JP2006300730A - Apparatus for measuring burial depth - Google Patents

Apparatus for measuring burial depth Download PDF

Info

Publication number
JP2006300730A
JP2006300730A JP2005122805A JP2005122805A JP2006300730A JP 2006300730 A JP2006300730 A JP 2006300730A JP 2005122805 A JP2005122805 A JP 2005122805A JP 2005122805 A JP2005122805 A JP 2005122805A JP 2006300730 A JP2006300730 A JP 2006300730A
Authority
JP
Japan
Prior art keywords
transmission
unit
reception
transmitting
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005122805A
Other languages
Japanese (ja)
Other versions
JP4461299B2 (en
Inventor
Haruyuki Obara
治之 小原
Fujio Oka
富士男 岡
Mikiya Ando
幹也 安藤
Wataru Akagi
渉 赤木
Masaki Nishioka
昌樹 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
West Nippon Expressway Co Ltd
Central Nippon Expressway Co Ltd
East Nippon Expressway Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
West Nippon Expressway Co Ltd
Central Nippon Expressway Co Ltd
East Nippon Expressway Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, West Nippon Expressway Co Ltd, Central Nippon Expressway Co Ltd, East Nippon Expressway Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005122805A priority Critical patent/JP4461299B2/en
Publication of JP2006300730A publication Critical patent/JP2006300730A/en
Application granted granted Critical
Publication of JP4461299B2 publication Critical patent/JP4461299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring a burial depth which can avoid a waste of time in operations. <P>SOLUTION: The apparatus 10 comprises a first transmitting/receiving unit 26 and a second transmitting/receiving unit 30. These transmitting/receiving units have a coincide center and comprise transmitting antennas 28A, 32A and receiving antennas 28B, 32B, respectively. The spacing between the second transmitting antenna 32A and the second receiving antenna 32B differs from the spacing between the first transmitting antenna 28A and the first receiving antenna 28B. The first transmitting/receiving unit 26 and the second transmitting/receiving unit 30 move integrally by a unit support section 34. The first transmitting/receiving unit 26 and the second transmitting/receiving unit 30 are switched by a switching section 42 to perform transmission and reception. A signal processing section 50 of an arithmetic and control section 20 determines a reflected wave on the basis of the output signal of each receiving section and outputs it to an operation section 52. The operation section 52, on the basis of the signal of the reflected wave determined by the signal processing section 50, determines the covering depth of a reinforcing rod 18 and the propagation velocity of radio waves in a concrete structure 12 and displays them on a display section 22. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、埋設深さ測定装置に係り、特に、コンクリート構造物の鉄筋のかぶり深さを非破壊検査により効率的に測定することができる埋設深さ測定装置に関する。   The present invention relates to an embedding depth measuring device, and more particularly to an embedding depth measuring device capable of efficiently measuring the cover depth of a reinforcing bar of a concrete structure by nondestructive inspection.

従来、コンクリート構造物の鉄筋かぶり深さなど、埋設物の埋設深さを非破壊で測定する方法として、電磁波レーダ法や超音波法、電磁誘導法、X線透過撮影法などが知られている。   Conventionally, the electromagnetic radar method, the ultrasonic method, the electromagnetic induction method, the X-ray transmission photography method, etc. are known as methods for measuring the embedment depth of a buried object such as the reinforcing steel cover depth of a concrete structure in a non-destructive manner. .

第1の電磁波レーダ法は、コンクリート中に放射した電磁波が鉄筋から反射して戻ってくるまでの時間から、かぶり深さを測定する方法であるが、かぶり深さを精度良く測定するためには、コンクリート中での電波の伝播速度を別の方法で測定または推定する必要がある。電磁波の伝播速度の推定は、以下に示す反射パターンを利用する方法が一般的に用いられる。すなわち、送受信アンテナが一体のレーダを走査させた際、鉄筋からの反射映像である三日月状の反射パターンが得られるが、この反射パターンの形状(広がり状態)が伝播速度に依存していることを利用し、伝播速度を推定するものである。しかし、この反射パターンは、鉄筋径にも依存していることから、鉄筋径に推定誤差を含む場合、かぶり深さの測定値にも誤差を生じる欠点がある。   The first electromagnetic wave radar method is a method of measuring the cover depth from the time until the electromagnetic wave radiated into the concrete is reflected from the reinforcing bar and returns, but in order to accurately measure the cover depth It is necessary to measure or estimate the propagation speed of radio waves in concrete by another method. For estimating the propagation speed of electromagnetic waves, a method using a reflection pattern shown below is generally used. In other words, when the transmission / reception antenna scans the integrated radar, a crescent-shaped reflection pattern, which is a reflection image from the reinforcing bar, is obtained. The shape (spread state) of this reflection pattern depends on the propagation speed. It is used to estimate the propagation speed. However, since this reflection pattern also depends on the diameter of the reinforcing bar, when the estimation error is included in the reinforcing bar diameter, there is a drawback that an error is also caused in the measurement value of the cover depth.

また、第2の超音波法は、コンクリート中に放射した弾性波が、鉄筋から反射して戻ってくるまでの時間からかぶり深さを測定する方法である。一般に、コンクリート中では超音波の減衰が大きいことから、送信パルスとして20KHz〜200KHz程度の周波数帯を利用している場合が多い。しかし、数10KHz帯の送信パルスの場合は、波長が10cm以上と長くなるためにかぶり深さを精度良く測定することができない。また、100KHz以上の送信パルスの場合は、コンクリート表面での音響インピーダンスの不整合が大きくバースト状の送信パルスとなるため、反射波形から伝播時間を精度良く評価することが難しく、やはりかぶり深さの充分な測定精度が得られない。しかも、「電磁波レーダ法」と同様に、超音波の伝播速度を何らかの方法で測定あるいは推定する必要もある。   The second ultrasonic method is a method of measuring the depth of cover from the time until the elastic wave radiated into the concrete is reflected from the reinforcing bar and returned. In general, since the attenuation of ultrasonic waves is large in concrete, a frequency band of about 20 KHz to 200 KHz is often used as a transmission pulse. However, in the case of a transmission pulse of several tens KHz band, since the wavelength is as long as 10 cm or more, the fog depth cannot be accurately measured. In the case of a transmission pulse of 100 KHz or more, since the mismatch of acoustic impedance on the concrete surface is large and it becomes a burst-like transmission pulse, it is difficult to accurately evaluate the propagation time from the reflected waveform. Sufficient measurement accuracy cannot be obtained. In addition, as in the “electromagnetic wave radar method”, it is necessary to measure or estimate the propagation speed of the ultrasonic wave by some method.

第3の電磁誘導法は次のような方法である。すなわち、コイルに交流電流を流すと交流磁場が生じる。これに鉄筋が近付いた際、電磁誘導現象で生じる磁場変化(電流変化)を測定することで、鉄筋のかぶり深さを測定する方法である。一般的に、鉄筋径が既知の場合にかぶり深さを測定する装置は存在するようである。しかし、鉄筋径が未知の場合は、鉄筋までの距離を変化させるなどして測定データ数を増やし、鉄筋径とかぶり深さとの双方を推定する必要が生じ、かぶり深さの充分な測定精度が得られなくなる欠点がある。   The third electromagnetic induction method is as follows. That is, when an alternating current is passed through the coil, an alternating magnetic field is generated. This is a method of measuring the cover depth of the reinforcing bar by measuring the magnetic field change (current change) caused by the electromagnetic induction phenomenon when the reinforcing bar approaches. In general, there appears to be a device for measuring the cover depth when the rebar diameter is known. However, if the rebar diameter is unknown, it is necessary to increase the number of measurement data by changing the distance to the rebar, etc., and it is necessary to estimate both the rebar diameter and the cover depth. There is a disadvantage that cannot be obtained.

さらに、X線透過撮影法は、X線源を移動させて複数の方向から対象物を撮像し、得られた透過映像を元に幾何学的関係から鉄筋のかぶり深さを計測する方法である。トモグラフィー計測のように対象物を空間的に取り囲むようにX線源を走査できる場合には、かぶり深さを精度良く測定することができる。しかし、壁面のように平面的にしか線源を走査できない場合は、走査方向である水平方向の分解能は高まるものの、走査方向と直交するかぶり深さ方向の分解能は高くならない。   Furthermore, the X-ray transmission imaging method is a method of measuring an object depth from a plurality of directions by moving an X-ray source, and measuring the depth of rebar cover from a geometric relationship based on the obtained transmission images. . When the X-ray source can be scanned so as to spatially surround the object as in tomography measurement, the fog depth can be measured with high accuracy. However, when the source can be scanned only in a plane like a wall surface, the resolution in the horizontal direction, which is the scanning direction, is increased, but the resolution in the fog depth direction orthogonal to the scanning direction is not increased.

そこで、本願出願人は、送信アンテナに対して距離を異ならせて2つの受信アンテナを配置し、これら2つの受信アンテナが受信した反射波に基づいて、鉄筋コンクリート中における電磁波の伝播速度を推定することなく鉄筋のかぶり深さを測定できる装置を開発した(特許文献1)。
特開2004−132744号公報
Therefore, the applicant of the present invention arranges two receiving antennas at different distances from the transmitting antenna, and estimates the propagation speed of the electromagnetic wave in the reinforced concrete based on the reflected waves received by these two receiving antennas. And developed a device that can measure the depth of cover of the reinforcing bars (Patent Document 1).
JP 2004-132744 A

しかし、特許文献1に記載の装置は、1つの送信アンテナが送信した電波を配置距離の異なる2つの受信アンテナによって受信するため、送信アンテナと2つの受信アンテナとを一体に移動させて走査させたとしても、2つの受信アンテナ間における実質的な走査(移動)距離が異なり、別々の演算処理を必要とし、演算が2度手間となる。また、2つの受信アンテナの受信した反射波に基づく画像を同一の画面において上下に表示した場合に、実質的な走査距離が異なるため、同一の鉄筋からの反射波に基づく像の位置が走査方向において異なる位置に表示される。このため、同一の鉄筋からの反射波による2つの像を上下に配置して表示した場合に、測定者が異なったものであると勘違いしやすく、また鉄筋が比較的密に配置されている場合や、鉄筋の近くに電磁波の反射体が存在する場合、2つの受信アンテナが受信した反射波による像が同一の鉄筋によるものであるか否かの判別が困難になることがある。   However, since the apparatus described in Patent Document 1 receives radio waves transmitted by one transmission antenna by two reception antennas having different arrangement distances, the transmission antenna and the two reception antennas are moved together to scan. Even so, the substantial scanning (movement) distance between the two receiving antennas is different, requiring separate calculation processing, and the calculation is troublesome twice. Also, when the images based on the reflected waves received by the two receiving antennas are displayed up and down on the same screen, the effective scanning distance differs, so the position of the image based on the reflected waves from the same reinforcing bar is the scanning direction. Are displayed at different positions. For this reason, when two images of reflected waves from the same reinforcing bar are arranged vertically and displayed, it is easy to misunderstand that the measurer is different, and the reinforcing bars are arranged relatively densely In addition, when there is an electromagnetic wave reflector near the reinforcing bars, it may be difficult to determine whether the images of the reflected waves received by the two receiving antennas are due to the same reinforcing bars.

本発明は、前記従来技術の欠点を解消するためになされたもので、演算の2度手間を避けられるようにすることを目的としている。   The present invention has been made in order to eliminate the above-mentioned drawbacks of the prior art, and aims to avoid the trouble of twice the calculation.

また、本発明は、2つの受信アンテナが受信した同一の埋設物からの反射波による像を、同じ走査距離の位置に表示できるようにすることなどを目的としている。   Another object of the present invention is to make it possible to display images of reflected waves from the same embedded object received by two receiving antennas at the same scanning distance.

上記の目的を達成するために、本発明に係る埋設深さ測定装置は、送信波を送信する第1送信部と反射波を受信する第1受信部とからなる第1送受信ユニットと、送信波を送信する第2送信部と反射波を受信する第2受信部とからなり、前記第2送信部と前記第2受信部との間隔が前記第1送信部と前記第1受信部との間隔と異なり、中心を前記第1送受信ユニットの中心と一致させた第2送受信ユニットと、前記第1送受信ユニットと前記第2送受信ユニットとを一体に移動させるユニット支持部と、前記第1送受信ユニットと前記第2送受信ユニットとを切り替えて送受信を行なわせる切替え部と、前記各受信部の出力信号に基づいて、前記各送信部の送信した送信波に対応する前記受信部の受信した反射波を求める信号処理部と、前記信号処理部が求めた前記各受信部が受信した反射波の強さに基づいて、埋設物の深さおよび検査媒体中の前記送信波の伝播速度を求める演算部と、前記演算部の演算結果を表示する表示部と、を有することを特徴としている。   In order to achieve the above object, an embedded depth measuring apparatus according to the present invention includes a first transmission / reception unit including a first transmission unit that transmits a transmission wave and a first reception unit that receives a reflection wave, and a transmission wave. And a second receiving unit that receives the reflected wave, and an interval between the second transmitting unit and the second receiving unit is an interval between the first transmitting unit and the first receiving unit. Unlike the second transmission / reception unit whose center coincides with the center of the first transmission / reception unit, a unit support unit that moves the first transmission / reception unit and the second transmission / reception unit together, and the first transmission / reception unit; Based on the output signal of each receiver, the reflected wave received by the receiver corresponding to the transmitted wave transmitted by each transmitter is obtained based on the output signal of each receiver. A signal processing unit; Based on the intensity of the reflected wave received by each receiving unit obtained by the signal processing unit, a computing unit for obtaining the depth of the embedded object and the propagation speed of the transmitted wave in the inspection medium, and the computation result of the computing unit And a display unit for displaying

前記演算部は、前記第1送信部が送信した前記送信波の反射波を受信して前記第1受信部が出力する信号列と、前記第2送信部が送信した前記送信波の反射波を受信して前記第2受信部が出力する信号列とに基づいて、埋設物頂部のかぶり深さを求めるようにできる。   The calculation unit receives a reflected wave of the transmission wave transmitted from the first transmission unit and outputs a signal sequence output from the first reception unit, and a reflected wave of the transmission wave transmitted from the second transmission unit. The cover depth at the top of the embedded object can be obtained based on the signal sequence received and output from the second receiver.

このようになっている本発明は、送信部と受信部とからなる中心を一致させた送受信ユニットを複数組、例えば2組設け、これらを一体に移動させて走査することにより、各送受信ユニットの走査距離を同じにすることができる。したがって、各送受信ユニットにおいて受信した反射波に基づく埋設物の深さを求める演算を簡素に行なうことができる。また、各送受信ユニットから得られた反射波による像を上下方向に並べて表示した場合に、同じ埋設物からの反射波による像を、同じ走査距離の位置に表示することができ、測定者の判断を容易にし、複数の埋設物が近接して存在している場合であっても、個々の埋設物を容易に判別、認識することができる。また、埋設物頂部のかぶり深さを求めるようにすると、例えばコンクリート構造物の寿命を左右する鉄筋のかぶり深さを容易に求めることができる。   The present invention thus configured is provided with a plurality of, for example, two sets of transmission / reception units, each of which includes a transmission unit and a reception unit, and by moving these together to scan each transmission / reception unit. The scanning distance can be the same. Therefore, the calculation which calculates | requires the depth of the embedded object based on the reflected wave received in each transmission / reception unit can be performed simply. In addition, when images of reflected waves obtained from each transmission / reception unit are displayed side by side in the vertical direction, images of reflected waves from the same embedded object can be displayed at the same scanning distance, and the judgment of the measurer Even if there are a plurality of buried objects in close proximity, each buried object can be easily identified and recognized. Further, when the cover depth at the top of the buried object is obtained, for example, the cover depth of the reinforcing bar that affects the life of the concrete structure can be easily obtained.

本発明に係る埋設深さ測定装置の好ましい実施の形態を、添付図面に従って詳細に説明する。なお、以下の実施形態においては、コンクリート構造物の鉄筋のかぶり深さの測定を例にして説明する。   A preferred embodiment of an embedding depth measuring apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In the following embodiments, the measurement of the depth of rebar covering of a concrete structure will be described as an example.

図1は、本発明の実施の形態に係る埋設深さ測定装置の説明図である。この深さ測定装置10は、コンクリート構造物12の表面を走査させる送受信部14と、送受信部14に送信波を供給すると共に、反射波を受信するレーダ回路部16と、レーダ回路部16を制御するとともに、反射波に基づいて鉄筋(埋設物)18の深さ、すなわちかぶり深さを求める演算制御部20と、演算制御部20の求めた埋設深さを表示する表示部22とを有している。   FIG. 1 is an explanatory diagram of an embedded depth measuring apparatus according to an embodiment of the present invention. The depth measuring apparatus 10 controls the radar circuit unit 16 and the transmission / reception unit 14 that scans the surface of the concrete structure 12, the transmission circuit 14 is supplied with a transmission wave, and the reflected wave is received. In addition, an arithmetic control unit 20 that obtains the depth of the reinforcing bar (embedded object) 18 based on the reflected wave, that is, a cover depth, and a display unit 22 that displays the embedding depth obtained by the arithmetic control unit 20 are provided. ing.

前記送受信部14は、2組の送受信ユニットから構成してあり、4素子のアンテナが矢印によって示した走査方向24に沿って直線状に配設してある。すなわち、送受信部14は、走査方向24に沿った中央部に、第1送受信ユニット26が配置してある。第1送受信ユニット26は、第1送信部である第1送信アンテナ28Aと、第1受信部である第1受信アンテナ28Bとからなり、これらが相互に接するように近接配置してある。   The transmission / reception unit 14 includes two sets of transmission / reception units, and four-element antennas are arranged linearly along a scanning direction 24 indicated by arrows. That is, in the transmission / reception unit 14, the first transmission / reception unit 26 is arranged at the center along the scanning direction 24. The first transmission / reception unit 26 includes a first transmission antenna 28A that is a first transmission unit and a first reception antenna 28B that is a first reception unit, which are arranged close to each other so as to be in contact with each other.

一方、第2送受信ユニット30は、第2送信部である第2送信アンテナ32Aと第2受信部である第2受信アンテナ32Bとからなっていて、第1送受信ユニット26を挟むように構成してある。すなわち、第2送受信ユニット30は、第2送信アンテナ32Aが図1において第1送信アンテナ28Aの左側に、第2受信アンテナ32Bが第1受信アンテナ28Bの右側に配置してある。そして、実施形態の場合、第2送信アンテナ32Aと第1送信アンテナ28Aとの距離と、第1受信アンテナ28Bと第2受信アンテナ32Bとの距離が等しくなっている。このため、第1送受信ユニット26と第2送受信ユニット30との中心が一致している。   On the other hand, the second transmission / reception unit 30 includes a second transmission antenna 32A as a second transmission unit and a second reception antenna 32B as a second reception unit, and is configured to sandwich the first transmission / reception unit 26. is there. That is, in the second transmitting / receiving unit 30, the second transmitting antenna 32A is disposed on the left side of the first transmitting antenna 28A in FIG. 1, and the second receiving antenna 32B is disposed on the right side of the first receiving antenna 28B. In the case of the embodiment, the distance between the second transmission antenna 32A and the first transmission antenna 28A is equal to the distance between the first reception antenna 28B and the second reception antenna 32B. For this reason, the center of the 1st transmission / reception unit 26 and the 2nd transmission / reception unit 30 corresponds.

これらの第1送受信ユニット26と第2送受信ユニット30とは、走行台車からなるユニット支持部34に取り付けてある。ユニット支持部34は、距離センサ36が設けてある。距離センサ36は、送受信部14を図示しない基準点から走査線に沿って走行させた距離を検出し、演算制御部20に入力する。   The first transmission / reception unit 26 and the second transmission / reception unit 30 are attached to a unit support portion 34 formed of a traveling carriage. The unit support 34 is provided with a distance sensor 36. The distance sensor 36 detects the distance traveled along the scanning line from a reference point (not shown) by the transmitter / receiver 14 and inputs the detected distance to the arithmetic control unit 20.

レーダ回路部16には、図1に示しているように、送信機38、受信機40、切替え部42が設けてある。切替え部42は、一対のアンテナ切替え器44、46から構成してある。一方のアンテナ切替え器44は、第1送信アンテナ28A、第2送信アンテナ32Aと送信機38との間に設けてあり、第1送信アンテナ28Aと第2送信アンテナ32Aとを切り替えて送信機38に接続する。他方のアンテナ切替え器46は、受信機40と第1受信アンテナ28B、第2受信アンテナ32Bとの間に設けてあり、第1受信アンテナ28Bと第2受信アンテナ32Bとを切り替えて受信機40に接続する。送信機38は、電波からなる送信波を生成してアンテナ切替え器44を介して送信アンテナ28A、32Aに供給する。受信機40は、受信アンテナ28B、32Bで受信した鉄筋18からの反射波(エコー)を復調する。   As shown in FIG. 1, the radar circuit unit 16 includes a transmitter 38, a receiver 40, and a switching unit 42. The switching unit 42 includes a pair of antenna switchers 44 and 46. One antenna switch 44 is provided between the first transmission antenna 28A and the second transmission antenna 32A and the transmitter 38, and switches the first transmission antenna 28A and the second transmission antenna 32A to the transmitter 38. Connecting. The other antenna switching unit 46 is provided between the receiver 40 and the first receiving antenna 28B and the second receiving antenna 32B, and switches the first receiving antenna 28B and the second receiving antenna 32B to the receiver 40. Connecting. The transmitter 38 generates a transmission wave composed of radio waves and supplies it to the transmission antennas 28A and 32A via the antenna switch 44. The receiver 40 demodulates the reflected wave (echo) from the reinforcing bar 18 received by the receiving antennas 28B and 32B.

演算制御部20は、レーダ制御部48、信号処理部50、演算部52、メモリ54を備えている。レーダ制御部48は、所定時間ごとに送信機38を駆動して送信波を出力させるとともに、切替え部42を切り替え制御して、第1送信アンテナ28Aと第2送信アンテナ32Aとを切り替えて送信機38に接続するとともに、これに同期して第1受信アンテナ28Bと第2受信アンテナ32Bとを切り替えて受信機40に接続する。このレーダ制御部48が出力する送信機38の駆動信号、切替え部42の切替え制御信号は、信号処理部50にも与えられる。   The calculation control unit 20 includes a radar control unit 48, a signal processing unit 50, a calculation unit 52, and a memory 54. The radar control unit 48 drives the transmitter 38 every predetermined time to output a transmission wave, and controls the switching unit 42 to switch between the first transmission antenna 28A and the second transmission antenna 32A. 38, and the first receiving antenna 28B and the second receiving antenna 32B are switched and connected to the receiver 40 in synchronization therewith. The driving signal for the transmitter 38 output from the radar control unit 48 and the switching control signal for the switching unit 42 are also provided to the signal processing unit 50.

信号処理部50は、受信機40の出力信号に基づいて、反射波の強度に応じた信号を演算部52に入力する。演算部52は、送受信部14に設けた距離センサ36の出力信号が入力するようになっていて、距離センサ36と信号処理部50の出力信号とを対応させてメモリ54に書き込むとともに、詳細を後述するように、鉄筋18からの反射波による像を生成し、また鉄筋18のかぶり深さを演算して表示部22に出力して表示し、メモリ54に書き込む。   The signal processing unit 50 inputs a signal according to the intensity of the reflected wave to the calculation unit 52 based on the output signal of the receiver 40. The calculation unit 52 receives an output signal of the distance sensor 36 provided in the transmission / reception unit 14, writes the distance sensor 36 and the output signal of the signal processing unit 50 in correspondence with each other in the memory 54, and details. As will be described later, an image by a reflected wave from the reinforcing bar 18 is generated, and the depth of covering of the reinforcing bar 18 is calculated, output to the display unit 22, displayed, and written in the memory 54.

このようになっている深さ測定装置10による鉄筋18のかぶり深さの測定は次のように行う。
最初に鉄筋18の水平位置を求める手段について記す。コンクリート構造物12の表面を鉄筋18の軸線と直交させて送受信部14を走査させる。そして、走査線上の各位置におけて、第1送信アンテナ28A、第2送信アンテナ32Aを切り替えて送信機38に接続し、これに同期して第1受信アンテナ28B、第2受信アンテナ32Bを切り替えて受信機40に接続し、第1受信アンテナ28Bと第2受信アンテナ32Bとの受信データを、演算制御部20の信号処理部50において連続的に収集し、演算部52に送出する。演算部52は、信号処理部50の出力する受信データを距離センサ36の出力する走査基点からの走査距離信号とともにメモリ54に書き込む。さらに、演算部52は、信号処理部50と距離センサ36とから入力したデータに基づいて、コンクリート構造物12のBモードの像(垂直断面像)を生成し、表示部22に表示するとともに、メモリ54に書き込む。
Measurement of the depth of cover of the reinforcing bar 18 by the depth measuring apparatus 10 thus configured is performed as follows.
First, a means for obtaining the horizontal position of the reinforcing bar 18 will be described. The transmission / reception unit 14 is scanned with the surface of the concrete structure 12 orthogonal to the axis of the reinforcing bar 18. Then, at each position on the scanning line, the first transmitting antenna 28A and the second transmitting antenna 32A are switched and connected to the transmitter 38, and the first receiving antenna 28B and the second receiving antenna 32B are switched in synchronization therewith. The reception data of the first reception antenna 28B and the second reception antenna 32B is continuously collected by the signal processing unit 50 of the calculation control unit 20 and sent to the calculation unit 52. The calculation unit 52 writes the reception data output from the signal processing unit 50 in the memory 54 together with the scanning distance signal from the scanning base point output from the distance sensor 36. Further, the calculation unit 52 generates a B-mode image (vertical cross-sectional image) of the concrete structure 12 based on the data input from the signal processing unit 50 and the distance sensor 36 and displays the image on the display unit 22. Write to memory 54.

第1受信アンテナ28Bの受信した鉄筋18からの反射波によるBモードの像は、図2に示すように、三日月状(逆双曲線パターン)の反射像56として表示される。同様に、第2受信アンテナ32Bの受信した鉄筋18からの反射波によるBモードの像は、図3に示すように、三日月状の反射像58として表示される。表示部22は、実施形態の場合、第1送受信ユニット26により得られた反射像56と、第2送受信ユニット30により得られた反射像58とを上下に並べて表示するようになっている。第1送受信ユニット26の第1受信アンテナ28Bの受信データによる反射像56と、第2送受信ユニット30の第2受信アンテナ32Bの受信データによる反射像58とは、それぞれに対応して送信アンテナ28A、32Aが設けられて一体に移動させられるため、各送信アンテナ28A、32Aの送信波60、62の同一の鉄筋18からの反射像56、58が同じ走行(走査)距離Lxの位置に表示される。   As shown in FIG. 2, the B-mode image of the reflected wave from the reinforcing bar 18 received by the first receiving antenna 28 </ b> B is displayed as a crescent-shaped (inverse hyperbolic pattern) reflected image 56. Similarly, the B-mode image by the reflected wave from the reinforcing bar 18 received by the second receiving antenna 32B is displayed as a crescent-shaped reflected image 58 as shown in FIG. In the embodiment, the display unit 22 displays the reflection image 56 obtained by the first transmission / reception unit 26 and the reflection image 58 obtained by the second transmission / reception unit 30 side by side. The reflected image 56 by the received data of the first receiving antenna 28B of the first transmitting / receiving unit 26 and the reflected image 58 by the received data of the second receiving antenna 32B of the second transmitting / receiving unit 30 correspond to the transmitting antenna 28A, Since 32A is provided and moved together, the reflected images 56 and 58 from the same reinforcing bar 18 of the transmission waves 60 and 62 of the transmission antennas 28A and 32A are displayed at the same traveling (scanning) distance Lx. .

これらの反射像56、58において、鉄筋18の頂部からの反射波64、66が最も浅く表示される。すなわち三日月パターンの頂点位置P(P1、P2)のデータが得られたときが、送信アンテナ、受信アンテナの中間点が鉄筋18の真上となることから、鉄筋18の水平位置が特定できる。これは距離センサ36により走査起点から移動距離(走査距離)をカウントしておくことにより、走査起点からの距離Lxとして算出すればよい。鉄筋18からの反射波の波形データ(Aモード)68は、図4に示したようになる。したがって、演算部52は、鉄筋18の頂部Pからの反射波がアンテナの回り込み波を除けば最大となるので、信号処理部50から入力する反射強度(エコー強度)の受信データを比較することにより、鉄筋頂部Pからの反射時間(送信アンテナが送信波を送信してから受信アンテナが反射を受信するまでの時間)を容易に自動計算することができる。この結果、図5に示したような判定結果の図が得られる。   In these reflected images 56 and 58, the reflected waves 64 and 66 from the top of the reinforcing bar 18 are displayed most shallowly. That is, when the data of the vertex position P (P1, P2) of the crescent moon pattern is obtained, the horizontal point of the reinforcing bar 18 can be specified because the intermediate point of the transmitting antenna and the receiving antenna is directly above the reinforcing bar 18. This may be calculated as the distance Lx from the scanning starting point by counting the moving distance (scanning distance) from the scanning starting point by the distance sensor 36. Waveform data (A mode) 68 of the reflected wave from the reinforcing bar 18 is as shown in FIG. Therefore, since the reflected wave from the top P of the reinforcing bar 18 is maximized except for the sneak wave of the antenna, the calculation unit 52 compares the reception data of the reflection intensity (echo intensity) input from the signal processing unit 50. The reflection time from the rebar top P (the time from when the transmission antenna transmits a transmission wave until the reception antenna receives reflection) can be automatically calculated. As a result, a diagram of the determination result as shown in FIG. 5 is obtained.

演算部52は、上記のようにして第1送受信ユニット26による鉄筋頂部による反射時間2taと、第2送受信ユニット30による鉄筋頂部による反射時間2tbを求めると、次のようにして鉄筋18の頂部Pの深さ(鉄筋かぶり深さ)dが求まる。 When the calculation unit 52 obtains the reflection time 2t a by the top of the reinforcing bar by the first transmission / reception unit 26 and the reflection time 2t b by the top of the reinforcing bar by the second transmission / reception unit 30 as described above, the calculation unit 52 The depth P (rebar cover depth) d of the top portion P is obtained.

第1送受信ユニット26の第1送信アンテナ28Aと第1受信アンテナ28Bとの中心間距離を2xa、第2送受信ユニット30の第2送信アンテナ32Aと第2受信アンテナ32Bとの中心間距離を2xbとする(図2、図3参照)。また、第1送受信ユニット26の中心が鉄筋18の真上にある場合、第1送信アンテナ28Aの中心と鉄筋18の頂部Pとの距離をSaとし、第2送受信ユニット30の中心が鉄筋18の真上にある場合、第2送信アンテナ32Aの中心と鉄筋18の頂部Pとの距離をSbとする。 Center distance of 2x a between the first transmitting antenna 28A and the first receiving antenna 28B of the first transceiver unit 26, second transmission antenna 32A of the second receiving unit 30 and the center-to-center distance between the second receiving antenna 32B 2x b (see FIGS. 2 and 3). When the center of the first transmission / reception unit 26 is directly above the reinforcing bar 18, the distance between the center of the first transmission antenna 28 </ b > A and the top P of the reinforcing bar 18 is Sa, and the center of the second transmission / reception unit 30 is the reinforcing bar 18. If just above the, the distance between the top P of the center of the reinforcing bar 18 of the second transmission antenna 32A and S b.

このとき、送信アンテナが送信した送信波が鉄筋頂部で反射されて受信アンテナで受信されるまでの時間(反射時間)2taとxa、Saとの間、および反射時間2tbとxb、Sbとの間には、コンクリート構造物12中の電波(送信波)の伝播速度をv、鉄筋18の頂部Pの深さをdとした場合、次の数式1、数式2の関係がある。

Figure 2006300730
Figure 2006300730
At this time, the time until the transmission wave transmission antenna is transmitted is received by the receiving antenna is reflected by the reinforcing bar top (reflection time) 2t a and x a, between the S a, and the reflection time 2t b and x b , S b , when the propagation speed of the radio wave (transmission wave) in the concrete structure 12 is v and the depth of the top portion P of the reinforcing bar 18 is d, the following formulas 1 and 2 are related. is there.
Figure 2006300730
Figure 2006300730

電波の伝播速度vは、媒質(コンクリート構造物12)の比誘電率に依存する。しかし、コンクリート構造物12の比誘電率は、コンクリート構造物12を構成している骨材の種類や量、含水量などによって異なるため、一般に知ることができない。そこで、上記の数式1、数式2を連立方程式として解くことにより、深さ(鉄筋かぶり深さ)dを求める。この実施形態においては、図6に示した手順によって深さdの近似値を求めるようにしている。   The propagation speed v of radio waves depends on the relative dielectric constant of the medium (concrete structure 12). However, since the relative dielectric constant of the concrete structure 12 varies depending on the type and amount of aggregate constituting the concrete structure 12, the water content, etc., it cannot be generally known. Therefore, the depth (reinforcement cover depth) d is obtained by solving the above Equations 1 and 2 as simultaneous equations. In this embodiment, an approximate value of the depth d is obtained by the procedure shown in FIG.

まず、数式1において、d=d=0と仮定し、電波のコンクリート構造物12中における仮の伝播速度v´を求める(ステップ100)。すなわち、

Figure 2006300730
Figure 2006300730
を演算する。 First, in Equation 1, it is assumed that d = d 0 = 0, and a temporary propagation velocity v ′ of the radio wave in the concrete structure 12 is obtained (step 100). That is,
Figure 2006300730
Figure 2006300730
Is calculated.

次に、数式4として求めた仮の伝播速度v´を数式2に代入して深さd(=dn)を演算する(ステップ102)。

Figure 2006300730
Figure 2006300730
Figure 2006300730
Next, a temporary propagation velocity v'determined as Equation 4 calculates the assignment to a depth d in the formula 2 (= d n) (step 102).
Figure 2006300730
Figure 2006300730
Figure 2006300730

次に、数式8に示す収束条件を満足しているか否かを判断する(ステップ104)。この場合、dn−1=d=0であり、dnは数式7によって求めた値である。また、δは、深さdをどの程度の精度まで求めるかによって異なり、例えば深さdをmmの精度まで求めたい場合、δ=0.1mmとする。

Figure 2006300730
Next, it is determined whether or not the convergence condition shown in Formula 8 is satisfied (step 104). In this case, d n−1 = d 0 = 0, and d n is a value obtained by Expression 7. Also, δ differs depending on the accuracy to which the depth d is obtained. For example, when it is desired to obtain the depth d to the accuracy of mm, δ = 0.1 mm.
Figure 2006300730

演算部52は、ステップ104において収束条件を満足していない場合、数式1に数式7によって求めたdnを代入し、再び伝播速度v´を演算する(ステップ106)。

Figure 2006300730
If the convergence condition is not satisfied in Step 104, the calculation unit 52 substitutes d n obtained by Expression 7 in Expression 1 and calculates the propagation velocity v ′ again (Step 106).
Figure 2006300730

さらに、ステップ106からステップ102に戻り、数式9によって求めた伝播速度v´を数式2に代入してdnを算出し、ステップ104の収束条件を満足しているか否かを判断する。収束条件が満足されていない場合、ステップ102からステップ106までの処理が収束条件を満足するまで繰り返される。演算部52は、上記のようにして収束条件が満足されると、鉄筋18のかぶり深さd、コンクリート構造物12中の電波の伝播速度vをメモリ54に書き込むとともに、表示部22に出力する(ステップ108)。 Further, returning from step 106 to step 102, the propagation velocity v ′ obtained by equation 9 is substituted into equation 2 to calculate dn , and it is determined whether or not the convergence condition of step 104 is satisfied. If the convergence condition is not satisfied, the processing from step 102 to step 106 is repeated until the convergence condition is satisfied. When the convergence condition is satisfied as described above, the arithmetic unit 52 writes the cover depth d of the reinforcing bar 18 and the propagation velocity v of the radio wave in the concrete structure 12 in the memory 54 and outputs it to the display unit 22. (Step 108).

なお、演算部52は、上記のようにして求めた電磁波の速度vを用いて、必要に応じてコンクリートの比誘電率εを求めて出力する。すなわち、媒質中の電磁波の伝播速度vは、

Figure 2006300730
のように求めることができる。ただし、cは真空中における光の速度、εはコンクリートの比誘電率、μはコンクリートの比透磁率である。したがって、コンクリート構造物12の比誘電率εは、コンクリートの比透磁率μがほぼ1であるので、
Figure 2006300730
のように求めることができる。 In addition, the calculating part 52 calculates | requires and outputs the dielectric constant (epsilon) of concrete as needed using the velocity v of the electromagnetic waves calculated | required as mentioned above. That is, the propagation velocity v of the electromagnetic wave in the medium is
Figure 2006300730
Can be obtained as follows. Where c is the speed of light in vacuum, ε r is the relative permittivity of concrete, and μ r is the relative permeability of concrete. Therefore, the relative permittivity ε r of the concrete structure 12 is approximately 1 as the relative permeability μ r of the concrete.
Figure 2006300730
Can be obtained as follows.

このように、実施形態の深さ測定装置10によれば、2組の送受信ユニット26、30を一体に移動させて走査することにより、2つのユニット間における走査距離に相違を生ずることがなく、演算の2度手間をなくすことができる。このため、表示部22の表示画面に表示された反射像56または反射像58のいずれかに、マウスのポインタを合わせてクリックするだけで鉄筋18のかぶり深さdを求めることができる。しかも、2つの反射像56、58は、表示部22に上下に並べて表示させた場合に、上下の対応した位置に表示されるため、電磁波を反射させるものが複数近接して存在していたとしても、測定者が対象となる鉄筋を容易に判別、認識することができる。   As described above, according to the depth measurement apparatus 10 of the embodiment, by scanning the two sets of transmission / reception units 26 and 30 integrally, there is no difference in the scanning distance between the two units. It is possible to eliminate the trouble of calculating twice. For this reason, the cover depth d of the reinforcing bar 18 can be obtained simply by placing the mouse pointer on the reflected image 56 or the reflected image 58 displayed on the display screen of the display unit 22 and clicking. In addition, when the two reflected images 56 and 58 are displayed side by side on the display unit 22, they are displayed at corresponding positions in the upper and lower directions. In addition, the measurer can easily identify and recognize the target reinforcing bars.

なお、前記実施形態においては、送信波として電磁波を用いた場合について説明したが、超音波を送信波に使用してもよい。また、前記実施形態においては、鉄筋18の深さを測定する場合について説明したが、配管などの他の埋設物の深さを測定する場合にも適用することができる。そして、送信アンテナと受信アンテナとの距離を変えられるようにすることにより、送信アンテナから受信アンテナに直接回り込む電波やコンクリート構造物12の表面で反射した電波の影響を小さくすることができ、種々の深さの埋設物を測定することができる。   In the above-described embodiment, the case where electromagnetic waves are used as transmission waves has been described. However, ultrasonic waves may be used as transmission waves. Moreover, in the said embodiment, although the case where the depth of the reinforcing bar 18 was measured was demonstrated, it is applicable also when measuring the depth of other embedded objects, such as piping. And by making it possible to change the distance between the transmitting antenna and the receiving antenna, it is possible to reduce the influence of radio waves that directly go around from the transmitting antenna to the receiving antenna or reflected on the surface of the concrete structure 12. Depth buried objects can be measured.

さらに、前記実施形態においては、送受信部14を構成している4素子のアンテナを走査方向24に沿って直線状に配置した場合について説明したが、他の配置であってもよい。例えば、図7に示したように、第1送信アンテナ28A、第1受信アンテナ28B、第2送信アンテナ32A、第2受信アンテナ32Bを走査方向24と直交させて配置してもよい。このようなアンテナの配置をとると、鉄筋18の近傍に電波の反射体が存在していても、鉄筋18を確実に検出することができる。また、図8に示したように各アンテナを配置してもよいし、十字形をなすように各アンテナを配置してもよい。   Furthermore, although the case where the four-element antennas constituting the transmission / reception unit 14 are arranged linearly along the scanning direction 24 has been described in the above embodiment, other arrangements may be used. For example, as shown in FIG. 7, the first transmission antenna 28A, the first reception antenna 28B, the second transmission antenna 32A, and the second reception antenna 32B may be arranged orthogonal to the scanning direction 24. With such an antenna arrangement, the reinforcing bar 18 can be reliably detected even if a reflector of radio waves is present in the vicinity of the reinforcing bar 18. Further, each antenna may be arranged as shown in FIG. 8, or each antenna may be arranged in a cross shape.

本発明の実施形態に係る埋設物深さ測定装置の説明図である。It is explanatory drawing of the buried object depth measuring apparatus which concerns on embodiment of this invention. 実施形態に係る第1送受信ユニットによる反射像を説明する図である。It is a figure explaining the reflected image by the 1st transmission / reception unit which concerns on embodiment. 実施形態に係る第2送受信ユニットによる反射像を説明する図である。It is a figure explaining the reflected image by the 2nd transmission / reception unit which concerns on embodiment. 実施形態の鉄筋の頂部からの反射時間を求める方法の説明図である。It is explanatory drawing of the method of calculating | requiring the reflection time from the top part of the reinforcing bar of embodiment. 実施形態に係る埋設物深さ測定装置による判定結果の図である。It is a figure of the determination result by the embedment depth measuring device concerning an embodiment. 実施形態の鉄筋頂部の深さを求める方法を説明するフローチャートである。It is a flowchart explaining the method of calculating | requiring the depth of the reinforcing bar top part of embodiment. 送受信部の他の実施形態を示したもので、各アンテナを走査方向に直交させて配置した例の説明図である。It is explanatory drawing of the example which showed other embodiment of the transmission / reception part, and arrange | positioned each antenna so as to be orthogonal to a scanning direction. 送受信部のさらに他の実施形態を示す図である。It is a figure which shows other embodiment of a transmission / reception part.

符号の説明Explanation of symbols

10………深さ測定装置、12………コンクリート構造物、14………送受信部、16………レーダ回路部、18………埋設物(鉄筋)、20………演制御算部、22………表示部、26………第1送受信ユニット、28A………第1送信部(第1送信アンテナ)、28B………第1受信部(第1受信アンテナ)、30………第2送受信ユニット、32A………第2送信部(第2送信アンテナ)、32B………第2受信部(第2受信アンテナ)、34………ユニット支持部、36………距離センサ、42………切替え部、50………信号処理部、52………演算部、60、62………送信波、64、66………反射波。   10 ......... Depth measuring device, 12 ......... Concrete structure, 14 ......... Transmitter / receiver, 16 ......... Radar circuit, 18 ......... Bed object (rebar), 20 ......... Control unit , 22... Display section, 26... First transmission / reception unit, 28 A... First transmission section (first transmission antenna), 28 B ... First reception section (first reception antenna), 30. ... 2nd transmission / reception unit, 32A ......... 2nd transmission part (2nd transmission antenna), 32B ......... 2nd reception part (2nd reception antenna), 34 ......... Unit support part, 36 ......... Distance sensor 42 ......... Switching unit, 50 ......... Signal processing unit, 52 ......... Calculation unit, 60, 62 ......... Transmission wave, 64, 66 ......... Reflected wave.

Claims (2)

送信波を送信する第1送信部と反射波を受信する第1受信部とからなる第1送受信ユニットと、
送信波を送信する第2送信部と反射波を受信する第2受信部とからなり、前記第2送信部と前記第2受信部との間隔が前記第1送信部と前記第1受信部との間隔と異なり、中心を前記第1送受信ユニットの中心と一致させた第2送受信ユニットと、
前記第1送受信ユニットと前記第2送受信ユニットとを一体に移動させるユニット支持部と、
前記第1送受信ユニットと前記第2送受信ユニットとを切り替えて送受信を行なわせる切替え部と、
前記各受信部の出力信号に基づいて、前記各送信部の送信した送信波に対応する前記受信部の受信した反射波を求める信号処理部と、
前記信号処理部が求めた前記各受信部が受信した反射波の強さに基づいて、埋設物の深さおよび検査媒体中の前記送信波の伝播速度を求める演算部と、
前記演算部の演算結果を表示する表示部と、
を有することを特徴とする埋設深さ測定装置。
A first transmission / reception unit including a first transmission unit for transmitting a transmission wave and a first reception unit for receiving a reflected wave;
It consists of the 2nd transmission part which transmits a transmission wave, and the 2nd reception part which receives a reflected wave, and the interval of the 2nd transmission part and the 2nd reception part is the 1st transmission part and the 1st reception part. A second transmission / reception unit whose center coincides with the center of the first transmission / reception unit;
A unit support for moving the first transmission / reception unit and the second transmission / reception unit together;
A switching unit that performs transmission / reception by switching between the first transmission / reception unit and the second transmission / reception unit;
A signal processing unit for obtaining a reflected wave received by the receiving unit corresponding to a transmission wave transmitted by each transmitting unit based on an output signal of each receiving unit;
Based on the intensity of the reflected wave received by each receiving unit obtained by the signal processing unit, a computing unit for obtaining the depth of the embedded object and the propagation speed of the transmission wave in the inspection medium;
A display unit for displaying a calculation result of the calculation unit;
An embedded depth measuring device characterized by comprising:
請求項1に記載の埋設深さ測定装置において、
前記演算部は、前記第1送信部が送信した前記送信波の反射波を受信して前記第1受信部が出力する信号列と、前記第2送信部が送信した前記送信波の反射波を受信して前記第2受信部が出力する信号列とに基づいて、埋設物頂部のかぶり深さ求めることを特徴とする埋設深さ測定装置。
In the embedded depth measuring apparatus according to claim 1,
The calculation unit receives a reflected wave of the transmission wave transmitted from the first transmission unit and outputs a signal sequence output from the first reception unit, and a reflected wave of the transmission wave transmitted from the second transmission unit. An embedding depth measuring apparatus that obtains a covering depth at the top of an embedding object based on a signal sequence received and output from the second receiving unit.
JP2005122805A 2005-04-20 2005-04-20 Embedded depth measuring device Active JP4461299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005122805A JP4461299B2 (en) 2005-04-20 2005-04-20 Embedded depth measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005122805A JP4461299B2 (en) 2005-04-20 2005-04-20 Embedded depth measuring device

Publications (2)

Publication Number Publication Date
JP2006300730A true JP2006300730A (en) 2006-11-02
JP4461299B2 JP4461299B2 (en) 2010-05-12

Family

ID=37469195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005122805A Active JP4461299B2 (en) 2005-04-20 2005-04-20 Embedded depth measuring device

Country Status (1)

Country Link
JP (1) JP4461299B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100715A1 (en) * 2016-12-01 2018-06-07 東京製綱株式会社 Damage evaluation method and damage evaluation device for magnetic linear object
JP2019082379A (en) * 2017-10-30 2019-05-30 公益財団法人鉄道総合技術研究所 Cover thickness inspection device
JP7043663B1 (en) 2021-07-13 2022-03-29 Keytec株式会社 Structure estimation device and method for reinforced concrete structures

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100715A1 (en) * 2016-12-01 2018-06-07 東京製綱株式会社 Damage evaluation method and damage evaluation device for magnetic linear object
US11016061B2 (en) 2016-12-01 2021-05-25 Tokyo Rope Manufacturing Co., Ltd. Method and apparatus for evaluating damage to magnetic linear body
JP2019082379A (en) * 2017-10-30 2019-05-30 公益財団法人鉄道総合技術研究所 Cover thickness inspection device
JP7043663B1 (en) 2021-07-13 2022-03-29 Keytec株式会社 Structure estimation device and method for reinforced concrete structures
JP2023012275A (en) * 2021-07-13 2023-01-25 Keytec株式会社 Structure estimation device and method for reinforced concrete structure

Also Published As

Publication number Publication date
JP4461299B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
US9084556B2 (en) Apparatus for indicating locus of an ultrasonic probe, ultrasonic diagnostic apparatus
KR900002200B1 (en) Apparatus and method for detecting object in medium material
KR102121821B1 (en) Linear-scan ultrasonic inspection apparatus and linear-scan ultrasonic inspection method
RU2515957C1 (en) Complex for ultrasonic control of products and optical measurement device of complex
JP2000271117A (en) Ultrasonic blood vessel measuring device
JP2007327935A (en) Method for measuring object in medium
JP4461299B2 (en) Embedded depth measuring device
JP4691656B2 (en) Object search method in structure, computer program, and recording medium
JP6861624B2 (en) Ultrasonic transmitter / receiver and ultrasonic transmitter / receiver method
CN102608219A (en) Device for expanding ultrasonic detection region and increasing detection precision and method
JP3732134B2 (en) Radar equipment
JP3019580B2 (en) Ultrasonic transmission inspection equipment
JP4406654B2 (en) Embedding depth measurement method and apparatus
JP2007232734A (en) Nondestructive inspection method for concrete structure and the other structure
JP4086289B2 (en) Embedding depth measuring method and apparatus
JP4000208B2 (en) Buried object exploration equipment
JP5268063B2 (en) Ultrasonic measuring device
JP2003107164A (en) Aperture synthesys survey device
JP7511342B2 (en) Display System
JP2005233783A (en) Position telemetering method using electromagnetic-wave radar
JP2016047190A (en) Ultrasonic diagnostic device and control program thereof
JP2016224047A (en) Buried object exploratory device and buried object exploratory method
WO2016017580A1 (en) Three-dimensional space coordinate measurement device
RU2326343C2 (en) Method of determining underwater cable laying depth
JP2019070628A (en) Nondestructive inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4461299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250