JP2006299473A - Shrinkable acrylic fiber dyeable at low temperature - Google Patents

Shrinkable acrylic fiber dyeable at low temperature Download PDF

Info

Publication number
JP2006299473A
JP2006299473A JP2005124719A JP2005124719A JP2006299473A JP 2006299473 A JP2006299473 A JP 2006299473A JP 2005124719 A JP2005124719 A JP 2005124719A JP 2005124719 A JP2005124719 A JP 2005124719A JP 2006299473 A JP2006299473 A JP 2006299473A
Authority
JP
Japan
Prior art keywords
water
acrylic fiber
shrinkage
fiber
dyeing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005124719A
Other languages
Japanese (ja)
Inventor
Yasuo Aki
泰雄 安芸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2005124719A priority Critical patent/JP2006299473A/en
Priority to KR1020050108890A priority patent/KR20060111351A/en
Priority to CNA2005101217257A priority patent/CN1851071A/en
Publication of JP2006299473A publication Critical patent/JP2006299473A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/06Dyes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acrylic fiber dyeable at a lower temperature than a temperature for completely developing shrinkage and developing sufficient shrinkage by heating after dyeing. <P>SOLUTION: The shrinkable acrylic fiber dyeable at the low temperature is characterized as follows. The fiber has <15% shrinkage percentage in hot water at ≤75°C and ≥15% shrinkage percentage by a wet heat treatment at 90-100°C or a dry heat treatment at 120-150°C and is dyeable at ≤75°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は低温可染収縮性アクリル繊維に関する。具体的には、収縮が完全に発現される温度よりも低温で染色可能であり、染色後において十分な収縮を発現させることができるアクリル繊維に関する。 The present invention relates to a low temperature dyeable shrinkable acrylic fiber. Specifically, the present invention relates to an acrylic fiber that can be dyed at a temperature lower than the temperature at which shrinkage is fully expressed, and can exhibit sufficient shrinkage after dyeing.

収縮性アクリル繊維は、加熱により収縮を発現する繊維であり、バルキー糸やスライバーニットなどにおいてはその収縮性を利用してかさ高さを発現させている。一方、アクリル繊維の染色においては染料の親和性が80℃付近から急激に増大し、この温度以下ではほとんど染色することができないことから、通常、90℃以上の染色浴を使用して染色を行う。しかし、収縮性アクリル繊維をこのような条件で染色すると収縮しきってしまい、染色後においてはほとんど収縮を発現させることができなくなる。従って、バルキー糸やスライバーニットなどのようにかさ高さが求められる場合には、収縮性アクリル繊維をあらかじめ糸、織物、編物などにした後に染色等による加熱を行う必要がある。 The shrinkable acrylic fiber is a fiber that develops shrinkage when heated. In bulky yarn, sliver knit, and the like, the bulkiness is developed using the shrinkage. On the other hand, in the dyeing of acrylic fibers, the affinity of dyes suddenly increases from around 80 ° C., and hardly dyes below this temperature. Therefore, dyeing is usually performed using a dye bath at 90 ° C. or higher. . However, when the shrinkable acrylic fiber is dyed under such conditions, it shrinks completely, and after the dyeing, the shrinkage can hardly be expressed. Therefore, when bulkiness is required, such as bulky yarn or sliver knit, it is necessary to heat the shrinkable acrylic fiber by dyeing or the like after previously forming the shrinkable acrylic fiber into a yarn, woven fabric, knitted fabric or the like.

このような染色の制限のため、メランジや杢調などに染色する場合には、糸、織物、編物などを作成する段階であらかじめ異なる部類の染料で染色される繊維を複数種使用し、染め分けができるようにしておかなければならない。また、熱に弱い繊維との混紡や交編をした場合には染色時の熱によって繊維をいためてしまう恐れがある。 Due to this limitation of dyeing, when dyeing in melange, tone, etc., multiple types of fibers that are dyed with different types of dyes in advance at the stage of creating yarn, woven fabric, knitted fabric, etc. You must be able to do it. Further, when blending or knitting with heat-sensitive fibers, the fibers may be damaged by heat during dyeing.

この点について、スライバーニットやカーペットの場合は、収縮性アクリル繊維の製造時に着色したいわゆる原着繊維を用いたり、トウに通常染色を施した後、トウ加工機を用いて牽切したスライバーを用いたりすることが可能である。しかしながら、原着繊維の場合、容易に任意の色を得ることができない、あるいは多くの色調の原着繊維を在庫しておく必要があり小ロット生産には不向きであるなどの問題点が存在する。また、トウ染色の場合は、任意な色に染色することは可能であるが、トウ加工機が必要となる、あるいは加工時のロスが多くなるなどの問題点が存在する。 In this regard, in the case of a sliver knit or carpet, use a so-called original fiber colored during the production of shrinkable acrylic fiber, or use a sliver that has been dyed with a tow processing machine after normal tow dyeing. It is possible to However, in the case of original fibers, there is a problem that an arbitrary color cannot be easily obtained, or it is necessary to stock original fibers of many colors and is not suitable for small lot production. . In addition, in the case of tow dyeing, it is possible to dye in any color, but there are problems such as the need for a tow processing machine or an increase in processing loss.

上述したような問題点を解決する方法として、特許文献1には収縮性アクリル繊維にアニオン系活性剤を付与した後、70℃以下のカチオン染料を含有する染液で処理する方法が記載されている。このようにすることによって染色工程における繊維の収縮を抑制することができるが、染浴中に脱落したアニオン系活性剤がカチオン染料と結合することにより染色浴が汚染されるため、染色するたびに染浴を洗浄しなければならなくなる。また、アニオン系活性剤とカチオン染料の結合物が繊維上に物理的に付着することにより染色堅牢度の低下が起こるため、実用上問題がある。 As a method for solving the above-mentioned problems, Patent Document 1 describes a method in which an anionic activator is applied to a shrinkable acrylic fiber and then treated with a dye solution containing a cationic dye at 70 ° C. or lower. Yes. By doing so, the shrinkage of the fiber in the dyeing process can be suppressed, but the dyeing bath is contaminated by the binding of the anionic active agent dropped in the dyeing bath with the cationic dye. The dye bath must be cleaned. In addition, there is a problem in practical use because the fastness to dyeing occurs due to the physical attachment of an anionic active agent and a cationic dye on the fiber.

また、特許文献2には、ハロゲン含有モノマー及びスルホン酸含有モノマーを共重合した繊維を原料繊維とする、カチオン染料で染色された乾熱収縮性を有するアクリル系短繊維が開示されている。しかし、繊維中心部に存在するスルホン酸成分は染料の固着に寄与しにくく、スルホン酸含有モノマーの使用量が多くなるため、染着速度が速くなり染色斑の要因となるほか、コストアップにもつながる。
特開2003−253574号公報 再公表特許WO2002/053825号公報
Further, Patent Document 2 discloses an acrylic short fiber having dry heat shrinkage dyed with a cationic dye, using a fiber obtained by copolymerizing a halogen-containing monomer and a sulfonic acid-containing monomer as a raw fiber. However, the sulfonic acid component present in the center of the fiber is unlikely to contribute to the fixing of the dye, and the amount of sulfonic acid-containing monomer is increased. Connected.
JP 2003-253574 A Republished patent WO2002 / 053825

以上に述べてきたように、収縮性アクリル繊維は、染色工程において収縮が発現してしまうため、使用方法が限定されていた。この不便を解消するために、原着、トウ染色、アニオン系活性剤の付与、繊維構成重合体の工夫など様々な方法が検討されているが、いずれも何らかの問題点を有するものである。本発明は、かかる現状に基づきなされたものであり、収縮が完全に発現される温度よりも低温で染色可能であり、染色後における加熱によって十分な収縮を発現させることができるアクリル繊維を提供することを目的とする。 As described above, the shrinkable acrylic fiber is limited in its usage because it shrinks in the dyeing process. In order to eliminate this inconvenience, various methods such as original deposition, tow dyeing, application of an anionic active agent, and a device for a fiber-constituting polymer have been studied, but all have some problems. The present invention has been made based on the present situation, and provides an acrylic fiber that can be dyed at a temperature lower than the temperature at which shrinkage is fully developed and that can exhibit sufficient shrinkage by heating after dyeing. For the purpose.

本発明者は、上述の目的を達成するために鋭意検討を進めた結果、以下に示す本発明に到達した。
(1)75℃以下の熱水中での収縮率が15%未満であり、90〜100℃の湿熱処理または120〜150℃の乾熱処理での収縮率が15%以上であり、かつ75℃以下で染色可能であることを特徴とする低温可染収縮性アクリル繊維。
(2)水膨潤性ポリマーを1〜10重量%含有することを特徴とする(1)に記載の低温可染収縮性アクリル繊維。
(3)水膨潤性ポリマーを含有する紡糸原液と水膨潤性ポリマーを含有しない紡糸原液とを複合紡糸して得られたものであることを特徴とする(2)に記載の低温可染収縮性アクリル繊維。
(4)水膨潤性ポリマーがポリビニルシアノエチルエーテル、アクリロニトリルとメトキシポリエチレングリコールメタアクリレートの共重合物、ポリビニルアルコール、シアノエチル化ポリビニルアルコール、シアノエチルセルロース、メタリルスルホン酸共重合物からなる群より選ばれた一種以上のポリマーであることを特徴とする(2)または(3)に記載の低温可染収縮性アクリル繊維。
As a result of diligent studies to achieve the above-mentioned object, the present inventor has reached the present invention shown below.
(1) Shrinkage rate in hot water of 75 ° C. or less is less than 15%, shrinkage rate in wet heat treatment of 90-100 ° C. or dry heat treatment of 120-150 ° C. is 15% or more, and 75 ° C. A low-temperature dyeable shrinkable acrylic fiber characterized in that it can be dyed as follows.
(2) The low-temperature dyeable shrinkable acrylic fiber according to (1), comprising 1 to 10% by weight of a water-swellable polymer.
(3) The low-temperature dyeable shrinkage according to (2), which is obtained by complex spinning of a spinning stock solution containing a water-swellable polymer and a spinning stock solution not containing a water-swellable polymer Acrylic fiber.
(4) A type in which the water-swellable polymer is selected from the group consisting of polyvinyl cyanoethyl ether, a copolymer of acrylonitrile and methoxypolyethylene glycol methacrylate, polyvinyl alcohol, cyanoethylated polyvinyl alcohol, cyanoethyl cellulose, and methallyl sulfonic acid copolymer The low-temperature dyeable shrinkable acrylic fiber according to (2) or (3), which is the above polymer.

本発明の低温可染収縮性アクリル繊維は、染色工程において従来のような収縮が発現しきってしまうような高温ではなく、75℃以下という低温で染色可能であるので、染色後においても湿熱や乾熱で収縮を発現させることが可能である。このため、従来の収縮性アクリル繊維のように繊維構造物を形成させた後に染色を施す必要はなく、形成前に染色すればよいため、熱に弱い繊維との混紡や交編も問題なく行うことができる、あるいは、原着繊維のように色数に制限もなく、通常のアクリル繊維と同様に任意の色相に染色することができるなど、これまでの収縮性アクリル繊維にあった様々な制限がなくなり、より自由に、より広い用途範囲で使用することが可能である。 The low-temperature dyeable shrinkable acrylic fiber of the present invention can be dyed at a low temperature of 75 ° C. or lower, not at a high temperature at which the conventional shrinkage is fully manifested in the dyeing process. Shrinkage can be expressed by heat. For this reason, it is not necessary to dye after forming a fiber structure like conventional shrinkable acrylic fibers, and it is sufficient to dye before forming. The number of colors that can be used, or the number of colors as in the case of the original fiber, can be dyed to an arbitrary hue in the same way as normal acrylic fibers. It can be used more freely and in a wider range of applications.

本発明の低温可染収縮性アクリル繊維は、75℃以下で染色可能であり、好ましくは70℃以下、さらに好ましくは65℃以下で染色可能であることが望ましい。染色に75℃を超える温度が必要な場合、染色工程における繊維の収縮が大きくなりすぎ、染色後に十分な収縮を得ることができなくなる。なお、本発明において「染色可能」との用語は、当業者において通常染色可能と判断される状態を指すものである。具体的には、全く染色できない場合に加え、一旦着色しても水洗等で色がなくなってしまう場合や汚染程度にしか染まらない場合などは、本発明にいう「染色可能」には当たらない。 The low-temperature dyeable shrinkable acrylic fiber of the present invention can be dyed at 75 ° C. or lower, preferably 70 ° C. or lower, more preferably 65 ° C. or lower. When a temperature exceeding 75 ° C. is required for dyeing, the shrinkage of the fibers in the dyeing process becomes too large, and sufficient shrinkage cannot be obtained after dyeing. In the present invention, the term “stainable” refers to a state in which a person skilled in the art normally determines that staining is possible. Specifically, in addition to the case where it cannot be dyed at all, the case where the color disappears even after being washed, etc., or when it is dyed only to the extent of contamination, does not fall under “dyeable” in the present invention.

本発明の低温可染収縮性アクリル繊維は、75℃以下の熱水中での収縮率が15%未満であり、好ましくは12%未満、さらに好ましくは10%未満であることが望ましい。75℃以下の熱水中において収縮率が15%以上発現する場合、染色後に十分な収縮を得ることが困難であるばかりか、均一な収縮を得ることができない。 The low-temperature dyeable shrinkable acrylic fiber of the present invention has a shrinkage ratio in hot water of 75 ° C. or lower of less than 15%, preferably less than 12%, more preferably less than 10%. When the shrinkage rate is 15% or more in hot water at 75 ° C. or lower, it is difficult to obtain sufficient shrinkage after dyeing, and uniform shrinkage cannot be obtained.

また、本発明の低温可染収縮性アクリル繊維は、90〜100℃の湿熱処理または120〜150℃の乾熱処理での収縮率が15%以上であり、好ましくは20%以上、さらに好ましくは30%以上であることが望ましい。90〜100℃の湿熱処理または120〜150℃の乾熱処理での収縮率が15%未満である場合、染色後に十分な収縮を得ることが困難であるばかりか、均一な収縮を得ることができない。 Moreover, the low-temperature dyeable shrinkable acrylic fiber of the present invention has a shrinkage ratio of 15% or more, preferably 20% or more, more preferably 30 in a wet heat treatment at 90 to 100 ° C. or a dry heat treatment at 120 to 150 ° C. % Or more is desirable. When the shrinkage ratio in the wet heat treatment at 90 to 100 ° C. or the dry heat treatment at 120 to 150 ° C. is less than 15%, it is difficult to obtain sufficient shrinkage after dyeing, and uniform shrinkage cannot be obtained. .

さらに、本発明の低温可染収縮性アクリル繊維は、75℃以下の染色後に90〜100℃の湿熱処理または120〜150℃の乾熱処理を施すことによって染色後の繊維に対して15%以上、好ましくは20%以上、さらに好ましくは30%以上の収縮率を発現することができるものであることが望ましい。 Furthermore, the low temperature dyeable shrinkable acrylic fiber of the present invention is 15% or more with respect to the dyed fiber by performing wet heat treatment at 90 to 100 ° C. or dry heat treatment at 120 to 150 ° C. after dyeing at 75 ° C. or less, It is desirable that the shrinkage rate is preferably 20% or more, more preferably 30% or more.

本発明の低温可染収縮性アクリル繊維を構成するアクリロニトリル系ポリマーは、従来公知の収縮性アクリル繊維の製造に用いられるものであればよい。アクリロニトリルに共重合するビニルモノマーの代表的な例としては、アクリル酸、メタクリル酸、又はこれらのエステル類;アクリルアミド、メタクリルアミド又はこれらのN−アルキル置換体;酢酸ビニル等のビニルエステル類;塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル又はビニリデン類;ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、p−スチレンスルホン酸等の不飽和スルホン酸又はこれらの塩類等アクリロニトリルと共重合可能な周知のモノマーを挙げることができる。なお、本発明の低温可染収縮性アクリル繊維を構成するアクリロニトリル系ポリマーとして、複数種のアクリロニトリル系ポリマー用いても構わない。 The acrylonitrile-based polymer constituting the low-temperature dyeable shrinkable acrylic fiber of the present invention may be any one that can be used for producing conventionally known shrinkable acrylic fibers. Representative examples of vinyl monomers copolymerized with acrylonitrile include acrylic acid, methacrylic acid, or esters thereof; acrylamide, methacrylamide, or N-alkyl substituted products thereof; vinyl esters such as vinyl acetate; vinyl chloride , Vinyl halides such as vinyl bromide and vinylidene chloride or vinylidenes; unsaturated sulfonic acids such as vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, p-styrene sulfonic acid or salts thereof, and acrylonitrile such as their salts can be copolymerized And well-known monomers. In addition, you may use multiple types of acrylonitrile-type polymer as an acrylonitrile-type polymer which comprises the low-temperature dyeable shrinkable acrylic fiber of this invention.

また、本発明の低温可染収縮性アクリル繊維は水膨潤性ポリマーを好ましくは1〜10重量%、より好ましくは1〜6重量%含有することが望ましい。水膨潤性ポリマーは低温においても染液を吸収し、吸収された染料は濃度勾配により繊維内部へ拡散していくため、低温でも容易に染色できるようになる。また、水膨潤性ポリマーを含有することで吸湿性が向上するため、静電気の発生を抑制するという副次的な効果も得られる。 The low-temperature dyeable shrinkable acrylic fiber of the present invention preferably contains 1-10% by weight, more preferably 1-6% by weight, of a water-swellable polymer. The water-swellable polymer absorbs the dye solution even at a low temperature, and the absorbed dye diffuses into the fiber due to the concentration gradient, so that it can be easily dyed even at a low temperature. Moreover, since a hygroscopic property improves by containing a water swellable polymer, the secondary effect of suppressing generation | occurrence | production of static electricity is also acquired.

なお、水膨潤性ポリマーは通常紡糸原液に添加することによって含有せしめるが、10重量%を超えて含有せしめると、紡糸原液がゲル化して紡糸できなくなる場合がある。一方、含有量が1重量%未満になると、水膨潤性ポリマーの量が少なくなるため、低温での染色が容易になるなどの効果が得られなくなることがある。また、水膨潤性ポリマーの添加量が多いほど紡糸工程におけるノズル詰まりや糸切れが起こりやすくなり、得られる繊維の繊維物性にも低下傾向が現れるため、上記範囲内でも、必要とされる染色性等を勘案しつつ、できるだけ少量の添加量とすることが望ましい。なお、水膨潤性ポリマーの添加量を少量にすることにはコスト抑制の利点もある。 The water-swellable polymer is usually added by adding to the spinning dope, but if it exceeds 10% by weight, the spinning dope may gel and be unable to be spun. On the other hand, when the content is less than 1% by weight, the amount of the water-swellable polymer is decreased, so that an effect such as easy dyeing at a low temperature may not be obtained. Also, as the amount of water-swellable polymer added increases, nozzle clogging and thread breakage are more likely to occur in the spinning process, and the fiber properties of the resulting fiber tend to decrease. It is desirable to make the addition amount as small as possible while taking the above into consideration. In addition, there exists an advantage of cost suppression in making the addition amount of a water swellable polymer small.

さらに、本発明者が検討を繰り返した結果、水膨潤性ポリマーを含有する紡糸原液と水膨潤性ポリマーを含有しない紡糸原液を用いて、サイド・バイ・サイド方式などの複合紡糸を行い、水膨潤性ポリマーの分布に偏りを持たせることで、同量の水膨潤性ポリマーを繊維全体に分散させた場合に比べて、低温での染色性が向上し、濃色染めも容易となることが明らかになった。また、染料飽和値についても、サイド・バイ・サイド型とすることで大幅に向上するとの結果が得られた。これらのことは、逆に捉えれば、より少量の水膨潤性ポリマーでも良好な染色性を発現させることが可能であるということでもあり、操業性や繊維物性の低下抑制という面でも有効である。 Furthermore, as a result of repeated studies by the present inventor, by using a spinning stock solution containing a water-swellable polymer and a spinning stock solution not containing a water-swellable polymer, composite spinning such as a side-by-side method is performed, and water swelling It is clear that the uneven distribution of the light-sensitive polymer improves the dyeability at low temperatures and facilitates the deep color dyeing compared to the case where the same amount of water-swellable polymer is dispersed throughout the fiber. Became. In addition, the dye saturation value was also greatly improved by using the side-by-side type. If these are grasped conversely, it means that even with a smaller amount of water-swellable polymer, it is possible to express good dyeability, and it is also effective in terms of suppression of deterioration in operability and fiber properties.

染色性向上の理由についてはサイド・バイ・サイド方式を例にとると以下のように推定される。すなわち、水膨潤性ポリマーが染液を吸収し、吸収した染料を繊維内部に拡散させていくという観点に立つと、サイド・バイ・サイド型とすることにより、水膨潤性ポリマーを含有する側では該ポリマーの濃度が高くなったことで、まばらに散在させた場合よりも多くの染液が吸収されるようになる。一方、水膨潤性ポリマーを含有しない側では通常の染色浴から繊維表面を通じた染料の拡散に加え、多量の染液を吸収した水膨潤性ポリマーを含有する側からも接合面を通じて染料が拡散されてくるようになり、染液と接触する実質的な面積が大きくなる。この結果、繊維全体の染色性が向上するのではないかと考えられる。 The reason for improving the dyeability can be estimated as follows when the side-by-side method is taken as an example. That is, from the viewpoint that the water-swellable polymer absorbs the dye liquor and diffuses the absorbed dye into the fiber, by using a side-by-side type, on the side containing the water-swellable polymer By increasing the concentration of the polymer, more dye liquor is absorbed than when sparsely dispersed. On the other hand, on the side not containing the water-swellable polymer, in addition to the diffusion of the dye from the normal dye bath through the fiber surface, the dye is also diffused through the bonding surface from the side containing the water-swellable polymer that has absorbed a large amount of dye liquor. As a result, the substantial area in contact with the dye liquor increases. As a result, it is considered that the dyeability of the entire fiber may be improved.

また、水膨潤性ポリマーの水膨潤度としては、後述する測定方法により得られる水膨潤度が、好ましくは10〜300g/g、より好ましくは20〜150g/gであることが望ましい。水膨潤度が300g/gを超えると、紡糸工程において糸切れなどのトラブルが起こりやすくなる。 The water swelling degree of the water-swellable polymer is preferably 10 to 300 g / g, more preferably 20 to 150 g / g, as obtained by the measurement method described later. When the degree of water swelling exceeds 300 g / g, troubles such as yarn breakage are likely to occur in the spinning process.

水膨潤性ポリマーの種類としては特に限定はないが、ポリビニルシアノエチルエーテル、アクリロニトリルとメトキシポリエチレングリコールメタアクリレートの共重合物、ポリビニルアルコール、シアノエチル化ポリビニルアルコール、シアノエチルセルロース、メタリルスルホン酸共重合物などを例示することができる。中でも、アクリロニトリル10〜70重量%とメトキシポリエチレングリコールメタアクリレート30〜90重量%を共重合させたポリマーを採用するのが好ましい。なお、これらの水膨潤性ポリマーは1種類だけ使用してもよいし、複数種使用してもよい。 The type of water-swellable polymer is not particularly limited, but polyvinyl cyanoethyl ether, a copolymer of acrylonitrile and methoxypolyethylene glycol methacrylate, polyvinyl alcohol, cyanoethylated polyvinyl alcohol, cyanoethyl cellulose, methallyl sulfonic acid copolymer, etc. It can be illustrated. Among these, it is preferable to employ a polymer obtained by copolymerizing 10 to 70% by weight of acrylonitrile and 30 to 90% by weight of methoxypolyethylene glycol methacrylate. These water-swellable polymers may be used alone or in combination.

本発明の低温可染収縮性アクリル繊維の染色に用いる染料に関しては、通常のアクリル繊維を染色するのに用いられるのと同じ染料を使用することが可能である。また、染色条件に関しては、染色後に十分な収縮を発現させるため、75℃以下の染浴温度で実施するが、その他の条件については通常のアクリル繊維を染色する際の条件を採用しうる。なお、本発明の低温可染収縮性アクリル繊維は75℃以上の温度でも当然染色可能であるが、染色後の収縮が十分に得られなくなる恐れがある。 With respect to the dye used for dyeing the low-temperature dyeable shrinkable acrylic fiber of the present invention, it is possible to use the same dye used for dyeing ordinary acrylic fibers. As for the dyeing conditions, in order to develop sufficient shrinkage after dyeing, the dyeing bath temperature is 75 ° C. or lower. However, for other conditions, conditions for dyeing normal acrylic fibers can be adopted. The low-temperature dyeable shrinkable acrylic fiber of the present invention can naturally be dyed even at a temperature of 75 ° C. or higher, but there is a risk that sufficient shrinkage after dyeing cannot be obtained.

上述してきた本発明の低温可染収縮性アクリル繊維の具体例の一つとして、アクリロニトリル75〜95重量%、メタリルスルホン酸ナトリウム0〜3重量%、酢酸ビニル5〜22重量%を共重合して得られた重合体90重量%以上とアクリロニトリルとメトキシポリエチレングリコールメタアクリレートの共重合物10重量%以下をチオシアン酸ナトリウム水溶液と混合して紡糸原液とし、該紡糸原液を公知の収縮性アクリル繊維の製造方法に則って紡糸することにより得られる繊維を挙げることができる。 As one specific example of the low-temperature dyeable shrinkable acrylic fiber of the present invention described above, acrylonitrile 75 to 95% by weight, sodium methallylsulfonate 0 to 3% by weight, and vinyl acetate 5 to 22% by weight are copolymerized. 90% by weight or more of the obtained polymer and 10% by weight or less of a copolymer of acrylonitrile and methoxypolyethylene glycol methacrylate were mixed with a sodium thiocyanate aqueous solution to form a spinning stock solution. The spinning stock solution was made of a known shrinkable acrylic fiber. Mention may be made of fibers obtained by spinning according to the production method.

以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。なお、実施例中、部及び百分率は特に断りのない限り重量基準で示す。また、実施例において記述する水膨潤度、収縮率、染色性、染料飽和値、染色堅牢度は下記の方法で測定したものである。 Examples are shown below for facilitating the understanding of the present invention. However, these are merely examples, and the gist of the present invention is not limited thereto. In the examples, parts and percentages are based on weight unless otherwise specified. Further, the degree of water swelling, shrinkage, dyeability, dye saturation value, and dye fastness described in the examples are measured by the following methods.

(1)水膨潤度
試料ポリマーの水分散液を100℃の熱風乾燥機に入れて水分を除去した後(試料ポリマーがフィルム状となる場合もある)、80℃の真空乾燥機中で恒量になるまで乾燥して重量(W0)を測定する。次いで、水中に浸漬し25℃で24時間経過後、水膨潤状態の試料ポリマーを濾紙の間にはさみ余分な水分を除去し、水膨潤時の重量(W1)を測定する。以上の結果より、次式に従って水膨潤度を計算する。
水膨潤度(g/g)=(W1−W0)/W0
(1) Degree of water swelling After the water dispersion of a sample polymer is placed in a 100 ° C hot air dryer to remove moisture (the sample polymer may be in the form of a film), the sample polymer is kept constant in a vacuum dryer at 80 ° C. Dry until measured and measure weight (W0). Next, the sample polymer is immersed in water and after 24 hours at 25 ° C., the sample polymer in a water swollen state is sandwiched between filter papers to remove excess water, and the weight (W1) at the time of water swelling is measured. From the above results, the degree of water swelling is calculated according to the following formula.
Water swelling degree (g / g) = (W1-W0) / W0

(2)収縮率
試料繊維の繊維長(L1)を測定した後、75℃の水中で60分間または130℃の乾熱で5分間収縮させ、収縮後の繊維長(L2)を測定する。なお、測定はJIS L−1015に記載の測定方法に準じた荷重をかけて実施する。以上の結果より、次式に従って収縮率を計算する。
収縮率(%)=(L1−L2)/L1×100
(2) Shrinkage ratio After measuring the fiber length (L1) of the sample fiber, the fiber length (L2) after shrinkage is measured by shrinking in 75 ° C water for 60 minutes or 130 ° C with dry heat for 5 minutes. In addition, the measurement is performed by applying a load according to the measurement method described in JIS L-1015. From the above results, the shrinkage rate is calculated according to the following equation.
Shrinkage rate (%) = (L1-L2) / L1 × 100

(3)染色性
試料繊維を51mmの定長にカットし、カチオン染料Malachite Green 2%omf(%omfは繊維質量に対する百分率)および酢酸2%omf含有する染色浴に75℃×60分浸漬した後、ソーピング、水洗、乾燥を行う。得られた繊維について、染色性を以下の判断基準に基づき、目視によって評価する。
○:十分に染色可能
△:淡色に染色可能
×:ほとんど染まらない
(3) The dyeable sample fiber was cut to a fixed length of 51 mm, and immersed in a dyeing bath containing the cationic dye Malachite Green 2% omf (% omf is a percentage of the fiber mass) and acetic acid 2% omf at 75 ° C. for 60 minutes. , Soaping, washing and drying. The obtained fiber is visually evaluated for dyeability based on the following criteria.
○: Fully dyeable △: Lightly dyeable ×: Little dye

(4)染料飽和値
上記(3)で得られた繊維0.1gをγ−ブチロラクトン25mlに溶解させ、分光光度計にて吸光度(A)を測定する。一方、ボイルすることによりMalachite Green 1%omfを完全に吸収させたアクリル繊維0.1gをγ−ブチロラクトン25mlに溶解させ、分光光度計にて吸光度(B)を測定する。以上の結果より、次式に従って染料飽和値を計算する。
染料飽和値(%omf)=A/B
(4) Dye saturation value 0.1 g of the fiber obtained in the above (3) is dissolved in 25 ml of γ-butyrolactone, and the absorbance (A) is measured with a spectrophotometer. On the other hand, 0.1 g of acrylic fiber completely absorbed with Malachite Green 1% omf by boiling is dissolved in 25 ml of γ-butyrolactone, and the absorbance (B) is measured with a spectrophotometer. From the above results, the dye saturation value is calculated according to the following formula.
Dye saturation value (% omf) = A / B

(5)染色堅牢度(耐光染色堅牢度)
上記(3)で得られた繊維について、JIS L−0842(第3露光法)に準拠し、ブラックパネル温度計の温度を63±3℃として試験を行い、変退色の程度を判定する。なお、測定装置は、スガ試験機(株)製 Standard UV Long Life Fade Materを使用した。耐光染色堅牢度は3級以上であれば実用に耐えうるものである。
(5) Dye fastness (fastness to light dyeing)
About the fiber obtained by said (3), based on JISL-0842 (3rd exposure method), it tests by setting the temperature of a black panel thermometer to 63 +/- 3 degreeC, and determines the grade of discoloration. In addition, Suga Test Instruments Co., Ltd. Standard UV Long Life Fade Mater was used for the measuring apparatus. The light fastness to light dyeing can be practically used if it is grade 3 or higher.

[アクリロニトリル系ポリマー及び水膨潤性ポリマーの製造]
表1に示す組成で水系懸濁重合を行い、アクリロニトリル系ポリマーA、Bおよび水膨潤性ポリマーa、b、cを作成した。なお、表中の略号はそれぞれ、AN:アクリロニトリル、MA:アクリル酸メチル、SMAS:メタアリルスルホン酸ナトリウム、VAc:酢酸ビニル、MPEGMA:メトキシポリエチレングリコール(30モル)メタアクリレートを示している。また、水膨潤性ポリマーについては上記測定方法より求めた水膨潤度を併記した。
[Production of acrylonitrile-based polymer and water-swellable polymer]
Aqueous suspension polymerization was carried out with the composition shown in Table 1 to prepare acrylonitrile-based polymers A and B and water-swellable polymers a, b and c. The abbreviations in the table represent AN: acrylonitrile, MA: methyl acrylate, SMAS: sodium methallylsulfonate, VAc: vinyl acetate, MPEGMA: methoxypolyethylene glycol (30 mol) methacrylate. Moreover, about the water-swellable polymer, the water swelling degree calculated | required from the said measuring method was written together.

Figure 2006299473
Figure 2006299473

[実施例1〜4、比較例1]
50%ロダン酸ナトリウム水溶液900部に対して、表2に示す割合でアクリロニトリル系ポリマーAを溶解させた後、水に分散させた水膨潤性ポリマーaを添加混合する方法で紡糸原液Xを作成した。これとは別に、50%ロダン酸ナトリウム水溶液900部に対して、アクリロニトリル系ポリマーAを100部溶解させ、紡糸原液Yを作成した。作成した紡糸原液X及びYを通常のサイド・バイ・サイド型複合繊維紡糸口金を介して、X/Y比を50/50とし、通常の収縮性アクリル繊維の製造方法に則って複合紡糸を行い、実施例1〜4の繊維を作成した。また、比較例1として水膨潤性ポリマーを添加していない繊維も作成した。表2に得られた繊維の収縮率、染色性、染料飽和値および染色堅牢度を評価した結果を示す。
[Examples 1 to 4, Comparative Example 1]
A spinning stock solution X was prepared by dissolving acrylonitrile-based polymer A at a ratio shown in Table 2 with respect to 900 parts of 50% aqueous sodium rhodate solution and then adding and mixing water-swellable polymer a dispersed in water. . Separately from this, 100 parts of acrylonitrile-based polymer A was dissolved in 900 parts of 50% aqueous sodium rhodate solution to prepare a spinning dope Y. The prepared spinning solutions X and Y are subjected to composite spinning in accordance with a normal shrinkable acrylic fiber manufacturing method with an X / Y ratio of 50/50 through a normal side-by-side composite fiber spinneret. The fibers of Examples 1 to 4 were created. Moreover, the fiber which did not add the water swellable polymer as the comparative example 1 was also created. Table 2 shows the results of evaluating the shrinkage, dyeability, dye saturation value, and dye fastness of the fibers obtained.

Figure 2006299473
Figure 2006299473

表2からわかるように、実施例1〜3では、75℃においても十分に染色可能であり、十分な染色堅牢度を有する収縮性アクリル繊維が得られた。実施例4では、水膨潤性ポリマーの添加量は低いが、淡色に染色することは可能であった。これに対して、比較例1については75℃ではほとんど染色することができなかった。 As can be seen from Table 2, in Examples 1 to 3, shrinkable acrylic fibers that were sufficiently dyeable even at 75 ° C. and had sufficient dyeing fastness were obtained. In Example 4, although the addition amount of the water-swellable polymer was low, it was possible to dye it lightly. In contrast, Comparative Example 1 could hardly be dyed at 75 ° C.

[実施例5〜7、比較例2]
50%ロダン酸ナトリウム水溶液900部に対して、表3に示す割合でアクリロニトリル系ポリマーBを溶解させた後、水に分散させた水膨潤性ポリマーを添加混合する方法で紡糸原液を作成した。得られた紡糸原液を、通常の収縮性アクリル繊維の製造方法に則って紡糸を行った。表3に得られた繊維の収縮率、染色性、染料飽和値および染色堅牢度を評価した結果を示す。
[Examples 5 to 7, Comparative Example 2]
After dissolving acrylonitrile-based polymer B at a ratio shown in Table 3 with respect to 900 parts of 50% aqueous sodium rhodanate solution, a spinning dope was prepared by adding and mixing a water-swellable polymer dispersed in water. The obtained spinning dope was spun in accordance with a normal method for producing shrinkable acrylic fibers. Table 3 shows the results of evaluating the shrinkage, dyeability, dye saturation value, and dye fastness of the fibers obtained.

Figure 2006299473
Figure 2006299473

表3からわかるように、実施例5〜7では、75℃においても染色可能であり、十分な染色堅牢度を有する収縮性アクリル繊維が得られた。これらの実施例を比較すると添加する水膨潤性ポリマーの水膨潤度が高いほうがより高い染料飽和値を示し、染色性が高くなる傾向があると考えられる。また、実施例5〜7では水膨潤性ポリマーを繊維全体に分散させているが、サイド・バイ・サイド型の実施例1〜4に比較して、水膨潤性ポリマーの添加量に対する染料飽和値が低い傾向が見られ、水膨潤性ポリマーの分布に偏りを持たせることが染色性向上に寄与すると考えられる。なお、実施例5においては、紡糸工程において若干の糸切れが発生したが繊維を得ることは可能であった。しかし、比較例2では、水膨潤性ポリマーの添加量が多すぎたため、紡糸原液がゲル化し、紡糸することができなかった。 As can be seen from Table 3, in Examples 5 to 7, shrinkable acrylic fibers that can be dyed even at 75 ° C. and have sufficient dyeing fastness were obtained. When these Examples are compared, it is considered that the higher the water swelling degree of the water-swellable polymer added, the higher the dye saturation value, and the higher the dyeability. Further, in Examples 5 to 7, the water-swellable polymer is dispersed throughout the fiber, but compared to the side-by-side Examples 1 to 4, the dye saturation value relative to the added amount of the water-swellable polymer It is considered that the distribution of the water-swellable polymer is biased and contributes to the improvement of the dyeability. In Example 5, although some yarn breakage occurred in the spinning process, it was possible to obtain fibers. However, in Comparative Example 2, since the amount of the water-swellable polymer added was too large, the spinning dope gelled and could not be spun.

本発明の低温可染収縮性アクリル繊維は、低温での染色においても、実用的な色相が得られ、かつ染色後においても十分な収縮を発現できるものであり、スライバーニットなど原綿で染色を行う用途に最適である。 The low-temperature dyeable shrinkable acrylic fiber of the present invention has a practical hue even when dyeing at low temperatures and can exhibit sufficient shrinkage even after dyeing, and is dyed with raw cotton such as sliver knit. Ideal for use.

Claims (4)

75℃以下の熱水中での収縮率が15%未満であり、90〜100℃の湿熱処理または120〜150℃の乾熱処理での収縮率が15%以上であり、かつ75℃以下で染色可能であることを特徴とする低温可染収縮性アクリル繊維。 Shrinkage in hot water at 75 ° C. or less is less than 15%, shrinkage in wet heat treatment at 90 to 100 ° C. or dry heat treatment at 120 to 150 ° C. is 15% or more, and dyeing at 75 ° C. or less A low temperature dyeable shrinkable acrylic fiber characterized in that it is possible. 水膨潤性ポリマーを1〜10重量%含有することを特徴とする請求項1に記載の低温可染収縮性アクリル繊維。 2. The low-temperature dyeable shrinkable acrylic fiber according to claim 1, comprising 1 to 10% by weight of a water-swellable polymer. 水膨潤性ポリマーを含有する紡糸原液と水膨潤性ポリマーを含有しない紡糸原液とを複合紡糸して得られたものであることを特徴とする請求項2に記載の低温可染収縮性アクリル繊維。 3. The low-temperature dyeable shrinkable acrylic fiber according to claim 2, wherein the low-temperature dyeable shrinkable acrylic fiber is obtained by complex spinning a spinning stock solution containing a water-swellable polymer and a spinning stock solution not containing a water-swellable polymer. 水膨潤性ポリマーがポリビニルシアノエチルエーテル、アクリロニトリルとメトキシポリエチレングリコールメタアクリレートの共重合物、ポリビニルアルコール、シアノエチル化ポリビニルアルコール、シアノエチルセルロース、メタリルスルホン酸共重合物からなる群より選ばれた一種以上のポリマーであることを特徴とする請求項2または3に記載の低温可染収縮性アクリル繊維。 The water-swellable polymer is one or more polymers selected from the group consisting of polyvinyl cyanoethyl ether, a copolymer of acrylonitrile and methoxypolyethylene glycol methacrylate, polyvinyl alcohol, cyanoethylated polyvinyl alcohol, cyanoethyl cellulose, and methallyl sulfonic acid copolymer. The low-temperature dyeable shrinkable acrylic fiber according to claim 2 or 3, wherein
JP2005124719A 2005-04-22 2005-04-22 Shrinkable acrylic fiber dyeable at low temperature Pending JP2006299473A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005124719A JP2006299473A (en) 2005-04-22 2005-04-22 Shrinkable acrylic fiber dyeable at low temperature
KR1020050108890A KR20060111351A (en) 2005-04-22 2005-11-15 Low temperature dyeable and contractible acrylic fiber
CNA2005101217257A CN1851071A (en) 2005-04-22 2005-12-08 Contractibility acrylonitrile fiber capable of hypothermia staining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124719A JP2006299473A (en) 2005-04-22 2005-04-22 Shrinkable acrylic fiber dyeable at low temperature

Publications (1)

Publication Number Publication Date
JP2006299473A true JP2006299473A (en) 2006-11-02

Family

ID=37132574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124719A Pending JP2006299473A (en) 2005-04-22 2005-04-22 Shrinkable acrylic fiber dyeable at low temperature

Country Status (3)

Country Link
JP (1) JP2006299473A (en)
KR (1) KR20060111351A (en)
CN (1) CN1851071A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239149A (en) * 2006-03-09 2007-09-20 Kaneka Corp Method for dyeing low-temperature dyeable type acrylic fiber and low-temperature dyeable type acrylic fiber dyed by the same method
CN117175141A (en) * 2023-07-31 2023-12-05 中国科学院大连化学物理研究所 Lithium battery diaphragm and preparation method and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040150B (en) * 2015-07-10 2017-03-22 东华大学 Low temperature dyeable contractile polyacrylonitrile fibre and preparation method thereof
CN105040151B (en) * 2015-07-10 2017-08-04 东华大学 A kind of polyacrylonitrile fibre of low temperature dyeing and preparation method thereof
CN108441979A (en) * 2018-04-27 2018-08-24 芜湖天科生物科技有限公司 A kind of antibacterial conductive fiber and preparation method thereof
CN109295523B (en) * 2018-09-30 2021-01-26 天津工业大学 Permanent antistatic acrylonitrile-based copolymer and preparation method of fiber thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295181A (en) * 2000-04-07 2001-10-26 Miyoshi Oil & Fat Co Ltd Antistatic agent for acrylic fiber and method for durable antistatic treatment of acrylic fiber
WO2002053825A1 (en) * 2000-12-28 2002-07-11 Kanebo, Limited Acrylic short fiber and method of dyeing acrylic short fiber
JP2003342831A (en) * 2002-05-29 2003-12-03 Japan Exlan Co Ltd Water-absorbing acrylic fiber and method for producing the same and fiber structure containing the fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295181A (en) * 2000-04-07 2001-10-26 Miyoshi Oil & Fat Co Ltd Antistatic agent for acrylic fiber and method for durable antistatic treatment of acrylic fiber
WO2002053825A1 (en) * 2000-12-28 2002-07-11 Kanebo, Limited Acrylic short fiber and method of dyeing acrylic short fiber
JP2003342831A (en) * 2002-05-29 2003-12-03 Japan Exlan Co Ltd Water-absorbing acrylic fiber and method for producing the same and fiber structure containing the fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239149A (en) * 2006-03-09 2007-09-20 Kaneka Corp Method for dyeing low-temperature dyeable type acrylic fiber and low-temperature dyeable type acrylic fiber dyed by the same method
CN117175141A (en) * 2023-07-31 2023-12-05 中国科学院大连化学物理研究所 Lithium battery diaphragm and preparation method and application thereof
CN117175141B (en) * 2023-07-31 2024-03-19 中国科学院大连化学物理研究所 Lithium battery diaphragm and preparation method and application thereof

Also Published As

Publication number Publication date
CN1851071A (en) 2006-10-25
KR20060111351A (en) 2006-10-27

Similar Documents

Publication Publication Date Title
JP2006299473A (en) Shrinkable acrylic fiber dyeable at low temperature
EP2243870B1 (en) An antistatic acrylic fiber and a method for manufacturing the same
JPS5831113A (en) Water-absorbing acrylic fiber
TW201920800A (en) Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3728862B2 (en) Water-absorbing acrylic fiber
JP4533319B2 (en) Acrylic shrink fiber
JP3635183B2 (en) Deodorant acrylic fiber
JP2019085688A (en) Hygroscopic acrylonitrile-based fiber, method for producing the same and fiber structure containing the same
JP2837408B2 (en) Acrylic fiber treatment method
JP3756886B2 (en) High shrinkable acrylic fiber
JP4338574B2 (en) Colored moisture absorbing / releasing exothermic fiber and method for producing the same
JPS6356323B2 (en)
DE2502195C2 (en) Process for the production of acrylic fibers or threads
JPH07150471A (en) Porous acrylonitrile fiber
JPH07150470A (en) Porous acrylonitrile fiber
JPH11200141A (en) Production of pilling-resistant acrylic fiber
JP3452691B2 (en) Flame-retardant acrylic synthetic fiber with excellent weather resistance
JPH0790722A (en) Water-absorbing conjugate yarn
JP4392099B2 (en) Acrylic fiber manufacturing method
CN109554921A (en) A kind of test method for preventing the method that phenol xanthochromia occurs containing polyamide fabric and examining phenol xanthochromia
JP2022151751A (en) Acrylic deodorant, antibacterial and hygroscopic heating fiber and method for producing the same
JPH07216640A (en) Acrylic synthetic yarn having excellent yellowing resistance
JPWO2002053825A1 (en) Acrylic short fiber and method for dyeing acrylic short fiber
WO1998058104A1 (en) Cellulose fiber dyeable with disperse dye
JP2008038286A (en) Acrylic shrinkable fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100810