JP2006299937A - Exhaust device for internal combustion engine and control method thereof - Google Patents
Exhaust device for internal combustion engine and control method thereof Download PDFInfo
- Publication number
- JP2006299937A JP2006299937A JP2005123102A JP2005123102A JP2006299937A JP 2006299937 A JP2006299937 A JP 2006299937A JP 2005123102 A JP2005123102 A JP 2005123102A JP 2005123102 A JP2005123102 A JP 2005123102A JP 2006299937 A JP2006299937 A JP 2006299937A
- Authority
- JP
- Japan
- Prior art keywords
- passage
- main
- switching valve
- catalytic converter
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
この発明は、冷間始動直後に、排気系の比較的上流に触媒コンバータを備えたバイパス流路側に流路切換弁により排気を案内するようにした排気装置およびその制御方法に関し、特に、未燃成分を多く含む初期の排気の処理技術に関する。 The present invention relates to an exhaust apparatus and a control method therefor, in which exhaust gas is guided by a flow path switching valve to a bypass flow path side provided with a catalytic converter relatively upstream of the exhaust system immediately after a cold start. The present invention relates to an early exhaust treatment technology containing a large amount of components.
従来から知られているように、車両の床下などの排気系の比較的下流側にメイン触媒コンバータを配置した構成では、内燃機関の冷間始動後、触媒コンバータの温度が上昇して活性化するまでの間、十分な排気浄化作用を期待することができない。また一方、触媒コンバータを排気系の上流側つまり内燃機関側に近付けるほど、触媒の熱劣化による耐久性低下が問題となる。 As conventionally known, in a configuration in which the main catalytic converter is disposed relatively downstream of the exhaust system such as under the floor of a vehicle, the temperature of the catalytic converter rises and is activated after a cold start of the internal combustion engine. In the meantime, a sufficient exhaust purification action cannot be expected. On the other hand, the closer the catalytic converter is to the upstream side of the exhaust system, that is, the internal combustion engine side, the lower the durability due to thermal degradation of the catalyst.
そのため、特許文献1に開示されているように、メイン触媒コンバータを備えたメイン流路の上流側部分と並列にバイパス流路を設けるとともに、このバイパス流路に、別のバイパス触媒コンバータを介装し、両者を切り換える切換弁によって、冷間始動直後は、バイパス流路側に排気を案内するようにした排気装置が、従来から提案されている。この構成では、バイパス触媒コンバータは排気系の中でメイン触媒コンバータよりも相対的に上流側に位置しており、相対的に早期に活性化するので、より早い段階から排気浄化を開始することができる。
上記のようなバイパス触媒コンバータを備えた排気装置においては、バイパス触媒コンバータが比較的早期に活性化するものの、クランキングを開始した直後の数サイクルの間に排出される未燃成分を多く含む排気に対しては、到底、活性化が間に合わず、その浄化を行うことができない。従って、初期のHCの排出を防止するためには、HCを一時的に吸着するHCトラップ触媒の使用等が必要となる。特に、火花点火を行うガソリン機関では、どの気筒が圧縮上死点にあるのかを判定する気筒判別処理が完了した後に正常な点火順序での点火が可能となるが、一般に、始動性向上のために、この気筒判別が完了する前に燃料噴射が開始されるので、噴射された燃料が未燃のまま排出される気筒が生じる可能性があり、従って、クランキング開始直後に、HC濃度の高い排気が生じやすい。 In the exhaust system provided with the bypass catalytic converter as described above, although the bypass catalytic converter is activated relatively early, the exhaust containing a large amount of unburned components discharged during several cycles immediately after the start of cranking. However, activation is not in time, and purification cannot be performed. Therefore, in order to prevent the initial HC discharge, it is necessary to use an HC trap catalyst that temporarily adsorbs HC. In particular, in a gasoline engine that performs spark ignition, it is possible to perform ignition in a normal ignition sequence after completing the cylinder discrimination process for determining which cylinder is at the compression top dead center. In addition, since the fuel injection is started before the cylinder discrimination is completed, there is a possibility that a cylinder in which the injected fuel is discharged without being burned is generated. Therefore, the HC concentration is high immediately after the cranking is started. Exhaust is likely to occur.
