JP2006298664A - Solid electrolyte membrane-type reactor - Google Patents

Solid electrolyte membrane-type reactor Download PDF

Info

Publication number
JP2006298664A
JP2006298664A JP2005118794A JP2005118794A JP2006298664A JP 2006298664 A JP2006298664 A JP 2006298664A JP 2005118794 A JP2005118794 A JP 2005118794A JP 2005118794 A JP2005118794 A JP 2005118794A JP 2006298664 A JP2006298664 A JP 2006298664A
Authority
JP
Japan
Prior art keywords
oxygen
gas
solid electrolyte
porous support
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005118794A
Other languages
Japanese (ja)
Other versions
JP4699074B2 (en
Inventor
Wataru Ito
伊藤  渉
Tadashi Sakon
正 佐近
Kenji Hirano
兼次 平野
Toru Nagai
徹 永井
Hideki Kurimura
英樹 栗村
Toshinori Yamazaki
俊則 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Oil Co Ltd
Nippon Steel Corp
Original Assignee
Teikoku Oil Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Oil Co Ltd, Nippon Steel Corp filed Critical Teikoku Oil Co Ltd
Priority to JP2005118794A priority Critical patent/JP4699074B2/en
Publication of JP2006298664A publication Critical patent/JP2006298664A/en
Application granted granted Critical
Publication of JP4699074B2 publication Critical patent/JP4699074B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supporting membrane-type membrane-type reactor having a new structure which provides gas species having high utilization value, such as synthesis gases, by a high efficiency chemical conversion reaction by employing a structure for eliminating the influence of the gas diffusion in a porous support. <P>SOLUTION: The solid electrolyte membrane-type reactor has reaction structure of a three layer structure comprising a porous support 1, a dense layer 2 comprising an oxygen ion-electron mixed conductive solid electrolyte formed on the support 1, and a catalyst layer 3 formed on the dense layer 2, wherein a gas 4 to be treated containing a hydrocarbon as main component is supplied onto the surface of the catalyst layer 3 and a high purity oxygen gas 5 is supplied onto the surface of the porous support 1 side, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸素イオン・電子混合伝導性固体電解質を使って、炭化水素を主成分とした被処理ガスを部分酸化、あるいは改質し、合成ガス等利用価値の高いガス種に転換する膜型反応器に関する。   The present invention is a membrane type in which a gas to be treated mainly composed of hydrocarbon is partially oxidized or reformed by using a mixed solid electrolyte of oxygen ions and electrons, and converted into a gas type having high utility value such as synthesis gas. Reactor related.

水素と一酸化炭素の混合ガスである合成ガスは、メタノール、フィッシャー・トロプシュ合成油、ジメチルエーテル等のクリーン燃料の原料であり、天然ガスやLPG等の飽和炭化水素ガスから触媒水蒸気改質法を使って合成する方法が実用化されている。最近では、大きな吸熱反応である改質反応を燃焼による発熱で熱補償するATR(Auto Thermal Reforming)反応に関する開発が盛んに行われるようになってきた。ATR開発と並んで、酸素イオン・電子混合伝導性固体電解質を用いた膜型反応器の開発も精力的に進められており、膜型反応器により合成ガスの製造コストが大幅に削減できるとの試算も報告されている(例えば、非特許文献1)。   Syngas, a mixed gas of hydrogen and carbon monoxide, is a raw material for clean fuels such as methanol, Fischer-Tropsch synthetic oil, and dimethyl ether, and uses a catalytic steam reforming method from saturated hydrocarbon gases such as natural gas and LPG. Have been put to practical use. In recent years, development related to an ATR (Auto Thermal Reforming) reaction in which a reforming reaction, which is a large endothermic reaction, is thermally compensated by heat generated by combustion has been actively performed. Along with ATR development, the development of membrane reactors using mixed solid ion electrolytes with oxygen ions and electrons has been energetically promoted, and the membrane reactors can significantly reduce the production cost of synthesis gas. Trial calculations have also been reported (for example, Non-Patent Document 1).

固体電解質を用いた膜型反応器の特徴は、選択的なガスの透過と、反応場(透過側に配置された触媒を加えた固体電解質−触媒−気相の3相界面)の提供にあると考えられる。酸素イオン・電子混合伝導性固体電解質を用いた膜型反応器の場合、3相界面を中心とした反応場で炭化水素ガスの部分酸化あるいは改質が行われ、合成ガス等の利用価値の高いガス種に化学変換される。この時の変換反応の速度は、酸素の供給速度(透過速度)と表面での触媒反応速度の関連で決定されるが、触媒反応は非常に迅速に進むため、酸素の透過速度(酸素供給側表面におけるイオン化速度と固体電解質内を移動するイオンの拡散速度)が律速すると言っていい。   The characteristics of membrane reactors using solid electrolytes are the selective gas permeation and the provision of a reaction field (solid electrolyte-catalyst-gas phase three-phase interface with a catalyst arranged on the permeate side). it is conceivable that. In the case of a membrane reactor that uses a mixed conductive solid electrolyte of oxygen ions and electrons, the hydrocarbon gas is partially oxidized or reformed in the reaction field centering on the three-phase interface, and it is highly useful as a synthesis gas. Chemically converted to gas species. The rate of the conversion reaction at this time is determined in relation to the oxygen supply rate (permeation rate) and the catalytic reaction rate on the surface. However, since the catalytic reaction proceeds very rapidly, the oxygen permeation rate (oxygen supply side) It can be said that the ionization rate on the surface and the diffusion rate of ions moving in the solid electrolyte) are rate-limiting.

従来の膜型反応器は、大別すると固体電解質自体が炭化水素ガスと酸素含有ガスを隔離するタイプ(自立膜型)と、多孔質基体の上に固体電解質の薄膜を形成したタイプ(支持膜型)とがある。例えば、特許文献1でも述べられているように、両者を比較すると、支持膜型が理想的な構造と言える。   Conventional membrane reactors can be broadly divided into a type in which the solid electrolyte itself separates hydrocarbon gas and oxygen-containing gas (self-supporting membrane type), and a type in which a solid electrolyte thin film is formed on a porous substrate (support membrane). Type). For example, as described in Patent Document 1, when both are compared, it can be said that the support membrane type is an ideal structure.

即ち、前者は、十分な機械的強度を有するため、2種類のガスを隔離する上で信頼性は高いが、厚くなるために酸素の透過速度が著しく低下してしまい、上述した理由から変換効率が損なわれる。一方、後者は、信頼性の点で不利であると同時に、多孔質支持体/固体電解質緻密層/触媒層の3層構造としなければならないデメリットはあるものの、機械的な強度を多孔質支持体に持たせるため、固体電解質自体を薄くすることができる。この固体電解質の薄膜化は、直接、酸素の透過速度向上に寄与するため、膜型反応器の化学変換反応を飛躍的に上げられる大きなメリットを生む。   In other words, the former has a sufficient mechanical strength, so it is highly reliable in isolating two kinds of gases, but because it is thicker, the permeation rate of oxygen is significantly reduced. Is damaged. On the other hand, the latter is disadvantageous in terms of reliability and, at the same time, has the disadvantage of having a three-layer structure of porous support / solid electrolyte dense layer / catalyst layer, but the mechanical strength of the porous support Therefore, the solid electrolyte itself can be made thin. This reduction in the thickness of the solid electrolyte directly contributes to an increase in the oxygen permeation rate, and thus produces a great merit that the chemical conversion reaction of the membrane reactor can be dramatically improved.

特開2002−97083号公報JP 2002-97083 A Paul N. Dyer et al., "Ion transport membrane technology for oxygen separation and syngas production", Solid State Ionics, 134 (2000) p.21-33Paul N. Dyer et al., "Ion transport membrane technology for oxygen separation and syngas production", Solid State Ionics, 134 (2000) p.21-33

上述したことから、将来的には膜型反応器のタイプは支持膜型にならざるを得ないと考えられ、これまで本発明者らも、支持膜型の膜型反応器を開発してきた。しかしながら、支持膜型の膜型反応器を開発する過程で、幾多の改良を重ね、上述した信頼性や3層構造のデメリットを克服してきたものの、膜型反応器の化学変換反応が固体電解質の薄膜化によって期待される程増大しないことを突き止めた。鋭意検討を加えた結果、この原因が多孔質支持体中におけるガス拡散に起因したものであることを見出した。   From the above, it is considered that in the future the type of the membrane reactor must be a support membrane type, and the present inventors have so far developed a support membrane type membrane reactor. However, many improvements have been made in the process of developing a support membrane type membrane reactor, and the above-mentioned reliability and the disadvantages of the three-layer structure have been overcome. It has been found that the film thickness does not increase as much as expected. As a result of intensive studies, it was found that this cause was caused by gas diffusion in the porous support.

即ち、従来の方法で支持膜型膜型反応器を作動させようとすると、多孔質支持体に進入した酸素含有ガス(例えば、空気)の酸素のみが固体電解質の薄膜を透過するため、多孔体の中で酸素濃度が一時的に低下する。酸素濃度の一時的な低下は、供給する酸素含有ガスから酸素の拡散によって補われるが、酸素の透過速度が拡散速度を上回ると恒久的に酸素濃度の低下が生じる。支持膜型は、固体電解質の厚みを薄くして酸素の透過速度を上げると共に、多孔質支持体は強度を提供するため一定以上の厚みが必要であるところに特徴があることから、支持膜型では酸素の透過速度と拡散速度の関係は常に前者が大きくなる。したがって、多孔質支持体中の酸素濃度の低下は避けられず、これは透過速度の低下に直結するため、固体電解質を薄膜化したメリットが出づらい。   That is, when an attempt is made to operate a support membrane type membrane reactor by a conventional method, only oxygen in an oxygen-containing gas (for example, air) that has entered the porous support passes through the thin film of the solid electrolyte. The oxygen concentration temporarily decreases in the atmosphere. Although the temporary decrease in the oxygen concentration is compensated by the diffusion of oxygen from the supplied oxygen-containing gas, when the oxygen transmission rate exceeds the diffusion rate, the oxygen concentration is permanently reduced. The support membrane type is characterized in that the thickness of the solid electrolyte is reduced to increase the oxygen permeation rate, and the porous support requires a certain thickness to provide strength. Then, the relationship between the oxygen transmission rate and the diffusion rate is always increased. Therefore, a decrease in the oxygen concentration in the porous support is inevitable, and this directly leads to a decrease in the permeation rate, so that it is difficult to obtain the merit of thinning the solid electrolyte.

なお、上述の説明は、従来の支持膜型膜型反応器において、多孔質支持体側に酸素含有ガス、触媒層側に炭化水素ガスを流すことを前提に、多孔質支持体中の酸素濃度の低下に関する問題点を指摘したが、支持膜型の構造を変えることにより、ガスの供給方法を反対にした膜型反応器も考えられる。即ち、支持膜構造を、多孔質支持体/触媒層/固体電解質緻密層とし、多孔質支持体側に炭化水素ガス、緻密層側に酸素含有ガスを供給する膜型反応器である。しかしながら、この構成でも多孔質支持体中で触媒共存により反応した生成ガスと原料の炭化水素ガスとの間でガス拡散が十分速くないと、化学変換反応の速度は著しく阻害される結果となる。   The above explanation is based on the assumption that the oxygen concentration in the porous support is flown in the conventional support membrane type membrane reactor on the premise that the oxygen-containing gas flows on the porous support side and the hydrocarbon gas flows on the catalyst layer side. Although the problem regarding the reduction was pointed out, a membrane reactor in which the gas supply method is reversed by changing the structure of the support membrane type is also conceivable. That is, a membrane reactor in which the support membrane structure is a porous support / catalyst layer / solid electrolyte dense layer, and a hydrocarbon gas is supplied to the porous support side and an oxygen-containing gas is supplied to the dense layer side. However, even in this configuration, unless the gas diffusion is sufficiently fast between the product gas reacted in the porous support due to the coexistence of the catalyst and the hydrocarbon gas of the raw material, the rate of the chemical conversion reaction is significantly hindered.

本発明は、上記問題に鑑み、多孔質支持体中のガス拡散の影響を排除する構造とすることにより、合成ガス等の利用価値の高いガス種を高効率な化学変換反応によって得ることを可能とした、新しい構造の支持膜型膜型反応器の提供を目的としたものである。   In view of the above problems, the present invention has a structure that eliminates the influence of gas diffusion in the porous support, and thus it is possible to obtain a highly useful gas species such as synthesis gas by a highly efficient chemical conversion reaction. The purpose of the present invention is to provide a support membrane type membrane reactor having a new structure.

即ち、上記の目的を達成するためには、多孔体中のガス拡散の影響が出ないよう、固体電解質薄膜への供給ガスとして、酸素含有ガスの代わりに高純度酸素を用いるのが根本的な解決になるとの結論を得、本発明をなすに至った。本発明の要旨とするところは、以下の通りである。
(1) 多孔質支持体と、この多孔質支持体上に形成された酸素イオン・電子混合伝導性固体電解質からなる緻密層と、前記緻密層の上に形成された触媒層とからなる3層構造の反応構造体を用いた膜型反応器であって、前記触媒層表面に炭化水素を主成分とした被処理ガスを、前記多孔質支持体側表面に高純度酸素ガスを、それぞれ供給することを特徴とする固体電解質膜型反応器。
(2) 前記高純度酸素ガスが、93%以上の酸素濃度であることを特徴とする(1)記載の固体電解質膜型反応器。
(3) 前記高純度酸素ガスが、酸素イオン・電子混合伝導性固体電解質を使って酸素含有ガスから分離生成する酸素であることを特徴とする(1)又は(2)記載の固体電解質膜型反応器。
(4) 前記膜型反応器内に、酸素イオン・電子混合伝導性固体電解質を使って酸素含有ガスから酸素を分離生成する機能を設けることを特徴とする(1)〜(3)のいずれかに記載の固体電解質膜型反応器。
(5) 多孔質支持体と、この多孔質支持体上に形成された酸素イオン・電子混合伝導性固体電解質からなる第一の緻密層と、前記多孔質支持体を挟んで前記第一の緻密層と対峙した位置に形成された酸素イオン・電子混合伝導性固体電解質からなる第二の緻密層と、第一の緻密層の上に形成された触媒層とからなる4層構造の反応構造体であって、前記4層構造の前記触媒層側に炭化水素を主成分とした被処理ガスを、前記第二の緻密層側に酸素含有ガスを、それぞれ供給することを特徴とする固体電解質膜型反応器。
That is, in order to achieve the above object, it is fundamental to use high-purity oxygen instead of oxygen-containing gas as the supply gas to the solid electrolyte thin film so as not to affect the gas diffusion in the porous body. The conclusion was reached that the solution was reached and the present invention was made. The gist of the present invention is as follows.
(1) Three layers comprising a porous support, a dense layer made of oxygen ion / electron mixed conductive solid electrolyte formed on the porous support, and a catalyst layer formed on the dense layer A membrane reactor using a reaction structure having a structure in which a gas to be treated mainly containing hydrocarbons is supplied to the surface of the catalyst layer and a high-purity oxygen gas is supplied to the surface of the porous support. A solid electrolyte membrane reactor.
(2) The solid electrolyte membrane reactor according to (1), wherein the high-purity oxygen gas has an oxygen concentration of 93% or more.
(3) The solid electrolyte membrane type according to (1) or (2), wherein the high-purity oxygen gas is oxygen separated and generated from an oxygen-containing gas using an oxygen ion / electron mixed conductive solid electrolyte Reactor.
(4) Any one of (1) to (3), wherein a function of separating and generating oxygen from an oxygen-containing gas using an oxygen ion / electron mixed conductive solid electrolyte is provided in the membrane reactor. A solid electrolyte membrane reactor according to claim 1.
(5) A porous support, a first dense layer made of an oxygen ion / electron mixed conductive solid electrolyte formed on the porous support, and the first dense layer sandwiching the porous support. A four-layer reaction structure comprising a second dense layer made of an oxygen ion / electron mixed conductive solid electrolyte formed at a position facing the layer, and a catalyst layer formed on the first dense layer The solid electrolyte membrane is characterized in that a gas to be treated mainly containing hydrocarbons is supplied to the catalyst layer side of the four-layer structure and an oxygen-containing gas is supplied to the second dense layer side. Type reactor.

本発明によれば、従来問題となっていた多孔質支持体中で起きる酸素濃度の低下を抑えることができるため、酸素の透過速度の低下が無く、炭化水素等の被処理ガスを高効率で化学変換し、合成ガス等の利用価値の高いガス種を簡便に得ることができる。   According to the present invention, since it is possible to suppress a decrease in oxygen concentration that has occurred in a porous support, which has been a problem in the past, there is no decrease in the permeation rate of oxygen, and a gas to be treated such as hydrocarbons can be efficiently processed. By chemical conversion, it is possible to easily obtain gas species having high utility value such as synthesis gas.

以下、本発明を具体的に説明する。
図1は、本発明の一例である。図1(a)は、多孔質支持体1と、この上に形成された酸素イオン・電子混合伝導性固体電解質からなる緻密層2と、前記緻密層2の上に形成された触媒層3とからなる3層構造の反応構造体を用いた膜型反応器であって、前記触媒層3表面に炭化水素を主成分とした被処理ガス4を、前記多孔質支持体1側表面に高純度酸素ガス5を、それぞれ供給する固体電解質膜型反応器の例を、図1(b)は、前記3層構造の反応構造体(反応管6)の断面模式図を示す。
The present invention will be specifically described below.
FIG. 1 is an example of the present invention. FIG. 1 (a) shows a porous support 1, a dense layer 2 made of an oxygen ion / electron mixed conductive solid electrolyte formed thereon, and a catalyst layer 3 formed on the dense layer 2. A membrane type reactor using a three-layered reaction structure made of the above, a gas 4 to be treated mainly containing hydrocarbons on the surface of the catalyst layer 3 and a high purity on the surface of the porous support 1 side. An example of a solid electrolyte membrane reactor that supplies oxygen gas 5 respectively, FIG. 1B shows a schematic cross-sectional view of the reaction structure (reaction tube 6) having the three-layer structure.

本発明による膜型反応器は、従来の膜型反応器と比較してシンプルな反応器構造とすることができると言うメリットもある。即ち、従来の膜型反応器は、図2に示すように、反応官106の外側に被処理ガス104を供給しながら、反応管106の内側に酸素含有ガス105を常時供給するためのノズルを反応管1本毎に設ける必要があった。これに対し、本発明による膜型反応器ではガス流れの影響を考慮する必要が無いことから、酸素含有ガスを常時供給するためのノズルは必要ない。   The membrane reactor according to the present invention also has an advantage that it can have a simple reactor structure as compared with a conventional membrane reactor. That is, as shown in FIG. 2, the conventional membrane reactor has a nozzle for constantly supplying the oxygen-containing gas 105 to the inside of the reaction tube 106 while supplying the gas 104 to be treated to the outside of the reactor 106. It was necessary to provide each reaction tube. On the other hand, in the membrane reactor according to the present invention, it is not necessary to consider the influence of the gas flow, so that a nozzle for constantly supplying the oxygen-containing gas is not necessary.

但し、ここで供給する高純度酸素5は、不純物ガスを全く含まない理想的な純酸素を用いることが現実問題として不可能であるため、図1(a)では、不純物ガスの滞留・蓄積を防止する機構を付帯している。即ち、高純度酸素ガスを常時循環させながら、循環系統中に酸素純化装置7を用い、同時に、透過によって減じた酸素の量を補充する機構を設ける。または、高純度酸素ガスを循環させること無く、透過によって減じた酸素分を補充して運転を行い、長期間の運転により不純物ガスの濃度が高くなった段階で高純度酸素雰囲気に置換する作業(フラッシング)を行っても良い。   However, as the high-purity oxygen 5 supplied here cannot use ideal pure oxygen containing no impurity gas as a practical problem, in FIG. It comes with a mechanism to prevent it. That is, a mechanism for replenishing the amount of oxygen reduced by permeation is provided at the same time using the oxygen purifier 7 in the circulation system while constantly circulating high-purity oxygen gas. Alternatively, the operation is performed by replenishing the oxygen content reduced by permeation without circulating the high-purity oxygen gas, and replacing it with a high-purity oxygen atmosphere when the impurity gas concentration becomes high due to the long-term operation ( (Flushing) may be performed.

このように、図1(a)の膜型反応器では、多孔質支持体1中にある酸素は固体電解質を透過して触媒層3側に移るが、酸素濃度の低下は殆ど無く、一時的に生じるガス圧低下は外部からの補給があるため、定常状態として圧力は一定に保たれる。   As described above, in the membrane reactor shown in FIG. 1 (a), oxygen in the porous support 1 permeates the solid electrolyte and moves to the catalyst layer 3 side. Since the gas pressure drop generated in the process is supplied from the outside, the pressure is kept constant as a steady state.

なお、用いる酸素ガスの純度が極端に悪くなると、循環系統中の酸素純化装置7が有効に働く前に、純度を落としていたガス(例えば、窒素)がすぐに多孔質支持体1に滞留してしまい、酸素透過の速度が低下してしまう。又は、フラッシング操作の頻度が多くなり、本発明のメリットを享受し辛くなる。このため、用いる酸素ガスの純度は高いほど有効となるが、種々検討した結果、93%以上がより望ましいことが分かった。   If the purity of the oxygen gas to be used is extremely deteriorated, the gas (for example, nitrogen) whose purity has been reduced immediately stays on the porous support 1 before the oxygen purifier 7 in the circulation system works effectively. As a result, the rate of oxygen permeation decreases. Or the frequency of flushing operation increases and it becomes difficult to receive the merit of this invention. For this reason, the higher the purity of the oxygen gas used, the more effective, but as a result of various studies, it has been found that 93% or more is more desirable.

