号がパルス状になり、そのパルス間隔の分布を測定することで倍率誤差も測定可能となるので、1つの装置で倍率誤差と走査線曲がりの両方を測定可能となる。
このように演算手段では、各受光手段からの出力に対して、ローパスフィルタ処理を行ってから、走査線曲りを求める。したがって、受光素子で光量信号を電気信号に変換した後、ローパスフィルタ処理をすることで、高周波の電気的ノイズの影響を低減し、よりノイズに強い出力信号を獲得し、より安定して走査線曲がり等を測定可能となる。
FIG. 7 is a schematic perspective view showing a third embodiment of the scanning line bending measuring apparatus.
A third embodiment will be described with reference to FIG. On the first and second light guide members 2 and 3, a mask 8 having openings opened at an equal pitch is installed. Further, the calculation means (see FIG. 1) outputs the sum signal U1 + U2 of the output signals U1 and U2 of the first and second light receiving means 4 and 5 together with the calculation result U described above.
Since the openings of the mask 8 are formed at an equal pitch, the sum signal U1 + U2 becomes a pulse having a constant time interval when there is no magnification error. However, if there is a magnification error, an error occurs in the pulse time interval. Therefore, the velocity distribution at each main scanning position is obtained by measuring the time interval at each main scanning position.
Specifically, the sum signal U1 + U2 is pulsed by a comparator or the like (not shown), the time between each pulse is counted with a reference clock, and the pitch of the mask 8 is divided by the time interval, or the pulse counted within a specified time This can be realized by dividing the distance corresponding to the number by the specified time.
The specified time can be realized by interrupt processing of the CPU or DSP. By subtracting an ideal speed from this speed distribution, a speed error distribution, that is, a magnification error can be obtained. Therefore, in this embodiment, both the scanning line bending and the magnification error can be measured. Here, the output from each of the light receiving means 4, 5, 6, and 7 is not shown in the figure, but if the calculation process is performed after the low band (low pass) filter process, the influence of electrical noise can be reduced. Convenient. In addition, since the speed error distribution is also differential data, the low-pass filter processing is still advantageous because the influence of noise can be reduced.
As described above, the scanning line bending measuring apparatus according to the present embodiment is a spatial light modulator having a plurality of openings provided at equal pitches in the main scanning direction in the vicinity of the incident surfaces of the first and second light guide members 2 and 3. (Mask) 8 is provided, and the calculation means obtains the scanning line bending and magnification error.
By adding the mask 8 which is a spatial modulation means, the output signal becomes a pulse shape, and the magnification error can be measured by measuring the distribution of the pulse interval, so the magnification error and the scanning line curve can be measured with one apparatus. Both of them can be measured.
As described above, the calculation means obtains the scanning line curve after performing low-pass filter processing on the output from each light receiving means. Therefore, after the light quantity signal is converted into an electrical signal by the light receiving element, low-pass filter processing is performed to reduce the influence of high-frequency electrical noise, obtain an output signal that is more resistant to noise, and more stably scan lines. It is possible to measure bending and the like.

図8は走査線曲がり測定機能を付加した光走査装置の実施形態を説明する概略図である。図8を用いて、走査線曲がり測定機能を付加した光走査装置の実施形態を説明する。
ポリゴンモータ15で反射した光束は結像光学系16を透過して、そのほとんどが光軸に対して傾斜を持たせて設置した光学窓18を透過して像面17に結像する。また光学窓18の入射面で反射した光束の一部は走査線曲がり測定装置10に入射する。光学窓18以外の部分は光学箱19内に設置され、トナーや埃等の異物から守られている。
ここで、光学窓18の入射面は、特にコーティングされていない場合は数%の反射率しかないが、これでは走査線曲がり測定装置10に必要な光量が得られない場合がある。その場合は、反射率を高めるような適宜なコーティングがなされるとなお良い。また出射面はできるだけ全ての光が透過するように、減反射コーティングがなされていると好都合である。
光学窓18から反射した光束は走査線曲がり測定装置10に入射し、第1及び第2の受光手段からの出力信号U1、U2は走査線曲がり演算手段21に送られる。ここで走査線曲がりが求められ、求められた走査線曲がりが走査線曲がり制御手段22に送られる。この走査線曲がり制御手段22は走査線曲がり調整手段23を制御して走査線曲がりを小さくする。
FIG. 8 is a schematic diagram for explaining an embodiment of an optical scanning device to which a scanning line bending measurement function is added. An embodiment of an optical scanning device to which a scanning line bending measurement function is added will be described with reference to FIG.
The light beam reflected by the polygon motor 15 passes through the imaging optical system 16, and most of the light passes through the optical window 18 provided with an inclination with respect to the optical axis and forms an image on the image plane 17. Further, a part of the light beam reflected by the incident surface of the optical window 18 enters the scanning line bending measuring apparatus 10. Portions other than the optical window 18 are installed in an optical box 19 and are protected from foreign matters such as toner and dust.
Here, the incident surface of the optical window 18 has a reflectance of only a few percent if it is not coated, but this may not provide the amount of light necessary for the scanning line bending measuring device 10. In that case, it is more preferable to apply an appropriate coating to increase the reflectance. Further, it is advantageous that the exit surface is provided with a anti-reflection coating so that all light is transmitted as much as possible.
The light beam reflected from the optical window 18 enters the scanning line bending measuring apparatus 10, and output signals U 1 and U 2 from the first and second light receiving means are sent to the scanning line bending calculating means 21. Here, the scanning line curve is obtained, and the obtained scanning line curve is sent to the scanning line curve control means 22. The scanning line bending control means 22 controls the scanning line bending adjusting means 23 to reduce the scanning line bending.

図9はレンズと走査線曲がり調整手段を光軸方向から見た状態を示す概略図である。図9において、レンズ16はその中央部がベース24の突起24aに対して突き当てられ、板ばね25との間で挟まれて支持されている。
第1及び第2のアクチュエータ26、27はそれぞれ伸縮可能なプローブ部分26a、27aを備えており、これらのプローブ部分26a、27aを介してレンズ16と接触しており、第1及び第2の板ばね28、29とで挟むことによってレンズ16を支持している。
走査線曲がり制御手段22(図8参照)は走査線曲がり演算手段21(図8参照)の出力に基づいて、第1及び第2のアクチュエータ26、27を制御し、各プローブ部分26a、27aの長さを変えることによってレンズ16を傾斜させたり、曲げたりして走査線曲がりを小さくする。走査線曲がりが所定の幅になるまでこれを繰り返す。
図10は走査線曲がり調整の動作を示すフローチャートである。図10において、走査線曲がり演算手段21(図8参照)から出力する(S1)。この出力に基づいて、走査線曲がりが所定の幅内かどうか判断し(S2)、所定の幅内ならば、動作を終了する。また、所定の幅内でないならば、走査線曲がり制御手段22(図8参照)でさらに制御を繰り返す(S3)。
走査線曲がり測定装置10から得られた走査線曲がり、倍率誤差を用いてこれを補正する方法は、既存の方法が適用可能である。例えば、特許文献2に記載されているように、結像光学系の一部の光学素子を傾けたり、撓ませたりすることで走査線曲がりを補正する。
また特許文献1に記載されているように、測定した走査線曲りを関数などでモデル化して、これを相殺するように画像データを副走査方向にずらしてから出力することで、補正を行っても良い。
特に、本発明では走査線曲がりの多点測定が可能であるため、高い空間周波数の走査線曲りまでモデル化可能である。本発明とこの補正方法の組み合わせは高い空間周波数の走査線曲りまで補正可能であるので、従来例に比べて補正効果が高い。
FIG. 9 is a schematic view showing a state in which the lens and the scanning line bending adjusting means are viewed from the optical axis direction. In FIG. 9, the center of the lens 16 is abutted against the protrusion 24 a of the base 24, and is supported by being sandwiched between the leaf springs 25.
The first and second actuators 26 and 27 are provided with expandable and contractible probe portions 26a and 27a, respectively, which are in contact with the lens 16 via the probe portions 26a and 27a, and the first and second plates. The lens 16 is supported by being sandwiched between the springs 28 and 29.
The scanning line bending control means 22 (see FIG. 8) controls the first and second actuators 26 and 27 based on the output of the scanning line bending calculation means 21 (see FIG. 8), and the probe portions 26a and 27a are controlled. By changing the length, the lens 16 is tilted or bent to reduce the scanning line bending. This is repeated until the scanning line curve reaches a predetermined width.
FIG. 10 is a flowchart showing the scanning line curve adjustment operation. In FIG. 10, it outputs from the scanning line curve calculating means 21 (refer FIG. 8) (S1). Based on this output, it is determined whether or not the scanning line bending is within a predetermined width (S2). If it is within the predetermined width, the operation is terminated. If it is not within the predetermined width, the control is further repeated by the scanning line bending control means 22 (see FIG. 8) (S3).
An existing method can be applied to the method of correcting the scan line curve obtained from the scan line curve measuring device 10 using the magnification error. For example, as described in Patent Document 2, scanning line bending is corrected by tilting or deflecting some optical elements of the imaging optical system.
Further, as described in Patent Document 1, the measured scanning line curve is modeled by a function or the like, and the image data is shifted in the sub-scanning direction and output so as to cancel the correction. Also good.
In particular, in the present invention, since scanning line bending can be measured at multiple points, it is possible to model scanning line bending at a high spatial frequency. Since the combination of the present invention and this correction method can correct scanning line bending at a high spatial frequency, the correction effect is higher than that of the conventional example.

本発明による光走査装置は、図8に示したように、光源(図示せず)と、この光源から出射された光束を偏向する偏向手段(ポリゴンモータ)15と、この偏向手段15によって偏向した光束を像面17で集光する結像光学系16と、透明部材(光学窓)18と、上述した走査線曲がり測定装置10を含んでいる。
結像光学系16を通過した光束の一部が透明部材(光学窓)18を通過して被照射面に照射し、他の一部が透明部材(光学窓)18で反射し、反射光束が走査線曲がり測定装置10に入射する構成になっている。
このように、防塵を目的として従来の光走査装置に付いている光学窓18からの反射光束を利用して走査線曲がり等を測定することで、低コストで前述の走査線曲がり測定装置10を光走査装置に組み込むことができる。したがって、低コストで多数の点における走査線曲がりの測定機能を有する光走査装置を提供可能となる。
また、前述の透明部材(光学窓)18は平行平板であり、その入射面の反射率が出射面の反射率よりも大きくなるように表面処理(コーティング)の条件を適切に設定している。
したがって、透明部材(光学窓)18の多重反射の影響を低減して、ここからの反射率を所定の値にすることができ、走査線曲がり測定装置に必要な光量を反射させることができるので、より安定して走査線曲がり等を測定する機能を有した光走査装置を提供可能となる。
光走査装置は、演算手段21から出力された走査線曲がりの測定結果を基に、走査光学系の光学部品を機械的に調整することにより、走査線曲がりを略直線状にする走査線曲がり調整手段23を有している。
構成要素が少ないため、低コストで、かつ走査線の多数の点における副走査位置ずれ量を測定可能であるため多数の点における走査線曲りを測定、補正可能な光走査装置を提供可能となる。
光走査装置は、さらに、演算手段21から出力された走査線曲がりの測定結果を基に、走査線曲りを相殺するように出力する画像データを補正するリサンプリングを行ってスポット位置を補正するように構成されている。
これにより、構成要素が少ないため低コストに、かつ走査線の多数の点における副走査位置ずれ量を測定可能であるため空間周波数の高い走査線曲りを測定、補正可能な光走査装置を提供可能となる。
As shown in FIG. 8, the optical scanning device according to the present invention deflects light source (not shown), deflecting means (polygon motor) 15 for deflecting the light beam emitted from the light source, and deflecting means 15. The imaging optical system 16 which condenses a light beam by the image surface 17, the transparent member (optical window) 18, and the scanning line bending measuring apparatus 10 mentioned above are included.
Part of the light beam that has passed through the imaging optical system 16 passes through the transparent member (optical window) 18 and irradiates the irradiated surface, and the other part is reflected by the transparent member (optical window) 18 so that the reflected light beam is reflected. The scanning line bending measurement apparatus 10 is configured to be incident.
As described above, the scanning line bending measuring device 10 can be obtained at low cost by measuring the scanning line bending using the reflected light beam from the optical window 18 attached to the conventional optical scanning device for the purpose of dust prevention. It can be incorporated into an optical scanning device. Therefore, it is possible to provide an optical scanning device having a scanning line bending measurement function at many points at low cost.
The transparent member (optical window) 18 described above is a parallel plate, and the surface treatment (coating) conditions are appropriately set so that the reflectance of the incident surface is larger than the reflectance of the exit surface.
Therefore, the influence of the multiple reflection of the transparent member (optical window) 18 can be reduced, the reflectance therefrom can be set to a predetermined value, and the amount of light necessary for the scanning line bending measuring device can be reflected. Therefore, it is possible to provide an optical scanning device having a function of measuring the scanning line bending and the like more stably.
The optical scanning device mechanically adjusts the optical components of the scanning optical system on the basis of the measurement result of the scanning line bending output from the computing unit 21, thereby adjusting the scanning line bending to make the scanning line bending substantially linear. Means 23 are provided.
Since there are few constituent elements, it is possible to provide an optical scanning device that can measure and correct scanning line bending at a large number of points because the sub-scanning position shift amount at a large number of scanning lines can be measured at low cost. .
The optical scanning device further corrects the spot position by performing resampling for correcting the image data to be output so as to cancel the scanning line curve, based on the measurement result of the scanning line curve output from the computing unit 21. It is configured.
This makes it possible to provide an optical scanning device that can measure and correct scanning line bending with a high spatial frequency because it can measure the amount of sub-scanning misalignment at many points on the scanning line at low cost because it has few components. It becomes.

さらに、本発明をまとめれば、原理的には走査線上の全ての点でのスポット光の位置ずれを測定する。これは、電子写真装置がその内部で光走査装置の走査線曲がりを測定して、デジタルデータ処理で補正して、画像のゆがみやカラーでの色ずれの無い高品質のプリントを可能にする方向に向かう傾向にあるので、その場合、走査線曲がりの測定点数を増やせば、より高精度な補正が可能となる。
実際に何点でスポット光の位置ずれを測って補正を行うかは、設計者が自由に設定できるため、ハイエンド(最高級品)からローエンド(低価格品)まで同一の部品で対応でき、部品の共通化によるコストダウンも期待できる。
本発明では、光走査装置でスポット光を走査したときの走査線曲がりが、アナログ信号としてリアルタイムに出力される。したがって、これを何点での位置ずれとしてデジタルデータに変換するかは自由である。したがって、特に多数の点での位置ずれを検出して、走査線曲がりを測定したい場合に、まったくコストアップ無くこれを達成できる。
さらにまた、本発明では高精度を要求するのは、支持部材の凸部の真直度と、2つの導光部材の取り付けのみであるで、従来例のように多数の検出部を高精度で並べる組み立て工程が無く、比較的容易に高精度が達成できる。
Further, in summary, the present invention measures the positional deviation of the spot light at all points on the scanning line in principle. This is the direction in which the electrophotographic device measures the scanning line bending of the optical scanning device and corrects it by digital data processing to enable high-quality printing without image distortion or color misregistration. In this case, if the number of scanning line bending measurement points is increased, more accurate correction can be performed.
Since the designer can freely set the spot light position displacement measurement and correction at the actual point, the same parts can be used from the high end (highest grade) to the low end (low price). We can expect cost reduction by common use.
In the present invention, scanning line bending when spot light is scanned by the optical scanning device is output in real time as an analog signal. Therefore, it is free to convert this into digital data as a position shift at this point. Therefore, this can be achieved without any increase in cost, particularly when it is desired to detect misalignment at a large number of points and measure the scan line bending.
Furthermore, in the present invention, high accuracy is required only for the straightness of the convex portion of the support member and the attachment of the two light guide members, and a large number of detection units are arranged with high accuracy as in the conventional example. There is no assembly process, and high accuracy can be achieved relatively easily.

走査線曲がり測定装置の第1の実施形態を示す概略斜視図。1 is a schematic perspective view showing a first embodiment of a scanning line bending measuring apparatus. 光走査装置の主走査断面の走査線曲がりの測定動作を説明する概略図。Schematic explaining the measurement operation | movement of the scanning line bending of the main scanning cross section of an optical scanning device. 光走査装置の副走査断面の走査線曲がりの測定動作を説明する概略図。Schematic explaining the measurement operation | movement of the scanning line bending of the subscanning cross section of an optical scanning device. 演算手段の説明に対応する機能ブロック図。The functional block diagram corresponding to description of a calculating means. 第1及び第2の電気信号U1、U2の出力を説明する模式図。The schematic diagram explaining the output of the 1st and 2nd electric signal U1, U2. 走査線曲がり測定装置の第2の実施形態を示す概略斜視図。The schematic perspective view which shows 2nd Embodiment of a scanning line bending measuring apparatus. 走査線曲がり測定装置の第3の実施形態を示す概略斜視図。The schematic perspective view which shows 3rd Embodiment of a scanning line bending measuring apparatus. 走査線曲がり測定機能を付加した光走査装置の実施形態を説明する概略図。Schematic explaining embodiment of the optical scanning apparatus which added the scanning line bending measurement function. レンズと走査線曲がり調整手段を光軸方向から見た状態を示す概略図。Schematic which shows the state which looked at the lens and the scanning line curve adjustment means from the optical axis direction. 走査線曲がり調整の動作を示すフローチャート。6 is a flowchart showing an operation for adjusting a scanning line curve.

符号の説明Explanation of symbols

2 第1の導光手段
3 第2の導光手段
4 第1受光手段
5 第2の受光手段
6 第3の受光手段
7 第4の受光手段
8 空間光変調手段(マスク)
11 光源
15 偏向手段(ポリゴンミラー)
16 結像光学系(レンズ)
18 透明部材(光学窓)
21 演算手段
22 走査線曲がり制御手段
23 走査線曲がり調整手段
2 1st light guide means 3 2nd light guide means 4 1st light receiving means 5 2nd light receiving means 6 3rd light receiving means 7 4th light receiving means 8 Spatial light modulation means (mask)
11 Light source 15 Deflection means (polygon mirror)
16 Imaging optical system (lens)
18 Transparent member (optical window)
21 calculating means 22 scanning line bending control means 23 scanning line bending adjusting means

Claims (10)

各像高での走査線曲がりを測定する走査線曲がり測定装置において、主走査方向に長い入射面を有する第1の導光手段と、該第1の導光手段の近傍であって副走査方向にずらした位置に配置された第2の導光手段と、前記第1及び第2の導光手段それぞれの端部から出射する光を受光し、且つ、受光量を電気信号に変換する第1及び第2の受光手段と、前記第1及び第2の受光手段からの出力に基づいて、前記各像高での走査線曲がり量を演算する演算手段と、を備えることを特徴とする走査線曲がり測定装置。   In a scanning line bending measuring apparatus for measuring a scanning line bending at each image height, a first light guiding unit having a long incident surface in the main scanning direction, and a sub-scanning direction in the vicinity of the first light guiding unit A first light guide unit disposed at a position shifted from the first light guide unit, a first light receiving unit configured to receive light emitted from each end of the first and second light guide units, and to convert the received light amount into an electrical signal; And a second light receiving means, and a calculation means for calculating the amount of bending of the scanning line at each image height based on outputs from the first and second light receiving means. Bend measuring device. 前記第1及び第2の導光手段は、少なくとも出射面が鏡面に微小な凹凸を多数付けた面であることを特徴とする請求項1記載の走査線曲がり測定装置。   2. The scanning line bending measuring apparatus according to claim 1, wherein the first and second light guiding means have at least an exit surface that is a surface having a large number of minute irregularities on a mirror surface. 前記第1及び第2の導光手段は、前記第1及び第2の受光手段が設置されている端部以外の端部の反射率が高いことを特徴とする請求項1又は2記載の走査線曲がり測定装置。   3. The scanning according to claim 1, wherein the first and second light guide means have high reflectance at an end portion other than the end portion where the first and second light receiving means are installed. Line bending measuring device. 各像高での走査線曲がりを測定する走査線曲がり測定装置において、主走査方向に長い棒状の第1の導光手段と、該第1の導光手段の近傍であって副走査方向にずらした位置に配置された第2の導光手段と、前記第1の導光手段の両端から出射する光を受光し、且つ、受光量を電気信号に変換する第1及び第3の受光手段と、前記第2の導光手段の両端から出射する光を受光し、且つ受光量を電気信号に変換する第2及び第4の受光手段と、前記第1〜第4の各受光手段からの出力に基づいて、前記各像高での走査線曲がり量を演算する演算手段と、を備えることを特徴とする走査線曲がり測定装置。   In a scanning line bending measuring apparatus for measuring a scanning line bending at each image height, a bar-shaped first light guide means long in the main scanning direction and a shift in the sub-scanning direction in the vicinity of the first light guiding means. A second light guide unit disposed at a predetermined position, and first and third light receiver units that receive light emitted from both ends of the first light guide unit and convert the amount of received light into an electrical signal; The second and fourth light receiving means for receiving light emitted from both ends of the second light guiding means and converting the amount of received light into an electrical signal, and outputs from the first to fourth light receiving means And a calculating means for calculating a scanning line bending amount at each of the image heights. 前記第1及び第2の導光手段の入射面近傍に、前記主走査方向に等ピッチで設けられた複数の開口を有する空間光変調手段を配置し、前記演算手段が走査線曲がり及び倍率誤差を求めることを特徴とする請求項1乃至請求項4のいずれか1項記載の走査線曲がり測定装置。   Spatial light modulation means having a plurality of openings provided at equal pitches in the main scanning direction is disposed in the vicinity of the incident surfaces of the first and second light guide means, and the arithmetic means is adapted to scan line bending and magnification error. 5. The scanning line bending measuring apparatus according to claim 1, wherein the scanning line bending measuring apparatus according to claim 1 is obtained. 前記各受光手段からの出力に対してローパスフィルタ処理を行うローパスフィルタを備え、前記演算手段は、前記各受光手段からの出力に対して前記ローパスフィルタによりローパスフィルタ処理を行ってから、走査線曲りを求めることを特徴とする請求項1乃至請求項4のいずれか1項記載の走査線曲がり測定装置。   A low-pass filter that performs low-pass filter processing on the output from each light-receiving unit, and the arithmetic unit performs low-pass filter processing on the output from each light-receiving unit using the low-pass filter, and then scan line bending 5. The scanning line bending measuring apparatus according to claim 1, wherein the scanning line bending measuring apparatus according to claim 1 is obtained. 請求項1乃至請求項6のいずれか1項記載の走査線曲がり測定装置を含む光走査装置であって、光源と、該光源から出射された光束を偏向する偏向手段と、該偏向手段により偏向した光束を像面で集光する結像光学系と、透明部材とを備え、前記結像光学系を通過した光束の一部が前記透明部材を通過して被照射面に照射し、他の一部が前記透明部材で反射し、反射光束が前記走査線曲がり測定装置に入射されることを特徴とする光走査装置。   7. An optical scanning device including the scanning line bending measuring device according to claim 1, wherein the light source, a deflecting unit that deflects a light beam emitted from the light source, and a deflection by the deflecting unit. An imaging optical system for condensing the luminous flux on the image plane, and a transparent member. A part of the light is reflected by the transparent member, and the reflected light beam is incident on the scanning line bending measuring device. 前記透明部材は平行平板であり、その入射面の反射率が出射面の反射率よりも大きくなるように表面処理の条件を設定したことを特徴とする請求項7記載の光走査装置。   8. The optical scanning device according to claim 7, wherein the transparent member is a parallel plate, and surface treatment conditions are set so that the reflectance of the incident surface is larger than the reflectance of the exit surface. 前記演算手段から出力された走査線曲がりの測定結果を基に、走査光学系の光学部品を機械的に調整することにより、走査線曲がりを略直線状にする走査線曲がり調整手段を有することを特徴とする請求項7又は8記載の光走査装置。   Based on the measurement result of the scanning line bending output from the arithmetic unit, the scanning line bending adjusting unit is provided to make the scanning line bending substantially linear by mechanically adjusting the optical components of the scanning optical system. 9. The optical scanning device according to claim 7, wherein the optical scanning device is characterized in that: 前記演算手段から出力された走査線曲がりの測定結果を基に、走査線曲りを相殺するように出力する画像データを補正するリサンプリングを行ってスポット位置を補正することを特徴とする請求項7又は8記載の光走査装置。   8. The spot position is corrected by performing resampling for correcting image data to be output so as to cancel the scanning line curve, based on the measurement result of the scanning line curve output from the arithmetic means. Or the optical scanning device of 8.
JP2005125717A 2005-04-22 2005-04-22 Scanning line bending measurement apparatus and optical scanner Pending JP2006301447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125717A JP2006301447A (en) 2005-04-22 2005-04-22 Scanning line bending measurement apparatus and optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125717A JP2006301447A (en) 2005-04-22 2005-04-22 Scanning line bending measurement apparatus and optical scanner

Publications (1)

Publication Number Publication Date
JP2006301447A true JP2006301447A (en) 2006-11-02

Family

ID=37469781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125717A Pending JP2006301447A (en) 2005-04-22 2005-04-22 Scanning line bending measurement apparatus and optical scanner

Country Status (1)

Country Link
JP (1) JP2006301447A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233203A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2008233197A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Optical device unit, optical scanner and image forming apparatus
JP2010066505A (en) * 2008-09-10 2010-03-25 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP2010148769A (en) * 2008-12-26 2010-07-08 Hoya Corp Optical scanning endoscope apparatus, optical scanning endoscope, and optical scanning endoscope processor
JP2012133325A (en) * 2010-12-01 2012-07-12 Ricoh Co Ltd Optical scanner and image forming apparatus
US9621214B2 (en) 2009-02-27 2017-04-11 Microsoft Technology Licensing, Llc Protective shroud for handheld device
CN110095086A (en) * 2019-06-03 2019-08-06 呜啦啦(广州)科技有限公司 Current type compound bending sensor and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233203A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2008233197A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Optical device unit, optical scanner and image forming apparatus
JP2010066505A (en) * 2008-09-10 2010-03-25 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP2010148769A (en) * 2008-12-26 2010-07-08 Hoya Corp Optical scanning endoscope apparatus, optical scanning endoscope, and optical scanning endoscope processor
US9621214B2 (en) 2009-02-27 2017-04-11 Microsoft Technology Licensing, Llc Protective shroud for handheld device
JP2012133325A (en) * 2010-12-01 2012-07-12 Ricoh Co Ltd Optical scanner and image forming apparatus
CN110095086A (en) * 2019-06-03 2019-08-06 呜啦啦(广州)科技有限公司 Current type compound bending sensor and preparation method thereof
CN110095086B (en) * 2019-06-03 2024-06-07 呜啦啦(广州)科技有限公司 Current type bidirectional bending sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006301447A (en) Scanning line bending measurement apparatus and optical scanner
JP5147368B2 (en) Encoder
JP5030517B2 (en) Optical scanning apparatus, image forming apparatus, and color image forming apparatus
KR101299455B1 (en) Light scanning unit, image forming apparatus having the same and sync calibration method of the light scanning unit
CN1677159B (en) Optical multi-beam scanning device and image forming apparatus
US8248444B2 (en) Light scanner including lens assembling datums
JP2005234359A (en) Optical characteristic measuring apparatus of scanning optical system, method of calibrating optical characteristic measuring apparatus of scanning optical system, scanning optical system and image forming apparatus
US7602554B2 (en) Optical scanning apparatus
JP5968040B2 (en) Optical scanning apparatus, image forming apparatus, and optical scanning apparatus control method
JP4759179B2 (en) Scanning optical device and image forming apparatus using the same
JPH11249048A (en) Optical scanning device
US7623147B2 (en) Optical scanning device and image forming apparatus using the same
JP3844165B2 (en) Optical scanning apparatus and image forming apparatus
JP2007225844A (en) Optical scanner, image forming apparatus and method of detecting laser beams in optical scanner
JP2011018055A (en) Optical scanner and image forming apparatus
JP2002122799A (en) Multi-beam scanning device and image-forming device equipped with the same
JP3859415B2 (en) Optical scanning device
JP5037062B2 (en) Optical scanning device and image forming apparatus provided with optical scanning device
JPH1010448A (en) Optical scanner
JP2007283690A (en) Image-forming apparatus
JP5470877B2 (en) Optical scanning device and image forming apparatus having the same
JP2008257158A (en) Light beam scanning position detection module, method of detecting light beam scanning position, optical scanner and image forming apparatus
JP4940108B2 (en) Scanning optical device
JP2011166568A (en) Adjustment reference chart for image reader and optical evaluation method employing the same
JP2006123418A (en) Beam adjustment device and image forming apparatus