そこで、この発明は、メイン触媒コンバータの暖機完了まで排気が通流しないメイン通路の容積を、始動直後のHC濃度の高い排気を一時的に蓄える一種のトラップとして利用するようにした。 Therefore, in the present invention, the volume of the main passage through which exhaust does not flow until the warming-up of the main catalytic converter is completed is used as a kind of trap for temporarily storing exhaust having a high HC concentration immediately after starting.
すなわち、請求項1に係る発明は、メイン通路の上流側の分岐点から下流側の合流点までの間の部分と並列にバイパス通路が設けられ、上記合流点よりも下流側にメイン触媒コンバータを備えるとともに、上記バイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路の上記分岐点から上記合流点までの間に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気装置において、上記メイン通路の上記分岐点から上記合流点までの部分に始動直後の排気を蓄えるように上記流路切換弁を開閉制御する切換弁制御手段を備えたことを特徴としている。 That is, according to the first aspect of the present invention, a bypass passage is provided in parallel with a portion between the upstream branch point of the main passage and the downstream junction, and the main catalytic converter is disposed downstream of the junction. An exhaust device for an internal combustion engine comprising a bypass catalytic converter in the bypass passage, and a flow path switching valve that closes the main passage between the branch point of the main passage and the junction point, It is characterized by comprising switching valve control means for controlling opening and closing of the flow path switching valve so as to store exhaust gas immediately after starting at a portion from the branch point to the junction point of the main passage.
具体的な一つの態様では、上記切換弁制御手段は、クランキング開始後、燃料噴射開始時点から所定サイクル経過までの間は流路切換弁を開とし、その後、メイン触媒コンバータの暖機完了まで閉とする。 In one specific aspect, the switching valve control means opens the flow path switching valve after the start of cranking until the predetermined cycle elapses after the start of fuel injection, and thereafter until the warm-up of the main catalytic converter is completed. Closed.
また請求項4に係る制御方法は、メイン通路の上流側の分岐点から下流側の合流点までの間の部分と並列にバイパス通路が設けられ、上記合流点よりも下流側にメイン触媒コンバータを備えるとともに、上記バイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路の上記分岐点から上記合流点までの間に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気装置において、始動時に、始動直後の排気が上記メイン通路側に流入するように上記流路切換弁を開とし、次に、この始動直後の排気が上記合流点に達する前に上記流路切換弁を閉として、上記メイン通路の上記分岐点から上記合流点までの部分に始動直後の排気を蓄えることを特徴としている。 In the control method according to claim 4, a bypass passage is provided in parallel with a portion between the upstream branch point of the main passage and the downstream junction, and the main catalytic converter is disposed downstream of the junction. An exhaust device for an internal combustion engine comprising a bypass catalytic converter in the bypass passage, and a flow path switching valve that closes the main passage between the branch point of the main passage and the junction point, At the time of starting, the flow path switching valve is opened so that the exhaust gas immediately after the start flows into the main passage side, and then the flow path switching valve is closed before the exhaust gas immediately after the start reaches the merging point. The exhaust immediately after start-up is stored in the portion of the main passage from the branch point to the junction.
具体的な一つの態様では、クランキング開始後、燃料噴射開始時点から所定サイクル経過までの間は流路切換弁を開とし、その後、閉とし、かつメイン触媒コンバータの暖機完了時点で開とする。 In one specific aspect, after the cranking is started, the flow path switching valve is opened during the period from the fuel injection start time to the lapse of a predetermined cycle, then closed, and opened when the main catalytic converter is warmed up. To do.
すなわち、バイパス触媒コンバータ側へ排気を案内すべき冷間始動直後であっても、クランキング開始からごく僅かの間、例えば燃料噴射開始時点から所定の数サイクルが経過するまでの間は、流路切換弁が開いている。これにより、HC濃度の高い初期の排気がメイン通路内に流入する。そして、このHC濃度の高い排気が合流点よりも下流へ流れ出る前に流路切換弁を閉じれば、メイン通路側の流れが止まり、メイン通路の分岐点から合流点までの区間にHC濃度の高い排気が蓄えられる。流路切換弁が閉となっている間は、内燃機関から排出される排気はバイパス通路側へ案内され、バイパス触媒コンバータによって排気浄化が行われる。その後、メイン触媒コンバータが暖機つまり活性化したら、流路切換弁が開かれ、メイン通路側を排気が流れる。これに伴い、メイン通路内に蓄えられていたHC濃度の高い排気は、既に活性状態にあるメイン触媒コンバータを通して排出される。 That is, even immediately after the cold start to guide the exhaust to the bypass catalytic converter side, the flow path is very short from the start of cranking, for example, until a predetermined number of cycles elapse from the start of fuel injection. The switching valve is open. As a result, the initial exhaust gas having a high HC concentration flows into the main passage. If the flow path switching valve is closed before the exhaust gas having a high HC concentration flows downstream from the merging point, the flow on the main passage side stops, and the HC concentration is high in the section from the branch point of the main passage to the merging point. Exhaust is stored. While the flow path switching valve is closed, the exhaust discharged from the internal combustion engine is guided to the bypass passage side, and exhaust purification is performed by the bypass catalytic converter. Thereafter, when the main catalytic converter is warmed up, that is, activated, the flow path switching valve is opened, and the exhaust flows through the main passage side. Along with this, the exhaust gas having a high HC concentration stored in the main passage is exhausted through the main catalytic converter already in an active state.
望ましい一つの態様では、上記流路切換弁は、メイン通路の上記分岐点から上記合流点までの長さの中間位置に配置されている。つまり、分岐点および合流点においては、初期の排気を蓄えるメイン通路の部分がバイパス通路に開放された開放端となるが、中間位置にある流路切換弁が閉となることで、該流路切換弁の上流側および下流側の双方で排気が蓄えられる。 In one desirable mode, the above-mentioned channel change-over valve is arranged in the middle position of the length from the above-mentioned branch point of the main passage to the above-mentioned junction. In other words, at the branch point and the junction point, the portion of the main passage that stores the initial exhaust is an open end that is open to the bypass passage, but the flow passage switching valve in the intermediate position is closed, so that the flow passage Exhaust gas is stored both upstream and downstream of the switching valve.
この発明によれば、始動の初期に機関から排出されるHC濃度の高い排気を、排気通路そのものを利用して一時的にトラップし、メイン触媒コンバータの活性後に確実に処理することができる。従って、容積室の追加等を要さずに初期のHC排出量を低減することができる。 According to the present invention, the exhaust gas having a high HC concentration discharged from the engine at the initial stage of the start can be temporarily trapped using the exhaust passage itself and reliably processed after the main catalytic converter is activated. Therefore, it is possible to reduce the initial HC discharge amount without requiring addition of a volume chamber.
以下、この発明を直列4気筒内燃機関の排気装置として適用した一実施例を図面に基づいて詳細に説明する。 Hereinafter, an embodiment in which the present invention is applied as an exhaust device of an in-line four-cylinder internal combustion engine will be described in detail based on the drawings.
図1は、この排気装置の配管レイアウトを模式的に示した説明図であり、始めに、この図1に基づいて、排気装置全体の構成を説明する。 FIG. 1 is an explanatory view schematically showing the piping layout of the exhaust device. First, the configuration of the entire exhaust device will be described based on FIG.
シリンダヘッド1には、直列に配置された♯1気筒〜♯4気筒の各気筒の排気ポート2がそれぞれ側面に向かって開口するように形成されており、この排気ポート2のそれぞれに、メイン通路3が接続されている。♯1気筒〜♯4気筒の4本のメイン通路3は、1本の流路に合流しており、その下流側に、メイン触媒コンバータ4が配置されている。このメイン触媒コンバータ4は、車両の床下に配置される容量の大きなものであって、触媒として、三元触媒が用いられているが、必要に応じてHCトラップ触媒を含んでいてもよい。上記のメイン通路3およびメイン触媒コンバータ4によって、通常の運転時に排気が通流するメイン流路が構成される。また、各気筒からの4本のメイン通路3の合流点には、流路切換手段として各メイン通路3を一斉に開閉する流路切換弁5が設けられている。なお、この流路切換弁5が閉状態にあるときには、これより上流の4本のメイン通路3の相互の連通も同時に遮断されるようになっている。 In the cylinder head 1, exhaust ports 2 of the cylinders # 1 to # 4 arranged in series are formed so as to open toward the side surfaces, and a main passage is formed in each of the exhaust ports 2. 3 is connected. The four main passages 3 of the # 1 cylinder to the # 4 cylinder merge into one flow path, and the main catalytic converter 4 is disposed on the downstream side thereof. The main catalytic converter 4 has a large capacity disposed under the floor of the vehicle, and a three-way catalyst is used as a catalyst. However, an HC trap catalyst may be included as necessary. The main passage 3 and the main catalytic converter 4 constitute a main passage through which exhaust flows during normal operation. In addition, a flow path switching valve 5 that opens and closes the main passages 3 at the same time is provided as a flow path switching means at the junction of the four main paths 3 from each cylinder. When the flow path switching valve 5 is in the closed state, the mutual communication of the four main passages 3 upstream from this is simultaneously blocked.
一方、バイパス流路として、各気筒のメイン通路3の各々から、該メイン通路3よりも通路断面積の小さなバイパス通路7がそれぞれ分岐している。各バイパス通路7の上流端となる分岐点6は、メイン通路3のできるだけ上流側の位置に設定されている。4本のバイパス通路7は、下流側で1本の流路に合流しており、その合流点の直後に、三元触媒を用いたバイパス触媒コンバータ8が介装されている。このバイパス触媒コンバータ8は、メイン触媒コンバータ4に比べて容量が小さな小型のものであり、望ましくは、低温活性に優れた触媒が用いられる。バイパス触媒コンバータ8の出口側から延びるバイパス通路7の下流端は、メイン通路3におけるメイン触媒コンバータ4上流側に合流点12において接続されている。 On the other hand, bypass passages 7 each having a smaller passage sectional area than the main passage 3 are branched from the main passages 3 of the respective cylinders as bypass passages. The branch point 6 that is the upstream end of each bypass passage 7 is set to a position on the upstream side of the main passage 3 as much as possible. The four bypass passages 7 merge into one flow path on the downstream side, and a bypass catalytic converter 8 using a three-way catalyst is interposed immediately after the junction. The bypass catalytic converter 8 has a small capacity as compared with the main catalytic converter 4, and preferably uses a catalyst excellent in low-temperature activity. The downstream end of the bypass passage 7 extending from the outlet side of the bypass catalytic converter 8 is connected to the upstream side of the main catalytic converter 4 in the main passage 3 at the junction 12.
なお、メイン触媒コンバータ4の入口部およびバイパス触媒コンバータ8の入口部には、それぞれ空燃比センサ10,11が配置されている。 Air-fuel ratio sensors 10 and 11 are disposed at the inlet of the main catalytic converter 4 and the inlet of the bypass catalytic converter 8, respectively.
このような構成においては、基本的には、冷間始動後の機関温度ないしは排気温度が低い段階では、適宜なアクチュエータを介して流路切換弁5が閉じられ、メイン通路3が遮断される。そのため、各気筒から吐出された排気は、その全量が分岐点6からバイパス通路7を通してバイパス触媒コンバータ8へと流れる。バイパス触媒コンバータ8は、排気系の上流側つまり排気ポート2に近い位置にあり、かつ小型のものであるので、速やかに活性化し、早期に排気浄化が開始される。 In such a configuration, basically, at a stage where the engine temperature or the exhaust temperature after the cold start is low, the flow path switching valve 5 is closed via the appropriate actuator, and the main passage 3 is shut off. Therefore, the entire amount of exhaust discharged from each cylinder flows from the branch point 6 to the bypass catalytic converter 8 through the bypass passage 7. The bypass catalytic converter 8 is located upstream of the exhaust system, that is, at a position close to the exhaust port 2 and is small in size, so that it is activated quickly and exhaust purification is started at an early stage.
一方、機関の暖機が進行して、機関温度ないしは排気温度が十分に高くなったら、流路切換弁5が開放される。これにより、各気筒から吐出された排気は、主に、メイン通路3からメイン触媒コンバータ4を通過する。このときバイパス通路7側は特に遮断されていないが、バイパス通路7側の方がメイン通路3側よりも通路断面積が小さく、かつバイパス触媒コンバータ8が介在しているので、両者の通路抵抗の差により、排気流の大部分はメイン通路3側を通り、バイパス通路7側には殆ど流れない。従って、バイパス触媒コンバータ8の熱劣化は十分に抑制される。 On the other hand, when the engine warms up and the engine temperature or the exhaust temperature becomes sufficiently high, the flow path switching valve 5 is opened. Thus, the exhaust discharged from each cylinder mainly passes through the main catalytic converter 4 from the main passage 3. At this time, the bypass passage 7 side is not particularly cut off, but the bypass passage 7 side has a smaller passage cross-sectional area than the main passage 3 side and the bypass catalytic converter 8 is interposed. Due to the difference, most of the exhaust flow passes through the main passage 3 side and hardly flows into the bypass passage 7 side. Therefore, the thermal deterioration of the bypass catalytic converter 8 is sufficiently suppressed.
次に、上記流路切換弁5のより具体的な開閉制御について、図2のタイムチャートに基づいて説明する。 Next, more specific opening / closing control of the flow path switching valve 5 will be described based on the time chart of FIG.
図2は、始動後の種々のパラメータ等の変化を示したものであり、(a)流路切換弁5の開閉状態、(b)スタータモータのON・OFF、(c)燃料噴射開始からの累積サイクル数(注:4気筒機関であるので720°CAで4サイクルとなる)、(d)機関回転速度NE、(e)クランキング時燃料噴射量TIST、(f)通常の燃料噴射量TP、(g)空燃比、(h)点火時期ADV、(i)排温、(j)外部へ排出されるHC濃度、を対比して示している。なお、横軸は時間であるが、始動時の数サイクルを特に拡大して示してあり、細い縦線で示すタイミングT1とT2との間、T2とT3との間、T3とT4との間、はそれぞれ360°CAである。また燃料噴射量として、上記クランキング時燃料噴射量TISTは、冷却水温等に応じて一義的に定まる噴射量、上記燃料噴射量TPは、エアフロメータにより検出される吸入空気量等に基づいて算出される噴射量であって、クランキング時燃料噴射量TISTおよび通常の燃料噴射量TPのいずれか値の大きな方が、実際の噴射量となる。従って、この例では、クランキング時燃料噴射量TISTの立ち上がりが最初の燃料噴射開始となる。 FIG. 2 shows changes in various parameters and the like after starting. (A) Open / close state of flow path switching valve 5, (b) Starter motor ON / OFF, (c) Start of fuel injection. Cumulative number of cycles (Note: Since it is a 4-cylinder engine, it will be 4 cycles at 720 ° CA), (d) Engine speed NE, (e) Cranking fuel injection amount TIST, (f) Normal fuel injection amount TP , (G) air-fuel ratio, (h) ignition timing ADV, (i) exhaust temperature, and (j) HC concentration discharged outside. Although the horizontal axis represents time, several cycles at the time of starting are particularly enlarged. Between timings T1 and T2, indicated by thin vertical lines, between T2 and T3, and between T3 and T4. Are 360 ° CA. Further, as the fuel injection amount, the fuel injection amount TIST at the time of cranking is calculated based on the injection amount uniquely determined according to the cooling water temperature or the like, and the fuel injection amount TP is calculated based on the intake air amount detected by the air flow meter, etc. The larger one of the cranking fuel injection amount TIST and the normal fuel injection amount TP is the actual injection amount. Accordingly, in this example, the rising of the cranking fuel injection amount TIST is the first fuel injection start.
流路切換弁5は、クランキング開始前は、この実施例では閉状態もしくは部分的に閉じた状態となっている。但し、これは本発明の上では必須ではなく、例えば、機関停止の際に流路切換弁5が開状態であった場合に、そのままの状態を維持するようにしてもよい。そして、クランキングの開始に伴い、流路切換弁5は開となる。この開状態は燃料噴射開始から所定サイクル数(メイン通路3の分岐点6から合流点12までの区間の容積と各気筒の排気量との関係から定まり、例えば図示例では7サイクルである。なお、分岐点6が排気ポート2から離れている場合には、その距離による遅れも考慮することが望ましい。)が経過するまでの間、継続され、所定サイクル数が経過したら、流路切換弁5は閉となる。これにより、前述したHC濃度の高い初期の排気が、メイン通路3の分岐点6から合流点12までの区間に充填される。その後、メイン触媒コンバータ4の触媒が活性したと判定された段階で、流路切換弁5は開放され、前述したように、排気は主にメイン通路3を通流するようになる。同時に、充填されていたHC濃度の高い排気も、メイン触媒コンバータ4へ導入される。 In this embodiment, the flow path switching valve 5 is closed or partially closed before cranking is started. However, this is not essential in the present invention. For example, when the flow path switching valve 5 is open when the engine is stopped, the state may be maintained as it is. And with the start of cranking, the flow path switching valve 5 is opened. This open state is determined from the relationship between the volume of the predetermined cycle number from the start of fuel injection (the volume of the section from the branch point 6 to the junction point 12 of the main passage 3 and the exhaust amount of each cylinder, for example, seven cycles in the illustrated example. When the branch point 6 is away from the exhaust port 2, it is desirable to take into account the delay due to the distance.) When the predetermined number of cycles has elapsed, the flow path switching valve 5 Is closed. As a result, the above-described initial exhaust gas having a high HC concentration is filled in the section from the branch point 6 to the junction point 12 of the main passage 3. Thereafter, when it is determined that the catalyst of the main catalytic converter 4 has been activated, the flow path switching valve 5 is opened, and the exhaust mainly flows through the main passage 3 as described above. At the same time, the exhaust gas with a high HC concentration that has been filled is also introduced into the main catalytic converter 4.
図3は、このような流路切換弁5の開閉動作をガスの動きとともに示した説明図であって、機関始動前は、(1)に示すように、流路切換弁5が例えば部分的に閉じており、メイン通路3の分岐点6から合流点12までの区間には、空気もしくは空気で希釈された希薄な排気ガスG1が残存している。クランキング開始時に、(2)に示すように流路切換弁5は開き、メイン通路3内でのガスの移動が許容される。このとき、残存していた空気に近いガスG1がメイン触媒コンバータ4を通過するので、触媒の酸素ストレージ量が増加し、触媒活性化の上で有利となる。その後、燃料噴射が開始されると、(3)に示すように、未燃成分を多く含むHC濃度の高いガスG2が排気ポート2から吐出され、メイン通路3内に流入する。そして、燃料噴射開始から所定サイクル数が経過したときに、(4)に示すように、流路切換弁5が閉じる。このサイクル数は、HC濃度の高いガスG2が合流点12よりも下流側へ行かないように、かつこのガスG2の先頭がなるべく合流点12に近づくように設定される。(5)に示すように、流路切換弁5が完全に閉じた状態では、分岐点6から合流点12までの間のメイン通路3にはガスの流れが生じないので、HC濃度の高いガスG2が、メイン通路3の分岐点6から合流点12までの区間に蓄えられる。この間、排気ポート2から吐出された排気は、前述したように、バイパス通路7側を流れる。この状態である程度の期間運転されてメイン触媒コンバータ4が活性化したら、(6)に示すように、流路切換弁5が開かれ、排気の殆どがメイン通路3を流れるようになる。そして、メイン通路3内に保持されていたHC濃度の高いガスG2も、同時にメイン触媒コンバータ4へと導入される。なお、(5)に示す状態では、ガスG2のトラップとなるメイン通路3の両端(つまり分岐点6および合流点12)が閉止されておらず、バイパス通路7に対し開放された形となるが、流路切換弁5がガスの流動を阻止することから、僅かに拡散していくに過ぎず、特に、メイン通路3の分岐点6から合流点12までの長さの中間位置に配置された流路切換弁5の近傍では、ガスG2が十分に長い時間保持され得る。 FIG. 3 is an explanatory view showing the opening / closing operation of the flow path switching valve 5 together with the movement of the gas. Before the engine is started, as shown in (1), the flow path switching valve 5 is, for example, partially In the section from the branch point 6 to the junction point 12 of the main passage 3, air or a lean exhaust gas G1 diluted with air remains. At the start of cranking, the flow path switching valve 5 is opened as shown in (2), and the movement of gas in the main passage 3 is allowed. At this time, the gas G1 close to the remaining air passes through the main catalytic converter 4, so that the amount of oxygen storage of the catalyst is increased, which is advantageous for catalyst activation. Thereafter, when fuel injection is started, as shown in (3), the gas G2 having a high HC concentration containing a large amount of unburned components is discharged from the exhaust port 2 and flows into the main passage 3. When the predetermined number of cycles has elapsed since the start of fuel injection, the flow path switching valve 5 is closed as shown in (4). The number of cycles is set so that the gas G2 having a high HC concentration does not go downstream from the junction 12 and the head of the gas G2 is as close to the junction 12 as possible. As shown in (5), in the state where the flow path switching valve 5 is completely closed, no gas flows in the main passage 3 between the branch point 6 and the junction point 12, so that a gas with a high HC concentration is present. G2 is stored in the section from the branch point 6 to the junction 12 of the main passage 3. During this time, the exhaust discharged from the exhaust port 2 flows through the bypass passage 7 as described above. When the main catalytic converter 4 is activated in this state for a certain period of time, the flow path switching valve 5 is opened and most of the exhaust gas flows through the main passage 3 as shown in (6). Then, the gas G2 having a high HC concentration held in the main passage 3 is also introduced into the main catalytic converter 4 at the same time. Note that, in the state shown in (5), both ends of the main passage 3 (that is, the branching point 6 and the junction 12) serving as a trap for the gas G2 are not closed and are open to the bypass passage 7. Since the flow path switching valve 5 prevents the flow of gas, it is only slightly diffused, and in particular, it is disposed at an intermediate position in the length from the branch point 6 to the junction point 12 of the main passage 3. In the vicinity of the flow path switching valve 5, the gas G2 can be held for a sufficiently long time.
図2の(j)に示すHC濃度において、実線の特性は、上述したHC濃度の高いガスG2のトラップを行わない場合(つまりクランキング開始から流路切換弁5を閉状態に保持する)の特性であり、これに対し、破線が、上述したHC濃度の高いガスG2のトラップを行った場合の特性を示す。図示するように、本発明により、始動初期のHCの外部への排出を大幅に低減することができる。 In the HC concentration shown in FIG. 2 (j), the characteristic of the solid line shows that the trap of the gas G2 having a high HC concentration described above is not performed (that is, the flow path switching valve 5 is kept closed from the start of cranking). On the other hand, the broken line indicates the characteristic when the above-described trap of the gas G2 having a high HC concentration is performed. As shown in the figure, according to the present invention, the discharge of HC to the outside at the initial stage of starting can be greatly reduced.
ここで、始動初期のHC濃度が非常に高いのは、着火に至らずに未燃のまま燃料を排出してしまう気筒が存在し得るためである。すなわち、この実施例の内燃機関は、吸気ポートに燃料噴射弁が配置されたポート噴射型のものであり、基本的に各気筒の膨張行程において吸気ポートへ向かって燃料をそれぞれ噴射しているが、クランキングが開始した直後は、いずれの気筒が上死点にあるかの気筒判別処理が完了していないため、最も最初の燃料噴射は、膨張行程もしくは吸気行程にあると思われる2つの気筒に対し、同時に燃料噴射が行われる。そのため、そのとき吸気行程にあった気筒については、燃料の一部が気筒内に流入するものの、適正な点火がなされずに、未燃のまま排気ポート2へ排出されてしまうことがある。従って、初期の排気は、非常にHC濃度の高いものとなるが、この未燃燃料の排出は、ごく初めのサイクルで生じるので、上述したトラップとなる分岐点6から合流点12までの区間の容積が、1気筒の排気量の数気筒分あれば、その外部への排出を確実に抑止することができる。 Here, the HC concentration in the initial stage of the start is very high because there may be a cylinder that does not reach ignition and discharges fuel without being burned. That is, the internal combustion engine of this embodiment is of a port injection type in which a fuel injection valve is arranged at the intake port, and basically injects fuel toward the intake port in the expansion stroke of each cylinder. Immediately after the cranking is started, the cylinder discrimination process of which cylinder is at the top dead center is not completed, so the first fuel injection is considered to be in the expansion stroke or the intake stroke. On the other hand, fuel injection is performed simultaneously. Therefore, in the cylinder that was in the intake stroke at that time, although a part of the fuel flows into the cylinder, it may be discharged to the exhaust port 2 without being properly ignited and unburned. Therefore, although the initial exhaust gas has a very high HC concentration, the discharge of unburned fuel occurs in the very first cycle. Therefore, in the section from the branch point 6 serving as the trap to the junction point 12 described above. If the volume is equivalent to several cylinders of the displacement of one cylinder, the discharge to the outside can be reliably suppressed.
3…メイン通路
4…メイン触媒コンバータ
5…流路切換弁
6…分岐点
7…バイパス通路
8…バイパス触媒コンバータ
12…合流点
DESCRIPTION OF SYMBOLS 3 ... Main passage 4 ... Main catalytic converter 5 ... Flow path switching valve 6 ... Branch point 7 ... Bypass passage 8 ... Bypass catalytic converter 12 ... Junction point
Claims (6)
6. The method for controlling an exhaust device of an internal combustion engine according to claim 4, wherein the internal combustion engine starts fuel injection before completion of cylinder discrimination at start-up.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005123102A JP2006299937A (en) | 2005-04-21 | 2005-04-21 | Exhaust device for internal combustion engine and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005123102A JP2006299937A (en) | 2005-04-21 | 2005-04-21 | Exhaust device for internal combustion engine and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006299937A true JP2006299937A (en) | 2006-11-02 |
Family
ID=37468530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005123102A Pending JP2006299937A (en) | 2005-04-21 | 2005-04-21 | Exhaust device for internal combustion engine and control method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006299937A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010014000A (en) * | 2008-07-03 | 2010-01-21 | Nissan Motor Co Ltd | Exhaust emission control device for internal combustion engine |
-
2005
- 2005-04-21 JP JP2005123102A patent/JP2006299937A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010014000A (en) * | 2008-07-03 | 2010-01-21 | Nissan Motor Co Ltd | Exhaust emission control device for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6502391B1 (en) | Exhaust emission control device of internal combustion engine | |
US6233925B1 (en) | Exhaust discharge control device for internal combustion engine | |
KR100627594B1 (en) | Exhaust emission control device of internal combustion engine | |
JPH10299463A (en) | Exhaust emission control device for internal combustion engine | |
JP2008255814A (en) | Control device of internal combustion engine | |
JP2006299936A (en) | Exhaust device for internal combustion engine and control method for internal combustion engine | |
JP4061999B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2006291783A (en) | Exhaust device for internal combustion engine | |
JP2007247486A (en) | Failure diagnostic system of exhaust emission control device of internal combustion engine | |
JP4325565B2 (en) | Exhaust gas purification device and exhaust gas purification method for internal combustion engine | |
JP2004036431A (en) | Exhaust gas purifier of internal combustion engine | |
JP4475117B2 (en) | Engine air-fuel ratio control device | |
JP2008057481A (en) | Internal combustion engine | |
JP4883319B2 (en) | Exhaust gas purification device for in-cylinder internal combustion engine | |
JP2010242522A (en) | Exhaust emission control device for internal combustion engine | |
JP4106529B2 (en) | Exhaust purification device for multi-cylinder internal combustion engine | |
JP2006299937A (en) | Exhaust device for internal combustion engine and control method thereof | |
JP2009041435A (en) | Secondary air supply device in internal combustion engine | |
JP4292671B2 (en) | Hydrocarbon emission reduction device for internal combustion engine | |
JP2002303164A (en) | Exhaust noise reducer for internal combustion engine | |
JP2007056719A (en) | Exhaust emission control device of internal combustion engine | |
JP4225303B2 (en) | Exhaust gas purification system for internal combustion engine | |
JP5125634B2 (en) | Exhaust gas purification device for idle stop vehicle | |
JP2007002734A (en) | Exhaust emission control device for internal combustion engine | |
JP2004124824A (en) | Secondary air supply device |