ここで用いる高純度酸素は、どんな方法で製造しても本発明の範囲を逸脱するものではない。即ち、PSA(Pressure Swing Adsorption)と呼ばれる吸着剤を利用した酸素製造方法や深冷分離法と呼ばれる極低温下での空気の蒸留による酸素製造方法によって得られた酸素を用いることができる。   The high-purity oxygen used here does not depart from the scope of the present invention by any method. That is, oxygen obtained by an oxygen production method using an adsorbent called PSA (Pressure Swing Adsorption) or an oxygen production method by distillation of air at a cryogenic temperature called a cryogenic separation method can be used.

但し、被処理ガス(炭化水素ガスが主成分)4から合成ガス等の利用価値の高い改質ガス8に化学変換する効率を、酸素製造を含めた総合効率で比較してみると、酸素イオン・電子混合伝導性固体電解質を使って酸素含有ガスから酸素を分離生成する方法で得られた酸素を用いる方がより好ましい。固体電解質を使った酸素分離方法は、700℃〜900℃程度の高温で、例えば、圧縮した空気を原料として供給すると、酸素分圧の違いを駆動力として高純度の酸素ガスを分離・生成するものであり、酸素濃度の低下した原料の高温高圧空気から熱と圧力のエネルギーが回収できるため、より少ないエネルギーで酸素を製造できるためである。   However, when comparing the efficiency of chemical conversion from the gas to be treated (mainly composed of hydrocarbon gas) 4 to the reformed gas 8 having a high utility value such as synthesis gas, the total efficiency including oxygen production, oxygen ions -It is more preferable to use oxygen obtained by a method of separating and producing oxygen from an oxygen-containing gas using an electron mixed conductive solid electrolyte. In the oxygen separation method using a solid electrolyte, for example, when compressed air is supplied as a raw material at a high temperature of about 700 ° C. to 900 ° C., high purity oxygen gas is separated and generated using a difference in oxygen partial pressure as a driving force. This is because heat and pressure energy can be recovered from the high-temperature and high-pressure air of the raw material having a reduced oxygen concentration, so that oxygen can be produced with less energy.

更に、膜型反応器が同じように高温領域で作動するため、酸素イオン・電子混合伝導性固体電解質を使った酸素分離を膜型反応器と一体化することにより、総合効率はより向上する。これを実現するための具体例を図3に示す。酸素分離は酸素分圧の違いを駆動力とするため、空気等の酸素含有ガス15は分離側の酸素圧力より高い分圧となるよう、通常は圧縮される。但し、反応器6側の被処理ガス(炭化水素ガスが主成分)4は非常に酸素分圧が低い状態であるため、高純度酸素側の圧力は減圧された状態でも酸素の透過が起きる。したがって、酸素含有ガス15を圧縮する必要は必ずしもない。また、圧縮する場合には、炭化水素ガス領域も同圧となるように圧縮することにより容器内の圧力バランスが取れる。なお、図3で示している酸素分離管16は、自立膜型でもよいが、酸素の供給が律速してしまうことが無いよう十分な酸素透過能を有する必要があり、この場合も支持膜型である方が望ましい。   Furthermore, since the membrane reactor operates in the same high temperature region, the overall efficiency is further improved by integrating the oxygen separation using the mixed electrolyte of oxygen ions and electrons with the membrane reactor. A specific example for realizing this is shown in FIG. Since oxygen separation uses the difference in oxygen partial pressure as a driving force, the oxygen-containing gas 15 such as air is usually compressed so as to have a partial pressure higher than the oxygen pressure on the separation side. However, since the gas to be treated (mainly hydrocarbon gas) 4 on the reactor 6 side has a very low oxygen partial pressure, oxygen permeation occurs even when the pressure on the high purity oxygen side is reduced. Therefore, it is not always necessary to compress the oxygen-containing gas 15. Moreover, when compressing, the pressure balance in a container can be taken by compressing so that a hydrocarbon gas area | region may also become the same pressure. The oxygen separation tube 16 shown in FIG. 3 may be a self-supporting membrane type, but needs to have sufficient oxygen permeability so that the supply of oxygen is not rate-determined. Is desirable.

酸素イオン・電子混合伝導性固体電解質を使った酸素分離を膜型反応器に組み込んだ高純度酸素利用膜型反応器の別の例を図4に示す。この場合も、図3の場合と同様、酸素含有ガス15や被処理ガス(炭化水素ガスが主成分)4は圧縮してもしなくてもよい。また、酸素分離管16は自立膜型でもよいが、支持膜型の方がより望ましい。   FIG. 4 shows another example of a high-purity oxygen-utilizing membrane reactor in which oxygen separation using an oxygen ion / electron mixed conductive solid electrolyte is incorporated in the membrane reactor. Also in this case, as in the case of FIG. 3, the oxygen-containing gas 15 and the gas to be processed (mainly hydrocarbon gas) 4 may or may not be compressed. The oxygen separation tube 16 may be a self-supporting membrane type, but a support membrane type is more desirable.

本発明の別の例を図5に示す。図5(a)は、多孔質支持体1と、この上に形成された酸素イオン・電子混合伝導性固体電解質からなる第一の緻密層9と、多孔質支持体1を挟んで第一の緻密層9と対峙した位置に形成された酸素イオン・電子混合伝導性固体電解質からなる第二の緻密層10と、第一の緻密層9の上に形成された触媒層3とからなる4層構造の反応管の断面を図示したものである。この4層構造反応管の触媒層3側に炭化水素を主成分とした被処理ガス4を、第二の緻密層10側に酸素含有ガス15をそれぞれ供給する。また、図5(b)は、上記4層構造の反応管を使った固体電解質膜型反応器の例を図示したものである。   Another example of the present invention is shown in FIG. FIG. 5A shows a porous support 1, a first dense layer 9 made of an oxygen ion / electron mixed conductive solid electrolyte formed thereon, and a first support sandwiching the porous support 1. Four layers comprising a second dense layer 10 made of an oxygen ion / electron mixed conductive solid electrolyte formed at a position facing the dense layer 9 and a catalyst layer 3 formed on the first dense layer 9 1 is a cross-sectional view of a structure reaction tube. A gas to be treated 4 containing hydrocarbon as a main component is supplied to the catalyst layer 3 side of the four-layer structure reaction tube, and an oxygen-containing gas 15 is supplied to the second dense layer 10 side. FIG. 5B illustrates an example of a solid electrolyte membrane reactor using the reaction tube having the four-layer structure.

酸素イオン・電子混合伝導性固体電解質からなる第二の緻密層10によって、酸素含有ガス15から酸素のみが分離され、多孔質支持体1に供給される。多孔体中の高純度酸素は、酸素イオン・電子混合伝導性固体電解質からなる第一の緻密層9を透過し、触媒層3中で被処理ガス(炭化水素ガスが主成分)4を改質し、合成ガス等の利用価値の高い改質ガス8に化学変換される。   Only the oxygen is separated from the oxygen-containing gas 15 by the second dense layer 10 made of the mixed conductive electrolyte of oxygen ions and electrons, and supplied to the porous support 1. The high-purity oxygen in the porous material permeates the first dense layer 9 made of a mixed electrolyte of oxygen ions and electrons and reforms the gas to be treated (mainly hydrocarbon gas) 4 in the catalyst layer 3. Then, it is chemically converted to a reformed gas 8 having high utility value such as synthesis gas.

本構造は、多孔質支持体1側を高純度酸素にした前述の実施形態をさらに進化させたもので、高純度酸素製造と膜型反応器を一つの構造中に取り込んだものと言える。構造自体は前述の3層構造と比較すれば複雑となるが、逆にシステム全体がコンパクトとなるため、設備コストを削減する効果がある。   This structure is a further evolution of the above-described embodiment in which the porous support 1 side is made of high-purity oxygen, and it can be said that high-purity oxygen production and a membrane reactor are incorporated into one structure. The structure itself is more complicated than the above-described three-layer structure, but conversely, the entire system is compact, which has the effect of reducing equipment costs.

本発明で開示した支持膜構造を形成する上で、用いられる材料に制限は特にない。既に知られている材料が好適に用いられる。例として、酸素イオン・電子混合伝導性固体電解質からなる第一あるいは第二の緻密層(2、9、10)として、(La,Sr)(Co,Fe)Ox系のペロブスカイト酸化物、多孔質支持体1として、上記緻密層と同一材料やMgO等の酸化物、触媒層3として、Ni系、Fe系触媒を挙げることができる。 There are no particular restrictions on the materials used to form the support membrane structure disclosed in the present invention. Already known materials are preferably used. As an example, as the first or second dense layer (2, 9, 10) made of mixed oxygen ion / electron conductive solid electrolyte, (La, Sr) (Co, Fe) Ox- based perovskite oxide, porous Examples of the quality support 1 include the same material as the dense layer and oxides such as MgO, and examples of the catalyst layer 3 include Ni-based and Fe-based catalysts.

また、各層の厚みも特に制限はない。但し、緻密層(2、9、10)は酸素以外のガスを透過させることが無いよう、貫通孔が発生しない範囲で可能な限り薄い方が望ましい。例えば、1μm以上100μm以下の範囲で選ばれる。多孔質支持体1は、十分な強度があればやはり薄い方がよく、例えば、1mm以上10mm以下の範囲で選ばれる。触媒層3は、炭化水素ガスの拡散が抑制されることがないよう、例えば、0.1μm以上10μm以下の範囲で選ばれる。   Further, the thickness of each layer is not particularly limited. However, it is desirable that the dense layers (2, 9, 10) be as thin as possible within a range in which no through-holes are generated so that a gas other than oxygen does not permeate. For example, it is selected in the range of 1 μm to 100 μm. The porous support 1 is preferably thin if it has sufficient strength, and is selected, for example, in the range of 1 mm to 10 mm. The catalyst layer 3 is selected, for example, in the range of 0.1 μm to 10 μm so that the diffusion of hydrocarbon gas is not suppressed.

支持膜構造は、既に知られている方法を組み合わせることにより、作製することができる。例えば、多孔質支持体1は、高温でガス化除去されるポア材をセラミックス粉と混合しておき、熱処理して作製することができる。緻密層(2、9、10)は、セラミックス粉が分散されたスラリーを使って多孔質支持体1に塗布、焼成する方法や、蒸着等の方法を使って形成することができる。触媒層3においても、市販の触媒をスラリー化し、緻密層(2、9)に塗布・乾燥後、焼き付けることで形成が可能である。   The support membrane structure can be produced by combining already known methods. For example, the porous support 1 can be produced by mixing a pore material that is gasified and removed at a high temperature with a ceramic powder and then heat-treating it. The dense layers (2, 9, 10) can be formed by using a slurry in which ceramic powder is dispersed and applying and baking the porous support 1 or a method such as vapor deposition. The catalyst layer 3 can also be formed by slurrying a commercially available catalyst, applying and drying the dense layer (2, 9), and baking it.

反応構造体は、これまで円筒管形状のものを例として挙げてきたが、多孔体中のガス拡散の影響を除くと言う本発明のコンセプトに則っている限り、その形状に制限は無く、例えば、平板型等その他の形状でも適用することができる。   The reaction structure has been exemplified as a cylindrical tube shape so far, but as long as it conforms to the concept of the present invention to exclude the influence of gas diffusion in the porous body, the shape is not limited, for example, Other shapes such as a flat plate type can also be applied.

以下、本発明を実施例、比較例で説明する。   Hereinafter, the present invention will be described with reference to examples and comparative examples.

(実施例1)
La23、SrO、Co34、Fe23の粉末を、La0.3Sr0.7Co0.5Fe0.5x(xは、電荷中性条件を満たすように決まる値)の組成となるよう混合・粉砕し、空気中900℃で4時間仮焼した。得られた仮焼粉を粉砕し、粒度調整後、ポア材としてのPVA(ポリビニルアルコール)粉末と混合、一軸プレス成形し、1100℃で焼成して、直径20mm、厚さ2mmのディスク形状多孔質支持体を得た。
Example 1
La 2 O 3 , SrO, Co 3 O 4 , Fe 2 O 3 powder is made to have a composition of La 0.3 Sr 0.7 Co 0.5 Fe 0.5 O x (x is a value determined to satisfy the charge neutrality condition). The mixture was pulverized and calcined at 900 ° C. in air for 4 hours. The obtained calcined powder is pulverized, adjusted for particle size, mixed with PVA (polyvinyl alcohol) powder as a pore material, uniaxial press-molded, fired at 1100 ° C., and disk-shaped porous with a diameter of 20 mm and a thickness of 2 mm A support was obtained.

上記仮焼粉砕粉を使って、別途、緻密層形成用のスラリーを調製した。調製方法は、仮焼粉1900g、溶媒(エタノール)3500ml、バインダー(ポリビニールブチラール樹脂)290gを転動ミルにて混合した。   Separately, a slurry for forming a dense layer was prepared using the calcined pulverized powder. In the preparation method, 1900 g of calcined powder, 3500 ml of solvent (ethanol), and 290 g of binder (polyvinyl butyral resin) were mixed in a rolling mill.

上記多孔質支持体の片側の表面に上記スラリーを塗布し、1250℃にて5時間焼成を行い、厚さ50μmの緻密層を形成した。   The slurry was applied to the surface on one side of the porous support and baked at 1250 ° C. for 5 hours to form a dense layer having a thickness of 50 μm.

触媒層は、市販のRu系触媒(東洋シーシーアイ(株)製)を有機溶媒に分散させ、スラリー状にして緻密層に塗布・乾燥後、これを850℃にて焼き付けて形成した。触媒層の厚みは、約0.1mmであった。   The catalyst layer was formed by dispersing a commercially available Ru-based catalyst (manufactured by Toyo Sea Cai Co., Ltd.) in an organic solvent, applying the slurry to a dense layer, drying it, and baking it at 850 ° C. The thickness of the catalyst layer was about 0.1 mm.

こうして形成した試料を、図6に示す簡易評価装置を使って、メタンガス部分酸化反応測定を行った。簡易評価装置には、多孔質支持体21、固体電解質緻密層22及び触媒層23を備えた反応器を間に挟んで2つの空間を設け、多孔質支持体21側に高純度酸素又は空気24を供給するようにし、触媒層23側にメタン25を供給するようにした。また、反応器の外周部はシール材26を用いて封止した。更に、反応器の側方に電気炉27を配置した。そして、触媒層23側の空間から回収されたガスをガスクロマトグラフィ(ガスクロ)分析するようにした。   The sample thus formed was subjected to methane gas partial oxidation reaction measurement using a simple evaluation apparatus shown in FIG. In the simple evaluation apparatus, two spaces are provided with a reactor including a porous support 21, a solid electrolyte dense layer 22 and a catalyst layer 23 interposed therebetween, and high purity oxygen or air 24 is provided on the porous support 21 side. Methane 25 was supplied to the catalyst layer 23 side. Further, the outer peripheral portion of the reactor was sealed with a sealing material 26. Furthermore, an electric furnace 27 was arranged on the side of the reactor. The gas recovered from the space on the catalyst layer 23 side is analyzed by gas chromatography (gas chromatography).

測定は、温度850℃にて、触媒層23側表面にメタンガスを供給速度1×10-63(STP)/sec、多孔質支持体21側表面に高純度酸素(99.99995%純度、市販ボンベより供給)を供給速度1×10-63(STP)/secでそれぞれ供給して行った。両面とも圧力は常圧とした。メタンガス側から回収したガスをガスクロマトグラフで分析した結果、メタンの転化率90%、H2/CO=2と、部分酸化反応の化学両論比が得られた。また、メタンの転化率を基に、酸素の有効透過面積(1.1×10-42)を考慮して、酸素透過速度を見積もったところ、4×10-33(STP)・sec-1・m-2と高い値であることが分かった。 The measurement was conducted at a temperature of 850 ° C., supplying methane gas to the surface of the catalyst layer 23 side at a supply rate of 1 × 10 −6 m 3 (STP) / sec, and high-purity oxygen (99.99995% purity, (Supplied from a commercially available cylinder) was supplied at a supply rate of 1 × 10 −6 m 3 (STP) / sec. The pressure was normal on both sides. As a result of analyzing the gas recovered from the methane gas side with a gas chromatograph, a stoichiometric ratio of partial oxidation reaction of 90% conversion of methane and H 2 / CO = 2 was obtained. Further, based on the conversion rate of methane, the oxygen permeation rate was estimated in consideration of the effective permeation area of oxygen (1.1 × 10 −4 m 2 ), and 4 × 10 −3 m 3 (STP) · It was found to be a high value of sec −1 · m −2 .

(比較例1)
実施例1と同じ試料を使い、図6に示す簡易評価装置を使って、メタンガスの部分酸化反応測定を行った。測定は、温度850℃にて、触媒層23側表面にメタンガスを供給速度1×10-63(STP)/sec、多孔質支持体21側表面に空気を供給速度5×10-63(STP)/secでそれぞれ供給して行った。両面とも圧力は常圧とした。メタンガス側から回収したガスをガスクロマトグラフで分析した結果、メタンの転化率5%と、実施例1と比較して1/18の転化率となった。これは、酸素透過速度として2×10-43・sec-1・m-2と極めて低い値に相当する。
(Comparative Example 1)
Using the same sample as in Example 1, the partial oxidation reaction measurement of methane gas was performed using the simple evaluation apparatus shown in FIG. Measurement is performed at a temperature of 850 ° C., methane gas is supplied to the surface of the catalyst layer 23 at a supply rate of 1 × 10 −6 m 3 (STP) / sec, and air is supplied to the surface of the porous support 21 at a rate of 5 × 10 −6 m. 3 (STP) / sec. The pressure was normal on both sides. As a result of analyzing the gas collected from the methane gas side with a gas chromatograph, the conversion rate of methane was 5%, which was 1/18 of the conversion rate of Example 1. This corresponds to an extremely low value of 2 × 10 −4 m 3 · sec −1 · m −2 as the oxygen transmission rate.

(実施例2)
実施例1と同じ手順で、多孔質支持体21/緻密層22/触媒層23の3層構造ディスク試料と、多孔質支持体31/緻密層32の2層構造ディスク試料を調製した。各層の厚みは、実施例1と同じとした。図7に示す簡易評価装置の上部側に3層構造ディスク試料を触媒層23が上になるようにセットし、下部側に2層構造ディスク試料を緻密層32が下になるようにセットした。
(Example 2)
In the same procedure as in Example 1, a three-layered disk sample of porous support 21 / dense layer 22 / catalyst layer 23 and a two-layered disk sample of porous support 31 / dense layer 32 were prepared. The thickness of each layer was the same as in Example 1. The three-layer disc sample was set on the upper side of the simplified evaluation apparatus shown in FIG. 7 so that the catalyst layer 23 was on the upper side, and the two-layer disc sample was set on the lower side so that the dense layer 32 was on the lower side.

温度850℃にて、上部からメタンガスを供給速度1×10-63(STP)/secで、下部から空気28を供給速度5×10-63(STP)/secでそれぞれ供給して、メタンガスの部分酸化反応測定を行った。両面とも圧力は常圧とした。メタンガス側から回収したガスをガスクロマトグラフで分析した結果、メタンの転化率70%、H2/CO=2と、部分酸化反応の化学両論比が得られた。また、メタンの転化率を基に、酸素の有効透過面積(1.1×10-42)を考慮して、酸素透過速度を見積もったところ、3.2×10-33(STP)・sec-1・m-2と高い値であることが分かった。 At a temperature of 850 ° C., methane gas is supplied from the top at a supply rate of 1 × 10 −6 m 3 (STP) / sec, and air is supplied from the bottom at a supply rate of 5 × 10 −6 m 3 (STP) / sec. The partial oxidation reaction of methane gas was measured. The pressure was normal on both sides. As a result of analyzing the gas recovered from the methane gas side with a gas chromatograph, a stoichiometric ratio of partial oxidation reaction of 70% conversion of methane and H 2 / CO = 2 was obtained. In addition, based on the conversion rate of methane, the oxygen permeation rate was estimated in consideration of the effective permeation area of oxygen (1.1 × 10 −4 m 2 ) and found to be 3.2 × 10 −3 m 3 (STP ) · Sec −1 · m −2 It was found to be a high value.

(実施例3)
実施例1と同じ手順で、緻密層/多孔質支持体/緻密層/触媒層の4層構造ディスク試料を調製した。各層の厚みは、実施例1と同じとした。図6に示す簡易評価装置を使って、4層構造ディスク試料を触媒層が上になるようにセットした。
(Example 3)
A four-layered disk sample of dense layer / porous support / dense layer / catalyst layer was prepared in the same procedure as in Example 1. The thickness of each layer was the same as in Example 1. A simple evaluation apparatus shown in FIG. 6 was used to set a four-layer disk sample so that the catalyst layer was on top.

温度850℃にて、上部からメタンガスを供給速度1×10-63(STP)/secで、下部から空気を供給速度5×10-63(STP)/secでそれぞれ供給して、メタンガスの部分酸化反応測定を行った。両面とも圧力は常圧とした。メタンガス側から回収したガスをガスクロマトグラフで分析した結果、メタンの転化率78%、H2/CO=2と、部分酸化反応の化学両論比が得られた。また、メタンの転化率を基に、酸素の有効透過面積(1.1×10-42)を考慮して、酸素透過速度を見積もったところ、3.5×10-33(STP)・sec-1・m-2と高い値であることが分かった。 At a temperature of 850 ° C., methane gas is supplied from the top at a supply rate of 1 × 10 −6 m 3 (STP) / sec, and air is supplied from the bottom at a supply rate of 5 × 10 −6 m 3 (STP) / sec. Measurement of partial oxidation reaction of methane gas was performed. The pressure was normal on both sides. As a result of analyzing the gas recovered from the methane gas side with a gas chromatograph, a stoichiometric ratio of partial oxidation reaction of 78% conversion of methane and H 2 / CO = 2 was obtained. Further, based on the conversion rate of methane, the oxygen permeation rate was estimated in consideration of the effective permeation area of oxygen (1.1 × 10 −4 m 2 ), and found to be 3.5 × 10 −3 m 3 (STP ) · Sec −1 · m −2 It was found to be a high value.

(実施例4)
図8に示す酸素イオン・電子混合伝導性固体電解質を使った酸素分離を膜型反応器に組み込んだ実験装置を用いて、メタンの部分酸化反応測定を行った。酸素分離管16は、次の手順に従って作製した。まず、実施例1と同じ仮焼粉とPVA粉末を混合したものを円筒管形状となるようゴム型に充填し、CIP(静水圧プレス)成形後、1100℃にて焼成して多孔質支持体とした。これを緻密層形成用スラリーが満たされた容器にタンマン部を下にしてディップし、乾燥後、1250℃にて焼成して、外表面のみに緻密層を形成した。こうして、焼き上がり寸法として、外径約20mm、内径約15mm、長さ約300mm、緻密層厚さ約50μmの酸素分離管16を得た。メタンの部分酸化用反応管も同様の手順で作製した後、緻密層の上に市販のRu系触媒を分散させたスラリーを塗布して焼き付け、約50μm厚の触媒層を形成した。
Example 4
A partial oxidation reaction measurement of methane was performed using an experimental apparatus in which oxygen separation using a mixed solid electrolyte of oxygen ions and electrons shown in FIG. 8 was incorporated in a membrane reactor. The oxygen separation tube 16 was produced according to the following procedure. First, a mixture of the same calcined powder and PVA powder as in Example 1 is filled into a rubber mold so as to have a cylindrical tube shape, CIP (hydrostatic pressure press) molding, and then fired at 1100 ° C. to form a porous support. It was. This was dipped in a container filled with a slurry for forming a dense layer with the tamman part down, dried, and then fired at 1250 ° C. to form a dense layer only on the outer surface. Thus, an oxygen separation tube 16 having an outer diameter of about 20 mm, an inner diameter of about 15 mm, a length of about 300 mm, and a dense layer thickness of about 50 μm was obtained. A reaction tube for partial oxidation of methane was prepared in the same procedure, and then a slurry in which a commercially available Ru-based catalyst was dispersed was applied onto the dense layer and baked to form a catalyst layer having a thickness of about 50 μm.

温度850℃にて、酸素分離部に空気24を供給速度5×10-43(STP)/secで、部分酸化部にメタンガスを供給速度1×10-43(STP)/secでそれぞれ供給して、メタンガスの部分酸化反応測定を行った。双方共に圧力は常圧とした。部分酸化側から回収したガスをガスクロマトグラフで分析した結果、メタンの転化率69%、H2/CO=2と、部分酸化反応の化学両論比が得られた。また、メタンの転化率を基に、酸素の有効透過面積(1.8×10-22)を考慮して、酸素透過速度を見積もったところ、1.9×10-33(STP)・sec-1・m-2と高い値であることが分かった。 At a temperature of 850 ° C., air 24 is supplied to the oxygen separation unit at a supply rate of 5 × 10 −4 m 3 (STP) / sec, and methane gas is supplied to the partial oxidation unit at a supply rate of 1 × 10 −4 m 3 (STP) / sec. Each was supplied to measure the partial oxidation reaction of methane gas. In both cases, the pressure was normal pressure. The gas recovered from the partial oxidation side was analyzed by gas chromatography. As a result, the stoichiometric ratio of partial oxidation reaction was obtained, with a methane conversion of 69% and H 2 / CO = 2. In addition, based on the conversion rate of methane, the oxygen permeation rate was estimated in consideration of the effective oxygen permeation area (1.8 × 10 −2 m 2 ), and 1.9 × 10 −3 m 3 (STP) ) · Sec −1 · m −2 It was found to be a high value.

(a)は多孔質支持体側表面に高純度酸素ガスを供給した高純度酸素利用固体電解質膜型反応器の例を示す図であり、(b)は(a)の3層構造反応管の断面を示す模式図である。(A) is a figure which shows the example of the high purity oxygen utilization solid electrolyte membrane type | mold reactor which supplied the high purity oxygen gas to the porous support body side surface, (b) is a cross section of the three-layer structure reaction tube of (a) It is a schematic diagram which shows. 従来の膜型反応器の代表例を示す図である。It is a figure which shows the typical example of the conventional membrane-type reactor. 酸素イオン・電子混合伝導性固体電解質を使った酸素分離を膜型反応器に組み込んだ高純度酸素利用固体電解質膜型反応器の例を示す図である。It is a figure which shows the example of the high purity oxygen utilization solid electrolyte membrane type reactor which incorporated oxygen separation using the oxygen ion and electron mixed conductive solid electrolyte into the membrane type reactor. 酸素イオン・電子混合伝導性固体電解質を使った酸素分離を膜型反応器に組み込んだ高純度酸素利用固体電解質膜型反応器の別の例を示す図である。It is a figure which shows another example of the high purity oxygen utilization solid electrolyte membrane type reactor which incorporated oxygen separation using oxygen ion and electronic mixed conductive solid electrolyte in the membrane type reactor. (a)は4層構造の膜型反応管の断面を示す模式図であり、(b)は4層構造の膜型反応管を使った固体電解質膜型反応器の例を示す図である。(A) is a schematic diagram showing a cross section of a membrane reaction tube having a four-layer structure, and (b) is a diagram showing an example of a solid electrolyte membrane reactor using a membrane reaction tube having a four-layer structure. メタンガス部分酸化反応測定に用いた簡易評価装置を示す図である。It is a figure which shows the simple evaluation apparatus used for the methane gas partial oxidation reaction measurement. メタンガス部分酸化反応測定に用いた別の簡易評価装置を示す図である。It is a figure which shows another simple evaluation apparatus used for the methane gas partial oxidation reaction measurement. 酸素イオン・電子混合伝導性固体電解質を使った酸素分離を膜型反応器に組み込んだメタンガス部分酸化反応測定用実験装置を示す図である。It is a figure which shows the experimental apparatus for methane gas partial oxidation reaction measurement which incorporated oxygen separation using oxygen ion and electronic mixed conductive solid electrolyte in the membrane reactor.

符号の説明Explanation of symbols

1:多孔質支持体
2、9、10:緻密層
3:触媒層
4:被処理ガス
5:高純度酸素
6、17:反応管
7:酸素純化装置
8:改質ガス
15:酸素含有ガス
16:酸素分離管
21、31:多孔質支持体
22、32:固体電解質緻密層
23:触媒層
24:高純度酸素又は空気
25:メタン
26:シール材
27:電気炉
28:空気


1: porous support 2, 9, 10: dense layer 3: catalyst layer 4: gas to be treated 5: high purity oxygen 6, 17: reaction tube 7: oxygen purifier 8: reformed gas 15: oxygen-containing gas 16 : Oxygen separator tube 21, 31: Porous support 22, 32: Solid electrolyte dense layer 23: Catalyst layer 24: High purity oxygen or air 25: Methane 26: Sealing material 27: Electric furnace 28: Air


Claims (5)

多孔質支持体と、
この多孔質支持体上に形成された酸素イオン・電子混合伝導性固体電解質からなる緻密層と、
前記緻密層の上に形成された触媒層と、
からなる3層構造の反応構造体を用いた膜型反応器であって、
前記触媒層表面に炭化水素を主成分とした被処理ガスを、前記多孔質支持体側表面に高純度酸素ガスを、それぞれ供給することを特徴とする固体電解質膜型反応器。
A porous support;
A dense layer made of an oxygen ion / electron mixed conductive solid electrolyte formed on the porous support;
A catalyst layer formed on the dense layer;
A membrane reactor using a three-layer reaction structure comprising:
A solid electrolyte membrane reactor, wherein a gas to be treated mainly comprising hydrocarbon is supplied to the surface of the catalyst layer, and a high-purity oxygen gas is supplied to the surface of the porous support.
前記高純度酸素ガスが、93%以上の酸素濃度であることを特徴とする請求項1に記載の固体電解質膜型反応器。   The solid electrolyte membrane reactor according to claim 1, wherein the high-purity oxygen gas has an oxygen concentration of 93% or more. 前記高純度酸素ガスが、酸素イオン・電子混合伝導性固体電解質を使って酸素含有ガスから分離生成する酸素であることを特徴とする請求項1又は2に記載の固体電解質膜型反応器。   3. The solid electrolyte membrane reactor according to claim 1, wherein the high-purity oxygen gas is oxygen separated and generated from an oxygen-containing gas using an oxygen ion / electron mixed conductive solid electrolyte. 前記膜型反応器内に、酸素イオン・電子混合伝導性固体電解質を使って酸素含有ガスから酸素を分離生成する機能を設けることを特徴とする請求項1乃至3のいずれか1項に記載の固体電解質膜型反応器。   4. The function according to claim 1, wherein a function of separating and generating oxygen from an oxygen-containing gas using an oxygen ion / electron mixed conductive solid electrolyte is provided in the membrane reactor. 5. Solid electrolyte membrane reactor. 多孔質支持体と、
この多孔質支持体上に形成された酸素イオン・電子混合伝導性固体電解質からなる第一の緻密層と、
前記多孔質支持体を挟んで前記第一の緻密層と対峙した位置に形成された酸素イオン・電子混合伝導性固体電解質からなる第二の緻密層と、
前記第一の緻密層の上に形成された触媒層と、
からなる4層構造の反応構造体であって、
前記4層構造の前記触媒層側に炭化水素を主成分とした被処理ガスを、前記第二の緻密層側に酸素含有ガスを、それぞれ供給することを特徴とする固体電解質膜型反応器。


A porous support;
A first dense layer made of an oxygen ion / electron mixed conductive solid electrolyte formed on the porous support;
A second dense layer composed of an oxygen ion / electron mixed conductive solid electrolyte formed at a position facing the first dense layer with the porous support interposed therebetween;
A catalyst layer formed on the first dense layer;
A four-layered reaction structure comprising:
A solid electrolyte membrane reactor characterized in that a gas to be treated mainly containing hydrocarbons is supplied to the catalyst layer side of the four-layer structure and an oxygen-containing gas is supplied to the second dense layer side.


JP2005118794A 2005-04-15 2005-04-15 Solid electrolyte membrane reactor Expired - Fee Related JP4699074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118794A JP4699074B2 (en) 2005-04-15 2005-04-15 Solid electrolyte membrane reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118794A JP4699074B2 (en) 2005-04-15 2005-04-15 Solid electrolyte membrane reactor

Publications (2)

Publication Number Publication Date
JP2006298664A true JP2006298664A (en) 2006-11-02
JP4699074B2 JP4699074B2 (en) 2011-06-08

Family

ID=37467178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118794A Expired - Fee Related JP4699074B2 (en) 2005-04-15 2005-04-15 Solid electrolyte membrane reactor

Country Status (1)

Country Link
JP (1) JP4699074B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062258A (en) * 2007-03-27 2009-03-26 Tdk Corp Fuel reforming module and hydrogen generating apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097083A (en) * 2000-09-20 2002-04-02 Nippon Steel Corp Porous material and composite material
JP2003055671A (en) * 2001-08-20 2003-02-26 Nippon Steel Corp Treating method of crude coke-oven gas and treatment system
JP2003183004A (en) * 2001-12-14 2003-07-03 Mitsubishi Heavy Ind Ltd Method for manufacturing synthetic gas, and system for manufacturing liquid fuel and system for generating fuel cell-electric power utilizing this
JP2003225567A (en) * 2001-10-15 2003-08-12 Teikoku Oil Co Ltd Ceramic composite material converted into catalyst, production method therefor, and ceramic film type reactor
JP2005503980A (en) * 2001-04-24 2005-02-10 プラクスエア・テクノロジー・インコーポレイテッド Syngas production using oxygen transfer membranes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097083A (en) * 2000-09-20 2002-04-02 Nippon Steel Corp Porous material and composite material
JP2005503980A (en) * 2001-04-24 2005-02-10 プラクスエア・テクノロジー・インコーポレイテッド Syngas production using oxygen transfer membranes
JP2003055671A (en) * 2001-08-20 2003-02-26 Nippon Steel Corp Treating method of crude coke-oven gas and treatment system
JP2003225567A (en) * 2001-10-15 2003-08-12 Teikoku Oil Co Ltd Ceramic composite material converted into catalyst, production method therefor, and ceramic film type reactor
JP2003183004A (en) * 2001-12-14 2003-07-03 Mitsubishi Heavy Ind Ltd Method for manufacturing synthetic gas, and system for manufacturing liquid fuel and system for generating fuel cell-electric power utilizing this

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062258A (en) * 2007-03-27 2009-03-26 Tdk Corp Fuel reforming module and hydrogen generating apparatus

Also Published As

Publication number Publication date
JP4699074B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
Luo et al. Performance of a ceramic membrane reactor with high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas
EP1317319B2 (en) Mixed conducting membranes for syngas production
CA2307005C (en) Hydrogen permeation through mixed protonic-electronic conducting materials
Liu et al. High-performance Ni–BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ (BZCYYb) membranes for hydrogen separation
US20020022568A1 (en) Ceramic membranes for use in catalytic membrane reactors with high ionic conductivities and improved mechanical properties
Li et al. Effects of membrane thickness and structural type on the hydrogen separation performance of oxygen-permeable membrane reactors
JP4203074B2 (en) Solid membrane module
US10145016B2 (en) Reactor-separator elements
US20200001248A1 (en) Dual function composite oxygen transport membrane
Yuan et al. Partial oxidation of methane to syngas in a packed bed catalyst membrane reactor
US20040242413A1 (en) Porcelain composition, composite material comprising catalyst and ceramic, film reactor, method for producing synthetic gas, apparatus for producing synthetic gas and method for activating catalyst
US7604771B2 (en) Thermal method for fabricating a hydrogen separation membrane on a porous substrate
Li et al. Asymmetric dual-phase MIEC membrane reactor for energy-efficient coproduction of two kinds of synthesis gases
Meng et al. H2/CH4/CO2-tolerant properties of SrCo0. 8Fe0. 1Ga0. 1O3− δ hollow fiber membrane reactors for methane partial oxidation to syngas
Meng et al. Hydrogen permeation performance of dual-phase protonic-electronic conducting ceramic membrane with regular and independent transport channels
JP4819537B2 (en) Permselective membrane reactor and hydrogen production method using the same
KR20190143593A (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
JP4699074B2 (en) Solid electrolyte membrane reactor
KR102168018B1 (en) Fuel cell system associated with a fuel reformer that additionally performs methanation
JP3914416B2 (en) Membrane reactor
JP4500762B2 (en) Oxygen separation membrane having a composition gradient structure
JP2005281077A (en) Ceramic composition, composite material, and chemical reaction apparatus
JP2007117969A (en) Composition gradient type oxygen separation membrane
JP6075155B2 (en) Oxygen permeable membrane, oxygen separation method and fuel cell system
US20120171587A1 (en) Conducting ceramics for electrochemical systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R151 Written notification of patent or utility model registration

Ref document number: 4699074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees