JP2006300414A - Adsorption type heat pump device - Google Patents

Adsorption type heat pump device Download PDF

Info

Publication number
JP2006300414A
JP2006300414A JP2005122693A JP2005122693A JP2006300414A JP 2006300414 A JP2006300414 A JP 2006300414A JP 2005122693 A JP2005122693 A JP 2005122693A JP 2005122693 A JP2005122693 A JP 2005122693A JP 2006300414 A JP2006300414 A JP 2006300414A
Authority
JP
Japan
Prior art keywords
adsorption
desorption
desorption device
condenser
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005122693A
Other languages
Japanese (ja)
Other versions
JP4333627B2 (en
Inventor
Hiroya Inaoka
宏弥 稲岡
Rentaro Mori
連太郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005122693A priority Critical patent/JP4333627B2/en
Publication of JP2006300414A publication Critical patent/JP2006300414A/en
Application granted granted Critical
Publication of JP4333627B2 publication Critical patent/JP4333627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

<P>PROBLEM TO BE SOLVED: To secure high operation efficiency by preventing an operating medium from temporarily flowing back to an adsorber/desorber on the desorbing side from a condenser when switching a circuit in an adsorption type heat pump device using ammonia as the operating medium. <P>SOLUTION: The adsorption type heat pump device using ammonia as the operating medium is equipped with a pair of first and second adsorber/desorbers A/B1, A/B2, the condenser CON and an evaporator EVA. The device is further equipped with an auxiliary adsorber/desorber SubA/B, and ammonia vapor of high temperature and high pressure is fed from the auxiliary adsorber/desorber SubA/B into the adsorber/desorber switched from an adsorbing process to a desorbing process when switching. The internal pressure of the adsorber/desorber thereby becomes relatively higher than the internal pressure of the condenser CON to prevent the operating medium from flowing back to the adsorber/desorber from the condenser CON. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は吸着式ヒートポンプ装置、特に、作動媒体としてアンモニアを用いた吸着式ヒートポンプ装置に関する。   The present invention relates to an adsorption heat pump device, and more particularly to an adsorption heat pump device using ammonia as a working medium.

作動媒体としてアンモニアを用い、作動媒体を吸着しかつ脱着(放出)できる活性炭のような吸着材を収容した一対の吸脱着器と、一対の吸脱着器に選択的に接続し、作動媒体であるアンモニア蒸気を凝縮液化する凝縮器、および液状アンモニアを蒸発させる蒸発器とを少なくとも備えた吸着式ヒートポンプ装置は知られている(例えば、特許文献1参照)。   A working medium that uses ammonia as a working medium and that is selectively connected to a pair of adsorbing and desorbing units containing an adsorbent such as activated carbon that can adsorb and desorb (release) the working medium, and a pair of adsorbing and desorbing units. An adsorption heat pump apparatus including at least a condenser for condensing ammonia vapor and an evaporator for evaporating liquid ammonia is known (see, for example, Patent Document 1).

図7は吸着式ヒートポンプ装置の基本構成図を示しており、図示の状態において、第2の吸脱着器A/B2内の吸着材に吸着したアンモニアは、図示しない外部熱源からの高温熱媒体が内部を通過して加熱されることにより蒸発し、開いているバルブV2を通って凝縮器CONに入る。このときバルブV1は閉じている。アンモニア蒸気は、凝縮器CON内で低温熱媒体と熱交換して凝縮し液体となり蒸発器EVAに送られる。液状のアンモニアは蒸発器EVAで蒸発し、バルブV5を通過して第1の吸脱着器A/B1内の吸着材に吸着される。このときバルブV7は閉じている。アンモニアの蒸発潜熱によって得られる冷熱が、蒸発器EVA内の図示しない熱交換器を通して外部に取り出される。通常、凝縮器CONで熱交換した低温熱媒体は外部熱源として吸着側の吸脱着器内を通過するようにされており、吸着側の吸脱着器を冷却してアンモニア蒸気の吸着を促進している。   FIG. 7 shows a basic configuration diagram of the adsorption heat pump apparatus. In the state shown in the drawing, ammonia adsorbed on the adsorbent in the second adsorption / desorption device A / B2 is caused by a high-temperature heat medium from an external heat source (not shown). It evaporates when heated through the interior and enters the condenser CON through the open valve V2. At this time, the valve V1 is closed. Ammonia vapor is condensed by exchanging heat with a low-temperature heat medium in the condenser CON to become a liquid and sent to the evaporator EVA. Liquid ammonia evaporates in the evaporator EVA, passes through the valve V5, and is adsorbed by the adsorbent in the first adsorption / desorption device A / B1. At this time, the valve V7 is closed. Cold heat obtained by the latent heat of vaporization of ammonia is taken out through a heat exchanger (not shown) in the evaporator EVA. Normally, the low-temperature heat medium exchanged by the condenser CON passes through the adsorption / desorption device on the adsorption side as an external heat source, and the adsorption / desorption device on the adsorption side is cooled to promote adsorption of ammonia vapor. Yes.

一定時間が経過して、第2の吸脱着器A/B2からの作動媒体(アンモニア)の脱着が完了し、第2の吸脱着器A/B2で作動媒体の飽和吸着に達した時点で、回路の切り替えが行われる。すなわち、バルブV1が開、バルブV2が閉、バルブV7が開、バルブV5が閉の状態となり、第1の吸脱着器A/B1が脱着側、第2の吸脱着器A/B2が吸着側となって、運転が継続する。   When a certain period of time has elapsed, desorption of the working medium (ammonia) from the second adsorption / desorption device A / B2 is completed, and when the second adsorption / desorption device A / B2 reaches saturation adsorption of the working medium, Circuit switching is performed. That is, the valve V1 is opened, the valve V2 is closed, the valve V7 is opened, and the valve V5 is closed. The first adsorption / desorption device A / B1 is the desorption side, and the second adsorption / desorption device A / B2 is the adsorption side. Then, driving continues.

特開平11−63720号公報JP-A-11-63720

上記した作動媒体としてアンモニアを用いる吸着式ヒートポンプ装置は、アンモニアの蒸発潜熱が大きいことから、小型の装置でありながら、大きな冷熱発生量が得られる利点がある。しかし、アンモニアは蒸気圧が高いために、回路の切り替えを行うとき、すなわち、図7に示した例で、第1の吸脱着器A/B1の吸着が飽和吸着に到達し、第2の吸脱着器A/B2を吸着側に、第1の吸脱着器A/B1を脱着側に切り替えるときに、凝縮器CON内が相対的に高圧に、第1の吸脱着器A/B1内が相対的に低圧となっていることから、凝縮器CON内の作動媒体(アンモニアガス)が、第2の吸脱着器A/B2側でなく、第1の吸脱着器A/B1側に逆流することが起こる。   Since the adsorption heat pump apparatus using ammonia as the working medium has a large latent heat of vaporization of ammonia, there is an advantage that a large amount of generated cold heat can be obtained while being a small apparatus. However, since ammonia has a high vapor pressure, when the circuit is switched, that is, in the example shown in FIG. 7, the adsorption of the first adsorption / desorption device A / B1 reaches the saturation adsorption, and the second adsorption / desorption is performed. When the desorber A / B2 is switched to the adsorption side and the first adsorption / desorption device A / B1 is switched to the desorption side, the condenser CON is relatively high in pressure, and the first adsorption / desorption A / B1 is relatively Therefore, the working medium (ammonia gas) in the condenser CON flows back to the first adsorption / desorption device A / B1 side instead of the second adsorption / desorption device A / B2 side. Happens.

すなわち、第1の吸脱着器A/B1は吸着反応のために低圧状態にあること、および、第1の吸脱着器A/B1内は吸着温度(ほぼ環境温度あるいはそれ以下)になっているが、凝縮器CON内はアンモニアガスが液化するときの凝縮熱によって第1の脱着器A/B1の吸着時の温度よりも高くなっており、それにより、アンモニア固有の高い蒸気圧によって、凝縮器CON内圧力が高くなる(例えば、100〜500kPa程度)こと、の理由から、切り替え直時に、圧力の関係が、凝縮器CON>第1の吸脱着器A/B1となるのを避けられず、アンモニアガスが、部分的に凝縮器CONから第1の吸脱着器A/B1に向けて逆流する。   That is, the first adsorption / desorption device A / B1 is in a low pressure state due to the adsorption reaction, and the first adsorption / desorption device A / B1 is at the adsorption temperature (approximately the ambient temperature or lower). However, the temperature in the condenser CON is higher than the temperature at the time of adsorption of the first desorber A / B1 due to the heat of condensation when the ammonia gas is liquefied. For the reason that the pressure in the CON becomes high (for example, about 100 to 500 kPa), it is inevitable that the relationship of the pressure becomes the condenser CON> the first adsorption / desorption device A / B1 at the time of switching, Ammonia gas partially flows back from the condenser CON toward the first adsorption / desorption device A / B1.

このことは回路を切り替えて運転を継続し、第2の吸脱着器A/B2の吸着が飽和吸着に達して、再び回路を切り替えようとするとき、凝縮器CONと第2の吸脱着器A/B2との間でも同様に生じる。   This means that the operation is continued by switching the circuit, and when the adsorption of the second adsorption / desorption device A / B2 reaches the saturated adsorption and the circuit is switched again, the condenser CON and the second adsorption / desorption device A / B2 occurs similarly.

この作動媒体であるアンモニアの逆流現象は、装置の運転効率を低下させる一因となっており、解決が求められている。   The backflow phenomenon of ammonia as the working medium is one factor that lowers the operating efficiency of the apparatus, and a solution is required.

本発明は、上記のような事情に鑑みてなされたものであり、作動媒体としてアンモニアを用いる吸着式ヒートポンプ装置において、回路の切り替え時に、凝縮器から脱着側となる吸脱着器に作動媒体が一時的に逆流するのを防止して、運転効率を低下させることなく継続した装置の運転を行うことを可能とした吸着式ヒートポンプ装置を提供することを目的とする。   The present invention has been made in view of the circumstances as described above. In an adsorption heat pump apparatus using ammonia as a working medium, the working medium is temporarily transferred from the condenser to the desorption side on the desorption side when the circuit is switched. It is an object of the present invention to provide an adsorption heat pump device that can prevent the reverse flow and can continuously operate the device without reducing the operation efficiency.

上記課題を解決する本発明による吸着式ヒートポンプ装置の第1の形態は、作動媒体がアンモニアであり、作動媒体用の吸着材を収容した対をなす第1と第2の吸脱着器と、凝縮器と、蒸発器とを少なくとも備え、第1の吸脱着器が脱着工程にあって吸着材が吸着した作動媒体を凝縮器に向けて脱着しているときに、第2の吸脱着器は吸着工程にあって蒸発器で蒸発した作動媒体を吸着剤に吸着するようになっており、かつ、所定間隔で第1と第2の吸脱着器での脱着工程と吸着工程とが切り替えられるようになっている吸着式ヒートポンプ装置であって、前記装置は第1および第2の吸脱着器よりも吸着容量の小さい補助吸脱着器をさらに備え、該補助吸脱着器は吸着側をバルブを介して装置の蒸発器に接続しており、放出側をバルブを介して装置の第1と第2の吸脱着器の双方に選択的に接続可能となっていることを特徴とする。   The first form of the adsorption heat pump apparatus according to the present invention for solving the above-mentioned problems is that the working medium is ammonia, a pair of first and second adsorbing / desorbing devices each containing an adsorbent for the working medium, and a condensation And the evaporator, and the second adsorption / desorption device is adsorbed when the first adsorption / desorption device is in the desorption process and the working medium adsorbed by the adsorbent is desorbed toward the condenser. The working medium evaporated by the evaporator in the process is adsorbed to the adsorbent, and the desorption process and the adsorption process in the first and second adsorption / desorption devices are switched at predetermined intervals. The adsorption heat pump apparatus is further provided with an auxiliary adsorption / desorption device having a smaller adsorption capacity than the first and second adsorption / desorption devices, and the auxiliary adsorption / desorption device is connected to the adsorption side via a valve. Connected to the evaporator of the device, the discharge side is connected via a valve Characterized in that it becomes selectively connectable to both the first and the second desorption unit of the apparatus Te.

上記の吸着式ヒートポンプ装置では、例えば第1の吸脱着器が吸着工程にあるときに、補助吸脱着器にも蒸発器から作動媒体を送り込み、補助吸脱着器を吸着飽和した状態とする。また、熱媒(外部熱源)によって脱着温度まで加熱(加圧)した状態で待機させておく。第1の吸脱着器が吸着飽和し、第1の吸脱着器を脱着工程に切り替えるとき、またはその直前に、補助吸脱着器と第1の吸脱着器との間のバルブを開いて両者を連通させる。それにより、補助吸脱着器の吸着材に飽和吸着している作動媒体蒸気は脱着して第1の吸脱着器内に導入され、第1の吸脱着器内の圧力を高くする。そのために、第1の吸脱着器と凝縮器とが連通状態となっても、凝縮器から第1の吸脱着器側に、作動媒体が逆流するのを阻止することができ、吸脱着サイクルの効率、すなわち装置の運転効率を高めことができる。   In the above adsorption heat pump device, for example, when the first adsorption / desorption device is in the adsorption process, the working medium is also sent from the evaporator to the auxiliary adsorption / desorption device so that the auxiliary adsorption / desorption device is in an adsorption saturated state. Moreover, it is made to stand by in the state heated (pressurized) to the desorption temperature with the heat medium (external heat source). When the first adsorption / desorption device is saturated and the first adsorption / desorption device is switched to the desorption process, or just before that, the valve between the auxiliary adsorption / desorption device and the first adsorption / desorption device is opened to Communicate. As a result, the working medium vapor saturated and adsorbed on the adsorbent of the auxiliary adsorption / desorption device is desorbed and introduced into the first adsorption / desorption device, thereby increasing the pressure in the first adsorption / desorption device. Therefore, even if the first adsorption / desorption device and the condenser are in communication with each other, it is possible to prevent the working medium from flowing backward from the condenser to the first adsorption / desorption device side. The efficiency, that is, the operation efficiency of the apparatus can be increased.

さらに、補助吸脱着器から高温高圧の作動媒体が第1の吸脱着器に流入することにより、脱着工程に切り替わった第1の吸脱着器の吸着材を迅速に脱着温度まで昇温させることができ、このことからも、吸脱着サイクルの短縮が図られる。さらに、補助吸脱着器が蒸発器からの作動媒体を吸着することで、装置の熱移動量(冷熱出力)の増大も図ることができる。   Further, when the high-temperature and high-pressure working medium flows from the auxiliary adsorption / desorption device into the first adsorption / desorption device, the temperature of the adsorbent of the first adsorption / desorption device switched to the desorption process can be quickly raised to the desorption temperature. This also makes it possible to shorten the adsorption / desorption cycle. Furthermore, since the auxiliary adsorption / desorption device adsorbs the working medium from the evaporator, the heat transfer amount (cold power output) of the apparatus can be increased.

回路を切り替えて運転を継続し、第2の吸脱着器の吸着が飽和吸着に到達して、再び回路を切り替えようとするときには、同じような操作が第2の吸脱着器と補助吸脱着器との間で行われる。   When the operation is continued by switching the circuit, and the adsorption of the second adsorption / desorption device reaches the saturation adsorption and the circuit is switched again, the same operation is performed by the second adsorption / desorption device and the auxiliary adsorption / desorption device. Between.

上記課題を解決する本発明による吸着式ヒートポンプ装置の第2の形態は、前記補助吸脱着器は、吸着側をバルブを介して装置の凝縮器に接続しており、放出側をバルブを介して装置のいずれか一方の吸脱着器に接続していることを特徴とする。   In a second form of the adsorption heat pump apparatus according to the present invention for solving the above-mentioned problems, the auxiliary adsorption / desorption device has an adsorption side connected to a condenser of the apparatus via a valve, and a discharge side via a valve. It is connected to any one of the adsorption / desorption devices of the apparatus.

上記の吸着式ヒートポンプ装置では、例えば第1の吸脱着器が吸着飽和して脱着工程に入るときに、あらかじめ、バルブを開いて凝縮器と補助吸脱着器とを連通させる。それにより、凝縮器内の作動媒体の一部は補助吸脱着器内の吸着材に吸着され、凝縮器内は減圧される。それにより、バルブを開いて第1の吸脱着器を凝縮器に連通させ脱着工程としたときに、前記した脱着工程にある第1の吸脱着器へ凝縮器から作動媒体が逆流する現象を防ぐことができる。また、第2の吸脱着器が吸着飽和して脱着工程に入るときには、吸着飽和状態にある補助吸脱着器を熱媒(外部熱源)によって脱着温度まで加熱(加圧)した状態で待機させておく。そして、バルブを切り替えて第2の吸脱着器が脱着工程に移行したときに、バルブを開き補助吸脱着器から加熱・加圧した作動媒体蒸気を第2の吸脱着器内に導入する。それにより、第2の吸脱着器内の圧力を高くなり、第2の吸脱着器と凝縮器とが連通状態となっても、凝縮器から脱着工程にある第2の吸脱着器側に、作動媒体が逆流するのを防ぐことができる。   In the above adsorption heat pump device, for example, when the first adsorption / desorption device is saturated by adsorption and enters the desorption process, the condenser and the auxiliary adsorption / desorption device are previously communicated with each other by opening the valve. Thereby, a part of the working medium in the condenser is adsorbed by the adsorbent in the auxiliary adsorption / desorption device, and the pressure in the condenser is reduced. Thereby, when the valve is opened and the first adsorption / desorption device is communicated with the condenser and the desorption process is performed, the phenomenon that the working medium flows backward from the condenser to the first adsorption / desorption apparatus in the desorption process described above is prevented. be able to. Further, when the second adsorption / desorption device is saturated by adsorption and enters the desorption process, the auxiliary adsorption / desorption device in the adsorption saturated state is put on standby in a state heated (pressurized) to the desorption temperature by a heat medium (external heat source). deep. When the valve is switched and the second adsorption / desorption device shifts to the desorption process, the valve is opened and the working medium vapor heated and pressurized from the auxiliary adsorption / desorption device is introduced into the second adsorption / desorption device. Thereby, the pressure in the second adsorption / desorption device is increased, and even if the second adsorption / desorption device and the condenser are in communication, the second adsorption / desorption device side in the desorption process from the condenser, It is possible to prevent the working medium from flowing backward.

この結果、第1と第2の吸脱着器の脱着速度が速くなり、この形態でも、前記第1の形態と同様、吸脱着サイクルの効率、すなわち装置の運転効率を高めことができる。また、この形態では、補助吸脱着器での作動媒体蒸気の吸着分を上乗せできることからも、熱移動量(冷熱出力)の増大を図ることができる。   As a result, the desorption speeds of the first and second adsorption / desorption devices are increased, and in this embodiment as well, the efficiency of the adsorption / desorption cycle, that is, the operation efficiency of the apparatus can be increased as in the first embodiment. Further, in this embodiment, since the amount of working medium vapor adsorbed by the auxiliary adsorption / desorption device can be added, the amount of heat transfer (cold power output) can be increased.

本発明によれば、作動媒体としてアンモニアを用いる吸着式ヒートポンプ装置において、作動媒体が凝縮器から吸脱着器へ逆流する現象を起こるのを防ぐことができる。それにより、吸脱着器での吸脱着サイクルの短縮が図られて、吸着式ヒートポンプ装置の運転効率が向上する。また、熱移動量(冷熱出力)の増大を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, in the adsorption | suction type heat pump apparatus which uses ammonia as a working medium, it can prevent the phenomenon which a working medium flows backward from a condenser to an adsorption / desorption device. Thereby, the adsorption / desorption cycle in the adsorption / desorption device is shortened, and the operation efficiency of the adsorption heat pump apparatus is improved. In addition, the amount of heat transfer (cold power output) can be increased.

以下、図面を参照しながら、本発明をより詳細に説明する。図1は本発明による第1の形態の吸着式ヒートポンプ装置の構成図であり、図2は図1に示す吸着式ヒートポンプ装置の吸脱着の各工程における状態図である。また、図3は図1に示す吸着式ヒートポンプ装置を実機に用いた例を示している。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a block diagram of the adsorption heat pump apparatus according to the first embodiment of the present invention, and FIG. 2 is a state diagram in each step of adsorption / desorption of the adsorption heat pump apparatus shown in FIG. FIG. 3 shows an example in which the adsorption heat pump apparatus shown in FIG. 1 is used in an actual machine.

図1は、前記した図7に相当する構成図であり、図7で説明したものと同じ部材には同じ符号を付している。図1ではバルブはすべて閉じた状態となっているが、運転時にはそれぞれのバルブの開閉操作が行われる。図1に示す吸着式ヒートポンプ装置では、さらに補助吸脱着器SubA/Bが用いられる点で、図7に示した従来の吸着式ヒートポンプ装置と構成を異にしている。   FIG. 1 is a configuration diagram corresponding to FIG. 7 described above, and the same members as those described in FIG. 7 are denoted by the same reference numerals. In FIG. 1, all the valves are closed, but each valve is opened and closed during operation. The adsorption heat pump apparatus shown in FIG. 1 differs from the conventional adsorption heat pump apparatus shown in FIG. 7 in that an auxiliary adsorption / desorption device SubA / B is used.

補助吸脱着器SubA/Bは、その吸着側がバルブV6を介して蒸発器EVAに接続しており、放出側(脱着側)が、バルブV3およびV4を介して第1の吸脱着器A/B1と第2の吸脱着器A/B2とに選択的に接続するようになっている。補助吸脱着器SubA/Bは、作動媒体(アンモニア)の吸着容量が第1および第2の吸脱着器よりも小さいことを条件に、第1および第2の吸脱着器と同じ構造のものであってよい。   The auxiliary adsorption / desorption device SubA / B has an adsorption side connected to the evaporator EVA via a valve V6, and a discharge side (desorption side) connected to the first adsorption / desorption device A / B1 via valves V3 and V4. And the second adsorption / desorption device A / B2. The auxiliary adsorption / desorption device SubA / B has the same structure as the first and second adsorption / desorption devices on the condition that the adsorption capacity of the working medium (ammonia) is smaller than that of the first and second adsorption / desorption devices. It may be.

図2を参照して、図1に示す吸着式ヒートポンプ装置の各作動工程を説明する。なお、図2では外部熱源からの高温熱媒体および低温熱媒体の流路は省略しており、加熱と冷却の状態を矢印で示している。   With reference to FIG. 2, each operation process of the adsorption heat pump apparatus shown in FIG. 1 will be described. In FIG. 2, the flow paths of the high-temperature heat medium and the low-temperature heat medium from the external heat source are omitted, and the heating and cooling states are indicated by arrows.

この例において、[工程A]では、第1の吸脱着器A/B1と補助吸脱着器SubA/Bは吸着工程にあり吸着用の低温熱媒体が投入されて冷却されている。第2の吸脱着器A/B2は脱着工程にあり脱着用の高温熱媒体が投入されて加熱されている。蒸発器EVAは第1の吸脱着器A/B1と補助吸脱着器SubA/Bとに開の状態にあり、両者は蒸発器EVAからの作動媒体(アンモニア)の蒸気を継続して吸着している。脱着工程にある第2の吸脱着器A/B2と凝縮器CONは開の状態にあり、凝縮器CONは脱着されて送られてくるアンモニア蒸気を逐次液化している。次ぎに工程B移る。   In this example, in [Step A], the first adsorbing / desorbing device A / B1 and the auxiliary adsorbing / desorbing device SubA / B are in the adsorption step, and are cooled by introducing a low-temperature heat medium for adsorption. The second adsorber / desorber A / B2 is in the desorption process and is heated with a desorption high temperature heat medium. The evaporator EVA is open to the first adsorption / desorption device A / B1 and the auxiliary adsorption / desorption device SubA / B, and both continuously adsorb the vapor of the working medium (ammonia) from the evaporator EVA. Yes. The second adsorption / desorption device A / B2 and the condenser CON in the desorption process are in an open state, and the condenser CON desorbs and sequentially liquefies the ammonia vapor sent. Next, the process B moves.

[工程B]では、第1の吸脱着器A/B1は吸着工程を、第2の吸脱着器A/B2は脱着工程を継続しているが、補助吸脱着器SubA/Bは飽和吸着量に達し、バルブV6が閉じられると共に、脱着用の高温熱媒体が投入されて加熱され、脱着工程に入る。次ぎに工程Cに移る。 In [Step B], the first adsorption / desorption device A / B1 continues the adsorption step and the second adsorption / desorption device A / B2 continues the desorption step, but the auxiliary adsorption / desorption device SubA / B has the saturated adsorption amount. , The valve V6 is closed, and a high-temperature heat medium for desorption is charged and heated to enter the desorption process. Next, the process proceeds to step C.

[工程C]では、第1の吸脱着器A/B1は飽和吸着量に達し、脱着工程に入り、補助吸脱着器SubA/Bは脱着工程を継続している。第2の吸脱着器A/B2は脱着が完了し吸着工程に入る。バルブV3が開き第1の吸脱着器A/B1と補助吸脱着器SubA/Bとが開の状態となることで、補助吸脱着器SubA/Bから高温・高圧のアンモニア蒸気が第1の吸脱着器A/B1に流入し、第1の吸脱着器A/B1内の温度と圧力を高くすると共に、第1の吸脱着器A/B1内の吸着材に吸着していたアンモニアの脱着を促進する。この状態では、第1の吸脱着器A/B1と補助吸脱着器SubA/Bは脱着用の高温熱媒体で加熱されており、第2の吸脱着器A/B2は吸着用の低温熱媒体で冷却されている。次ぎに工程Dに移る。 In [Step C], the first adsorption / desorption device A / B1 reaches the saturated adsorption amount and enters the desorption step, and the auxiliary adsorption / desorption device SubA / B continues the desorption step. The second adsorption / desorption device A / B2 is completely desorbed and enters the adsorption process. When the valve V3 is opened and the first adsorption / desorption device A / B1 and the auxiliary adsorption / desorption device SubA / B are opened, high-temperature and high-pressure ammonia vapor is first absorbed from the auxiliary adsorption / desorption device SubA / B. It flows into the desorber A / B1, raises the temperature and pressure in the first adsorption / desorption device A / B1, and desorbs the ammonia adsorbed on the adsorbent in the first adsorption / desorption device A / B1. Facilitate. In this state, the first adsorption / desorption device A / B1 and the auxiliary adsorption / desorption device SubA / B are heated by a high temperature heat medium for desorption, and the second adsorption / desorption device A / B2 is a low temperature heat medium for adsorption. It is cooled by. Next, the process proceeds to step D.

[工程D]では、第2の吸脱着器A/B2と補助吸脱着器SubA/Bが吸着工程にあり、第1の吸脱着器A/B1が脱着工程にある。蒸発器EVAは第2の吸脱着器A/B2と補助吸脱着器SubA/Bに開の状態にあり、両者は蒸発器EVAからのアンモニア蒸気を継続して吸着する。バルブV1が開き、脱着工程にある第1の吸脱着器A/B1と凝縮器CONは開の状態となる。工程Cにおいて、第1の吸脱着器A/B1は相対的に凝縮器CONよりも高い圧力となっており、バルブV1が開いたときに、凝縮器CONから第1の吸脱着器A/B1にアンモニア蒸気が逆流する現象は生じない。そのために、第1の吸脱着器A/B1が脱着するアンモニア蒸気は速やかに凝縮器CONに送られ、凝縮器CONはアンモニア蒸気を逐次液化する。なお、このとき、第2の吸脱着器A/B2と補助吸脱着器SubA/Bは吸着用の低温熱媒体で冷却され、第1の吸脱着器A/B1は脱着用の高温熱媒体で加熱されている。次ぎに工程Eに移る。 In [Step D], the second adsorption / desorption device A / B2 and the auxiliary adsorption / desorption device SubA / B are in the adsorption step, and the first adsorption / desorption device A / B1 is in the desorption step. The evaporator EVA is open to the second adsorption / desorption device A / B2 and the auxiliary adsorption / desorption device SubA / B, and both continuously adsorb ammonia vapor from the evaporator EVA. The valve V1 is opened, and the first adsorption / desorption device A / B1 and the condenser CON in the desorption process are opened. In step C, the first adsorption / desorption device A / B1 has a relatively higher pressure than the condenser CON, and when the valve V1 is opened, the first adsorption / desorption device A / B1 from the condenser CON. There is no phenomenon that ammonia vapor flows backward. For this purpose, the ammonia vapor desorbed by the first adsorption / desorption device A / B1 is quickly sent to the condenser CON, and the condenser CON sequentially liquefies the ammonia vapor. At this time, the second adsorption / desorption device A / B2 and the auxiliary adsorption / desorption device SubA / B are cooled by a low-temperature heat medium for adsorption, and the first adsorption / desorption device A / B1 is a high-temperature heat medium for desorption. It is heated. Next, the process moves to step E.

[工程E]では、第2の吸脱着器A/B2は吸着工程、第1の吸脱着器A/B1は脱着工程を継続し、補助吸脱着器SubA/Bは飽和吸着量に達し、バルブV6は閉じられ、脱着工程に入る。第2の吸脱着器A/B2と蒸発器EVAは開で、第2の吸脱着器A/B2はアンモニア蒸気の吸着を継続している。第1の吸脱着器A/B1は凝縮器CONと開であり、脱着したアンモニア蒸気は凝縮器CONで逐次液化される。このとき、第2の吸脱着器A/B2は吸着用の低温熱媒体で冷却されており、補助吸脱着器SubA/Bと第1の吸脱着器A/B1は脱着用の高温熱媒体で加熱されている。次ぎに工程Fに移る。 In [Step E], the second adsorption / desorption device A / B2 continues the adsorption step, the first adsorption / desorption device A / B1 continues the desorption step, and the auxiliary adsorption / desorption device SubA / B reaches the saturated adsorption amount. V6 is closed and enters the desorption process. The second adsorption / desorption device A / B2 and the evaporator EVA are open, and the second adsorption / desorption device A / B2 continues adsorption of ammonia vapor. The first adsorption / desorption device A / B1 is open to the condenser CON, and the desorbed ammonia vapor is sequentially liquefied by the condenser CON. At this time, the second adsorption / desorption device A / B2 is cooled by a low-temperature heat medium for adsorption, and the auxiliary adsorption / desorption device SubA / B and the first adsorption / desorption device A / B1 are desorption high-temperature heat media. It is heated. Next, the process moves to step F.

[工程F]では、第2の吸脱着器A/B2が飽和吸着量に達して脱着工程に入り、補助吸脱着器SubA/Bは脱着工程を継続している。第1の吸脱着器A/B1は脱着が完了したために吸着工程に入る。バルブV4が開き第2の吸脱着器A/B2と補助吸脱着器SubA/Bとが開の状態となることで、補助吸脱着器SubA/Bから高温・高圧のアンモニア蒸気が第2の吸脱着器A/B2に流入し、第2の吸脱着器A/B2内の温度と圧力を高くすると共に、第2の吸脱着器A/B2内の吸着材に吸着していたアンモニアの脱着を促進する。この状態では、第2の吸脱着器A/B2と補助吸脱着器SubA/Bは脱着用の高温熱媒体で加熱されており、第1の吸脱着器A/B1は吸着用の低温熱媒体で冷却されている。次ぎに工程Aに移る。 In [Step F], the second adsorption / desorption device A / B2 reaches the saturated adsorption amount and enters the desorption step, and the auxiliary adsorption / desorption device SubA / B continues the desorption step. The first adsorption / desorption device A / B1 enters the adsorption process because the desorption is completed. When the valve V4 is opened and the second adsorption / desorption device A / B2 and the auxiliary adsorption / desorption device SubA / B are opened, high-temperature and high-pressure ammonia vapor is supplied from the auxiliary adsorption / desorption device SubA / B to the second adsorption / desorption device SubA / B. It flows into the desorber A / B2, increases the temperature and pressure in the second adsorption / desorption device A / B2, and desorbs the ammonia adsorbed on the adsorbent in the second adsorption / desorption device A / B2. Facilitate. In this state, the second adsorption / desorption device A / B2 and the auxiliary adsorption / desorption device SubA / B are heated by a desorption high temperature heat medium, and the first adsorption / desorption device A / B1 is an adsorption low temperature heat medium. It is cooled by. Next, the process proceeds to step A.

上記の工程A〜工程Fを繰り返すことにより、運転が継続される。上記の装置構成を持つ吸着式ヒートポンプ装置では、工程Dで説明したように、吸着工程にある第1の吸脱着器A/B1が脱着工程に切り替わるときに、第1の吸脱着器A/B1の圧力は、補助吸脱着器SubA/Bの存在により、相対的に凝縮器CONよりも高い圧力となっており、凝縮器CONから第1の吸脱着器A/B1にアンモニアが逆流する現象は生じない。また、工程Fから工程Aに移るとき、すなわち、吸着工程にある第2の吸脱着器A/B2が脱着工程に切り替わるときにも、第2の吸脱着器A/B2の圧力は、補助吸脱着器SubA/Bの存在により、相対的に凝縮器CONよりも高い圧力となっており、凝縮器CONから第2の吸脱着器A/B1にアンモニアが逆流する現象は生じない。   By repeating the above steps A to F, the operation is continued. In the adsorption heat pump apparatus having the above apparatus configuration, as described in the step D, when the first adsorption / desorption device A / B1 in the adsorption process is switched to the desorption step, the first adsorption / desorption device A / B1 The pressure is relatively higher than that of the condenser CON due to the presence of the auxiliary adsorption / desorption device SubA / B, and the phenomenon in which ammonia flows backward from the condenser CON to the first adsorption / desorption device A / B1 is Does not occur. In addition, when the process moves from the process F to the process A, that is, when the second adsorption / desorption device A / B2 in the adsorption process is switched to the desorption process, the pressure of the second adsorption / desorption device A / B2 is changed to the auxiliary adsorption / desorption device. Due to the presence of the desorber SubA / B, the pressure is relatively higher than that of the condenser CON, and a phenomenon in which ammonia flows backward from the condenser CON to the second adsorption / desorption apparatus A / B1 does not occur.

図3は、図1および図2で説明した装置構成を持つ吸着式ヒートポンプ装置を実機に使用した場合の一例を示す系統図である。なお、図示の各バルブの切り替え状態は、図2における工程Cの状態となっている。また、図3では、第1の吸脱着器A/B1を1Aで示し、第2の吸脱着器A/B2を1Bで示し、補助吸脱着器SubA/Bを2で示している。また、3は蒸発器EVAであり、4は凝縮器CONである。   FIG. 3 is a system diagram showing an example when the adsorption heat pump apparatus having the apparatus configuration described in FIGS. 1 and 2 is used in an actual machine. In addition, the switching state of each valve | bulb shown is the state of the process C in FIG. In FIG. 3, the first adsorption / desorption device A / B1 is indicated by 1A, the second adsorption / desorption device A / B2 is indicated by 1B, and the auxiliary adsorption / desorption device SubA / B is indicated by 2. 3 is an evaporator EVA and 4 is a condenser CON.

第1の吸脱着器1A、第2の吸脱着器1B、補助吸脱着器2は、吸着材(例えば活性炭)を収容した吸着材ベッド8、9、10を有し、内部を熱交換用配管8a、9a、10aが走っている。Pは、高温熱媒体や低温熱媒体の贈り用ポンプである。   The first adsorption / desorption device 1A, the second adsorption / desorption device 1B, and the auxiliary adsorption / desorption device 2 have adsorbent beds 8, 9, and 10 containing an adsorbent (for example, activated carbon), and the inside is a heat exchange pipe. 8a, 9a, 10a are running. P is a gift pump for a high-temperature heat medium or a low-temperature heat medium.

蒸発器3は、作動媒体流路11および流路切り替え弁V2を介して、第1の吸脱着器1Aと第2の吸脱着器1Bのいずれかの作動媒体(アンモニア)吸着側に選択的に接続するようになっており、凝縮器4は、作動媒体流路11および流路切り替え弁V1を介して、第1の吸脱着器1Aと第2の吸脱着器1Bのいずれにも接続しない状態と、いずれかの作動媒体放出側に接続する状態とを選択的にとりうるようになっている。蒸発器3と凝縮器4は作動媒体循環路13および膨張弁10を介して接続しており、作動媒体は凝縮器4から蒸発器3側に流れる。また、蒸発器3内には作動媒体(アンモニア)の蒸発潜熱と熱交換する冷房用熱交換器6の配管が走っている。   The evaporator 3 is selectively passed to the working medium (ammonia) adsorption side of either the first adsorption / desorption device 1A or the second adsorption / desorption device 1B via the working medium flow channel 11 and the flow channel switching valve V2. The condenser 4 is not connected to either the first adsorption / desorption device 1A or the second adsorption / desorption device 1B via the working medium flow channel 11 and the flow channel switching valve V1. And a state of being connected to one of the working medium discharge sides. The evaporator 3 and the condenser 4 are connected via the working medium circulation path 13 and the expansion valve 10, and the working medium flows from the condenser 4 to the evaporator 3 side. In the evaporator 3, a cooling heat exchanger 6 pipe that exchanges heat with the latent heat of evaporation of the working medium (ammonia) runs.

補助吸脱着器2は、その吸着側を作動媒体流路14およびバルブV61(図1でのバルブV6に相当する)を介して蒸発器3に接続しており、放出側を作動媒体流路15および流路切り替え弁V9を介して第1の吸脱着器1Aと第2の吸脱着器1Bのいずれかに選択的に接続するようにされている。   The auxiliary adsorption / desorption device 2 has its adsorption side connected to the evaporator 3 via a working medium flow path 14 and a valve V61 (corresponding to the valve V6 in FIG. 1), and the discharge side is connected to the working medium flow path 15. In addition, the first adsorbing / desorbing device 1A and the second adsorbing / desorbing device 1B are selectively connected via a flow path switching valve V9.

各熱交換用配管8a、9a、10aには、流路切り替え弁V3〜V8を適宜切り替えることにより、高温熱源交換器7で加熱された高温熱媒体と低温熱媒体冷却用熱交換器5で冷却された低温熱媒体のいずれかが、高温熱媒体流路16を通して、あるいは低温熱媒体流路17を通して、選択的に供給される。   Each of the heat exchange pipes 8a, 9a, 10a is cooled by the high-temperature heat medium heated by the high-temperature heat source exchanger 7 and the low-temperature heat medium cooling heat exchanger 5 by appropriately switching the flow path switching valves V3 to V8. Any one of the low-temperature heat mediums is selectively supplied through the high-temperature heat medium flow path 16 or the low-temperature heat medium flow path 17.

図2における工程Cの状態と合わせながら、図3に示す系統図での運転状況を説明する。第1の吸脱着器1Aおよび補助吸脱着器2は作動媒体(アンモニア)を飽和吸着した状態となって脱着工程にあり、第1の吸脱着器1Aには、高温熱源交換器7で加熱された高温熱媒体が、高温熱媒体流路16、流路切り替え弁V3、熱交換用配管8a、流路切り替え弁V4を通って循環し、吸着材ベッド8を加熱している。第1の吸脱着器1Aの放出側の作動媒体流路12は閉じている。補助吸脱着器2にも、高温熱媒体流路16、流路切り替え弁V7、熱交換用配管10a、流路切り替え弁V8を通って高温熱媒体が循環しており、吸着材ベッド10aを加熱して脱着工程を継続させている。   The operation state in the system diagram shown in FIG. 3 will be described with the state of the process C in FIG. The first adsorbing / desorbing device 1A and the auxiliary adsorbing / desorbing device 2 are in a desorbing process in a state where the working medium (ammonia) is saturated and adsorbed. The high temperature heat medium circulates through the high temperature heat medium flow path 16, the flow path switching valve V3, the heat exchange pipe 8a, and the flow path switching valve V4 to heat the adsorbent bed 8. The working medium flow path 12 on the discharge side of the first adsorption / desorption device 1A is closed. Also in the auxiliary adsorption / desorption device 2, the high-temperature heat medium circulates through the high-temperature heat medium flow path 16, the flow path switching valve V7, the heat exchange pipe 10a, and the flow path switch valve V8 to heat the adsorbent bed 10a. The desorption process is continued.

流路切り替え弁V9は、第1の吸脱着器1Aと補助吸脱着器2とを連通する位置にあり、補助吸脱着器2からの高温・高圧のアンモニア蒸気は、作動媒体流路15を通って第1の吸脱着器1Aに流入し、第1の吸脱着器1Aの温度と圧力を高くすると共に、第1の吸脱着器1A内の吸着材に吸着しているアンモニアの脱着を促進している。この状態では、バルブV61は閉じている。次の工程で、前記図2の工程Dで説明したように、流路切り替え弁V1を操作して、第1の吸脱着器1Aを凝縮器4に接続することとなるが、第1の吸脱着器1A内の圧力は十分に高くなっており、凝縮器4からアンモニアが逆流してくることはない。   The flow path switching valve V9 is in a position where the first adsorption / desorption device 1A and the auxiliary adsorption / desorption device 2 communicate with each other, and high-temperature and high-pressure ammonia vapor from the auxiliary adsorption / desorption device 2 passes through the working medium flow channel 15. Flow into the first adsorption / desorption device 1A, increase the temperature and pressure of the first adsorption / desorption device 1A, and promote the desorption of ammonia adsorbed on the adsorbent in the first adsorption / desorption device 1A. ing. In this state, the valve V61 is closed. In the next step, as described in the step D of FIG. 2, the flow switching valve V1 is operated to connect the first adsorption / desorption device 1A to the condenser 4. The pressure in the desorber 1A is sufficiently high so that ammonia does not flow backward from the condenser 4.

蒸発器3において、凝縮器4から送られるアンモニアは蒸発し、蒸発潜熱により冷却された冷媒は冷房用熱交換器6で室内の冷房に利用される。蒸発したアンモニア蒸気は作動媒体循環路11および流路切り替え弁V2を介して第2の吸脱着器1Bに送られ、そこで吸着材に吸着される。第2の吸脱着器1Bには、低温熱媒体冷却用熱交換器5で冷却された低温熱媒体が、低温熱媒体流路17、流路切り替え弁V6、熱交換用配管9a、流路切り替え弁V5を通って循環しており、第2の吸脱着器1Bを冷却して吸着を促進している。また、図2基づき説明したように、補助吸脱着器2が吸着工程にあるときには、バルブ61が開となり、蒸発器3で蒸発したアンモニア蒸気が作動媒体流路14を通って補助吸脱着器2内に流入し、補助吸脱着器2を飽和吸着状態とする。   In the evaporator 3, the ammonia sent from the condenser 4 evaporates, and the refrigerant cooled by the latent heat of evaporation is used for cooling the room by the cooling heat exchanger 6. The evaporated ammonia vapor is sent to the second adsorption / desorption device 1B via the working medium circulation path 11 and the flow path switching valve V2, where it is adsorbed by the adsorbent. In the second adsorption / desorption device 1B, the low-temperature heat medium cooled by the low-temperature heat medium cooling heat exchanger 5 includes the low-temperature heat medium flow path 17, the flow path switching valve V6, the heat exchange pipe 9a, and the flow path switching. Circulating through the valve V5, the second adsorption / desorption device 1B is cooled to promote adsorption. As described with reference to FIG. 2, when the auxiliary adsorption / desorption device 2 is in the adsorption process, the valve 61 is opened, and the ammonia vapor evaporated in the evaporator 3 passes through the working medium flow path 14 and is thus supported. The auxiliary adsorption / desorption device 2 is brought into a saturated adsorption state.

次ぎに、本発明による第2の形態の吸着式ヒートポンプ装置について説明する。図4は第2の形態の吸着式ヒートポンプの構成図であり、図5は図4に示す吸着式ヒートポンプ装置の吸脱着の各工程における状態図である。また、図6は図4に示す吸着式ヒートポンプ装置を実機に用いた例を示している。   Next, a second embodiment of the adsorption heat pump apparatus according to the present invention will be described. FIG. 4 is a block diagram of the adsorption heat pump of the second embodiment, and FIG. 5 is a state diagram in each step of adsorption / desorption of the adsorption heat pump apparatus shown in FIG. FIG. 6 shows an example in which the adsorption heat pump apparatus shown in FIG. 4 is used in an actual machine.

図4は、前記図1に相当する図であり、同じ機能を奏する部材は同じ符号を付している。この吸着式ヒートポンプ装置も、第1の形態の吸着式ヒートポンプ装置と同じ補助吸脱着器SubA/Bを用いるが、その接続の仕方が相違している。すなわち、ここでは、図4に示すように、補助吸脱着器SubA/Bは、その吸着側をバルブV8を介して装置の凝縮器CONに接続しており、放出側をバルブV9を介して装置のいずれか一方の吸脱着器(この例では、第2の吸脱着器A/B2)に接続している。   FIG. 4 is a view corresponding to FIG. 1, and members having the same functions are denoted by the same reference numerals. This adsorption heat pump apparatus also uses the same auxiliary adsorption / desorption device SubA / B as the adsorption heat pump apparatus of the first embodiment, but the connection method is different. That is, here, as shown in FIG. 4, the auxiliary adsorption / desorption device SubA / B has its adsorption side connected to the condenser CON of the apparatus via a valve V8, and its discharge side to the apparatus via a valve V9. Are connected to one of the adsorption / desorption devices (second adsorption / desorption device A / B2 in this example).

図5を参照して、図4に示す吸着式ヒートポンプ装置の各作動工程を説明する。なお、図5でも、図1の場合と同様に、外部熱源からの高温熱媒体および低温熱媒体の流路は省略し、加熱と冷却の状態を矢印で示している。   With reference to FIG. 5, each operation process of the adsorption heat pump apparatus shown in FIG. 4 will be described. In FIG. 5, as in the case of FIG. 1, the flow paths of the high-temperature heat medium and the low-temperature heat medium from the external heat source are omitted, and the heating and cooling states are indicated by arrows.

[工程A]では、第1の吸脱着器A/B1は飽和吸着量に達し、脱着工程に入り、第2の吸脱着器A/B2と補助吸脱着器SubA/Bは吸着工程にある。すなわち、蒸発器EVAは第2の吸脱着器A/B2と開の状態にあり、作動媒体であるアンモニア蒸気を第2の吸脱着器A/B2は継続して吸着している。凝縮器CONは補助吸脱着器SubA/Bと開の状態にあり、凝縮器CON内のアンモニア蒸気が補助吸脱着器SubA/B内の吸着材に吸着することで凝縮器CON内が減圧される。ここで、第1の吸脱着器A/B1は脱着用の高温熱媒体で加熱され、第2の吸脱着器A/B2と補助吸脱着器SubA/Bは吸着用の低温熱媒体で冷却されている。次ぎに工程Bに移る。 In [Step A], the first adsorption / desorption device A / B1 reaches the saturated adsorption amount and enters the desorption step, and the second adsorption / desorption device A / B2 and the auxiliary adsorption / desorption device SubA / B are in the adsorption step. That is, the evaporator EVA is in an open state with the second adsorption / desorption device A / B2, and the second adsorption / desorption device A / B2 continuously adsorbs the ammonia vapor as the working medium. The condenser CON is in an open state with the auxiliary adsorption / desorption device SubA / B, and the ammonia inside the condenser CON is adsorbed by the adsorbent in the auxiliary adsorption / desorption device SubA / B, so that the inside of the condenser CON is decompressed. . Here, the first adsorption / desorption device A / B1 is heated by a desorption high-temperature heat medium, and the second adsorption / desorption device A / B2 and the auxiliary adsorption / desorption device SubA / B are cooled by a low-temperature heat medium for adsorption. ing. Next, the process proceeds to step B.

[工程B]では、第1の吸脱着器A/B1はバルブV1を開いて脱着工程を継続する。工程Aで凝縮器CON内のアンモニア蒸気が補助吸脱着器SubA/B内の吸着材に吸着されることで凝縮器CON内は既に減圧された状態にあり、第1の吸脱着器A/B1は相対的に凝縮器CONよりも高い圧力となっている。そのために、バルブV1が開いたときに、凝縮器CONから第1の吸脱着器A/B1にアンモニアが逆流する現象が生じることはなく、第1の吸脱着器A/B1が脱着するアンモニア蒸気は速やかに凝縮器CONに送られ、凝縮器CONにはアンモニア蒸気を逐次液化する。なお、第2の吸脱着器A/B2は吸着工程を継続し、補助吸脱着器SubA/Bは飽和吸着量に達し、バルブV8を閉じて脱着工程に入っている。ここで、第1の吸脱着器A/B1と補助吸脱着器SubA/Bは高温熱媒体で加熱されており、第2の吸脱着器A/B2は低温熱媒体で冷却されている。次ぎに工程Cに移る。 In [Process B], the first adsorption / desorption device A / B1 opens the valve V1 and continues the desorption process. In step A, the ammonia vapor in the condenser CON is adsorbed by the adsorbent in the auxiliary adsorption / desorption device SubA / B, so that the pressure in the condenser CON has already been reduced, and the first adsorption / desorption device A / B1 Is at a relatively higher pressure than the condenser CON. Therefore, when the valve V1 is opened, ammonia does not flow back from the condenser CON to the first adsorption / desorption device A / B1, and ammonia vapor is desorbed by the first adsorption / desorption device A / B1. Is promptly sent to the condenser CON, and ammonia vapor is sequentially liquefied in the condenser CON. The second adsorption / desorption device A / B2 continues the adsorption process, and the auxiliary adsorption / desorption device SubA / B reaches the saturated adsorption amount, and the valve V8 is closed to enter the desorption process. Here, the first adsorption / desorption device A / B1 and the auxiliary adsorption / desorption device SubA / B are heated by a high-temperature heat medium, and the second adsorption / desorption device A / B2 is cooled by a low-temperature heat medium. Next, the process proceeds to step C.

[工程C]では、第1の吸脱着器A/B1の脱着が完了し、吸着工程に入り、第2の吸脱着器A/B2は飽和吸着量に達し、脱着工程に入っている。補助吸脱着器SubA/Bは脱着工程を継続している。第1の吸脱着器A/B1は蒸発器EVAと開の状態にあり、アンモニア蒸気を吸着する。バルブV9が開き第2の吸脱着器A/B2と補助吸脱着器SubA/Bとが開の状態となることで、補助吸脱着器SubA/Bから高温・高圧のアンモニア蒸気が第2の吸脱着器A/B2に流入し、第2の吸脱着器A/B2内の温度と圧力を高くすると共に、第2の吸脱着器A/B2内の吸着材に吸着していたアンモニアの脱着を促進する。この状態では、第1の吸脱着器A/B1は低温熱媒体で冷却され、第2の吸脱着器A/B2と補助吸脱着器SubA/Bは高温熱媒体で加熱されている。次ぎに工程Dに移る。 In [Step C], the desorption of the first adsorption / desorption device A / B1 is completed and the adsorption step is started, and the second adsorption / desorption device A / B2 reaches the saturated adsorption amount and is in the desorption step. The auxiliary adsorption / desorption device SubA / B continues the desorption process. The first adsorption / desorption device A / B1 is in an open state with the evaporator EVA and adsorbs ammonia vapor. When the valve V9 is opened and the second adsorption / desorption device A / B2 and the auxiliary adsorption / desorption device SubA / B are opened, high-temperature and high-pressure ammonia vapor is supplied from the auxiliary adsorption / desorption device SubA / B to the second adsorption / desorption device SubA / B. It flows into the desorber A / B2, increases the temperature and pressure in the second adsorption / desorption device A / B2, and desorbs the ammonia adsorbed on the adsorbent in the second adsorption / desorption device A / B2. Facilitate. In this state, the first adsorption / desorption device A / B1 is cooled by the low temperature heat medium, and the second adsorption / desorption device A / B2 and the auxiliary adsorption / desorption device SubA / B are heated by the high temperature heat medium. Next, the process proceeds to step D.

[工程D]では、第1の吸脱着器A/B1は吸着工程を継続し、第2の吸脱着器A/B2はバルブV2を開ひらいて凝縮器CONと開となり、脱着を継続する。工程Cにおいて、補助吸脱着器SubA/Bから高温・高圧のアンモニア蒸気が第2の吸脱着器A/B2に流入して第2の吸脱着器A/B2内の温度と圧力を高くしており、そのために、バルブV2が開いたときに、凝縮器CONから第2の吸脱着器A/B1にアンモニアが逆流することはない。第2の吸脱着器A/B2が脱着するアンモニア蒸気は速やかに凝縮器CONに送られ、凝縮器CONにはアンモニア蒸気を逐次液化する。なお、このとき、補助吸脱着器SubA/Bは脱着が完了し、吸着工程に入っている。また、第1の吸脱着器A/B1と補助吸脱着器SubA/Bは低温熱媒体で冷却されており、第2の吸脱着器A/B2は高温熱媒体で加熱されている。次ぎに工程Aに移る。 In [Step D], the first adsorption / desorption device A / B1 continues the adsorption step, and the second adsorption / desorption device A / B2 opens the valve V2 and opens with the condenser CON, and continues desorption. In step C, high-temperature and high-pressure ammonia vapor flows from the auxiliary adsorption / desorption device SubA / B into the second adsorption / desorption device A / B2 to increase the temperature and pressure in the second adsorption / desorption device A / B2. Therefore, when the valve V2 is opened, ammonia does not flow backward from the condenser CON to the second adsorption / desorption device A / B1. The ammonia vapor desorbed by the second adsorption / desorption device A / B2 is promptly sent to the condenser CON, and the ammonia vapor is sequentially liquefied in the condenser CON. At this time, the auxiliary adsorption / desorption device SubA / B is completely desorbed and is in the adsorption step. The first adsorption / desorption device A / B1 and the auxiliary adsorption / desorption device SubA / B are cooled by a low-temperature heat medium, and the second adsorption / desorption device A / B2 is heated by a high-temperature heat medium. Next, the process proceeds to step A.

上記の工程A〜工程Dを繰り返すことにより、運転が継続される。上記の装置構成を持つ吸着式ヒートポンプ装置でも、第1の形態の装置と同様に、吸着工程にある第1あるいは第2の吸脱着器が脱着工程に切り替わるときに、その内部圧力は、相対的に凝縮器CONよりも高い圧力となっており、凝縮器CONから第1あるいは第2の吸脱着器にアンモニアが逆流する現象は生じない。そのために、第1の形態の装置と同様、吸脱着器での吸脱着サイクルの短縮が図られて、吸着式ヒートポンプ装置の運転効率が向上し、また、熱移動量(冷熱出力)の増大を図ることができる。   By repeating the above steps A to D, the operation is continued. Even in the adsorption heat pump apparatus having the above-described apparatus configuration, when the first or second adsorption / desorption device in the adsorption process is switched to the desorption process, the internal pressure is relatively In addition, the pressure is higher than that of the condenser CON, and there is no phenomenon in which ammonia flows backward from the condenser CON to the first or second adsorption / desorption device. Therefore, like the apparatus of the first embodiment, the adsorption / desorption cycle in the adsorption / desorption device is shortened, the operation efficiency of the adsorption heat pump apparatus is improved, and the heat transfer amount (cold power output) is increased. Can be planned.

図6は、図3に示した系統図に相当するものであり、図4および図5で説明した第2の形態の吸着式ヒートポンプ装置を実機に使用した場合の一例を示している。なお、図6では、図5における工程Aの状態を表している。図6に示す系統図において、補助吸脱着器2の接続態様を除き、他の構成は図3に示した系統図のものと同じである。従って、図3に示したものと同じ機能を奏する部材には同じ符号を付し、重複する説明は省略する。   FIG. 6 corresponds to the system diagram shown in FIG. 3 and shows an example in which the adsorption heat pump apparatus according to the second embodiment described in FIGS. 4 and 5 is used in an actual machine. FIG. 6 shows the state of step A in FIG. In the system diagram shown in FIG. 6, except for the connection mode of the auxiliary adsorption / desorption device 2, the other configurations are the same as those in the system diagram shown in FIG. Therefore, members having the same functions as those shown in FIG.

前記したように、第2の形態の吸着式ヒートポンプ装置において、補助吸脱着器2は、その吸着側を作動媒体流路18およびバルブV81(図4でのバルブV8に相当する)を介して凝縮器4に接続しており、放出側を作動媒体流路19およびバルブV91(図4でのバルブV9に相当する)を介して第2の吸脱着器1Bに接続している。   As described above, in the adsorption heat pump apparatus of the second embodiment, the auxiliary adsorption / desorption device 2 condenses the adsorption side via the working medium flow path 18 and the valve V81 (corresponding to the valve V8 in FIG. 4). The discharge side is connected to the second adsorption / desorption device 1B via the working medium flow path 19 and the valve V91 (corresponding to the valve V9 in FIG. 4).

図5における工程Aの状態と合わせながら、図6に示される系統図を説明する。第1の吸脱着器1Aは作動媒体(アンモニア)を飽和吸着した状態となって脱着工程にあり、高温熱源交換器7で加熱された高温熱媒体が、高温熱媒体流路16、流路切り替え弁V3、熱交換用配管8a、流路切り替え弁V4を通って循環し、吸着材ベッド8を加熱している。第1の吸脱着器1Aの吸着側の作動媒体流路11は閉じており蒸発器3に接続していない。放出側の作動媒体流路12も閉じており凝縮器4に接続していない。   The system diagram shown in FIG. 6 will be described with reference to the state of step A in FIG. The first adsorption / desorption device 1A is in a desorption process in which the working medium (ammonia) is saturated and adsorbed, and the high-temperature heat medium heated by the high-temperature heat source exchanger 7 is switched to the high-temperature heat medium flow channel 16 The adsorbent bed 8 is heated by circulating through the valve V3, the heat exchange pipe 8a, and the flow path switching valve V4. The working medium flow path 11 on the adsorption side of the first adsorption / desorption device 1 </ b> A is closed and not connected to the evaporator 3. The working medium flow path 12 on the discharge side is also closed and not connected to the condenser 4.

第2の吸脱着器1Bは吸着工程にあり、作動媒体流路11および流路切り替え弁V2を介して蒸発器3に接続しており、アンモニア蒸気を継続して吸着している。第2の吸脱着器1Bの放出側の作動媒体流路13は閉じており凝縮器4に接続していない。   The second adsorption / desorption device 1B is in the adsorption process, and is connected to the evaporator 3 via the working medium flow path 11 and the flow path switching valve V2, and continuously adsorbs ammonia vapor. The working medium flow path 13 on the discharge side of the second adsorption / desorption device 1B is closed and not connected to the condenser 4.

補助吸脱着器2は吸着工程にあり、吸着側は作動媒体流路18およびバルブV81を介して凝縮器4に接続し、凝縮器4内のアンモニア蒸気を補助吸脱着器2内の吸着材で吸着し、凝縮器4の内圧を減圧している。補助吸脱着器2の放出側は作動媒体流路19およびバルブV91を介して第2の吸脱着器1Bにつながっているが、この時点ではバルブV91は閉じており、連通はしていない。   The auxiliary adsorption / desorption device 2 is in the adsorption process, and the adsorption side is connected to the condenser 4 via the working medium flow path 18 and the valve V81, and the ammonia vapor in the condenser 4 is adsorbed by the adsorbent in the auxiliary adsorption / desorption device 2. Adsorption is performed to reduce the internal pressure of the condenser 4. The discharge side of the auxiliary adsorption / desorption device 2 is connected to the second adsorption / desorption device 1B via the working medium flow path 19 and the valve V91. At this time, the valve V91 is closed and is not in communication.

吸着工程にある第2の吸脱着器1Bには、低温熱媒体冷却用熱交換器5で冷却された低温熱媒体が、低温熱媒体流路17、流路切り替え弁V6、熱交換用配管9a、流路切り替え弁V5を通って循環し、その吸着ベッド9を冷却しており、また、補助吸脱着器2にも、低温熱媒体冷却用熱交換器5で冷却された低温熱媒体が、低温熱媒体流路17、流路切り替え弁V8、熱交換用配管10a、流路切り替え弁V7を通って循環し、その吸着ベッド10aを冷却している。それにより、吸着を促進している。   In the second adsorption / desorption device 1B in the adsorption process, the low temperature heat medium cooled by the low temperature heat medium cooling heat exchanger 5 is supplied with the low temperature heat medium flow path 17, the flow path switching valve V6, and the heat exchange pipe 9a. The adsorbent bed 9 is circulated through the flow path switching valve V5, and the low temperature heat medium cooled by the low temperature heat medium cooling heat exchanger 5 is also cooled in the auxiliary adsorption / desorption device 2. The adsorption bed 10a is cooled by circulating through the low-temperature heat medium flow path 17, the flow path switching valve V8, the heat exchange pipe 10a, and the flow path switching valve V7. Thereby, adsorption is promoted.

この状態で、工程Bで説明したように、流路切り替え弁V1を操作して、第1の吸脱着器1Aを凝縮器4に接続することとなるが、凝縮器4の内圧は補助吸脱着器2の存在により十分に低くなっており、凝縮器4から第1の吸脱着器1Aにアンモニアが逆流してくることはない。   In this state, as described in the step B, the flow switching valve V1 is operated to connect the first adsorption / desorption device 1A to the condenser 4, but the internal pressure of the condenser 4 is the auxiliary adsorption / desorption. It is sufficiently low due to the presence of the vessel 2, and ammonia does not flow backward from the condenser 4 to the first adsorption / desorption device 1A.

前記工程C、Dで説明したように、第2の吸脱着器1Bが飽和吸着となり、第2の吸脱着器1Bを脱着工程に切り替えるときには、直前に、バルブV91を開き、補助吸脱着器2を第2の吸脱着器1Bに接続する。その時点で、補助吸脱着器2は飽和吸着状態にあり、かつ脱着用の加熱媒体が熱交換用配管10aを循環することにより加熱加圧されているので、補助吸脱着器2内の高温高圧のアンモニアガスは瞬時に第2の吸脱着器1B内に流入する。結果として、第2の吸脱着器1Bの内圧は高くなるので、流路切り替え弁V1を操作して第2の吸脱着器1Bを凝縮器4に接続したときに、凝縮器4から第2の吸脱着器1Bにアンモニアが逆流することはない。   As described in the above steps C and D, when the second adsorption / desorption device 1B becomes saturated adsorption and the second adsorption / desorption device 1B is switched to the desorption step, the valve V91 is opened just before the auxiliary adsorption / desorption device 2 Is connected to the second adsorption / desorption device 1B. At that time, the auxiliary adsorption / desorption device 2 is in a saturated adsorption state, and the heating medium for desorption is heated and pressurized by circulating through the heat exchange pipe 10a. The ammonia gas immediately flows into the second adsorption / desorption device 1B. As a result, since the internal pressure of the second adsorption / desorption device 1B becomes high, when the second adsorption / desorption device 1B is connected to the condenser 4 by operating the flow path switching valve V1, the second adsorption / desorption device 1B can be Ammonia does not flow back into the adsorption / desorption device 1B.

本発明による吸着式ヒートポンプ装置の第1の形態の構成図。The block diagram of the 1st form of the adsorption heat pump apparatus by this invention. 図1に示す吸着式ヒートポンプ装置の吸脱着の各工程における状態図。The state diagram in each process of adsorption / desorption of the adsorption heat pump apparatus shown in FIG. 図1に示す吸着式ヒートポンプ装置を実機に用いた例を示す系統図。The system diagram which shows the example which used the adsorption | suction type heat pump apparatus shown in FIG. 1 for an actual machine. 本発明による吸着式ヒートポンプ装置の第2の形態の構成図。The block diagram of the 2nd form of the adsorption heat pump apparatus by this invention. 図4に示す吸着式ヒートポンプ装置の吸脱着の各工程における状態図。The state figure in each process of adsorption / desorption of the adsorption | suction type heat pump apparatus shown in FIG. 図4に示す吸着式ヒートポンプ装置を実機に用いた例を示す系統図。The system diagram which shows the example which used the adsorption | suction type heat pump apparatus shown in FIG. 4 for the actual machine. 従来の作動媒体としてアンモニアを用いる吸着式ヒートポンプ装置の構成図。The block diagram of the adsorption type heat pump apparatus which uses ammonia as a conventional working medium.

符号の説明Explanation of symbols

A/B1、1A…第1の吸脱着器、A/B2、1B…第2の吸脱着器、SubA/B、2…補助吸脱着器、EVA、3…蒸発器、CON、4…凝縮器 A / B1, 1A ... first adsorber / desorber, A / B2, 1B ... second adsorber / desorber, SubA / B, 2 ... auxiliary adsorber / desorber, EVA, 3 ... evaporator, CON, 4 ... condenser

Claims (2)

作動媒体がアンモニアであり、作動媒体用の吸着材を収容した対をなす第1と第2の吸脱着器と、凝縮器と、蒸発器とを少なくとも備え、第1の吸脱着器が脱着工程にあって吸着材が吸着した作動媒体を凝縮器に向けて脱着しているときに、第2の吸脱着器は吸着工程にあって蒸発器で蒸発した作動媒体を吸着剤に吸着するようになっており、かつ、所定間隔で第1と第2の吸脱着器での脱着工程と吸着工程とが切り替えられるようになっている吸着式ヒートポンプ装置であって、
前記装置は第1および第2の吸脱着器よりも吸着容量の小さい補助吸脱着器をさらに備え、該補助吸脱着器は吸着側をバルブを介して装置の蒸発器に接続しており、放出側をバルブを介して装置の第1と第2の吸脱着器の双方に選択的に接続可能となっていることを特徴とする吸着式ヒートポンプ装置。
The working medium is ammonia, and includes at least a first and second adsorbing / desorbing device, a condenser, and an evaporator that form a pair containing an adsorbent for the working medium, and the first adsorbing / desorbing device is a desorbing step. When the working medium adsorbed by the adsorbent is desorbed toward the condenser, the second adsorbing / desorbing device is in the adsorption step so that the working medium evaporated by the evaporator is adsorbed to the adsorbent. An adsorption heat pump apparatus configured to switch between the desorption process and the adsorption process in the first and second adsorption / desorption devices at a predetermined interval,
The apparatus further includes an auxiliary adsorption / desorption device having a smaller adsorption capacity than the first and second adsorption / desorption devices, the auxiliary adsorption / desorption device having an adsorption side connected to the evaporator of the device via a valve, and a discharge An adsorption heat pump apparatus characterized in that the side can be selectively connected to both the first and second adsorption / desorption devices of the apparatus through a valve.
作動媒体がアンモニアであり、作動媒体用の吸着材を収容した一対の吸脱着器と、凝縮器と、蒸発器とを少なくとも備え、第1の吸脱着器が脱着工程にあって吸着材が吸着した作動媒体を凝縮器に向けて放出しているときに、第2の吸脱着器は吸着工程にあって蒸発器で蒸発した作動媒体を吸着剤に吸着するようになっており、かつ、所定間隔で第1と第2の吸脱着器での脱着工程と吸着工程とが切り替えられるようになっている吸着式ヒートポンプ装置であって、
前記装置は補助吸脱着器をさらに備え、該補助吸脱着器は吸着側をバルブを介して装置の凝縮器に接続しており、放出側をバルブを介して装置のいずれか一方の吸脱着器に接続していることを特徴とする吸着式ヒートポンプ装置。
The working medium is ammonia, and includes at least a pair of adsorption / desorption devices containing a working medium adsorbent, a condenser, and an evaporator. The first adsorption / desorption device is in the desorption process, and the adsorbent is adsorbed. The second adsorbing / desorbing device is in the adsorption process so that the working medium evaporated in the evaporator is adsorbed to the adsorbent when the working medium is discharged toward the condenser, An adsorption heat pump device configured to switch between a desorption process and an adsorption process in the first and second adsorption / desorption devices at intervals,
The apparatus further includes an auxiliary adsorption / desorption device, and the auxiliary adsorption / desorption device has an adsorption side connected to a condenser of the apparatus via a valve, and a discharge side of any one of the apparatus via the valve An adsorption heat pump device characterized by being connected to
JP2005122693A 2005-04-20 2005-04-20 Adsorption heat pump device Expired - Fee Related JP4333627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005122693A JP4333627B2 (en) 2005-04-20 2005-04-20 Adsorption heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005122693A JP4333627B2 (en) 2005-04-20 2005-04-20 Adsorption heat pump device

Publications (2)

Publication Number Publication Date
JP2006300414A true JP2006300414A (en) 2006-11-02
JP4333627B2 JP4333627B2 (en) 2009-09-16

Family

ID=37468911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005122693A Expired - Fee Related JP4333627B2 (en) 2005-04-20 2005-04-20 Adsorption heat pump device

Country Status (1)

Country Link
JP (1) JP4333627B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398238B (en) * 2008-10-30 2010-06-23 上海交通大学 Two-grade dual hot chemistry adsorption cooling cycle system
CN101813398A (en) * 2010-04-16 2010-08-25 上海交通大学 Multi-mode thermochemical adsorption refrigeration device based on cascade utilization of energy
CN101818961A (en) * 2010-05-20 2010-09-01 上海交通大学 Low-grade waste heat based multi-stage thermal chemisorption refrigeration circulation system
JP2011190947A (en) * 2010-03-12 2011-09-29 Denso Corp Chemical heat pump device
WO2012108288A1 (en) * 2011-02-07 2012-08-16 株式会社豊田中央研究所 Heat storage device
CN103256848A (en) * 2013-05-22 2013-08-21 上海交通大学 Self-warming type thermochemical heat accumulating device and application
EP2884071A4 (en) * 2012-08-09 2015-11-18 Toyota Jidoshokki Kk Catalytic reactor and vehicle equipped with said catalytic reactor
JP2015206521A (en) * 2014-04-18 2015-11-19 株式会社豊田中央研究所 Adsorption heat pump system and cold heat generation method
EP2963361A1 (en) * 2014-06-30 2016-01-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and cooling generation method
JP2016011821A (en) * 2014-06-30 2016-01-21 株式会社豊田中央研究所 Adsorption heat pump system and cold generation method
WO2016031484A1 (en) * 2014-08-29 2016-03-03 国立大学法人東京農工大学 Adsorption refrigerator and adsorption refrigeration method
JP2016217472A (en) * 2015-05-21 2016-12-22 株式会社豊田中央研究所 Valve, adsorption type heat pump
KR20170042783A (en) * 2014-08-22 2017-04-19 종잉 창지앙 인터내셔널 뉴 에너지 인베스트먼트 컴퍼니 리미티드 Solar heat collection adsorption composite tube, solar heat collection adsorption composite bed composed of solar heat collection adsorption composite tubes, and cooling and heating system formed of solar heat collection adsorption composite bed
US9797629B2 (en) 2008-06-19 2017-10-24 Fahrenheit Ag Method for carrying out a heat transfer between alternately working adsorbers and device
US10082321B2 (en) 2014-03-24 2018-09-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and cooling generation method
KR102547216B1 (en) 2023-02-17 2023-06-23 삼중테크 주식회사 Ammonia adsorption heat pump system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9822999B2 (en) 2015-02-12 2017-11-21 Rocky Research Systems, devices and methods for gas distribution in a sorber

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797629B2 (en) 2008-06-19 2017-10-24 Fahrenheit Ag Method for carrying out a heat transfer between alternately working adsorbers and device
CN101398238B (en) * 2008-10-30 2010-06-23 上海交通大学 Two-grade dual hot chemistry adsorption cooling cycle system
JP2011190947A (en) * 2010-03-12 2011-09-29 Denso Corp Chemical heat pump device
CN101813398A (en) * 2010-04-16 2010-08-25 上海交通大学 Multi-mode thermochemical adsorption refrigeration device based on cascade utilization of energy
CN101813398B (en) * 2010-04-16 2012-08-29 上海交通大学 Multi-mode thermochemical adsorption refrigeration device based on cascade utilization of energy
CN101818961A (en) * 2010-05-20 2010-09-01 上海交通大学 Low-grade waste heat based multi-stage thermal chemisorption refrigeration circulation system
CN101818961B (en) * 2010-05-20 2013-07-10 上海交通大学 Low-grade waste heat based multi-stage thermal chemisorption refrigeration circulation system
WO2012108288A1 (en) * 2011-02-07 2012-08-16 株式会社豊田中央研究所 Heat storage device
EP2884071A4 (en) * 2012-08-09 2015-11-18 Toyota Jidoshokki Kk Catalytic reactor and vehicle equipped with said catalytic reactor
CN103256848A (en) * 2013-05-22 2013-08-21 上海交通大学 Self-warming type thermochemical heat accumulating device and application
US10082321B2 (en) 2014-03-24 2018-09-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and cooling generation method
JP2015206521A (en) * 2014-04-18 2015-11-19 株式会社豊田中央研究所 Adsorption heat pump system and cold heat generation method
EP2963361A1 (en) * 2014-06-30 2016-01-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and cooling generation method
JP2016011821A (en) * 2014-06-30 2016-01-21 株式会社豊田中央研究所 Adsorption heat pump system and cold generation method
JP2016011822A (en) * 2014-06-30 2016-01-21 株式会社豊田中央研究所 Adsorption heat pump system and cold generation method
US10168081B2 (en) 2014-06-30 2019-01-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and cooling generation method
KR20170042783A (en) * 2014-08-22 2017-04-19 종잉 창지앙 인터내셔널 뉴 에너지 인베스트먼트 컴퍼니 리미티드 Solar heat collection adsorption composite tube, solar heat collection adsorption composite bed composed of solar heat collection adsorption composite tubes, and cooling and heating system formed of solar heat collection adsorption composite bed
KR101941793B1 (en) * 2014-08-22 2019-04-12 종잉 창지앙 인터내셔널 뉴 에너지 인베스트먼트 컴퍼니 리미티드 Solar heat collection adsorption composite tube, solar heat collection adsorption composite bed composed of solar heat collection adsorption composite tubes, and cooling and heating system formed of solar heat collection adsorption composite bed
WO2016031484A1 (en) * 2014-08-29 2016-03-03 国立大学法人東京農工大学 Adsorption refrigerator and adsorption refrigeration method
JP2016217472A (en) * 2015-05-21 2016-12-22 株式会社豊田中央研究所 Valve, adsorption type heat pump
KR102547216B1 (en) 2023-02-17 2023-06-23 삼중테크 주식회사 Ammonia adsorption heat pump system

Also Published As

Publication number Publication date
JP4333627B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP4333627B2 (en) Adsorption heat pump device
US5966955A (en) Heat pump device and desiccant assisted air conditioning system
JP2004044848A (en) Cooling system
US8479529B2 (en) Two-stage low temperature air cooled adsorption cooling unit
JP4946894B2 (en) Waste heat utilization system
JP2010107156A (en) Engine-driven heat pump
US20100300124A1 (en) Refrigerating machine comprising different sorption materials
JP5974541B2 (en) Air conditioning system
JP2009121740A (en) Adsorption type heat pump and its operation control method
JP2005077037A (en) Hybrid absorption heat pump system
JP5647879B2 (en) Adsorption refrigeration system
JPH11223411A (en) Adsorption heat pump
JP2004293905A (en) Adsorption type refrigerating machine and its operating method
JP2002162130A (en) Air conditioner
JP2002250573A (en) Air conditioner
JP2007093085A (en) Carbon dioxide gas removing device
JP2014001876A (en) Adsorptive refrigeration device and engine-driven air conditioner
JPH1137596A (en) Chemical heat pump
JP2000329422A (en) Adsorption refrigeration unit
JP2005172380A (en) Adsorption-type heat pump
JP2019124434A (en) Adsorption type refrigeration machine
JP4565539B2 (en) Operation method of adsorption refrigerator
JPH11281190A (en) Double adsorption refrigerating machine
JP2018151076A (en) Heat pump system and cold generation method
JP2019124433A (en) Adsorption type refrigeration machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees