JP2003055671A - Treating method of crude coke-oven gas and treatment system - Google Patents

Treating method of crude coke-oven gas and treatment system

Info

Publication number
JP2003055671A
JP2003055671A JP2001248921A JP2001248921A JP2003055671A JP 2003055671 A JP2003055671 A JP 2003055671A JP 2001248921 A JP2001248921 A JP 2001248921A JP 2001248921 A JP2001248921 A JP 2001248921A JP 2003055671 A JP2003055671 A JP 2003055671A
Authority
JP
Japan
Prior art keywords
coke oven
catalyst
oven gas
crude coke
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001248921A
Other languages
Japanese (ja)
Other versions
JP4588268B2 (en
Inventor
Ikuo Jitsuhara
幾雄 実原
Kenichiro Fujimoto
健一郎 藤本
Hideki Kurimura
英樹 栗村
Shoichi Kaganoi
彰一 加賀野井
Yohei Suzuki
洋平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Oil Co Ltd
Nippon Steel Corp
Original Assignee
Teikoku Oil Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Oil Co Ltd, Nippon Steel Corp filed Critical Teikoku Oil Co Ltd
Priority to JP2001248921A priority Critical patent/JP4588268B2/en
Publication of JP2003055671A publication Critical patent/JP2003055671A/en
Application granted granted Critical
Publication of JP4588268B2 publication Critical patent/JP4588268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a new recovery technique and energy saving system of heat energy, and a new energy creative system that in view of the present state that sensible heat is not effectively used due to a quenching treatment by spraying ammonia water, in spite of a coke-oven gas comprising a coal volatile matter as a principal component, generated by dry distilling coal to produce coke, and retaining high temperature sensible heat near at 800 deg.C at a nascent time, comprises introducing a catalytic cracking reaction into a heavy hydrocarbon accompanied with the high temperature gas to convert the heavy hydrocarbon into light-duty chemical energy as an effectively utilizing technique of the sensible heat. SOLUTION: The converting method of the heat energy and heavy chemical energy into highly efficient clean light-duty chemical energy and its system comprise passing the crude COG accompanied with the heavy hydrocarbon through a heavy hydrocarbon cracking catalytic reactor, thereby effectively utilizing the sensible heat and converting the heavy hydrocarbon into light-duty hydrocarbon, demanding ion circumstances, continuously pas the resultant product through an oxide ion and electron mixing conductive solid electrolyte membrane type reactor, and practically using oxygen permselective performance of the solid electrolyte membrane to convert into a synthesis gas due to partial oxidation modification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石炭を乾留してコ
ークスを製造するコークス炉で発生する石炭揮発分を主
成分とするコークス炉ガスが、発生期において800℃近
くの高温顕熱を保有する(発生期の高温状態下にあるコ
ークス炉ガスを粗COGと言う)にも係わらず、アンモニア
水散布による急冷処理により顕熱が有効に活用されてい
ない現状に鑑み、この顕熱の有効利用技術として粗COG
に化学反応を導入して熱エネルギーを軽質化学物質に転
換する新規な熱エネルギーの回収技術・省エネ技術に関
する。
TECHNICAL FIELD The present invention relates to a coke oven gas whose main component is a coal volatile matter produced in a coke oven for carbonizing carbon to produce coke, and has a high temperature sensible heat of about 800 ° C. in the nascent stage. However, in view of the fact that the sensible heat is not effectively used by the quenching process by spraying ammonia water, the effective use of this sensible heat COG as a technology
The present invention relates to a new thermal energy recovery technology / energy saving technology that converts a thermal energy into a light chemical substance by introducing a chemical reaction into.

【0002】現状の粗コークス炉ガス処理技術が、コー
ルタール、軽油等の有用化学成分回収を主体として、所
謂、コールタール化学産業の基礎を形成する基幹技術と
位置付けられているものの、重質炭化水素成分の商品価
値、需給バランス、石油化学産業との国際競争力、等を
将来的に展望した場合、現行技術に基づく事業構造は、
必ずしも長期に渡り安定したものとは考え難い。むし
ろ、二酸化炭素による地球温暖化問題を主体に地球規模
での環境問題が大きく採りあげられる中、太陽電池、風
力発電に代表される再生可能エネルギーの開発に加え、
燃焼時に二酸化炭素を放出しないクリーン燃料としての
水素を中核とした水素エネルギー社会長期ビジョンが提
案されているが、この水素の高効率・安価・安定供給源
として粗COGに含有する重質炭化水素を捉え直すこと
は、今後見据えるべき事業構造転換の主要選択肢の一つ
とも考えられる。従って、粗COGに含有する重質炭化水
素の顕熱利用高効率軽質炭化水素(最終的には水素)転換
を狙った本発明技術は、新エネルギー創製技術でもあ
る。
Although the current crude coke oven gas treatment technology is positioned as a basic technology that forms the basis of the so-called coal tar chemical industry, mainly for recovering useful chemical components such as coal tar and light oil, heavy carbonization. From a future perspective on the commercial value of hydrogen components, supply and demand balance, international competitiveness with the petrochemical industry, etc., the business structure based on current technology is
It is hard to think that it has been stable over the long term. Rather, in addition to the development of renewable energy such as solar cells and wind power generation, while global environmental problems are mainly taken up mainly by the problem of global warming due to carbon dioxide,
A long-term vision for a hydrogen energy society centered on hydrogen as a clean fuel that does not release carbon dioxide during combustion has been proposed, but this heavy hydrocarbon contained in crude COG is used as a highly efficient, inexpensive, and stable source of hydrogen. Rethinking is considered to be one of the main options for business structure transformation that should be considered in the future. Therefore, the technology of the present invention aiming at the conversion of heavy hydrocarbons contained in crude COG into sensible heat and highly efficient light hydrocarbons (finally hydrogen) is also a new energy creation technology.

【0003】[0003]

【従来の技術】コークス炉から発生する粗COGの顕熱の
回収技術として、従来から間接熱回収を主体とする方法
が提案されている。例えば、特公昭59-44346号公報、特
開昭58-76487号公報には、コークス炉上昇管内部、又
は、上昇管部と集気管部の間に伝熱管を設け、この伝熱
管内部に熱媒体を循環流通させ顕熱を回収する方法が開
示されている。しかし、これらの方法では伝熱管外表面
への発生COGに随伴するタール、軽油等の付着、炭化・
凝集による緻密化が進行し、経時伝熱効率の低下・熱交
換効率低下という問題が不可避である。これら問題点を
解決する技術として、伝熱管外表面に結晶性アルミのシ
リケート、結晶性シリカ等の触媒を塗布し、タール等の
付着物を触媒を介して低分子量の炭化水素に分解し伝熱
効率を安定維持する方法が特開平8-134456号公報に開示
されている。しかし、この方法も粗COG顕熱の間接熱回
収技術の域を出ず、又、タール等の重質炭化水素の分解
生成物の質を考慮していない。更には、粗COG中に含有
するH2S等の触媒被毒性硫黄化合物成分による経時分解
活性低下の影響についても検討されていない。
2. Description of the Related Art As a technique for recovering sensible heat of crude COG generated from a coke oven, a method mainly including indirect heat recovery has been proposed. For example, in JP-B-59-44346 and JP-A-58-76487, a heat transfer tube is provided inside the riser of the coke oven, or between the riser section and the air collecting section, and heat is transferred inside the heat transfer tube. A method of circulating a medium to recover sensible heat is disclosed. However, by these methods, tar, light oil, etc. accompanying the COG generated on the outer surface of the heat transfer tube are attached, carbonized and
It is inevitable that densification will progress due to aggregation, and that the heat transfer efficiency with time and the heat exchange efficiency will decrease. As a technology to solve these problems, catalysts such as crystalline aluminum silicate and crystalline silica are applied to the outer surface of the heat transfer tube, and deposits such as tar are decomposed into low molecular weight hydrocarbons through the catalyst to improve heat transfer efficiency. Japanese Patent Application Laid-Open No. 8-134456 discloses a method for stably maintaining the temperature. However, this method also goes beyond the indirect heat recovery technology of crude COG sensible heat, and does not consider the quality of decomposition products of heavy hydrocarbons such as tar. Furthermore, the influence of reduction of decomposition activity over time due to catalyst poisoning sulfur compound components such as H 2 S contained in crude COG has not been examined.

【0004】エネルギーの質という観点から見ると、熱
エネルギーは温度によって有効エネルギー率が大きく変
化し、低温になればなるほど低下する。又、貯蔵が困難
である。従って、間接的に熱交換して高温蒸気に転換し
たとしても、熱源保有ローカルの電力、蒸気バランスに
よって、回収蒸気の価値は左右される。一方、化学物質
の有するエネルギーは、その利用形態にもよるが、有効
エネルギー率は高位安定しており、更には貯蔵性に富む
ことが大きな特徴である。
From the viewpoint of the quality of energy, the effective energy rate of thermal energy greatly changes depending on temperature, and decreases as the temperature becomes lower. It is also difficult to store. Therefore, even if the heat is indirectly exchanged and converted to high-temperature steam, the value of the recovered steam depends on the local electric power and steam balance of the heat source. On the other hand, the energy possessed by a chemical substance is characterized in that the effective energy rate is stable at a high level and is highly storable, though it depends on the usage form.

【0005】温度によって質が大きく変化する熱エネル
ギーを化学エネルギーに転換する、所謂、熱エネルギー
の化学エネルギー転換技術に関しては、ガスタービン複
合サイクル発電(GTCC)と他のプラントとの複合システム
が提案されており、例えば、高温酸素輸送性固体電解質
を利用した酸素製造との組合せ(例えば、USP-551635
9)、ガスタービン出口排ガス顕熱を利用した天然ガスの
水蒸気改質・水素製造とその燃料利用(特開2000-54852
号公報)等が散見される。何れの技術も固体電解質、触
媒という機能材料を媒介に空気、天然ガスを作用させ、
酸素、水素という化学エネルギーに転換するものであ
る。
Regarding the so-called chemical energy conversion technology of thermal energy, which converts thermal energy whose quality greatly changes with temperature into chemical energy, a combined system of a gas turbine combined cycle power generation (GTCC) and another plant has been proposed. For example, in combination with oxygen production using a high temperature oxygen transporting solid electrolyte (for example, USP-551635
9), Steam reforming of natural gas using sensible heat of exhaust gas from gas turbine, hydrogen production and its fuel utilization (JP 2000-54852
No. gazette) etc. In both technologies, air and natural gas are made to act through a solid electrolyte and a functional material such as a catalyst,
It is converted into chemical energy such as oxygen and hydrogen.

【0006】高温で生成する反応性ガスにその顕熱を利
用して直接化学反応を導入して化学エネルギーに転換す
る技術は見当たらず、従来、高温ガスの顕熱は間接的に
回収されて(若しくは、全く利用されず)冷却されたガス
を種々処理をして利用するケースが殆どである。
No technique has been found for directly introducing a chemical reaction into a reactive gas generated at high temperature by utilizing its sensible heat to convert it into chemical energy, and conventionally, the sensible heat of the high temperature gas is indirectly recovered ( In most cases, the cooled gas is used after various treatments.

【0007】天然ガスを原料とした改質反応による合成
ガス製造技術は、メタノール、F-T(フィッシャー-トロ
プッシュ)合成油、ジメチルエーテル製造プラント等に
おいて実用化されている。触媒水蒸気改質、無触媒酸素
導入部分酸化、触媒オートサーマル改質が実用化段階に
あるが、最近では、酸素イオン・電子の混合導電性固体
電解質を用いる膜型反応器の開発が精力的に実施されて
おり、合成ガス製造コストの大幅低減の可能性が示唆さ
れている(例えば、”Ion transport membrane technolo
gy for oxygen separation and syngas production”,
Solid State Ionics, 134, 21-33 (2000))。
[0007] The synthesis gas production technology by reforming reaction using natural gas as a raw material has been put to practical use in methanol, FT (Fischer-Tropsch) synthetic oil, dimethyl ether production plant and the like. Catalytic steam reforming, non-catalytic oxygen introduction partial oxidation, and catalytic autothermal reforming are in the practical stage, but recently, the development of a membrane reactor using a mixed conductive solid electrolyte of oxygen ions and electrons has been vigorously pursued. Have been implemented, and the possibility of a significant reduction in the cost of producing syngas has been suggested (for example, “Ion transport membrane technolo”).
gy for oxygen separation and syngas production ”,
Solid State Ionics, 134, 21-33 (2000)).

【0008】何れの場合も、触媒を用いる改質反応にお
いては、原料天然ガス中の触媒被毒成分としての硫黄化
合物の事前除去が必要とされ、0.1ppm以下が望ましいと
の報告もある(例えば、「ナフサスチームリフォーミン
グによる水素の製造」 石油と石油化学、Vol.21、No.1
0)。
In any case, in the reforming reaction using a catalyst, it is necessary to remove sulfur compounds as a catalyst poisoning component in the raw material natural gas in advance, and it is reported that 0.1 ppm or less is preferable (for example, , “Production of Hydrogen by Naphthus Steam Reforming” Petroleum and Petrochemistry, Vol.21, No.1
0).

【0009】粗COGの場合、硫黄化合物の含有量は2000p
pmを越え、触媒反応設計の観点からは極めて可能性が低
いと考えられるが、従来の触媒反応設計に則り脱硫前処
理を行うと、温度降下による重質炭化水素成分の凝縮、
反応活性の低下が起こり、目的とする分解反応を進行さ
せることが困難である。又、設備コストがかさみ、経済
合理性の確保が困難となる。
In the case of crude COG, the sulfur compound content is 2000 p
It is considered to be extremely unlikely from the viewpoint of catalytic reaction design, but if desulfurization pretreatment is performed according to conventional catalytic reaction design, condensation of heavy hydrocarbon components due to temperature drop,
A decrease in reaction activity occurs and it is difficult to proceed with the target decomposition reaction. In addition, equipment costs are high, and it becomes difficult to secure economic rationality.

【0010】[0010]

【発明が解決しようとする課題】本発明では、粗COGが
有する顕熱に着目すると共に、粗COGに含有・随伴する
化学物質の高温発生期故の高化学反応活性と掛け合わせ
ることにより軽質化学物質転換し、メタン、水素等のク
リーンガス主体の燃料構成に転換する化学エネルギー転
換のための粗COGの処理方法及び処理システムを構築す
ることを目的とする。
The present invention focuses on the sensible heat of the crude COG and combines it with the high chemical reaction activity of the chemical substances contained in / associated with the crude COG due to the high temperature generation period. The objective is to construct a crude COG treatment method and treatment system for chemical energy conversion in which substances are converted to a fuel composition mainly composed of clean gas such as methane and hydrogen.

【0011】[0011]

【課題を解決するための手段】本発明では、発生期の石
炭乾留ガスが、高温故の質の高い顕熱を保有すると共
に、高い反応活性を有し、更には、水素(約50体積%)、
メタン(約30体積%)を高濃度含有することに着目した。
水素は、水素化分解媒体として機能するのみならず、粗
COGに多量に含有する触媒被毒成分である硫黄化合物(約
2000ppm)の脱硫媒体としても作用する。又、メタンは、
クリーンガスエネルギーとして使用増が見込まれると共
に、究極のクリーン燃料と目される水素の原料(改質反
応による水素生成)と目されている。
In the present invention, the coal carbonization gas at the nascent stage has high quality sensible heat due to high temperature, high reaction activity, and further hydrogen (about 50% by volume). ),
We focused on the high concentration of methane (about 30% by volume).
Hydrogen not only functions as a hydrocracking medium but also
Sulfur compounds (about approx.
(2000ppm) also acts as a desulfurization medium. Also, methane is
It is expected to increase in use as clean gas energy, and is also regarded as the ultimate raw material for hydrogen (hydrogen generation by reforming reaction), which is regarded as the ultimate clean fuel.

【0012】これら粗COGが有する特徴を最大限に活か
し、メタン、水素等の軽質クリーンエネルギーを創製し
広域供給すれば、分散型高効率発電技術として開発が活
発化している固体高分子型燃料電池の燃料として、広域
に渡りそのメリットを享受できる。又、製鉄プラント内
の燃料として利用すれば、製鉄プラントの省エネ・二酸
化炭素排出低減に結実する。
By making full use of the characteristics of these crude COGs and creating light clean energy such as methane and hydrogen and supplying them to a wide area, solid polymer fuel cells are being actively developed as a distributed high efficiency power generation technology. It can be used as fuel for a wide range of benefits. Also, if used as fuel in the steelmaking plant, it will result in energy saving and reduction of carbon dioxide emission of the steelmaking plant.

【0013】タール、軽油等のガスに随伴する固形、液
体化学物質は、一度冷却回収されてしまえば、冷却過程
での温度履歴により反応活性が凍結するとともに、反応
活性低下を誘発する重合反応等が進行し、ハンドリング
が困難となることが多々ある。これら冷却された重質炭
化水素を再度昇温してガス化する際には、昇温過程での
炭素析出の問題を抱えると共に、エネルギーの多大投入
が必要となり、設備投資も過多となり重質炭化水素のガ
ス化・有効利用の経済的、エネルギー効率的障壁は高く
なる。
Once the solid and liquid chemical substances accompanied by gas such as tar and light oil are cooled and recovered, the reaction activity is frozen due to the temperature history in the cooling process, and the polymerization reaction, etc. which induces the decrease of the reaction activity. Is often difficult to handle. When these cooled heavy hydrocarbons are heated again and gasified, there is a problem of carbon precipitation in the temperature rising process, a large amount of energy needs to be input, and capital investment becomes excessive, resulting in heavy carbonization. The economic and energy efficient barriers to the gasification and effective use of hydrogen will increase.

【0014】これら重質炭化水素は、発生期の高温状態
下では反応活性に富むが、特にCOGの場合、石炭乾留生
成ガス故に水素含有量が多く、この水素が重質炭化水素
の分解・軽質炭化水素転換反応を促進する。又、COG中
には水蒸気も随伴するため、水蒸気改質・水素生成反応
も進行する。これら反応を安定に高効率で進行させるた
めのコア技術が触媒反応設計である。
These heavy hydrocarbons are rich in reaction activity under high temperature conditions in the nascent stage, but especially in the case of COG, the hydrogen content is large because of the coal carbonization product gas, and this hydrogen is decomposed and lightened by heavy hydrocarbons. Promotes hydrocarbon conversion reaction. In addition, since steam also accompanies COG, steam reforming and hydrogen production reactions also proceed. Catalytic reaction design is a core technology for advancing these reactions stably and with high efficiency.

【0015】事前脱硫処理を省略して触媒分解反応進行
の可能性を検討すべく、種々の市販触媒、表面にNiが微
細析出した固溶体、固相晶析触媒を調製し実験を行った
結果、Ni系触媒が反応活性が高く、600℃以上の温度域
で硫黄化合物による被毒の影響を抑えて分解反応が進
み、且つ、分解生成物が殆どメタンであることを見出し
た。又、水蒸気を導入することにより、900℃以上の温
度下で触媒活性の低下を抑えて、生成メタンの改質・水
素製造反応が進行することも併せ見出し、本発明を完成
するに至った。
In order to study the possibility of the catalytic decomposition reaction progressing without the prior desulfurization treatment, various commercially available catalysts, solid solutions in which Ni was finely deposited on the surface, and solid phase crystallization catalysts were prepared and the results of experiments were conducted. It was found that the Ni-based catalyst has high reaction activity, suppresses the effect of poisoning by sulfur compounds in the temperature range of 600 ° C or higher, and the decomposition reaction proceeds, and the decomposition product is almost methane. Further, it was also found that the introduction of water vapor suppresses the reduction of the catalytic activity at a temperature of 900 ° C. or higher and the reforming of methane produced / hydrogen production reaction proceeds, thus completing the present invention.

【0016】本発明では、これらの技術知見の下、粗CO
Gの高温活性を活かし、水素化分解軽質炭化水素製造、
改質合成ガス(水素、一酸化炭素)製造までの一貫した反
応プロセスを提案するものであり、コークス炉の立地す
るローカル事情に応じ、製鉄プラント内でのクリーンエ
ネルギー利用、広域供給のオプションを提供できるもの
と想定される。
In the present invention, the CO
Utilizing the high temperature activity of G, hydrocracking light hydrocarbon production,
It proposes a consistent reaction process up to the production of reformed synthesis gas (hydrogen, carbon monoxide), and provides options for using clean energy within the steelmaking plant and for wide-area supply, depending on the local circumstances where the coke oven is located. It is supposed to be possible.

【0017】本発明の要旨とするところは、以下の通り
である。 (1) コークス炉より発生する高温状態の粗コークス炉
ガスに随伴する重質炭化水素を触媒により分解して軽質
炭化水素に転換することを特徴とする粗コークス炉ガス
の処理方法。 (2) 前記触媒が、水素化分解触媒、水蒸気改質触媒及
び水添脱硫触媒から選ばれる1種類以上である(1)記載の
粗コークス炉ガスの処理方法。 (3) 前記軽質炭化水素の主成分がメタンである(1)又は
(2)に記載の粗コークス炉ガスの処理方法。 (4) 前記軽質炭化水素を含む粗コークス炉ガスをさら
に部分酸化、改質して合成ガスに変換する(1)〜(3)に記
載の粗コークス炉ガスの処理方法。 (5) 前記合成ガスの主成分が水素である(4)記載の粗コ
ークス炉ガスの処理方法。 (6) コークス炉からの熱回収装置への粗コークス炉ガ
ス流路に触媒反応器を配置してなることを特徴とする粗
コークス炉ガスの処理システム。 (7) 前記触媒反応器が、低圧損ハニカム型モノリス触
媒担体、ハニカム型ステンレス系メタル触媒担体、又
は、熱交換器型管壁触媒反応器である(6)記載の粗コー
クス炉ガスの処理システム。 (8) 前記触媒反応器に用いる触媒が、水素化分解触
媒、水蒸気改質触媒及び水添脱硫触媒から選ばれる1種
類以上である(6)又は(7)に記載の粗コークス炉ガスの処
理システム。 (9) 前記触媒反応器と熱交換器の間に膜型反応器をさ
らに設置してなる(6)〜(8)に記載の粗コークス炉ガスの
処理システム。 (10) 前記膜型反応器が酸素イオン・電子混合導電性固
体電解質膜及び炭化水素改質触媒層を有する膜型反応器
である(9)記載の粗コークス炉ガスの処理システム。
The gist of the present invention is as follows. (1) A method for treating a crude coke oven gas, characterized in that a heavy hydrocarbon accompanied with a high temperature crude coke oven gas generated from a coke oven is decomposed by a catalyst to be converted into a light hydrocarbon. (2) The method for treating crude coke oven gas according to (1), wherein the catalyst is one or more selected from a hydrocracking catalyst, a steam reforming catalyst, and a hydrodesulfurization catalyst. (3) The main component of the light hydrocarbon is methane (1) or
The method for treating crude coke oven gas according to (2). (4) The crude coke oven gas treatment method according to any one of (1) to (3), wherein the crude coke oven gas containing light hydrocarbons is further partially oxidized and reformed to be converted to synthesis gas. (5) The crude coke oven gas treatment method according to (4), wherein the main component of the synthesis gas is hydrogen. (6) A crude coke oven gas treatment system, characterized in that a catalytic reactor is arranged in the coarse coke oven gas flow path from the coke oven to the heat recovery device. (7) The catalytic reactor is a low-pressure loss honeycomb type monolith catalyst carrier, a honeycomb type stainless metal catalyst carrier, or a heat exchanger type tube wall catalytic reactor (6) crude coke oven gas treatment system . (8) The catalyst used in the catalytic reactor is one or more selected from hydrocracking catalyst, steam reforming catalyst and hydrodesulfurization catalyst (6) or treatment of crude coke oven gas according to (7) system. (9) The crude coke oven gas treatment system according to (6) to (8), further comprising a membrane reactor installed between the catalytic reactor and the heat exchanger. (10) The crude coke oven gas treatment system according to (9), wherein the membrane reactor is a membrane reactor having an oxygen ion / electron mixed conductive solid electrolyte membrane and a hydrocarbon reforming catalyst layer.

【0018】[0018]

【発明の実施の形態】以下、本発明を具体的に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below.

【0019】図1は、コークス炉〜水素回収までの一貫
したプロセスの例である。このプロセスには、酸素イオ
ン・電子混合導電性固体電解質膜型反応器が組み込まれ
ており、粗COGの水素化分解ガス(メタンリッチCOG)流路
に設置される場合は、連続して含有メタンの部分酸化改
質を行って合成ガスを製造し、流路に設置されない場合
は、単独で酸素富化装置として機能し、触媒層の再生
(触媒沈着物質のバーンオフ)に、又、製鉄プラント内の
酸素ニーズに応じて使用される。何れの場合も、反応後
のCOGの有する顕熱を蓄熱式熱交換機、廃熱回収ボイラ
ーにて回収し、蒸気製造、空気予熱に利用する。
FIG. 1 is an example of a consistent process from coke oven to hydrogen recovery. This process incorporates an oxygen ion / electron mixed conductive solid electrolyte membrane reactor, and when it is installed in the hydrogenolysis gas (methane-rich COG) channel of crude COG, it continuously contains methane. Partial oxidation reforming is used to produce synthesis gas, and if it is not installed in the flow path, it will function as an oxygen enricher by itself and regenerate the catalyst layer.
Used for (burn-off of catalyst deposits) and according to oxygen needs in ironmaking plants. In any case, the sensible heat of COG after the reaction is recovered by a heat storage type heat exchanger and a waste heat recovery boiler, and used for steam production and air preheating.

【0020】COGは、図1に示すコークス炉上部の上昇管
を通り、触媒反応器に導入される。触媒反応器には、重
質炭化水素の水素化分解触媒(Ni系、鉄系、アルミノケ
イ酸塩系)、水蒸気改質触媒(Ni系)、水添脱硫触媒(CoMo
系)が単独又は混合して充填されており、場合によって
は水蒸気を導入して、反応を進行させる。ここで、コー
クス炉ガス系は減圧吸引運転されていることから、圧損
を伴う触媒反応器は好ましくなく、自動車用排ガス浄化
設備として汎用に用いられているハニカム型担体(セラ
ミックス、SUS系メタル)に所定の触媒を担持したもの
(低圧損ハニカム型モノリス触媒担体、ハニカム型ステ
ンレス系メタル触媒担体)、又は、熱交換器の外表面に
触媒を担持した熱回収型反応器(熱交換器型管壁触媒反
応器)が望ましい。又、触媒としては分解活性、並びに
改質反応活性の高いNi系が望ましく、更には、硫黄化合
物被毒耐性が高く、触媒表面に付着した異物をバーンオ
フする際にシンタリングが起こらず、容易に触媒活性回
復が可能な様に表面構造が制御された触媒、例えば、Ni
がナノクラスター状に担体内部から表面に析出した固溶
体触媒(例えば、NixMg1-xO)、固相晶析法触媒(例えば、
NixBa1-xTiO3)が好適である。
COG is introduced into the catalytic reactor through the ascending pipe in the upper part of the coke oven shown in FIG. Catalytic reactors include heavy hydrocarbon hydrocracking catalysts (Ni-based, iron-based, aluminosilicate-based), steam reforming catalysts (Ni-based), hydrodesulfurization catalysts (CoMo
The system) is used alone or as a mixture, and in some cases steam is introduced to allow the reaction to proceed. Here, since the coke oven gas system is operated under reduced pressure suction, a catalytic reactor with pressure loss is not preferable, and a honeycomb type carrier (ceramics, SUS-based metal) generally used as an automobile exhaust gas purification facility is used. A carrier carrying a predetermined catalyst (low-pressure loss honeycomb type monolith catalyst carrier, honeycomb type stainless steel metal catalyst carrier), or a heat recovery type reactor (heat exchanger type tube wall) carrying a catalyst on the outer surface of the heat exchanger. A catalytic reactor) is preferred. Further, as the catalyst, a Ni-based catalyst having high decomposition activity and high reforming reaction activity is desirable. Furthermore, the sulfur compound poisoning resistance is high, and sintering does not occur when burning off foreign matter adhering to the catalyst surface. A catalyst whose surface structure is controlled so that the catalytic activity can be recovered, for example, Ni
Is a solid solution catalyst deposited on the surface from the inside of the carrier in the form of nanoclusters (for example, Ni x Mg 1-x O), a solid phase crystallization method catalyst (for example,
Ni x Ba 1-x TiO 3 ) is preferred.

【0021】粗COGに随伴する重質炭化水素の反応は複
雑であり、水蒸気改質、水蒸気脱アルキル、水素化分
解、水素化脱アルキル、ドライ改質(二酸化炭素改質)、
熱分解、炭素析出等と多岐に渡る反応が想定されるた
め、制御は相当に困難である。水素化分解が進行し、雰
囲気中の水素濃度が減少すると、炭素析出・水素生成反
応が促進され、触媒活性の低下を招く。一方、水蒸気を
導入すると、水素化分解生成物の水蒸気改質反応が促進
され、水素、一酸化炭素が生成し、一酸化炭素の一部
は、水性ガスシフト反応により、水素と二酸化炭素を生
成する。反応器の設備制約、必要なガス組成を勘案し、
反応条件を選定する必要があるが、粗COGの組成は炭
種、コークス炉操業条件、乾留の進行状況により大きく
変わるため、触媒反応器への水蒸気、及び/又は、酸素
の導入により制御する方法が簡便である。温度制御に自
由度を持たせるためには、反応器形式として外壁触媒塗
布熱交換器型触媒反応器(熱交換器型管壁触媒反応器)
が好ましい。
The reaction of heavy hydrocarbons associated with crude COG is complicated and includes steam reforming, steam dealkylation, hydrocracking, hydrodealkylation, dry reforming (carbon dioxide reforming),
Control is considerably difficult because a wide variety of reactions such as thermal decomposition and carbon deposition are expected. When the hydrogenolysis progresses and the hydrogen concentration in the atmosphere decreases, the carbon precipitation / hydrogen generation reaction is promoted, leading to a decrease in catalytic activity. On the other hand, when steam is introduced, the steam reforming reaction of the hydrocracking product is promoted, hydrogen and carbon monoxide are generated, and a part of carbon monoxide generates hydrogen and carbon dioxide by the water gas shift reaction. . Taking into consideration the facility restrictions of the reactor and the required gas composition,
Although it is necessary to select reaction conditions, the composition of crude COG varies greatly depending on the coal type, coke oven operating conditions, and progress of carbonization.Therefore, a method of controlling by introducing steam and / or oxygen into the catalytic reactor. Is simple. In order to have a degree of freedom in temperature control, the outer wall catalyst coating heat exchanger type catalytic reactor (heat exchanger type tube wall catalytic reactor) is used as the reactor type.
Is preferred.

【0022】随伴コールタール、軽油等の炭化水素をメ
タンを主体とする軽質炭化水素転換した粗COGは、凝縮
性成分が軽質炭化水素に転換しているため、既存の熱交
換設備で顕熱の回収が可能となる。連続して部分酸化、
改質する場合には、熱交換設備に入る前に、圧損の小さ
い膜型反応器に導入され、顕熱の一部を利用して、合成
ガス(水素、一酸化炭素)に化学エネルギー転換される。
水素、又は、合成ガスの需給バランスがタイトでない場
合は、この膜型反応器をバイパスして熱交換設備に導入
され、顕熱が回収される。水素外販市場が存在して、水
素需給バランスがタイトな場合は、膜型反応器を通し、
熱交換設備を経た後、既設のガス処理プラントを経てガ
スが清浄化され、引き続き、水性ガスシフト反応器に導
入され、含有一酸化炭素を水性ガスシフト反応により水
素転換し(CO+H2O→H2+CO2)、二酸化炭素吸収塔を経
て、高純度な水素が回収され、外販に廻される。
Crude COG obtained by converting hydrocarbons such as associated coal tar and light oil into light hydrocarbons mainly composed of methane has condensable components converted into light hydrocarbons, so that sensible heat is generated in existing heat exchange equipment. It is possible to collect. Partial oxidation in succession,
When reforming, before entering the heat exchange equipment, it is introduced into a membrane reactor with small pressure loss, and part of the sensible heat is used to convert chemical energy into synthesis gas (hydrogen, carbon monoxide). It
When the supply and demand balance of hydrogen or syngas is not tight, the membrane reactor is bypassed and introduced into heat exchange equipment to recover sensible heat. If there is a hydrogen external sales market and the hydrogen supply-demand balance is tight, use a membrane reactor to
After passing through the heat exchange facility, the gas is purified through the existing gas treatment plant and subsequently introduced into the water gas shift reactor, and the contained carbon monoxide is converted into hydrogen by the water gas shift reaction (CO + H 2 O → H 2 + CO 2 ) High-purity hydrogen is recovered through the carbon dioxide absorption tower and sent to external sales.

【0023】これら反応システムの全体構成は、コーク
ス炉が立地するローカルのエネルギー事情に依存して最
適解が異なるため、要素プロセス別に分解し、設計自由
度を高位保持しておくことが好ましい。
The overall configuration of these reaction systems has different optimal solutions depending on the local energy situation where the coke oven is located. Therefore, it is preferable to disassemble each element process and maintain a high degree of design freedom.

【0024】固体電解質膜型反応器の原理図を、メタン
の反応を例に図2に示した。メタンの部分酸化改質反応
の基本スキームについては種々議論のある所であり、一
段で部分酸化改質(CH4+1/2O2→2H2+CO)が進行すると
いう説と、透過酸素によるメタンの完全燃焼(CH4+2O2
→2H2O+CO2)が進行した後、生成水蒸気、二酸化炭素に
よるメタン改質反応(CH4+H2O→3H2+CO、CH4+CO2→2H
2+2CO)が進行するという間接反応機構を提案する説が
ある。図2は、後者の間接反応機構をベースに模式的に
示している。
The principle diagram of the solid electrolyte membrane type reactor is shown in FIG. 2 by taking the reaction of methane as an example. There are various discussions about the basic scheme of the partial oxidation reforming reaction of methane, and the theory that the partial oxidation reforming (CH 4 + 1 / 2O 2 → 2H 2 + CO) proceeds in one step, Complete combustion (CH 4 + 2O 2
→ 2H 2 O + CO 2 ) progresses, and then methane reforming reaction by generated steam and carbon dioxide (CH 4 + H 2 O → 3H 2 + CO, CH 4 + CO 2 → 2H
There is a theory that proposes an indirect reaction mechanism that 2 + 2 CO) progresses. FIG. 2 schematically shows the latter indirect reaction mechanism as a base.

【0025】この反応器は、酸素イオン・電子混合導電
性固体電解質膜の透過側に炭化水素改質用触媒を塗布す
ることにより、高温(800〜1000℃)下、イオン状態で透
過する酸素の高活性を活かし、高い反応収率と部分酸化
改質反応選択性を併せ実現することが可能である。
In this reactor, a hydrocarbon reforming catalyst is applied to the permeate side of an oxygen ion / electron mixed conductive solid electrolyte membrane, so that oxygen permeated in an ionic state at high temperature (800 to 1000 ° C.) By utilizing high activity, it is possible to realize both high reaction yield and partial oxidation reforming reaction selectivity.

【0026】図3に、片端封止管状膜に成型した固体電
解質膜の形状の一例を、図4に、この管状膜を多数本集
積した固体電解質膜片反応器の一例を示した。固体電解
質の酸素イオン透過能力にも依存するが、多孔質支持管
の上にコーティングし薄膜形状とした方が酸素イオン透
過抵抗の減少により酸素イオン透過量の向上が図れ、設
備のコンパクト化に有利である。但し、反応器として用
いる場合は、反応により酸素が消失するため、膜を介し
ての酸素濃度比を大きくすることができ、酸素分離用途
に比し、酸素イオンの透過量を大幅に向上させることが
可能となり、固体電解質の機械的強度、反応ガス雰囲気
耐性等を総合勘案して、膜厚、支持管無しの緻密管とし
ての利用、等が決定される。
FIG. 3 shows an example of the shape of a solid electrolyte membrane molded into a one-end sealed tubular membrane, and FIG. 4 shows an example of a solid electrolyte membrane piece reactor in which a large number of such tubular membranes are integrated. Although it depends on the oxygen ion permeation ability of the solid electrolyte, it is better to coat on a porous support tube to form a thin film, because the oxygen ion permeation resistance is reduced and the oxygen ion permeation amount can be improved, which is advantageous for compact equipment. Is. However, when used as a reactor, since oxygen disappears due to the reaction, the oxygen concentration ratio through the membrane can be increased, and the permeation amount of oxygen ions can be significantly improved as compared with oxygen separation applications. In consideration of the mechanical strength of the solid electrolyte, the resistance to the reaction gas atmosphere, etc., the film thickness, use as a dense tube without a supporting tube, etc. are determined.

【0027】[0027]

【実施例】以下、本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0028】(実施例) 水素化軽質炭化水素転換触媒の調製方法 (1) NixMg1-xO固溶体触媒調製 酢酸ニッケル(Ni(CH3COO)2)と硝酸マグネシウム(Mg(N
O3)2)で、Ni:Mgのモル比で1:9になる様に混合水溶液(全
金属濃度:0.5mol/l)を調製し、沈殿剤として炭酸カリウ
ム(K2CO3)を加えつつ、60℃で攪拌しながら1時間熟成し
た。生成した沈殿を脱水洗浄した後、バインダーとして
シリカゾル(旭化成工業製Cataloid S-20L)を触媒中のSi
O2質量%で50%となる様添加した。これを用いて噴霧乾燥
用触媒原液とすべく、水を添加しスラリー化した。
(Example) Method for Preparing Hydrogenated Light Hydrocarbon Conversion Catalyst (1) Ni x Mg 1-x O Solid Solution Catalyst Preparation Nickel acetate (Ni (CH 3 COO) 2 ) and magnesium nitrate (Mg (N
O 3 ) 2 ), prepare a mixed aqueous solution (total metal concentration: 0.5 mol / l) so that the molar ratio of Ni: Mg is 1: 9, and add potassium carbonate (K 2 CO 3 ) as a precipitant. While aging, the mixture was aged at 60 ° C for 1 hour. After the formed precipitate was dehydrated and washed, silica sol (Cataloid S-20L manufactured by Asahi Kasei Co., Ltd.) as a binder was added to the Si in the catalyst.
O 2 was added in an amount of 50% by mass. Using this, water was added to form a slurry for spray-drying a catalyst stock solution.

【0029】又、市販のNi系触媒、アルミナ系触媒、Co
Mo系水添脱硫触媒を粉砕・粒径調製し、単独、又は、混
合して使用した。
Also, commercially available Ni-based catalysts, alumina-based catalysts, Co
The Mo-based hydrodesulfurization catalyst was crushed and the particle size was adjusted, and used alone or as a mixture.

【0030】(2) セラミックスハニカム状モノリス触
媒調製 カオリナイトとモンモリロナイトの構成比が3:1のハニ
カム状担体をスラリー押出法にて調製した。形状は、直
径:18mm、長さ:15mm、チャンネル大きさ:1.8mm角正方
形、壁厚:0.5mmで、BET法による表面積測定では20m2/
g、細孔容積測定では0.12cm3/gという結果が得られた。
(2) Preparation of Ceramic Honeycomb Monolith Catalyst A honeycomb carrier having a composition ratio of kaolinite and montmorillonite of 3: 1 was prepared by a slurry extrusion method. The shape is diameter: 18 mm, length: 15 mm, channel size: 1.8 mm square, wall thickness: 0.5 mm, surface area measurement by BET method is 20 m 2 /
The result was 0.12 cm 3 / g in terms of g and pore volume measurement.

【0031】このモノリス担体に、上記(1)に記載の噴
霧乾燥用触媒溶液をスプレーし、950℃まで3時間で昇温
後20時間焼成した。塗布量で10質量%、塗布厚で60μmの
触媒担持量であった。
The monolith carrier was sprayed with the catalyst solution for spray drying described in (1) above, heated to 950 ° C. for 3 hours, and then calcined for 20 hours. The coating amount was 10% by mass, and the coating thickness was 60 μm, which was the amount of catalyst supported.

【0032】(3) 石炭乾留ガス分解実験系設計 石炭乾留ガス分解実験には、固定層二段式反応器を用い
た。反応管は、内径20mm、長さ900mmの石英製であり、
反応管の加熱には2つの電気炉(長さ300mm)を用いた。反
応管内に上下二つの分散板を設け、各々の分散板が電気
炉の中央部分に設置されるように反応管をセットした。
反応管上部には石炭粒子、反応管下部には上記(2)に記
載のセラミックスハニカム状モノリス触媒を充填した。
2つの電気炉を独立に制御することにより、石炭の熱分
解温度と触媒層の温度をコントロールした。
(3) Design of coal pyrolysis gas decomposition experiment system A fixed bed two-stage reactor was used for the coal pyrolysis gas decomposition experiment. The reaction tube is made of quartz with an inner diameter of 20 mm and a length of 900 mm.
Two electric furnaces (length 300 mm) were used to heat the reaction tube. Two upper and lower dispersion plates were provided in the reaction tube, and the reaction tube was set so that each dispersion plate was installed in the central portion of the electric furnace.
The upper part of the reaction tube was filled with coal particles, and the lower part of the reaction tube was filled with the ceramic honeycomb monolith catalyst described in (2) above.
The pyrolysis temperature of coal and the temperature of the catalyst layer were controlled by controlling the two electric furnaces independently.

【0033】実験は、以下に記載の通り行った。The experiment was conducted as described below.

【0034】石炭試料約1g(Witbank炭を粉砕、篩分けし
て12-32メッシュに調製)を上部の分散板上に、セラミッ
クスハニカム状モノリス触媒を下部の分散板上に投入し
た後、窒素ガスで十分系内を置換した。触媒層を所定の
温度まで昇温した後、反応ガスを流した。系内が安定し
た後、石炭試料を毎分10℃の昇温速度で加熱して、熱分
解実験を開始した。加熱開始後、およそ150℃毎に生成
ガスをサンプリングし、ガスクロマトグラフィーにより
分析した。石炭試料が所定の温度(標準的には1000℃)ま
で到達した後、窒素ガスに切り替え、降温した。降温
後、熱分解残渣チャー、触媒を回収した。反応管内に析
出した炭素分及び反応管下部に付着したタール分は、酸
素によって燃焼し、燃焼排ガス中の二酸化炭素及び一酸
化炭素をガスクロマトグラフィーで分析することよって
測定した。また、触媒上に析出した炭素分も、酸素によ
って燃焼することによって測定した。窒素(100%)、水素
/窒素(50/50)を供給して、分解反応雰囲気を調整し、全
ての分解実験において供給量を1ml(STP)/minとした。水
蒸気は、マイクロフィーダーを用い、供給量を0〜4ml(S
TP)/minに調整し、雰囲気調整ガスに随伴して供給し
た。又、分解反応温度は、600〜900℃の範囲に設定し
た。
Approximately 1 g of a coal sample (Witbank charcoal was crushed and sieved to 12-32 mesh) was placed on the upper dispersion plate, and the ceramic honeycomb monolith catalyst was placed on the lower dispersion plate, followed by nitrogen gas. Sufficiently replaced the inside of the system. After raising the temperature of the catalyst layer to a predetermined temperature, a reaction gas was flown. After the system was stabilized, the coal sample was heated at a heating rate of 10 ° C / min to start the thermal decomposition experiment. After heating was started, the produced gas was sampled approximately every 150 ° C. and analyzed by gas chromatography. After the coal sample reached a predetermined temperature (typically 1000 ° C.), it was switched to nitrogen gas and the temperature was lowered. After cooling, the pyrolysis residue char and the catalyst were recovered. The carbon content deposited in the reaction tube and the tar content adhering to the lower part of the reaction tube were combusted with oxygen, and the carbon dioxide and carbon monoxide in the flue gas were analyzed by gas chromatography. The carbon content deposited on the catalyst was also measured by burning with oxygen. Nitrogen (100%), hydrogen
/ Nitrogen (50/50) was supplied to adjust the decomposition reaction atmosphere, and the supply amount was 1 ml (STP) / min in all decomposition experiments. Use a micro feeder to supply water vapor of 0 to 4 ml (S
It was adjusted to TP) / min and supplied together with the atmosphere-adjusting gas. The decomposition reaction temperature was set in the range of 600 to 900 ° C.

【0035】(4) 石炭乾留ガス分解実験結果 石炭乾留単独実験を行い、コークス収率70%、ガス収率3
10ml/g、石炭、ガス中の主要成分の体積%は、水素56.2
%、メタン28.1%、一酸化炭素5.6%、二酸化炭素1.0%であ
った。
(4) Coal carbonization gas decomposition experiment result Coal carbonization independent experiment was conducted, and coke yield was 70% and gas yield was 3%.
The volume% of major components in 10 ml / g, coal and gas is hydrogen 56.2.
%, Methane 28.1%, carbon monoxide 5.6%, carbon dioxide 1.0%.

【0036】次に、連続してタール等の随伴炭化水素の
分解実験を行った。触媒活性は、Ni 0.1Mg0.9O固溶体触
媒>Ni系市販触媒(ICI社製Ni/Al2O3触媒、46-1P、Ni含
有量30質量%、32-60メッシュ)>活性Al2O3(12-32メッシ
ュ)>Fe/Al2O3触媒(Fe含有量5質量%、12-32メッシュ)の
順となった。無触媒の場合は、反応管下部に多量の黒色
タール状物質の付着が観察されたが、触媒を充填した場
合は、付着物が大幅に減少することが観察された。特
に、Ni系の触媒は、高い分解活性を示し、温度、雰囲気
の依存性無く、タール状物質は全く認められなかった。
一方、他の触媒の場合は、黄色の油状物質の付着が認め
られた。
Next, the production of associated hydrocarbons such as tar is continuously conducted.
A decomposition experiment was conducted. The catalytic activity is Ni 0.1Mg0.9O solid solution
Medium> Ni-based commercial catalyst (IC / Ni / Al2O3Catalyst, 46-1P, including Ni
30% by mass, 32-60 mesh)> Active Al2O3(12-32 Messi
)> Fe / Al2O3Of catalyst (Fe content 5% by mass, 12-32 mesh)
It was in order. When there is no catalyst, there is a large amount of black at the bottom of the reaction tube.
Adhesion of tar-like substances was observed, but when the catalyst was loaded,
In that case, it was observed that the deposits were significantly reduced. Special
In addition, Ni-based catalysts show high decomposition activity,
No tar-like substance was observed at all.
On the other hand, in the case of other catalysts, the adhesion of yellow oily substance was observed.
Was given.

【0037】分解反応活性は、温度により若干変化し、
650℃〜750℃の範囲でメタンが最大収率を示し、メタン
の濃度は最大で60体積%を示した。
The decomposition reaction activity slightly changes depending on the temperature,
The maximum yield of methane was in the range of 650 ℃ to 750 ℃, and the maximum concentration of methane was 60% by volume.

【0038】次に、水蒸気随伴による水蒸気改質反応の
積極的導入を目的とした実験を行った。触媒活性は、分
解反応の場合と同様で、Ni0.1Mg0.9O固溶体触媒が最も
高く、900℃下での反応では、ガス流量は2.4倍に増量
し、水素の2.8倍の増量を確認した。一方、メタンの量
には、変化が殆ど観察されなかった。重質炭化水素の直
接水蒸気改質反応により水素、一酸化炭素に分解したも
のか、分解・メタン生成を経てメタンの水蒸気改質反応
が進行したものか明瞭ではない。最終的な主要ガス体積
組成は、水素68.2%、メタン10.8%、一酸化炭素19.2%、
二酸化炭素1.3%であった。一方、市販Ni系触媒を用いた
場合は、同一条件でガス流量の増幅は1.9倍に止まり、
メタンの1.7倍の増幅が観察された。一方、水素の増幅
は1.9倍に止まった。つまり、市販Ni系触媒の場合、分
解・メタン生成反応は進行するものの、メタンの水蒸気
改質反応活性が、固溶体触媒に比し低いものと想定され
る。原因として、含有する硫黄化合物の水蒸気改質反応
活性阻害が想定されたため、水素55体積%、メタン30体
積%、窒素20体積%から構成される模擬ガスを調製し、硫
化水素を2019ppm添加して、同一反応条件で水蒸気改質
実験を行ったところ、固溶体触媒ではメタンの添加率が
50%であるのに対し、市販触媒では10%程度であった。
Next, an experiment was conducted for the purpose of actively introducing a steam reforming reaction accompanied by steam. The catalytic activity was the same as in the case of the decomposition reaction, the highest was that of Ni 0.1 Mg 0.9 O solid solution catalyst, and the gas flow rate was increased 2.4 times and 2.8 times that of hydrogen in the reaction at 900 ° C. On the other hand, almost no change was observed in the amount of methane. It is not clear whether the heavy hydrocarbon was decomposed into hydrogen and carbon monoxide by the direct steam reforming reaction, or whether the steam reforming reaction of methane proceeded through decomposition and methane generation. The final main gas volume composition is hydrogen 68.2%, methane 10.8%, carbon monoxide 19.2%,
Carbon dioxide was 1.3%. On the other hand, when using a commercially available Ni-based catalyst, the amplification of the gas flow rate was only 1.9 times under the same conditions,
A 1.7-fold amplification of methane was observed. On the other hand, the amplification of hydrogen stopped at 1.9 times. That is, in the case of a commercially available Ni-based catalyst, although the decomposition / methane production reaction proceeds, the steam reforming reaction activity of methane is assumed to be lower than that of the solid solution catalyst. As a cause, it was assumed that the contained sulfur compounds would inhibit the steam reforming reaction activity.Therefore, a simulated gas consisting of 55% by volume hydrogen, 30% by volume methane, and 20% by volume nitrogen was prepared, and hydrogen sulfide was added at 2019 ppm. When a steam reforming experiment was conducted under the same reaction conditions, the addition rate of methane was
While it was 50%, it was about 10% with the commercially available catalyst.

【0039】水蒸気随伴分解反応実験終了後の触媒反応
管観察結果では、Ni系触媒は、実験温度に係わらず、タ
ール状物質が全く認められなかった。一方、他の触媒の
場合は、黒色付着物の沈着が認められた。
In the result of observation of the catalytic reaction tube after the completion of the steam-associated decomposition reaction experiment, no tar-like substance was observed in the Ni-based catalyst regardless of the experimental temperature. On the other hand, in the case of other catalysts, deposition of black deposits was observed.

【0040】(5) 酸素イオン・電子混合導電性固体電
解質膜の調製方法 多孔質セラミックスを調製し、固体電解質薄膜をコーテ
ィングする方法は、種々知られており、特願平10-15790
5号公報にも、イットリア安定化ジルコニアで多孔体を
調製し、孔径調製前処理を施した後、Sr2Fe3O6.25薄膜
を有機金属化学蒸着法で形成、反対面にはRh触媒を有機
金属化学蒸着法で形成し、メタン部分酸化反応に供した
例が、報告されている。
(5) Method for Preparing Oxygen Ion / Electron Mixed Conductive Solid Electrolyte Membrane Various methods for preparing porous ceramics and coating a solid electrolyte thin film are known, and Japanese Patent Application No. 10-15790.
Also in JP-A-5, a porous body is prepared with yttria-stabilized zirconia, and a pore size adjusting pretreatment is performed, and then a Sr 2 Fe 3 O 6.25 thin film is formed by a metal organic chemical vapor deposition method. An example in which it was formed by a metal chemical vapor deposition method and subjected to a partial oxidation reaction of methane has been reported.

【0041】本発明では、部分酸化雰囲気に優れた耐性
を有するとされるSr1.7La0.3Ga0.6Fe1.4O5.5組成の酸素
欠損ペロブスカイトをSrO、La2O3、GaO2、Fe2O3粉末を
化学両論比で粉砕・混合し、仮焼後粉砕し、ディスク形
状に緻密成型し、部分酸化実験に供した。ディスクの外
径は20mm、厚みは1.5mmの緻密焼結体であり、触媒は、
市販Ru系触媒(東洋シーシーアイ(株)製RUA触媒、天然ガ
ス水蒸気改質用触媒)を10μm以下に整粒後、有機溶剤を
加えてスラリー状とし、固体電解質緻密焼結体表面に塗
布・乾燥後850℃にて焼付け形成、又は、市販触媒を20-
40メッシュに調製後固体電解質緻密焼結体表面に塗布・
担持した。触媒質量は、それぞれ、32mg、900mgであっ
た。
In the present invention, oxygen-deficient perovskite having a composition of Sr 1.7 La 0.3 Ga 0.6 Fe 1.4 O 5.5 , which is considered to have excellent resistance to a partially oxidizing atmosphere, is powdered with SrO, La 2 O 3 , GaO 2 , and Fe 2 O 3 powder. Was pulverized and mixed in a stoichiometric ratio, calcined and then pulverized, compacted into a disk shape, and subjected to a partial oxidation experiment. The outer diameter of the disk is 20 mm, the thickness is 1.5 mm, and it is a dense sintered body, and the catalyst is
Commercially available Ru-based catalyst (RUA catalyst manufactured by Toyo CCI Co., Ltd., natural gas steam reforming catalyst) was sized to 10 μm or less, and then added with an organic solvent to form a slurry, which was applied to the surface of the solid electrolyte dense sintered body and dried. After that, it is baked at 850 ° C, or a commercial catalyst is
After preparing to 40 mesh, apply it to the surface of the solid electrolyte dense sintered body.
Carried. The catalyst mass was 32 mg and 900 mg, respectively.

【0042】(6) 酸素透過係数測定、メタンガス部分
酸化反応測定 反応圧力:常圧、温度:850℃、供給空気量150ml/min、供
給メタン量:30ml/minで、メタン部分酸化実験を行っ
た。スラリーコート触媒の場合、触媒担持量が少ない関
係か、反応転化率、選択性共に低くなる傾向が見られた
が、粒状担持触媒の場合は、メタン転化率80%、H2/CO=
2と、部分酸化反応化学両論比が得られ、選択性に優れ
ていることがわかった。又、酸素透過流量は9ml(STP)/m
in・cm2と高位安定した値が得られた。
(6) Oxygen Permeation Coefficient Measurement, Methane Gas Partial Oxidation Reaction Measurement Reaction pressure: normal pressure, temperature: 850 ° C., supply air amount 150 ml / min, supply methane amount: 30 ml / min, and methane partial oxidation experiment was conducted. . In the case of the slurry-coated catalyst, the reaction conversion rate and the selectivity tended to be low due to the small amount of supported catalyst, but in the case of the granular supported catalyst, the methane conversion rate was 80%, H 2 / CO =
2 and the partial oxidation reaction chemistry ratio were obtained, and it was found that the selectivity was excellent. The oxygen permeation flow rate is 9 ml (STP) / m
A high and stable value of in · cm 2 was obtained.

【0043】重質炭化水素のメタンを主体とする軽質炭
化水素に転換した粗COGを原料とすることを想定し、メ
タン濃度10〜90体積%、水素30〜80体積%の範囲で原料ガ
スを調製し、上記と同一の反応条件下で部分酸化反応実
験を行った。メタン100%に比し、水素の酸化反応が進む
が、生成水蒸気がメタンの水蒸気改質媒体として機能
し、メタン転化率70〜90%、H2/CO=1.7〜2.0と高い反応
転化率、及び、選択性が得られた。又、酸素透過流量は
7〜13ml(STP)/min・cm2と安定した値が得られた。
Assuming that the raw COG is a heavy hydrocarbon converted to a light hydrocarbon mainly composed of methane, the raw material gas is supplied in the range of methane concentration of 10 to 90% by volume and hydrogen of 30 to 80% by volume. After preparation, a partial oxidation reaction experiment was performed under the same reaction conditions as above. Compared to 100% of methane, the hydrogen oxidation reaction proceeds, but the generated steam functions as a steam reforming medium for methane, and the conversion rate of methane is 70-90%, H 2 /CO=1.7-2.0, which is a high reaction conversion rate. And selectivity was obtained. Also, the oxygen permeation flow rate is
A stable value of 7 to 13 ml (STP) / min · cm 2 was obtained.

【0044】上記基礎データーに基づき、粗COGの有す
る顕熱と随伴重質炭化水素を利用した軽質炭化水素、合
成ガス転換によるCOGの発熱量増量は、15〜28%と試算さ
れた。
Based on the above basic data, it was estimated that the sensible heat of crude COG, the light hydrocarbons using the associated heavy hydrocarbons, and the increase in the calorific value of COG due to the synthesis gas conversion were 15 to 28%.

【0045】[0045]

【発明の効果】本発明は、コークス炉ガスに随伴する重
質炭化水素が、高温発生期に高い反応活性を有すること
に着目し、又、ガス中に水素を多量に含有することを活
用して、水素化分解を主体とする重質炭化水素の触媒分
解反応を安定して進行させ、メタンを主体とする軽質炭
化水素に転換する技術を提供するものであり、更には、
連続して固体電解質膜型反応器を通すことにより、生成
軽質炭化水素を部分酸化改質反応により水素を主体とす
る合成ガスに高効率で転換する技術をも、併せ、提供す
るものである。
EFFECTS OF THE INVENTION The present invention focuses on the fact that the heavy hydrocarbons associated with the coke oven gas have a high reaction activity during the high temperature generation period, and utilizes the fact that the gas contains a large amount of hydrogen. The present invention provides a technique for stably promoting a catalytic cracking reaction of heavy hydrocarbons mainly composed of hydrocracking and converting methane into light hydrocarbons mainly composed of methane.
It also provides a technique for efficiently converting the produced light hydrocarbons into a synthesis gas mainly containing hydrogen by a partial oxidation reforming reaction by continuously passing the solid electrolyte membrane reactor.

【0046】本発明を実施することにより、発生期のCO
Gが保有する顕熱と随伴重質炭化水素とが、触媒化学反
応を媒介として掛け合わされ、熱エネルギーを軽質化学
エネルギーに転換する新規熱エネルギー高度利用型省エ
ネプロセスが実現すると共に、随伴重質炭化水素の軽質
化学エネルギー転換過程で、メタン及び水素を主体とす
る合成ガスが増幅するため、広域供給も可能となり、燃
料電池等の高効率分散型新電源のクリーンエルギーソー
スとして広域供給・利用されれば、二酸化炭素排出削減
も可能となる。又、本発明によりコールタール等の凝縮
性重質炭化水素が軽質化学物質に転換されるため、既存
熱回収技術を活用した安定した熱回収が可能となる。
By carrying out the present invention, CO
The sensible heat possessed by G and the associated heavy hydrocarbons are combined with each other through a catalytic chemical reaction to realize a new energy-efficient energy-saving process for converting thermal energy into light chemical energy, and associated heavy carbonization. During the light chemical energy conversion process of hydrogen, the syngas mainly consisting of methane and hydrogen is amplified, so that it can be supplied over a wide area, and is widely supplied and used as a clean energy source for highly efficient new distributed power sources such as fuel cells. If so, carbon dioxide emissions can be reduced. Further, according to the present invention, the condensable heavy hydrocarbon such as coal tar is converted into a light chemical substance, so that stable heat recovery using the existing heat recovery technology becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のCOG処理システムの全体模式図。FIG. 1 is an overall schematic diagram of a COG processing system of the present invention.

【図2】 酸素イオン・電子混合導電性固体電解質膜中
でのCOG中のメタン部分酸化反応による合成ガス製造模
式図。
FIG. 2 is a schematic diagram of synthetic gas production by a partial oxidation reaction of methane in COG in an oxygen ion / electron mixed conductive solid electrolyte membrane.

【図3】 酸素イオン・電子混合導電性固体電解質膜型
反応器に組み込まれる反応管の模式図。
FIG. 3 is a schematic view of a reaction tube incorporated in an oxygen ion / electron mixed conductive solid electrolyte membrane reactor.

【図4】 酸素イオン・電子混合導電性固体電解質膜型
反応器の内部構成模式図。
FIG. 4 is a schematic diagram of the internal structure of an oxygen ion / electron mixed conductive solid electrolyte membrane reactor.

フロントページの続き (72)発明者 藤本 健一郎 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 栗村 英樹 東京都渋谷区幡ヶ谷1丁目31番10号 帝国 石油株式会社内 (72)発明者 加賀野井 彰一 東京都渋谷区幡ヶ谷1丁目31番10号 帝国 石油株式会社内 (72)発明者 鈴木 洋平 東京都渋谷区幡ヶ谷1丁目31番10号 帝国 石油株式会社内 Fターム(参考) 4G040 EA03 EA06 EB14 EB23 EB32 EB44 EC08 4G069 AA03 AA08 BA06B BB06B BC10B BC68B CC07 CC22 DA06 EA19 FA02 FB09 4H060 AA01 BB08 CC03 CC18 DD03 EE03 FF02 GG02 Continued front page    (72) Inventor Kenichiro Fujimoto             20-1 Shintomi, Futtsu City Nippon Steel Co., Ltd.             Inside the surgical development headquarters (72) Inventor Hideki Kurimura             1-131 Hatagaya, Shibuya-ku, Tokyo Empire             Petroleum Co., Ltd. (72) Inventor Shoichi Kaganoi             1-131 Hatagaya, Shibuya-ku, Tokyo Empire             Petroleum Co., Ltd. (72) Inventor Yohei Suzuki             1-131 Hatagaya, Shibuya-ku, Tokyo Empire             Petroleum Co., Ltd. F-term (reference) 4G040 EA03 EA06 EB14 EB23 EB32                       EB44 EC08                 4G069 AA03 AA08 BA06B BB06B                       BC10B BC68B CC07 CC22                       DA06 EA19 FA02 FB09                 4H060 AA01 BB08 CC03 CC18 DD03                       EE03 FF02 GG02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 コークス炉より発生する高温状態の粗コ
ークス炉ガスに随伴する重質炭化水素を触媒により分解
して軽質炭化水素に転換することを特徴とする粗コーク
ス炉ガスの処理方法。
1. A method for treating crude coke oven gas, characterized in that heavy hydrocarbons accompanying high temperature crude coke oven gas generated from a coke oven are decomposed by a catalyst to be converted into light hydrocarbons.
【請求項2】 前記触媒が、水素化分解触媒、水蒸気改
質触媒及び水添脱硫触媒から選ばれる1種類以上である
請求項1記載の粗コークス炉ガスの処理方法。
2. The method for treating crude coke oven gas according to claim 1, wherein the catalyst is at least one selected from a hydrocracking catalyst, a steam reforming catalyst, and a hydrodesulfurization catalyst.
【請求項3】 前記軽質炭化水素の主成分がメタンであ
る請求項1又は2に記載の粗コークス炉ガスの処理方法。
3. The method for treating crude coke oven gas according to claim 1, wherein the light hydrocarbon is mainly composed of methane.
【請求項4】 前記軽質炭化水素を含む粗コークス炉ガ
スをさらに部分酸化、改質して合成ガスに変換する請求
項1〜3に記載の粗コークス炉ガスの処理方法。
4. The method for treating crude coke oven gas according to claim 1, wherein the crude coke oven gas containing light hydrocarbons is further partially oxidized and reformed to be converted into synthesis gas.
【請求項5】 前記合成ガスの主成分が水素である請求
項4記載の粗コークス炉ガスの処理方法。
5. The method for treating crude coke oven gas according to claim 4, wherein the main component of the synthesis gas is hydrogen.
【請求項6】 コークス炉からの熱回収装置への粗コー
クス炉ガス流路に触媒反応器を配置してなることを特徴
とする粗コークス炉ガスの処理システム。
6. A crude coke oven gas treatment system comprising a catalytic reactor arranged in a crude coke oven gas passage to a heat recovery device from the coke oven.
【請求項7】 前記触媒反応器が、低圧損ハニカム型モ
ノリス触媒担体、ハニカム型ステンレス系メタル触媒担
体、又は、熱交換器型管壁触媒反応器である請求項6記
載の粗コークス炉ガスの処理システム。
7. The crude coke oven gas according to claim 6, wherein the catalytic reactor is a low pressure loss honeycomb type monolith catalyst carrier, a honeycomb type stainless steel metal catalyst carrier, or a heat exchanger type tube wall catalytic reactor. Processing system.
【請求項8】 前記触媒反応器に用いる触媒が、水素化
分解触媒、水蒸気改質触媒及び水添脱硫触媒から選ばれ
る1種類以上である請求項6又は7に記載の粗コークス炉
ガスの処理システム。
8. The treatment of crude coke oven gas according to claim 6, wherein the catalyst used in the catalytic reactor is at least one selected from hydrocracking catalysts, steam reforming catalysts and hydrodesulfurization catalysts. system.
【請求項9】 前記触媒反応器と熱交換器の間に膜型反
応器をさらに設置してなる請求項6〜8に記載の粗コーク
ス炉ガスの処理システム。
9. The crude coke oven gas treatment system according to claim 6, further comprising a membrane reactor provided between the catalytic reactor and the heat exchanger.
【請求項10】 前記膜型反応器が酸素イオン・電子混
合導電性固体電解質膜及び炭化水素改質触媒層を有する
膜型反応器である請求項9記載の粗コークス炉ガスの処
理システム。
10. The crude coke oven gas treatment system according to claim 9, wherein the membrane reactor is a membrane reactor having an oxygen ion / electron mixed conductive solid electrolyte membrane and a hydrocarbon reforming catalyst layer.
JP2001248921A 2001-08-20 2001-08-20 Processing method and processing system for crude coke oven gas Expired - Fee Related JP4588268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001248921A JP4588268B2 (en) 2001-08-20 2001-08-20 Processing method and processing system for crude coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001248921A JP4588268B2 (en) 2001-08-20 2001-08-20 Processing method and processing system for crude coke oven gas

Publications (2)

Publication Number Publication Date
JP2003055671A true JP2003055671A (en) 2003-02-26
JP4588268B2 JP4588268B2 (en) 2010-11-24

Family

ID=19078002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001248921A Expired - Fee Related JP4588268B2 (en) 2001-08-20 2001-08-20 Processing method and processing system for crude coke oven gas

Country Status (1)

Country Link
JP (1) JP4588268B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298664A (en) * 2005-04-15 2006-11-02 Nippon Steel Corp Solid electrolyte membrane-type reactor
JP2008163103A (en) * 2006-12-27 2008-07-17 Mitsui Zosen Plant Engineering Inc Reformation system of floatation filter cake
WO2009084736A1 (en) 2007-12-27 2009-07-09 Nippon Steel Corporation Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
JP2009292706A (en) * 2008-06-09 2009-12-17 Tdk Corp Fuel reforming module and its operation method
WO2010035430A1 (en) 2008-09-24 2010-04-01 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
JP2010077219A (en) * 2008-09-24 2010-04-08 Nippon Steel Corp Method for reforming tar-containing gas
JP2010528974A (en) * 2007-06-06 2010-08-26 リンデ・エルエルシー Integrated process for carbon monoxide generation for carbon nanomaterial generation
CN102358656A (en) * 2011-09-14 2012-02-22 黑龙江建龙钢铁有限公司 Residual ammonia water degreasing method
JP2012246350A (en) * 2011-05-25 2012-12-13 Nippon Steel Corp Manufacturing system of hydrogen-enriched coke oven gas
US9393551B2 (en) 2009-05-19 2016-07-19 Nippon Steel & Sumitomo Metal Corporation Catalyst for reforming tar-containing gas, method for preparing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar containing gas, and method for regenerating catalyst for reforming tar-containing gas
CN113477186A (en) * 2021-06-22 2021-10-08 沈阳化工大学 Selective catalytic upgrading device and method for heavy tar
CN113845089A (en) * 2021-08-13 2021-12-28 中国石油大学(北京) Method for producing synthesis gas for reduced iron by using coke oven gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188664A (en) * 1993-12-27 1995-07-25 Nkk Corp Recovering method for sensible heat of crude coke oven has
JPH08134456A (en) * 1994-11-07 1996-05-28 Nkk Corp Method for recovering sensible heat from crude coke oven gas
JP2000273473A (en) * 1999-03-23 2000-10-03 Nippon Steel Corp Method for treating waste generated in coke oven
JP2001220584A (en) * 2000-02-10 2001-08-14 Yukuo Katayama Modification of coke oven gas and process for recovering sensible heat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188664A (en) * 1993-12-27 1995-07-25 Nkk Corp Recovering method for sensible heat of crude coke oven has
JPH08134456A (en) * 1994-11-07 1996-05-28 Nkk Corp Method for recovering sensible heat from crude coke oven gas
JP2000273473A (en) * 1999-03-23 2000-10-03 Nippon Steel Corp Method for treating waste generated in coke oven
JP2001220584A (en) * 2000-02-10 2001-08-14 Yukuo Katayama Modification of coke oven gas and process for recovering sensible heat

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298664A (en) * 2005-04-15 2006-11-02 Nippon Steel Corp Solid electrolyte membrane-type reactor
JP4699074B2 (en) * 2005-04-15 2011-06-08 新日本製鐵株式会社 Solid electrolyte membrane reactor
JP2008163103A (en) * 2006-12-27 2008-07-17 Mitsui Zosen Plant Engineering Inc Reformation system of floatation filter cake
JP2010528974A (en) * 2007-06-06 2010-08-26 リンデ・エルエルシー Integrated process for carbon monoxide generation for carbon nanomaterial generation
EP2236204A4 (en) * 2007-12-27 2012-08-08 Nippon Steel Corp Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
WO2009084736A1 (en) 2007-12-27 2009-07-09 Nippon Steel Corporation Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
KR101203229B1 (en) 2007-12-27 2012-11-20 신닛테츠스미킨 카부시키카이샤 Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
EP2236204A1 (en) * 2007-12-27 2010-10-06 Nippon Steel Corporation Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
JP2009292706A (en) * 2008-06-09 2009-12-17 Tdk Corp Fuel reforming module and its operation method
EP2335824A4 (en) * 2008-09-24 2014-09-03 Nippon Steel & Sumitomo Metal Corp Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
US9090465B2 (en) 2008-09-24 2015-07-28 Nippon Steel & Sumitomo Metal Corporation Method for producing catalyst reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
JPWO2010035430A1 (en) * 2008-09-24 2012-02-16 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar, and method for regenerating catalyst for reforming tar-containing gas
CN102159313A (en) * 2008-09-24 2011-08-17 新日本制铁株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
EP2335824A1 (en) * 2008-09-24 2011-06-22 Nippon Steel Corporation Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
JP5009419B2 (en) * 2008-09-24 2012-08-22 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar, and method for regenerating catalyst for reforming tar-containing gas
JP2010077219A (en) * 2008-09-24 2010-04-08 Nippon Steel Corp Method for reforming tar-containing gas
WO2010035430A1 (en) 2008-09-24 2010-04-01 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
KR101274314B1 (en) * 2008-09-24 2013-06-13 신닛테츠스미킨 카부시키카이샤 Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
US9393551B2 (en) 2009-05-19 2016-07-19 Nippon Steel & Sumitomo Metal Corporation Catalyst for reforming tar-containing gas, method for preparing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar containing gas, and method for regenerating catalyst for reforming tar-containing gas
JP2012246350A (en) * 2011-05-25 2012-12-13 Nippon Steel Corp Manufacturing system of hydrogen-enriched coke oven gas
CN102358656A (en) * 2011-09-14 2012-02-22 黑龙江建龙钢铁有限公司 Residual ammonia water degreasing method
CN113477186A (en) * 2021-06-22 2021-10-08 沈阳化工大学 Selective catalytic upgrading device and method for heavy tar
CN113477186B (en) * 2021-06-22 2022-07-01 沈阳化工大学 Selective catalytic upgrading device and method for heavy tar
CN113845089A (en) * 2021-08-13 2021-12-28 中国石油大学(北京) Method for producing synthesis gas for reduced iron by using coke oven gas
CN113845089B (en) * 2021-08-13 2024-03-12 中国石油大学(北京) Method for producing synthesis gas for reduced iron by using coke oven gas

Also Published As

Publication number Publication date
JP4588268B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
Gao et al. Steam reforming of biomass tar for hydrogen production over NiO/ceramic foam catalyst
JP5494135B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP4897112B2 (en) Tar-containing gas reforming catalyst, method for producing tar-containing gas reforming catalyst, tar-containing gas reforming method using tar-containing gas reforming catalyst, and method for regenerating tar-containing gas reforming catalyst
Wang et al. Steam reforming of acetic acid over coal ash supported Fe and Ni catalysts
US9793563B2 (en) Gasifier having integrated fuel cell power generation system
US7767191B2 (en) Combustion looping using composite oxygen carriers
JP5659537B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5009419B2 (en) Method for producing catalyst for reforming tar-containing gas, method for reforming tar, and method for regenerating catalyst for reforming tar-containing gas
JP5659536B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5780271B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP4588268B2 (en) Processing method and processing system for crude coke oven gas
JP5659534B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Li et al. Bi-functional particles for integrated thermo-chemical processes: Catalysis and beyond
CN114044490B (en) Device and method for preparing hydrogen-rich gas based on double fluidized bed pyrolysis gas conversion
WO2007099989A1 (en) Carbon support, method of producing carbon support, apparatus for producing carbon support, gas formation method, power generation method and power generator
JP5511169B2 (en) Method for reforming tar-containing gas
Hakouk et al. Implementation of novel ice-templated materials for conversion of tars from gasification product gas
CN1648034A (en) Process for preparing synthetic gas by reforming carbon dioxide-methane
JP5659532B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
CN103298541A (en) Filtering structure coated with catalyst for reforming synthesis gas and filtering method using the same
JP2019162619A (en) Catalyst for modifying tar-containing gas, manufacturing method of catalyst for modifying tar-containing gas, and modification method of tar-containing gas using the catalyst for modifying tar-containing gas
JP5720107B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5659533B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Srinophakun et al. Development of Photothermal Catalyst from Biomass Ash (Bagasse) for Hydrogen Production via Dry Reforming of Methane (DRM): An Experimental Study.
JP2013237048A (en) Modifying catalyst of tar containing gas, method for manufacturing the same, and modifying method of the tar containing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090525

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R151 Written notification of patent or utility model registration

Ref document number: 4588268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees