JP2006300856A - Dielectric characteristic measuring method of dielectric thin film - Google Patents

Dielectric characteristic measuring method of dielectric thin film Download PDF

Info

Publication number
JP2006300856A
JP2006300856A JP2005126110A JP2005126110A JP2006300856A JP 2006300856 A JP2006300856 A JP 2006300856A JP 2005126110 A JP2005126110 A JP 2005126110A JP 2005126110 A JP2005126110 A JP 2005126110A JP 2006300856 A JP2006300856 A JP 2006300856A
Authority
JP
Japan
Prior art keywords
dielectric
thin film
dielectric thin
cavity resonator
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005126110A
Other languages
Japanese (ja)
Other versions
JP4530907B2 (en
Inventor
Hiromichi Yoshikawa
博道 吉川
Akira Nakayama
明 中山
Yoshihiro Nakao
吉宏 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005126110A priority Critical patent/JP4530907B2/en
Publication of JP2006300856A publication Critical patent/JP2006300856A/en
Application granted granted Critical
Publication of JP4530907B2 publication Critical patent/JP4530907B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric characteristic measuring method of a dielectric thin film that can accurately measure by a millimeter wave band of 30 GHz or more. <P>SOLUTION: The dielectric characteristic measuring method of the dielectric thin film includes a process for finding dielectric characteristics of the dielectric thin film 1 from a resonance frequency and non-load Q by mounting a dielectric substrate 2 forming the dielectric thin film 1 on a principal face on a conductor plate 6 so that the dielectric thin film 1 is directed toward an upper side and measuring the resonance frequency and the non-load Q of a TE mode of a cavity resonator after composing the cavity resonator by arranging a bottomed cylindrical conductor 3 having an opening part 31 so that the opening part 31 is contacted on the dielectric thin film 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は誘電体薄膜試料の誘電特性測定法に関するもので、特に30GHz以上のミリ波領域で電子部品として使用する誘電体薄膜の誘電特性測定方法に関する。   The present invention relates to a dielectric property measurement method for a dielectric thin film sample, and more particularly to a dielectric property measurement method for a dielectric thin film used as an electronic component in a millimeter wave region of 30 GHz or more.

近年においては、移動体通信技術の発展、普及に伴い、高転送を目的としてミリ波帯におけるシステムが開発されている。ミリ波帯において誘電体薄膜を用いたVCOやチューナブルフィルタの研究も行われており、その誘電体薄膜の設計開発をするためには、誘電体薄膜の物性値を測定することが重要な課題である。   In recent years, with the development and popularization of mobile communication technology, systems in the millimeter wave band have been developed for the purpose of high transfer. Research on VCOs and tunable filters using dielectric thin films in the millimeter wave band is also underway, and measuring the physical properties of dielectric thin films is an important issue for the design and development of dielectric thin films. It is.

ここで、マイクロ波帯における誘電体薄膜の誘電特性は、例えば図4に示すような空洞共振器を利用して高精度に測定することができることが知られている(特許文献1参照)。即ち、誘電体薄膜1を表面に設けた誘電体基板2を、フランジを有する一対の有底筒状導体3で挟持して空洞共振器を形成し、一方の有底筒状導体3の側面の2箇所に孔を開け、それぞれの孔から同軸ケーブル4a、4bの先端に設けられた微小ループアンテナ5a、5bを挿入することにより、空洞共振器の励振および検波を行うことができる。そして、この空洞共振器の共振周波数および無負荷Qを測定し、共振周波数および無負荷Qから誘電体薄膜の誘電特性(比誘電率、誘電正接)が求められる。   Here, it is known that the dielectric characteristics of the dielectric thin film in the microwave band can be measured with high accuracy by using, for example, a cavity resonator as shown in FIG. 4 (see Patent Document 1). That is, a dielectric substrate 2 provided with a dielectric thin film 1 on the surface is sandwiched between a pair of bottomed cylindrical conductors 3 having flanges to form a cavity resonator, and a side surface of one bottomed cylindrical conductor 3 is formed. Excavation and detection of the cavity resonator can be performed by opening holes in two places and inserting the micro loop antennas 5a and 5b provided at the ends of the coaxial cables 4a and 4b from the respective holes. Then, the resonance frequency and no-load Q of this cavity resonator are measured, and the dielectric characteristics (relative dielectric constant, dielectric loss tangent) of the dielectric thin film are obtained from the resonance frequency and no-load Q.

具体的には、まず誘電体薄膜1および誘電体基板2を挿入していない状態、すなわち一対の有底筒状導体3をそれぞれの開口部を接合するようにして空洞共振器を構成し、該空洞共振器の共振周波数および無負荷Qを測定し、空洞共振器の寸法や導電率を求める必要がある。次に、一対の有底筒状導体3に、上側に誘電体薄膜1の形成された誘電体基板2(誘電体薄膜1および誘電体基板2からなる積層構造体)を挟持させて、同様に空洞共振器の共振周波数および無負荷Qを測定して、誘電体薄膜1の誘電特性(比誘電率、誘電正接)を求めることができる。
特開2002−228600号公報
Specifically, first, a cavity resonator is configured in a state where the dielectric thin film 1 and the dielectric substrate 2 are not inserted, that is, a pair of bottomed cylindrical conductors 3 are joined to the respective openings. It is necessary to measure the resonance frequency and no-load Q of the cavity resonator to determine the size and conductivity of the cavity resonator. Next, a pair of bottomed cylindrical conductors 3 are sandwiched with a dielectric substrate 2 (a laminated structure composed of the dielectric thin film 1 and the dielectric substrate 2) on which the dielectric thin film 1 is formed, and similarly. By measuring the resonant frequency and no-load Q of the cavity resonator, the dielectric properties (dielectric constant, dielectric loss tangent) of the dielectric thin film 1 can be obtained.
JP 2002-228600 A

しかしながら、上記構造の空洞共振器を用いた共振器法による誘電体薄膜の誘電特性測定が確立されているのはマイクロ波帯まであって、ミリ波帯(30GHz)においては上記共振器法を用いた誘電体薄膜の高精度な誘電特性測定は確立されていないのが現状である。   However, the dielectric property measurement of the dielectric thin film by the resonator method using the cavity resonator having the above structure is established up to the microwave band, and the above resonator method is used in the millimeter wave band (30 GHz). At present, high-precision dielectric property measurement of dielectric thin films has not been established.

上記空洞共振器に生じるTE011モードの電界強度は、空洞共振器の高さ方向の中心面で最大になり、両端でゼロになる。そこで、10GHz前後で誘電体薄膜の誘電特性を測定する場合は、上面に誘電体薄膜の形成された誘電体基板を、空洞共振器内の電界が最大の場所(空洞共振器の高さ方向の中心面)に配置することで、誘電体薄膜1および誘電体基板2に電界を集中させることができるため、高精度な測定が可能である。 The electric field intensity of the TE 011 mode generated in the cavity resonator becomes maximum at the center plane in the height direction of the cavity resonator and becomes zero at both ends. Therefore, when measuring the dielectric properties of a dielectric thin film at around 10 GHz, a dielectric substrate having a dielectric thin film formed on the upper surface is placed at a place where the electric field in the cavity resonator is maximum (in the height direction of the cavity resonator). Since the electric field can be concentrated on the dielectric thin film 1 and the dielectric substrate 2 by being arranged on the center plane), highly accurate measurement is possible.

一方、この周波数を30GHz以上のミリ波帯域に拡張しようとすると、10GHzのときよりも空洞寸法を小さくするとともに、誘電体薄膜1および誘電体基板2の厚みを薄くする必要があるが、誘電体基板を薄くするのには限界があり、空洞寸法と誘電体基板の比率が異なってしまうようになる。そうすると、基板を挿入していない状態の空洞共振器のTE011モードの共振周波数に対して、誘電体基板を挿入した場合の測定周波数が大きく低下し、測定できなくなってしまうという課題がある。 On the other hand, when trying to expand this frequency to a millimeter wave band of 30 GHz or more, it is necessary to make the cavity dimension smaller than in the case of 10 GHz and to reduce the thickness of the dielectric thin film 1 and the dielectric substrate 2. There is a limit to making the substrate thinner, and the ratio between the cavity size and the dielectric substrate will be different. Then, there is a problem that the measurement frequency when the dielectric substrate is inserted is greatly lowered with respect to the resonance frequency of the TE 011 mode of the cavity resonator in a state where the substrate is not inserted, and measurement becomes impossible.

本発明は、30GHz以上のミリ波帯で精度よく測定できる誘電体薄膜の誘電特性測定方法を提供することを目的とする。   An object of the present invention is to provide a dielectric property measurement method for a dielectric thin film that can be accurately measured in a millimeter wave band of 30 GHz or more.

本発明者等は、検討を重ねた結果、上面に誘電体薄膜を形成してなる誘電体基板を導体板上に載置し、さらにこの上に開口部を有する有底筒状導体を開口部が誘電体薄膜に当接するように配置して空洞共振器を構成し、この空洞共振器のTEモードの共振周波数および無負荷Qを測定し、この共振周波数および無負荷Qから誘電体薄膜の誘電特性を求めることにより、上記課題を解決できることを見出し、本発明に到達した。   As a result of repeated studies, the inventors have placed a dielectric substrate having a dielectric thin film formed on the upper surface thereof on a conductor plate, and further formed a bottomed cylindrical conductor having an opening on the opening. Is arranged so as to be in contact with the dielectric thin film, the cavity resonator is configured, the resonance frequency of the TE mode and the no-load Q of the cavity resonator are measured, and the dielectric thin film dielectric is measured from the resonance frequency and the no-load Q The inventors have found that the above problems can be solved by obtaining the characteristics, and have reached the present invention.

すなわち本発明は、主面に誘電体薄膜を形成してなる誘電体基板を前記誘電体薄膜が上側を向くように導体板の上に載置し、開口部を有する有底筒状導体を前記誘電体薄膜に前記開口部が当接するように配置して空洞共振器を構成した後、該空洞共振器のTEモードの共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記誘電体薄膜の誘電特性を求める工程を含むことを特徴とする誘電体薄膜の誘電特性測定方法である。   That is, the present invention provides a dielectric substrate having a dielectric thin film formed on a main surface thereof placed on a conductor plate so that the dielectric thin film faces upward, and the bottomed cylindrical conductor having an opening is After configuring the cavity resonator so that the opening is in contact with the dielectric thin film, the resonance frequency and no-load Q of the TE mode of the cavity resonator are measured, and from the resonance frequency and the no-load Q A method for measuring dielectric properties of a dielectric thin film, comprising the step of obtaining dielectric properties of the dielectric thin film.

また本発明は、前記導体板の上に第2の誘電体基板を載置するとともに、前記開口部が前記第2の誘電体基板に当接するように前記有底筒状導体を配置して空洞共振器を構成し、該空洞共振器のTEモードの共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記第2の誘電体基板の誘電特性を求める工程を含むか、または、前記誘電体基板を前記誘電体薄膜が下側を向くように前記導体板の上に載置し、前記有底筒状導体の前記開口部が前記誘電体基板に当接するように配置して空洞共振器を構成した後、該空洞共振器のTEモードの共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記誘電体基板の誘電特性を求める工程を含む誘電体薄膜の誘電特性測定方法である。   According to the present invention, the second dielectric substrate is placed on the conductor plate, and the bottomed cylindrical conductor is disposed so that the opening is in contact with the second dielectric substrate. Forming a resonator, measuring a TE-mode resonance frequency and no-load Q of the cavity resonator, and determining a dielectric characteristic of the second dielectric substrate from the resonance frequency and the no-load Q. Alternatively, the dielectric substrate is placed on the conductor plate so that the dielectric thin film faces downward, and the opening of the bottomed cylindrical conductor is disposed in contact with the dielectric substrate. A dielectric body including a step of measuring a TE-mode resonance frequency and no-load Q of the cavity resonator and determining a dielectric characteristic of the dielectric substrate from the resonance frequency and the no-load Q after the cavity resonator is configured. This is a method for measuring the dielectric properties of a thin film.

ここで、前記誘電体薄膜の比誘電率が前記誘電体基板の比誘電率よりも大きいのが好ましい。このようにすることにより、全蓄積エネルギーに対する誘電体薄膜の蓄積エネルギーの割合を大きくすることができ、測定精度の向上が図れるからである。   Here, it is preferable that a relative dielectric constant of the dielectric thin film is larger than a relative dielectric constant of the dielectric substrate. This is because the ratio of the stored energy of the dielectric thin film to the total stored energy can be increased, and the measurement accuracy can be improved.

なお、前記誘電体薄膜としては10μm以下のものであり、前記TEモードがTE011モードであるのが好ましい。 The dielectric thin film is preferably 10 μm or less, and the TE mode is preferably a TE 011 mode.

本発明によれば、誘電体基板を端面の導体板に接して配置することで、空洞共振器本来のTE011モード電界強度の小さな位置に誘電体基板を配置することとなるため、誘電体基板の中に蓄積される電界エネルギーが制限され、TEモード(TE011モード)の共振周波数の低下、即ち誘電定数の測定周波数の低下が緩和される。この状態で誘電体薄膜を誘電体基板上に作成すると、ミリ波帯において容易に測定することが可能となる。したがって、本発明はミリ波帯において有効であり、特に共振周波数が30GHz以上である場合に好適である。 According to the present invention, since the dielectric substrate is disposed in contact with the conductor plate at the end face, the dielectric substrate is disposed at a position where the TE 011 mode electric field strength inherent to the cavity resonator is small. The electric field energy stored in the inside is limited, and the decrease in the resonance frequency of the TE mode (TE 011 mode), that is, the decrease in the measurement frequency of the dielectric constant is alleviated. If a dielectric thin film is formed on a dielectric substrate in this state, it is possible to easily measure in the millimeter wave band. Therefore, the present invention is effective in the millimeter wave band, and is particularly suitable when the resonance frequency is 30 GHz or more.

本発明の誘電特性測定方法を、図面に基づいて説明する。
図1は上面に測定試料である誘電体薄膜を形成した誘電体基板を空洞共振器に配置した状態を示す縦断面図である。具体的には、上面に測定試料となる誘電体薄膜1を形成してなる誘電体基板2を導体板6上に載置し、開口部31を有する有底筒状導体3を前記誘電体基板2上の前記誘電体薄膜1に前記開口部31が当接するように配置して空洞共振器が構成されている。本発明の誘電特性測定方法は、このような構造の空洞共振器のTEモード(好ましくはTE011モード)の共振周波数および無負荷Qを測定し、この共振周波数および無負荷Qから誘電体薄膜1の誘電特性を求めることを特徴とするものである。
The dielectric property measuring method of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a state in which a dielectric substrate having a dielectric thin film as a measurement sample formed on its upper surface is arranged in a cavity resonator. Specifically, a dielectric substrate 2 formed by forming a dielectric thin film 1 serving as a measurement sample on the upper surface is placed on a conductor plate 6, and the bottomed cylindrical conductor 3 having an opening 31 is placed on the dielectric substrate. A cavity resonator is configured by placing the opening 31 in contact with the dielectric thin film 1 on the surface 2. The dielectric characteristic measuring method of the present invention measures the resonance frequency and no-load Q of the TE mode (preferably the TE 011 mode) of the cavity resonator having such a structure, and from this resonance frequency and no-load Q, the dielectric thin film 1 is measured. It is characterized in that the dielectric characteristics of the above are obtained.

また、図1に示すように、有底筒状導体3の側壁には貫通孔が形成され、外部から内部に向けて同軸ケーブル4a、4bが挿通され、その内部側の先端にはループアンテナ5a、5bが形成されている。ここで、ループアンテナ5a、5bの空洞共振器への挿入深さはTEモード(好ましくはTE011モード)の共振周波数における挿入損失が30dB程度となるように調整される。そして、例えばシンセサイズドスイーパー等の発信器から周波数が掃引された信号を片方の同軸ケーブル4aからループアンテナ5aを通して空洞共振器に注入することで、TEモード(好ましくはTE011モード)の共振電磁界が励振される。また、他方のループアンテナ5bから同軸ケーブル4bを通して、空洞共振器の透過信号がネットワークアナライザー等の測定機器に入力され、測定試料(誘電体薄膜1)が設置された空洞共振器の共振周波数、無負荷Qが測定され、計算により誘電特性、つまり、比誘電率や誘電正接が求まることとなる。 Further, as shown in FIG. 1, a through hole is formed in the side wall of the bottomed cylindrical conductor 3, coaxial cables 4a and 4b are inserted from the outside to the inside, and a loop antenna 5a is provided at the inner end. 5b are formed. Here, the insertion depth of the loop antennas 5a and 5b into the cavity resonator is adjusted so that the insertion loss at the resonance frequency of the TE mode (preferably the TE 011 mode) is about 30 dB. Then, for example, a signal whose frequency is swept from a transmitter such as a synthesized sweeper is injected from one coaxial cable 4a into the cavity resonator through the loop antenna 5a, so that the resonance electromagnetic wave in the TE mode (preferably the TE 011 mode) is obtained. The world is excited. Further, the transmission signal of the cavity resonator is input from the other loop antenna 5b through the coaxial cable 4b to a measuring instrument such as a network analyzer, and the resonance frequency of the cavity resonator in which the measurement sample (dielectric thin film 1) is installed is measured. The load Q is measured, and the dielectric characteristics, that is, the relative dielectric constant and the dielectric loss tangent are obtained by calculation.

誘電体薄膜の比誘電率ε’や誘電正接tanδは、有限要素法、FDTD法やモード整合法の数値解析で求めることができる。例えば、モード整合法で解析を行った場合、比誘電率ε’は、空洞共振器の半径R、高さH、共振周波数f、誘電体基板の厚みt1、半径a、誘電体薄膜の厚みtより次式を用いて計算される。

Figure 2006300856
The relative dielectric constant ε ′ and the dielectric loss tangent tan δ of the dielectric thin film can be obtained by numerical analysis of the finite element method, the FDTD method, and the mode matching method. For example, when the analysis is performed by the mode matching method, the relative permittivity ε ′ is determined by the following: cavity radius R, height H, resonance frequency f 0 , dielectric substrate thickness t 1 , radius a, and dielectric thin film It is calculated from the thickness t 2 using the following formula.
Figure 2006300856

ただしdetMは、TE011モードの電磁場の境界条件から導き出される行列Mの行列式である。 Here, detM is a determinant of the matrix M derived from the boundary condition of the electromagnetic field of the TE 011 mode.

また、誘電正接tanδは、空洞共振器の無負荷Q(Q)の測定値より次式を用いて計算される。

Figure 2006300856
The dielectric loss tangent tan δ is calculated from the measured value of the no-load Q (Q u ) of the cavity resonator using the following equation.
Figure 2006300856

ただし、Qdは、誘電損失によるQであり、Qは、導体損によるQである。測定試料(誘電体薄膜)以外の空洞共振器の導体損や誘電体基板の誘電正接をあらかじめ測定しておくことで、誘電体薄膜の誘電正接を計算することができる。 However, Q d is the Q due to dielectric loss, Q c is Q by conductor loss. The dielectric loss tangent of the dielectric thin film can be calculated by measuring in advance the conductor loss of the cavity resonator other than the measurement sample (dielectric thin film) and the dielectric loss tangent of the dielectric substrate.

このような測定のために、具体的には、まず最初に、誘電体基板を挿入していない状態、即ち開口部31を有する有底筒状導体3を導体板6上に載置して構成される空洞共振器の共振周波数および無負荷Qの測定を行い、空洞共振器の寸法および導電率を測定しておく必要がある。この方法は、JIS R 1641:2002に規定されている。次に、第2の誘電体基板を有底筒状導体3と導体板6の間に挿入し、第2の誘電体基板に対する共振周波数および無負荷Qの測定を行い、誘電体基板2の比誘電率および誘電正接を測定する必要がある。いわゆる補正である。この後、誘電体基板2にスパッタや蒸着などにより誘電体薄膜1を形成して、本発明の測定方法により誘電特性(比誘電率および誘電正接)を求めることができる。なお、第2の誘電体基板としては、これに誘電体薄膜1が形成されて誘電体基板1となってもよく、第2の誘電体基板と誘電体薄膜1が形成された誘電体基板1とは材質が同じ別のものであってもよい。   Specifically, for such a measurement, first, a state in which the dielectric substrate is not inserted, that is, the bottomed cylindrical conductor 3 having the opening 31 is placed on the conductor plate 6 is configured. It is necessary to measure the resonance frequency and no-load Q of the cavity resonator to be measured and to measure the size and conductivity of the cavity resonator. This method is defined in JIS R 1641: 2002. Next, the second dielectric substrate is inserted between the bottomed cylindrical conductor 3 and the conductor plate 6 to measure the resonance frequency and no-load Q with respect to the second dielectric substrate. It is necessary to measure the dielectric constant and dissipation factor. This is a so-called correction. Thereafter, the dielectric thin film 1 is formed on the dielectric substrate 2 by sputtering, vapor deposition, or the like, and the dielectric characteristics (relative dielectric constant and dielectric loss tangent) can be obtained by the measurement method of the present invention. The second dielectric substrate may be the dielectric substrate 1 on which the dielectric thin film 1 is formed. The dielectric substrate 1 on which the second dielectric substrate and the dielectric thin film 1 are formed. May be different materials of the same material.

このように、誘電体基板2の上面に誘電体薄膜1が予め形成されていない場合は、上述の流れで誘電体薄膜1の誘電特性を求めることができるが、すでに誘電体基板2の一方の面(上面または下面)に誘電体薄膜1が形成されている場合は、誘電体基板2を上下逆にして測定することができる。   As described above, when the dielectric thin film 1 is not formed in advance on the upper surface of the dielectric substrate 2, the dielectric characteristics of the dielectric thin film 1 can be obtained by the above-described flow. When the dielectric thin film 1 is formed on the surface (upper surface or lower surface), the dielectric substrate 2 can be measured upside down.

すなわち、まず、図2に示すように、主面に測定試料となる誘電体薄膜1を形成してなる誘電体基板2を、誘電体薄膜1が下側を向くように導体板6上に載置し、開口部31を有する有底筒状導体3を誘電体基板2に開口部31が当接するように誘電体基板2上に配置して空洞共振器を構成し、この空洞共振器のTEモードの共振周波数および無負荷Qを測定し、共振周波数および無負荷Qから誘電体基板2の誘電特性を求める。このとき、誘電体薄膜1に生じる電界はほぼ零となり、誘電体薄膜1の影響を無視でき、誘電体基板2のみの比誘電率および誘電正接を測定する可能である。   That is, first, as shown in FIG. 2, a dielectric substrate 2 formed with a dielectric thin film 1 as a measurement sample on the main surface is placed on a conductor plate 6 so that the dielectric thin film 1 faces downward. The bottomed cylindrical conductor 3 having the opening 31 is disposed on the dielectric substrate 2 so that the opening 31 is in contact with the dielectric substrate 2 to form a cavity resonator, and the TE of the cavity resonator is formed. The resonance frequency and no-load Q of the mode are measured, and the dielectric characteristics of the dielectric substrate 2 are obtained from the resonance frequency and the no-load Q. At this time, the electric field generated in the dielectric thin film 1 becomes almost zero, the influence of the dielectric thin film 1 can be ignored, and the relative dielectric constant and dielectric loss tangent of only the dielectric substrate 2 can be measured.

その後、この誘電体基板2を上下逆にして、図1に示すように、誘電体薄膜1が上側を向くように導体板6上に載置し、開口部31を有する有底筒状導体3を誘電体基板2上の誘電体薄膜1に開口部31が面するように配置して空洞共振器を構成し、この空洞共振器のTEモードの共振周波数および無負荷Qを測定し、共振周波数および無負荷Qから誘電体薄膜1の誘電特性(比誘電率および誘電正接)を求めればよい。   Thereafter, the dielectric substrate 2 is turned upside down, and placed on the conductor plate 6 so that the dielectric thin film 1 faces upward as shown in FIG. Is arranged so that the opening 31 faces the dielectric thin film 1 on the dielectric substrate 2 to form a cavity resonator, and the TE mode resonance frequency and no-load Q of the cavity resonator are measured, and the resonance frequency is measured. Further, the dielectric characteristics (relative permittivity and dielectric loss tangent) of the dielectric thin film 1 may be obtained from the unloaded Q.

なお、本発明においては上下逆さに配置してもよい。また、誘電体薄膜の誘電特性の絶対値を求めるのではなく、例えば2種類の誘電体薄膜の誘電特性を相対的に評価する場合は、誘電体基板を挿入していない状態および誘電体薄膜の形成されていない誘電体基板を挿入して共振周波数および無負荷Qの測定工程はなくてもよい。   In the present invention, they may be arranged upside down. Also, instead of obtaining the absolute value of the dielectric properties of the dielectric thin film, for example, when relatively evaluating the dielectric properties of the two types of dielectric thin films, the state in which no dielectric substrate is inserted and the dielectric thin film It is not necessary to insert a dielectric substrate that is not formed and measure the resonance frequency and no load Q.

本発明の誘電体薄膜の誘電特性測定方法における空洞共振器の構造としては、例えば、共振周波数が35GHzにおいて測定を行う場合、空洞共振器の直径は、10mmから13mm程度であり、高さは5mmから10mm程度のものが使用される。なお、図1に示すように、有底筒状導体はフランジを有するのが好ましい。   As a structure of the cavity resonator in the dielectric characteristic measuring method of the dielectric thin film of the present invention, for example, when measurement is performed at a resonance frequency of 35 GHz, the diameter of the cavity resonator is about 10 mm to 13 mm and the height is 5 mm. To about 10 mm is used. In addition, as shown in FIG. 1, it is preferable that a bottomed cylindrical conductor has a flange.

誘電体基板の材質としては、サファイア、MgO、Si等が使用される。また、誘電体基板の厚みは、その比誘電率と測定周波数により決定され、その直径は、空洞の直径よりも1.5倍程度以上に大きく形成される。例えば、誘電体基板としてサファイアを用いた場合、共振周波数が35GHzにおいて厚みは、0.5mmから1.0mm程度が必要となる。   As the material of the dielectric substrate, sapphire, MgO, Si or the like is used. Further, the thickness of the dielectric substrate is determined by the relative dielectric constant and the measurement frequency, and the diameter is formed to be about 1.5 times larger than the diameter of the cavity. For example, when sapphire is used as the dielectric substrate, a thickness of about 0.5 mm to 1.0 mm is required at a resonance frequency of 35 GHz.

また、誘電特性を測定される誘電体薄膜としては、例えば(BaSr)TiO、BaTiO、SrTiO等が挙げられ、この誘電体薄膜の厚みは、0.01μmから10μm程度のものが対象となる。なお、前記誘電体薄膜の比誘電率が前記誘電体基板の比誘電率よりも大きいのが好ましい。このようにすることにより、全蓄積エネルギーに対する誘電体薄膜の蓄積エネルギーの割合を大きくすることができ、測定精度の向上が図れるからである。 Examples of the dielectric thin film whose dielectric characteristics are measured include (BaSr) TiO 3 , BaTiO 3 , SrTiO 3 and the like. The thickness of this dielectric thin film is about 0.01 μm to 10 μm. Become. It is preferable that the dielectric thin film has a relative dielectric constant larger than that of the dielectric substrate. By doing so, the ratio of the stored energy of the dielectric thin film to the total stored energy can be increased, and the measurement accuracy can be improved.

本発明の誘電体薄膜の誘電特性測定方法においては、空洞共振器の温度を変化させながら行うことで、共振周波数および無負荷Qの温度依存性を測定し、誘電体薄膜の誘電特性の温度依存性を求めることもできる。   In the method for measuring dielectric properties of a dielectric thin film according to the present invention, the temperature dependence of the resonance frequency and no load Q is measured by changing the temperature of the cavity resonator, and the temperature dependence of the dielectric properties of the dielectric thin film is measured. Sex can also be sought.

図1に示すような空洞共振器として設計した空洞共振器(直径11.876mm、高さ6.56mm)の共振周波数の計算結果は、基板を挿入していない状態で、38.38GHzである。この空洞共振器に設置されたサファイア基板(厚み0.7mm、比誘電率9.4)上に蒸着された1μmの誘電体薄膜の比誘電率を測定する場合を想定したチャートをモード整合法により計算した。この結果を図3に示す。   The calculation result of the resonance frequency of the cavity resonator (diameter 11.8676 mm, height 6.56 mm) designed as a cavity resonator as shown in FIG. 1 is 38.38 GHz without a substrate inserted. A chart assuming the case of measuring the relative dielectric constant of a 1 μm dielectric thin film deposited on a sapphire substrate (thickness 0.7 mm, relative dielectric constant 9.4) installed in this cavity resonator is obtained by a mode matching method. Calculated. The result is shown in FIG.

図3には、周波数と比誘電率は一対一の対応となっており、周波数を測定することで比誘電率が求まることが示されている。また、比誘電率の変化に対する周波数の変化は十分大きいため、比誘電率の高精度な測定が可能であることがわかる。   FIG. 3 shows that there is a one-to-one correspondence between the frequency and the relative permittivity, and the relative permittivity can be obtained by measuring the frequency. It can also be seen that the change in frequency with respect to the change in relative permittivity is sufficiently large, so that the relative permittivity can be measured with high accuracy.

本発明の誘電特性測定方法の一例として用いられる空洞共振器の縦断面図である。It is a longitudinal cross-sectional view of the cavity resonator used as an example of the dielectric property measuring method of this invention. 本発明の誘電特性測定方法の他の例の説明図である。It is explanatory drawing of the other example of the dielectric property measuring method of this invention. 本発明の空洞共振器構造による共振周波数に対する誘電体薄膜の比誘電率の計算結果の一例である。It is an example of the calculation result of the dielectric constant of the dielectric thin film with respect to the resonant frequency by the cavity resonator structure of this invention. 従来の上面に誘電体薄膜を形成した誘電体基板を中央に配置した空洞共振器の縦断面図である。It is the longitudinal cross-sectional view of the cavity resonator which has arrange | positioned the dielectric substrate which formed the dielectric thin film in the conventional upper surface in the center.

符号の説明Explanation of symbols

1・・・誘電体薄膜
2・・・誘電体基板
3・・・有底筒状導体
31・・・開口部
4a、4b・・・同軸ケーブル
5a、5b・・・ループアンテナ
6・・・導体板
DESCRIPTION OF SYMBOLS 1 ... Dielectric thin film 2 ... Dielectric substrate 3 ... Bottomed cylindrical conductor 31 ... Opening part 4a, 4b ... Coaxial cable 5a, 5b ... Loop antenna 6 ... Conductor Board

Claims (6)

主面に誘電体薄膜を形成してなる誘電体基板を前記誘電体薄膜が上側を向くように導体板の上に載置し、開口部を有する有底筒状導体を前記誘電体薄膜に前記開口部が当接するように配置して空洞共振器を構成した後、該空洞共振器のTEモードの共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記誘電体薄膜の誘電特性を求める工程を含むことを特徴とする誘電体薄膜の誘電特性測定方法。 A dielectric substrate formed by forming a dielectric thin film on a main surface is placed on a conductor plate so that the dielectric thin film faces upward, and a bottomed cylindrical conductor having an opening is formed on the dielectric thin film. After the cavity resonator is configured so that the opening is in contact, the TE-mode resonance frequency and no-load Q of the cavity resonator are measured, and from the resonance frequency and the no-load Q, the dielectric thin film is measured. A method for measuring a dielectric property of a dielectric thin film, comprising a step of obtaining a dielectric property. 前記導体板の上に第2の誘電体基板を載置するとともに、前記開口部が前記第2の誘電体基板に当接するように前記有底筒状導体を配置して空洞共振器を構成し、該空洞共振器のTEモードの共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記第2の誘電体基板の誘電特性を求める工程を含むことを特徴とする請求項1記載の誘電体薄膜の誘電特性測定方法。 A second dielectric substrate is placed on the conductor plate, and the bottomed cylindrical conductor is disposed so that the opening is in contact with the second dielectric substrate to form a cavity resonator. And measuring the TE-mode resonance frequency and no-load Q of the cavity resonator, and determining the dielectric characteristics of the second dielectric substrate from the resonance frequency and the no-load Q. 2. A dielectric property measurement method for a dielectric thin film according to 1. 前記誘電体基板を前記誘電体薄膜が下側を向くように前記導体板の上に載置し、前記有底筒状導体の前記開口部が前記誘電体基板に当接するように配置して空洞共振器を構成した後、該空洞共振器のTEモードの共振周波数および無負荷Qを測定し、前記共振周波数および前記無負荷Qから前記誘電体基板の誘電特性を求める工程を含む請求項1に記載の誘電体薄膜の誘電特性測定方法。 The dielectric substrate is placed on the conductor plate such that the dielectric thin film faces downward, and the opening of the bottomed cylindrical conductor is disposed so as to abut against the dielectric substrate. The method of claim 1, further comprising: measuring a TE-mode resonance frequency and no-load Q of the cavity resonator after the resonator is configured, and obtaining a dielectric characteristic of the dielectric substrate from the resonance frequency and the no-load Q. The dielectric property measuring method of the dielectric thin film as described. 前記誘電体薄膜の比誘電率が前記誘電体基板の比誘電率よりも大きいことを特徴とする請求項1乃至請求項3のいずれかに記載の誘電体薄膜の誘電特性測定方法。 4. The dielectric thin film dielectric property measuring method according to claim 1, wherein a relative dielectric constant of the dielectric thin film is larger than a relative dielectric constant of the dielectric substrate. 前記誘電体薄膜の厚さが10μm以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の誘電体薄膜の誘電特性測定方法。 The method for measuring dielectric properties of a dielectric thin film according to any one of claims 1 to 4, wherein the thickness of the dielectric thin film is 10 µm or less. 前記TEモードがTE011モードであることを特徴とする請求項1乃至請求項5のいずれかに記載の誘電体薄膜の誘電特性測定方法。 6. The method for measuring dielectric properties of a dielectric thin film according to claim 1, wherein the TE mode is a TE 011 mode.
JP2005126110A 2005-04-25 2005-04-25 Method for measuring dielectric properties of dielectric thin films Expired - Fee Related JP4530907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126110A JP4530907B2 (en) 2005-04-25 2005-04-25 Method for measuring dielectric properties of dielectric thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126110A JP4530907B2 (en) 2005-04-25 2005-04-25 Method for measuring dielectric properties of dielectric thin films

Publications (2)

Publication Number Publication Date
JP2006300856A true JP2006300856A (en) 2006-11-02
JP4530907B2 JP4530907B2 (en) 2010-08-25

Family

ID=37469306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126110A Expired - Fee Related JP4530907B2 (en) 2005-04-25 2005-04-25 Method for measuring dielectric properties of dielectric thin films

Country Status (1)

Country Link
JP (1) JP4530907B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058852A (en) * 2009-09-07 2011-03-24 Nippon Telegr & Teleph Corp <Ntt> Method for evaluating thin film
JP2011232153A (en) * 2010-04-27 2011-11-17 Kyocera Corp Thickness measuring method
JP2011232152A (en) * 2010-04-27 2011-11-17 Kyocera Corp Thickness measuring method
CN112763817A (en) * 2020-12-17 2021-05-07 中国工程物理研究院应用电子学研究所 High-power millimeter wave output window testing and aging device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370370U (en) * 1989-11-08 1991-07-15
JPH07225200A (en) * 1993-12-08 1995-08-22 Nu Tech Gmbh Method and equipment for measuring complex permittivity of substance
JP2002228600A (en) * 2001-01-30 2002-08-14 Kyocera Corp Dielectric constant measurement method
JP2003130903A (en) * 2001-10-29 2003-05-08 Kyocera Corp Method of measuring dielectric constant
JP2004294124A (en) * 2003-03-25 2004-10-21 Kyocera Corp Electrical physical property value measurement method and measuring tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370370U (en) * 1989-11-08 1991-07-15
JPH07225200A (en) * 1993-12-08 1995-08-22 Nu Tech Gmbh Method and equipment for measuring complex permittivity of substance
JP2002228600A (en) * 2001-01-30 2002-08-14 Kyocera Corp Dielectric constant measurement method
JP2003130903A (en) * 2001-10-29 2003-05-08 Kyocera Corp Method of measuring dielectric constant
JP2004294124A (en) * 2003-03-25 2004-10-21 Kyocera Corp Electrical physical property value measurement method and measuring tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058852A (en) * 2009-09-07 2011-03-24 Nippon Telegr & Teleph Corp <Ntt> Method for evaluating thin film
JP2011232153A (en) * 2010-04-27 2011-11-17 Kyocera Corp Thickness measuring method
JP2011232152A (en) * 2010-04-27 2011-11-17 Kyocera Corp Thickness measuring method
CN112763817A (en) * 2020-12-17 2021-05-07 中国工程物理研究院应用电子学研究所 High-power millimeter wave output window testing and aging device and method

Also Published As

Publication number Publication date
JP4530907B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
EP3198263B1 (en) A biosensor with integrated antenna and measurement method for biosensing applications
US11079339B2 (en) Biosensor with integrated antenna and measurement method for biosensing applications
JP4628116B2 (en) Conductivity measurement method
JP4530907B2 (en) Method for measuring dielectric properties of dielectric thin films
JP4726395B2 (en) Electrical property value measurement method
JP4518680B2 (en) Dielectric constant measurement method
JP4436724B2 (en) Dielectric constant measurement method and coaxial resonator
JP4035024B2 (en) Dielectric constant measurement method
JP6301739B2 (en) Dielectric property measurement method
JP4373902B2 (en) Method for measuring electromagnetic properties
JP4485985B2 (en) Dielectric property measuring method and conductivity measuring method
JP4530951B2 (en) Dielectric constant measurement method and open-ended half-wavelength coplanar line resonator
JP4157387B2 (en) Electrical property measurement method
JP4467418B2 (en) Dielectric constant measurement method
JP4698244B2 (en) Method for measuring electromagnetic properties
JP3825299B2 (en) Dielectric constant measurement method
JP5451509B2 (en) Thickness measurement method
JP4423180B2 (en) Electromagnetic property measurement method
JP4776382B2 (en) Dielectric constant measurement method
JP4216739B2 (en) Electrical property value measuring method and measuring jig
JP2004177234A (en) Dielectric constant measuring method
JP4373857B2 (en) Electrical property measurement method
Shimizu et al. High precision measurement method for dielectric film materials by a novel V band cavity resonator
JP4417736B2 (en) Method for measuring electrical property value of dielectric substrate and jig for measurement
Tiwari et al. CSRR loaded SIW Structure based Novel Dielectric Sensing Methodology for mm-wave 5G Communication Band

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees