JP2006297534A - Solid end mill - Google Patents

Solid end mill Download PDF

Info

Publication number
JP2006297534A
JP2006297534A JP2005122129A JP2005122129A JP2006297534A JP 2006297534 A JP2006297534 A JP 2006297534A JP 2005122129 A JP2005122129 A JP 2005122129A JP 2005122129 A JP2005122129 A JP 2005122129A JP 2006297534 A JP2006297534 A JP 2006297534A
Authority
JP
Japan
Prior art keywords
end mill
cutting edge
axis
length
chip discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005122129A
Other languages
Japanese (ja)
Other versions
JP4270162B2 (en
Inventor
Keisuke Yamakawa
啓介 山川
Taichi Aoki
太一 青木
Seiichiro Kitaura
精一郎 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Kobe Tools Corp
Priority to JP2005122129A priority Critical patent/JP4270162B2/en
Publication of JP2006297534A publication Critical patent/JP2006297534A/en
Application granted granted Critical
Publication of JP4270162B2 publication Critical patent/JP4270162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid end mill especially suitable for an automatic lathe by shortening a length in the axial direction of a cutting blade including a cut-up part of a chip discharging groove without influencing the cutting performance or generating the easy clog of chips. <P>SOLUTION: The rear end of an end mill body 11 rotated around an axis O is a shank part 12, and the tip is a cutting blade 13 with a cutting blade 15 formed at the side ridge of a wall directed to the end mill rotary direction T of a spiral chip discharging groove 14 twisted around the axis O. At the rear end side cut-up part 18 of the chip discharging groove 14, a grinding wheel swing angle α relative to the axis O of a grinding wheel G to grind the inner periphery of the chip discharging groove 14 to form the cutting blade 15 is made larger than a torsion angle θ of the chip discharging groove 14 by 8° or more to the side where the chip exhausting groove 14 twists. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、特に自動旋盤においてワークのミーリング加工を行うのに用いて好適なソリッドエンドミルに関するものである。   The present invention relates to a solid end mill suitable for use in milling a workpiece, particularly in an automatic lathe.

近年、例えば自動車部品等の加工用に自動旋盤と呼ばれる工作機械が用いられている。この自動旋盤は、例えば特許文献1に記載のように主軸中を通して供給した長尺の棒状ワークを所定長さ主軸端から突き出した状態で把持して加工を行い、加工後に突っ切りバイト等により該ワークを切断してから、次のワークを突き出して再び加工を繰り返すことで、上述のような部品を大量に生産できるものである。そして、このような自動旋盤による加工は、旋盤と称される通り従来より例えば特許文献2に記載のようにバイトによるターニング(旋削)加工が主であったが、最近ではミーリング(転削)加工用の主軸を備えた自動旋盤が登場し、これまではできなかった複雑な形状の部品の加工がエンドミルのような転削工具により可能となってきている。
特開2001−310201号公報 特開2002−18605号公報
In recent years, for example, machine tools called automatic lathes are used for processing automobile parts and the like. This automatic lathe, for example, as described in Patent Document 1, grips and processes a long rod-shaped workpiece supplied through the main shaft in a state of protruding from the main shaft end for a predetermined length. After cutting, the next workpiece is ejected and the machining is repeated again, so that the above-mentioned parts can be produced in large quantities. And, the machining by such an automatic lathe has been conventionally a turning (turning) process using a cutting tool as described in Patent Document 2, for example. An automatic lathe equipped with a main spindle has been introduced, and it has become possible to machine parts with complex shapes that were not possible with a rolling tool such as an end mill.
JP 2001-310201 A JP 2002-18605 A

ところで、このような自動旋盤により加工される棒状のワークは直径数mmから十数mm程度のものが多く、そのため機械本体は一般のマシニングセンタなどに比べてかなり小さくなっている。従って機内スペースも非常に狭くてミーリング加工用の主軸のストロークも短いため、全長の長いエンドミルでは主軸をストロークいっぱいまで動かしても、取付け時にワークや他の工具と干渉しやすく、取り扱いが非常に面倒となる。また、このように自動旋盤は小型の機械であるため、ミーリング加工用の上記主軸の剛性もあまり高くなく、しかも片持ちの棒状ワークを加工するため、加工時にビビリが生じ易いという問題もある。このため、このような自動旋盤においてワークのミーリング加工を行うエンドミルには、エンドミル本体の軸線方向の長さや切刃部の軸線方向における切刃長が短くて取り扱い性が良く、またこの切刃部の主軸からの突き出し長さを小さく抑えてビビリ等の発生を防止可能であることが要求される。   By the way, many rod-shaped workpieces processed by such an automatic lathe have a diameter of about several millimeters to several tens of millimeters. Therefore, the machine body is considerably smaller than a general machining center or the like. Therefore, the space inside the machine is very narrow and the stroke of the spindle for milling is short, so even if the spindle is moved to the full stroke, the long end mill can easily interfere with workpieces and other tools during installation, and handling is very troublesome. It becomes. In addition, since the automatic lathe is a small machine as described above, the rigidity of the main shaft for milling is not so high, and a cantilevered workpiece is processed, so that there is a problem that chatter is likely to occur during processing. For this reason, end mills that mill workpieces in such automatic lathes have a short length in the axial direction of the end mill main body and a short cutting edge length in the axial direction of the cutting edge portion, and are easy to handle. It is required that the length of protrusion from the main shaft can be kept small to prevent chattering.

ここで、図4に示すように一般的なソリッドエンドミルでは、概略円柱状のエンドミル本体1先端部の切刃部2に、エンドミル本体1の軸線O回りに捩れる螺旋状の切屑排出溝3が形成されて、この切屑排出溝3のエンドミル回転方向Tを向く壁面(すくい面)の辺稜部に切刃4が形成されており、特にエンドミル本体1外周の切刃4は、この切屑排出溝3の内周面を砥石Gによって研削することで、同じく研削された外周逃げ面5との交差稜線部として形成される。この切屑排出溝3内周面を研削する砥石Gは、砥粒層を有するその外周部の断面形状が切屑排出溝3の断面形状に対応して形成された円板状のものであって、中心線C回りに回転されつつ砥石振り角(中心線Cに直交する平面Pがエンドミル本体1の軸線Oに対してなす角)αを切屑排出溝3の捩れ角θとほぼ等しくして、上記外周部をこの切屑排出溝3の捩れに沿わすように該切屑排出溝3内に挿入させられ、この切屑排出溝3の捩れ角θに合わせてエンドミル本体1を回転させつつ軸線O方向に前進させることにより、上記壁面を研削して切刃4を形成してゆく。   Here, in a general solid end mill as shown in FIG. 4, a spiral chip discharge groove 3 that twists around the axis O of the end mill body 1 is formed on the cutting edge portion 2 at the tip of the substantially cylindrical end mill body 1. A cutting edge 4 is formed on the side ridge portion of the wall face (rake face) of the chip discharge groove 3 facing the end mill rotation direction T. In particular, the cutting edge 4 on the outer periphery of the end mill main body 1 has the chip discharge groove. By grinding the inner peripheral surface 3 with the grindstone G, it is formed as an intersecting ridge line portion with the ground outer peripheral flank 5 which is also ground. The grindstone G that grinds the inner peripheral surface of the chip discharge groove 3 is a disc-shaped one in which the cross-sectional shape of the outer peripheral portion having the abrasive layer is formed corresponding to the cross-sectional shape of the chip discharge groove 3, While rotating around the center line C, the grinding wheel swing angle (angle formed by the plane P perpendicular to the center line C with respect to the axis O of the end mill body 1) α is made substantially equal to the twist angle θ of the chip discharge groove 3, The outer peripheral portion is inserted into the chip discharge groove 3 so as to follow the twist of the chip discharge groove 3, and the end mill main body 1 is rotated in accordance with the twist angle θ of the chip discharge groove 3 to advance in the direction of the axis O. By doing so, the wall surface is ground to form the cutting edge 4.

ところが、このようにして研削される切屑排出溝3の切刃部2後端側では、砥石Gが切屑排出溝3から抜け出るときの切上げ部6が形成されるため、切刃4よりも切屑排出溝3の方が軸線O方向の長さが長くなることは避けられない。そして、エンドミル本体1を主軸に取り付けるときには、この切上げ部6も含めた切屑排出溝3の全体が露出するようにしてエンドミル本体1後端側のシャンク部7を主軸にチャッキングしなければならないため、主軸からの切刃部2の突き出し長さは上記切上げ部6を含めた切屑排出溝3の軸線O方向の長さによって左右されることとなり、従って上記自動旋盤に用いられるエンドミルにおいて上述のように切刃部2の突き出し長さを小さく抑えるには、この切上げ部6の軸線O方向の長さをできるだけ短く抑えることが必要とされる。   However, since the cutting edge 6 is formed when the grindstone G comes out of the chip discharge groove 3 on the rear end side of the chip discharge groove 3 of the chip discharge groove 3 to be ground in this way, the chip discharge is more than the cutting edge 4. The length of the groove 3 in the direction of the axis O is unavoidable. When the end mill main body 1 is attached to the main shaft, the shank portion 7 on the rear end side of the end mill main body 1 must be chucked to the main shaft so that the entire chip discharge groove 3 including the raised portion 6 is exposed. The protruding length of the cutting edge portion 2 from the main shaft depends on the length of the chip discharge groove 3 including the raised portion 6 in the direction of the axis O. Therefore, as described above in the end mill used for the automatic lathe. In addition, in order to keep the protruding length of the cutting edge portion 2 small, it is necessary to keep the length of the raised portion 6 in the axis O direction as short as possible.

しかるに、このように切屑排出溝3後端の切上げ部6の長さを短く抑えるのに、一つには、切屑排出溝3の捩れ角θを大きくし、これに伴い砥石振り角αも大きくすることによって砥石Gが切屑排出溝3後端でエンドミル本体1に食い込む部分を軸線O方向に短くすることが考えられるが、こうして切屑排出溝3の捩れ角θを大きくすると、これに伴い切刃4の捩れ角すなわち軸方向のすくい角も大きくなってしまい、また捩れに沿った切刃4の全長が長くなりすぎたりして切削性能への影響が大きくなるおそれがある。また、他の一つとして、切屑排出溝3の深さを小さくし、すなわち切刃部2における心厚を大きくして、やはり砥石Gが切屑排出溝3の後端に食い込む部分を短くすることにより、切上げ部5も短くすることが考えられるが、この場合には切屑排出溝3に十分な容量を確保することができなくなって、切屑詰まりを生じたりするおそれがある。   However, in order to keep the length of the raised portion 6 at the rear end of the chip discharge groove 3 short, the twist angle θ of the chip discharge groove 3 is increased, and the grinding wheel swing angle α is increased accordingly. By doing so, it is conceivable to shorten the portion where the grindstone G bites into the end mill body 1 at the rear end of the chip discharge groove 3 in the direction of the axis O. When the twist angle θ of the chip discharge groove 3 is increased in this way, the cutting edge is accordingly increased. 4, the rake angle in the axial direction, that is, the rake angle in the axial direction, also increases, and the entire length of the cutting edge 4 along the twist becomes too long, which may increase the influence on the cutting performance. Further, as another one, the depth of the chip discharge groove 3 is reduced, that is, the core thickness of the cutting blade portion 2 is increased, and the portion where the grindstone G bites into the rear end of the chip discharge groove 3 is shortened. Therefore, it is conceivable that the rounding-up portion 5 is also shortened. In this case, however, a sufficient capacity cannot be secured in the chip discharge groove 3, and there is a possibility that chip clogging may occur.

本発明は、このような背景の下になされたもので、上述のように切刃の捩れ角を大きくして切削性能に影響を及ぼしたり、切屑排出溝の深さを小さくして切屑詰まりを生じ易くしたりすることなく、切屑排出溝の切上げ部も含めた切刃部の軸線方向の長さを短くすることができ、これにより特に上記自動旋盤においてワークのミーリング加工を行うのに用いて好適なソリッドエンドミルを提供することを目的としている。   The present invention has been made under such a background. As described above, the twist angle of the cutting blade is increased to affect the cutting performance, or the depth of the chip discharge groove is decreased to reduce chip clogging. Without making it easy to occur, the axial length of the cutting edge part including the raised part of the chip discharge groove can be shortened, and this is especially used for milling workpieces in the above automatic lathe The object is to provide a suitable solid end mill.

上記課題を解決して、このような目的を達成するために、本発明は、軸線回りに回転されるエンドミル本体の後端部がシャンク部とされるとともに、該エンドミル本体の先端部は、上記軸線回りに捩れる螺旋状の切屑排出溝が形成されて、この切屑排出溝のエンドミル回転方向を向く壁面の辺稜部に切刃が形成された切刃部とし、上記切屑排出溝の少なくとも後端側の切上げ部において、この切屑排出溝の内周面を研削して上記壁面の辺稜部に上記切刃を形成する研削砥石の上記軸線に対する砥石振り角を、上記切屑排出溝の捩れ角よりも該切屑排出溝が捩れる側に8°以上大きくしたことを特徴とする。   In order to solve the above problems and achieve such an object, according to the present invention, a rear end portion of an end mill body rotated around an axis is a shank portion. A spiral chip discharge groove that is twisted around the axis is formed, and a cutting blade part is formed on the side ridge part of the wall surface facing the end mill rotation direction of the chip discharge groove, and at least behind the chip discharge groove. Grinding angle of the grinding wheel with respect to the axis of the grinding wheel that forms the cutting edge on the side ridge of the wall by grinding the inner peripheral surface of the chip discharging groove at the end-side raised portion, and the twist angle of the chip discharging groove The chip discharge groove is larger by 8 ° or more on the twisting side.

従って、このように砥石振り角を切屑排出溝の捩れ角よりも大きくしたソリッドエンドミルでは、この砥石振り角を大きくした分だけ切屑排出溝後端において砥石がエンドミル本体に食い込む部分のエンドミル軸線方向の長さを短くすることができるので、上記切上げ部の長さも短くすることができる。その一方で、切刃を形成するために切屑排出溝の壁面を研削するところでは、砥石の外周部を所望の深さまで切屑排出溝内に挿入し、エンドミル本体を切屑排出溝の捩れ角に合わせて回転させつつ前進させればよく、すなわち、この切屑排出溝の捩れ角や溝深さ、つまり切刃の軸方向すくい角や切刃部の心厚は変更させる必要はないので、切削性能への影響がは小さく、また切屑排出性が損なわれて切屑詰まりを生じ易くなったりすることもない。   Therefore, in the solid end mill in which the grinding wheel swing angle is larger than the twist angle of the chip discharge groove in this way, the portion of the end mill axis direction of the portion where the grinding stone bites into the end mill main body at the rear end of the chip discharge groove is increased by the increased grinding wheel swing angle. Since the length can be shortened, the length of the rounded-up portion can also be shortened. On the other hand, when grinding the wall surface of the chip discharge groove to form the cutting edge, insert the outer periphery of the grindstone into the chip discharge groove to the desired depth, and adjust the end mill body to the twist angle of the chip discharge groove. Therefore, it is not necessary to change the twist angle and groove depth of the chip discharge groove, that is, the axial rake angle of the cutting edge and the core thickness of the cutting edge. Is less affected, and the chip discharge performance is not impaired and chip clogging is not likely to occur.

このため、上記構成のソリッドエンドミルによれば、切刃部の主軸からの突き出し長さを短く抑えることができるので、特に上述のような自動旋盤に用いた場合において、ビビリ等の発生を防いで加工精度の向上を図ることができるとともに、エンドミル本体自体の長さも短く抑えることができるので、取り扱い性を良くして取付時等の他の工具やワークとの干渉を防ぐことが可能となる。さらに、こうして砥石振り角を大きくすることにより、当該ソリッドエンドミルを製造する際に切刃を形成するときの上記砥石とエンドミル本体を把持するチャックなどとの干渉も抑えることが可能となるので、このソリッドエンドミル自体の製造も容易になるという利点も得ることができる。   For this reason, according to the solid end mill having the above-described configuration, the protruding length of the cutting edge portion from the main shaft can be kept short, so that the occurrence of chattering and the like can be prevented particularly when used in an automatic lathe as described above. The machining accuracy can be improved, and the length of the end mill body itself can be kept short, so that it is possible to improve handling and prevent interference with other tools and workpieces during mounting. Furthermore, by increasing the wobble angle in this way, it is possible to suppress interference between the whetstone and the chuck that holds the end mill body when forming the cutting edge when manufacturing the solid end mill. There is also an advantage that the solid end mill itself can be easily manufactured.

なお、上記砥石振り角と切屑排出溝の捩れ角との差が小さすぎると、上記切上げ部の軸線方向の長さを十分に短くすることができなくなって上述の効果を確実に奏することが不可能となるおそれがあるので、この砥石振り角は切屑排出溝の捩れ角よりも8°以上大きくされる。ただし、この砥石振り角が切屑排出溝の捩れ角に対して大きくなりすぎても、切屑排出溝の周方向の溝幅が大きくなりすぎたりするおそれがあるので、砥石振り角と切屑排出溝の捩れ角との差は15°以下とされるのが望ましい。なお、こうして砥石振り角を切屑排出溝の捩れ角よりも8°以上大きくしているかどうかは、例えば切屑排出溝の上記切上げ部の形状、あるいは上記壁面も含めた切屑排出溝内周面の研削痕などから判別することができる。   Note that if the difference between the grinding wheel swing angle and the twist angle of the chip discharge groove is too small, the length in the axial direction of the raised portion cannot be sufficiently shortened, and the above-described effects cannot be reliably achieved. Since there is a possibility that this may be possible, the grindstone swing angle is made 8 ° or more larger than the twist angle of the chip discharge groove. However, even if this grinding wheel swing angle becomes too large relative to the twist angle of the chip discharge groove, the circumferential groove width of the chip discharge groove may become too large. The difference from the twist angle is desirably 15 ° or less. Whether or not the grindstone swing angle is set to 8 ° or more larger than the twist angle of the chip discharge groove in this way depends on, for example, the shape of the raised portion of the chip discharge groove or the inner peripheral surface of the chip discharge groove including the wall surface. It can be determined from the marks.

ここで、より具体的に、特に上記自動旋盤に用いられるソリッドエンドミルとしては、上記切上げ部の軸線方向における長さは、切刃の外径Dに対して0.5×D以下とされるのが望ましく、また切刃の軸線方向における切刃長は、切刃の外径D以下とされるのが望ましく、さらにエンドミル本体の軸線方向における長さは、切刃の外径Dによらず50mm以下とされるのが望ましい。すなわち、切上げ部の長さが長すぎたり切刃長自体が長すぎたりすると、切刃部の突き出し長さが長くなってビビリ等の発生を確実に防止することができなくなるおそれがあり、またエンドミル本体の長さが長すぎると、取り扱い性が損なわれて主軸への取付時等にワークや他の工具と干渉するおそれがある。   Here, more specifically, particularly as a solid end mill used in the automatic lathe, the length of the raised portion in the axial direction is 0.5 × D or less with respect to the outer diameter D of the cutting edge. In addition, the cutting edge length in the axial direction of the cutting edge is preferably not more than the outer diameter D of the cutting edge, and the length in the axial direction of the end mill body is 50 mm regardless of the outer diameter D of the cutting edge. The following is desirable. In other words, if the length of the rounded-up part is too long or the cutting edge length itself is too long, the protruding length of the cutting edge part may become long and it may not be possible to reliably prevent the occurrence of chatter, etc. If the length of the end mill body is too long, the handleability is impaired, and there is a possibility that it interferes with a workpiece or other tools when mounted on the spindle.

図1および図2は、本発明の一実施形態を示すものである。本実施形態において、エンドミル本体11は、超硬合金等の硬質材料により軸線Oを中心とした外形略円柱状に一体形成され、その後端側(図1および図2において右側)は円柱状のままのシャンク部12とされるとともに、先端側(図1および図2において左側)は切刃部13とされている。この切刃部13には、その外周に、上記先端側から後端側に向かうに従い切削時のエンドミル本体1の回転方向Tの後方側に向かうにように軸線O回りに一定の捩れ角αで捩れる切屑排出溝14が周方向に等間隔に複数条形成されており、これらの切屑排出溝14の外周側辺稜部に切刃(外周刃)15が形成されている。   1 and 2 show an embodiment of the present invention. In this embodiment, the end mill main body 11 is integrally formed in a substantially cylindrical shape with the axis O as the center by a hard material such as cemented carbide, and the rear end side (right side in FIGS. 1 and 2) remains cylindrical. The shank portion 12 and the distal end side (left side in FIGS. 1 and 2) are the cutting edge portion 13. The cutting edge portion 13 has a constant twist angle α around the axis O so as to move toward the rear side in the rotation direction T of the end mill body 1 during cutting as it goes from the front end side to the rear end side. A plurality of twisted chip discharge grooves 14 are formed at equal intervals in the circumferential direction, and a cutting edge (outer peripheral blade) 15 is formed at the outer peripheral side ridge portion of these chip discharge grooves 14.

なお、本実施形態では、切刃15の軸線O方向における切刃長Lは、この切刃15の外径D以下とされ、さらにシャンク部12と切刃部13とを合わせたエンドミル本体11の軸線O方向における長さMは、外径Dによらず50mm以下とされている。さらにまた、本実施形態では切屑排出溝14の先端側辺稜部には軸線Oに垂直な平面に略沿うように延びる底刃16が形成されており、すなわち本実施形態のソリッドエンドミルは、この底刃16と上記切刃15とが軸線O回りの回転軌跡において略直交するように形成されたスクエアエンドミルとされている。   In the present embodiment, the cutting edge length L in the direction of the axis O of the cutting edge 15 is set to be equal to or smaller than the outer diameter D of the cutting edge 15, and the end mill main body 11 including the shank portion 12 and the cutting edge portion 13 is combined. The length M in the direction of the axis O is 50 mm or less regardless of the outer diameter D. Furthermore, in this embodiment, a bottom edge 16 extending substantially along a plane perpendicular to the axis O is formed at the tip side edge of the chip discharge groove 14, that is, the solid end mill of this embodiment The bottom edge 16 and the above-mentioned cutting edge 15 are a square end mill formed so as to be substantially perpendicular to the rotation trajectory around the axis O.

ここで、上記切刃15は、切屑排出溝14の内周面を、この切屑排出溝14の断面形状に応じた形状の砥粒層を外周部に有する円板状の砥石Gによって研削することで、そのエンドミル回転方向T側を向く壁面(すくい面)と、同じく研削加工されて逃げ角が付される外周逃げ面17との交差稜線部として形成されるのは上述した通りである。すなわち、図1に破線で示すようにこの砥石Gは、その中心線Cに直交する平面Pが切屑排出溝14の捩れの向きに振られて軸線Oに対し所定の砥石振り角αが与えられ、この砥石Gが上記外周部を切屑排出溝14内に挿入させて該中心線C回りに回転されるとともに、エンドミル本体11は切屑排出溝14の捩れ角θに合わせて軸線O回りに回転されつつ軸線O方向に前進させられることにより、上記壁面が研削されて切刃15が形成されるのであるが、このとき本実施形態ではこの砥石振り角αが切屑排出溝14の捩れ角θよりも8°以上大きくされている。   Here, the cutting edge 15 grinds the inner peripheral surface of the chip discharge groove 14 with a disk-shaped grindstone G having an abrasive layer having a shape corresponding to the cross-sectional shape of the chip discharge groove 14 on the outer peripheral portion. Thus, as described above, the ridge line portion is formed between the wall surface (rake surface) facing the end mill rotation direction T side and the outer peripheral flank surface 17 that is also ground and has a clearance angle. That is, as shown by a broken line in FIG. 1, the grindstone G is given a predetermined grindstone swing angle α with respect to the axis O by the plane P orthogonal to the center line C being swung in the twisting direction of the chip discharge groove 14. The grindstone G is rotated about the center line C by inserting the outer peripheral portion into the chip discharge groove 14, and the end mill body 11 is rotated about the axis O in accordance with the twist angle θ of the chip discharge groove 14. However, by moving forward in the direction of the axis O, the wall surface is ground and the cutting edge 15 is formed. At this time, in this embodiment, the grindstone swing angle α is larger than the twist angle θ of the chip discharge groove 14. It is larger than 8 °.

そして、所定の切刃長Lの切刃15が形成されたところで、エンドミル本体11の回転、前進が停止させられるとともに砥石Gがエンドミル本体11に対して外周側に後退させられ、このとき切屑排出溝14の切刃15後端よりも後端側には、砥石Gの外周部が切刃15後端から抜け出たところでもエンドミル本体11に食い込んでいることにより、切屑排出溝14の溝深さが後端側に向けて漸次浅くなるように切上げ部18が形成されるのであるが、本実施形態では砥石振り角αが切屑排出溝14の捩れ角θよりも8°以上大きくされているため、砥石Gの外周部が切刃15の後端側でエンドミル本体11に食い付く軸線O方向の長さが短く、従って上記切上げ部18の軸線O方向の長さNも、例えば切刃15の上記外径Dに対して0.5×D以下と短くされる。従って、この切上げ部18の長さNと上記切刃15の切刃長Lとを合わせた切屑排出溝14の軸線O方向の長さ、すなわち切刃部12の軸線O方向の長さも、外径Dに対して1.5×D以下と短くされる。   Then, when the cutting edge 15 having a predetermined cutting edge length L is formed, the rotation and advancement of the end mill body 11 are stopped and the grindstone G is retracted to the outer peripheral side with respect to the end mill body 11, and at this time, chip discharge At the rear end side of the cutting edge 15 of the groove 14, the outer peripheral portion of the grindstone G bites into the end mill body 11 even when the outer edge of the grindstone G comes out of the rear end of the cutting edge 15, so that the depth of the chip discharge groove 14 However, in this embodiment, the grindstone swing angle α is larger than the twist angle θ of the chip discharge groove 14 by 8 ° or more. The length in the direction of the axis O in which the outer peripheral portion of the grindstone G bites on the end mill body 11 on the rear end side of the cutting blade 15 is short. Therefore, the length N in the direction of the axis O of the raised portion 18 is also, for example, 0.5 × for the outer diameter D Following to be shortened. Therefore, the length in the axis O direction of the chip discharge groove 14, that is, the length in the axis O direction of the cutting edge portion 12, which is the sum of the length N of the raised portion 18 and the cutting edge length L of the cutting edge 15, is also determined. The diameter D is shortened to 1.5 × D or less.

このように構成されたソリッドエンドミルは、図2に示すように例えば上述した自動旋盤の回転可能な主軸Sに取り付けられて軸線O回りに上記回転方向Tに回転させられ、上記切刃15や底刃16によってワークにミーリング加工を施すのに用いられる。そして、このとき、本実施形態では、切屑排出溝14の切上げ部18が上述のように短くされていることで、切屑排出溝14の捩れ角θすなわち切刃15の軸方向すくい角を変えたり、切屑排出溝14の溝深さを小さくして心厚を大きくしたりすることなく、必要な切刃長Lを確保しながらも切屑排出溝14の軸線O方向の長さは短く抑えることができ、従ってこの切上げ部18の後端を主軸Sの端面Rに一致させたときの切刃部12の最小突き出し長さも短く抑えることができる。   As shown in FIG. 2, the solid end mill constructed in this way is attached to the rotatable spindle S of the above-described automatic lathe and rotated in the rotation direction T around the axis O, and the cutting edge 15 and the bottom The blade 16 is used to mill the workpiece. At this time, in this embodiment, the rounded portion 18 of the chip discharge groove 14 is shortened as described above, thereby changing the twist angle θ of the chip discharge groove 14, that is, the axial rake angle of the cutting edge 15. The length of the chip discharge groove 14 in the direction of the axis O can be kept short while securing the necessary cutting edge length L without reducing the depth of the chip discharge groove 14 and increasing the core thickness. Therefore, the minimum protrusion length of the cutting edge portion 12 when the rear end of the round-up portion 18 coincides with the end surface R of the main shaft S can be suppressed to be short.

この点、例えば図4に示した従来の一般的なソリッドエンドミルと同様に、砥石振り角αを切屑排出溝3の捩れ角θとほぼ等しくして該切屑排出溝3の内周面を研削したソリッドエンドミルでは、図3に示すように切刃4の外径Dや軸線O方向の切刃長L、切屑排出溝3の捩れ角θ、および砥石Gの形状、寸法が上記実施形態と同じであったとしても、切上げ部6の軸線O方向の長さNは上記実施形態よりも長くならざるを得ない。従って、この切上げ部6までの切屑排出溝3全体を露出させるように切刃部2を突き出してエンドミル本体1を主軸Sに取り付けると、この主軸Sの端面Rからの切刃部2の最小突き出し長さは上記実施形態よりも長くなってしまい、特に切刃部2の先端側の上記切刃4や底刃を用いて切削を行うときには、ワークが片持ち支持となっていることとも相俟って、ワークやエンドミル本体1にもビビリ等が生じ、加工精度を損なうことになる。   In this respect, for example, as in the conventional general solid end mill shown in FIG. 4, the grinding wheel swing angle α is made substantially equal to the twist angle θ of the chip discharge groove 3 to grind the inner peripheral surface of the chip discharge groove 3. In the solid end mill, as shown in FIG. 3, the outer diameter D of the cutting edge 4, the cutting edge length L in the direction of the axis O, the twist angle θ of the chip discharge groove 3, and the shape and dimensions of the grindstone G are the same as in the above embodiment. Even if it exists, the length N of the rounded-up portion 6 in the direction of the axis O must be longer than in the above embodiment. Accordingly, when the end mill body 1 is attached to the main shaft S so as to expose the entire chip discharge groove 3 up to the uplift portion 6 and the end mill body 1 is attached to the main shaft S, the minimum protrusion of the cutting edge portion 2 from the end surface R of the main shaft S. The length is longer than that of the above embodiment, and particularly when the cutting edge 4 or the bottom edge on the tip side of the cutting edge portion 2 is used for cutting, it is also compatible with the work being cantilevered. Thus, chattering and the like occur in the workpiece and the end mill main body 1 and the processing accuracy is impaired.

ところが、これに対して本実施形態のソリッドエンドミルでは、上述のように切上げ部18を含めた切刃部13の軸線O方向の長さが短くなることにより、主軸Sの端面Rからの切刃部13の突き出し長さを短く抑えることができるので、切削加工中にエンドミル本体11にビビリ等が発生するのを防止して高精度の加工を促すことが可能となる。しかも、切屑排出溝14の捩れ角θや切刃15の軸方向すくい角および切刃長Lは変化することがないので、切削性能に与える影響は小さく、さらに心厚を大きくして切屑排出溝14の溝深さを小さくする必要もないため、円滑な切屑排出性を維持することができる。   However, in the solid end mill of the present embodiment, on the other hand, the cutting edge from the end surface R of the spindle S is shortened by shortening the length in the axis O direction of the cutting edge 13 including the raised portion 18 as described above. Since the protruding length of the portion 13 can be kept short, chattering and the like are prevented from occurring in the end mill main body 11 during cutting, and high-precision machining can be promoted. Moreover, since the twist angle θ of the chip discharge groove 14, the axial rake angle of the cutting edge 15, and the cutting edge length L are not changed, the influence on the cutting performance is small, and the core thickness is increased to increase the chip discharge groove. Since it is not necessary to reduce the depth of the groove 14, smooth chip discharge performance can be maintained.

また、こうして切刃部13の軸線O方向の長さが短くなることにより、エンドミル本体11の軸線O方向の長さMは上述のように十分短くすることができる。従って、これにより、エンドミル本体11が主軸Sへの着脱時等にワークや他の工具と干渉するような事態も防ぐことが可能となって、特に機内スペースや主軸Sのストロークの小さい自動旋盤にあっても、良好な取り扱い性を確保することができる。   Moreover, the length M of the end mill body 11 in the axis O direction can be sufficiently shortened as described above by shortening the length of the cutting edge portion 13 in the axis O direction. Accordingly, it is possible to prevent a situation in which the end mill body 11 interferes with a workpiece or another tool when the end mill body 11 is attached to or detached from the main spindle S. In particular, an automatic lathe with a small internal space and a small stroke of the main spindle S can be prevented. Even if it exists, favorable handleability can be ensured.

なお、特に上記自動旋盤に用いられるソリッドエンドミルとしては、具体的に切刃15の外径Dに対して、軸線O方向における切刃15の切刃長Lはこの外径D以下、上記切上げ部18の長さNは0.5×D以下とされるのが望ましく、これらを上回ると切刃部13の軸線O方向の長さ(切上げ部18も含めた切屑排出溝14の軸線O方向の長さ)L+Nを十分短く抑えることができなくなるおそれがある。   In particular, as a solid end mill used in the automatic lathe, specifically, the cutting edge length L of the cutting edge 15 in the direction of the axis O is equal to or less than the outside diameter D with respect to the outside diameter D of the cutting edge 15. It is desirable that the length N of 18 is 0.5 × D or less. If the length N exceeds these, the length in the axis O direction of the cutting edge portion 13 (the axis O direction of the chip discharge groove 14 including the raised portion 18) There is a possibility that the length (L + N) cannot be kept sufficiently short.

さらに、エンドミル本体11の軸線O方向における長さMは50mm以下とされるのが望ましく、これを上回ると特に自動旋盤に用いるときの取り扱い性が損なわれてワークや他の工具との干渉を招くおそれがある。また、上記砥石振り角αについても、切屑排出溝14の捩れ角θとの差が大きすぎると、砥石Gの大きさ等にもよるが切屑排出溝14の溝幅が大きくなりすぎたりするおそれがあるので、この捩れ角θとの差α−θが8°〜15°の範囲となるようにされるのが望ましい。   Furthermore, it is desirable that the length M in the axis O direction of the end mill body 11 is 50 mm or less. If the length M exceeds this, the handleability particularly when used in an automatic lathe is impaired, causing interference with a workpiece or other tools. There is a fear. Also, if the difference between the grinding wheel swing angle α and the twist angle θ of the chip discharge groove 14 is too large, the width of the chip discharge groove 14 may become too large depending on the size of the grindstone G or the like. Therefore, it is desirable that the difference α−θ with respect to the twist angle θ is in the range of 8 ° to 15 °.

なお、本実施形態では、切屑排出溝14の外周側辺稜部に切刃(外周刃)15が形成されるとともに、先端側辺稜部には軸線O回りの回転軌跡がこの切刃15の略直交する底刃16が形成されたスクエアエンドミルに本発明を適用した場合について説明したが、これら切刃(外周刃)15と底刃16との交差稜線部が略1/4円弧状に形成されたラジアスエンドミルや、底刃16が回転軌跡において半球状をなすボールエンドミルに本発明を適用することも可能である。   In the present embodiment, a cutting edge (outer peripheral edge) 15 is formed on the outer peripheral side ridge of the chip discharge groove 14, and a rotation trajectory around the axis O is present on the distal end side ridge. Although the case where the present invention is applied to the square end mill in which the substantially perpendicular bottom blades 16 are formed has been described, the intersecting ridge line portion between the cutting blades (outer peripheral blades) 15 and the bottom blades 16 is formed in a substantially 1/4 arc shape. It is also possible to apply the present invention to a radius end mill or a ball end mill in which the bottom blade 16 has a hemispherical shape in the rotation locus.

本発明の一実施形態を示す側面図である。It is a side view which shows one Embodiment of this invention. 図1に示す実施形態を自動旋盤の主軸Sに取り付けた状態を示す一部破断側面図である。It is a partially broken side view which shows the state which attached the embodiment shown in FIG. 1 to the main spindle S of an automatic lathe. 図1に示す実施形態と切刃長Lおよびエンドミル本体1の軸線O方向の長さが等しい従来のソリッドエンドミルを自動旋盤の主軸Sに取り付けた状態を示す一部破断側面図である。It is a partially broken side view which shows the state which attached to the main axis | shaft S of the automatic lathe with the embodiment shown in FIG. 1 and the conventional solid end mill in which the cutting edge length L and the length of the end mill main body 1 of the axis line O direction are equal. 捩れ角θと等しい砥石振り角で従来の一般的なソリッドエンドミルの切屑排出溝3の内周面を研削する状態を示す側面図である。It is a side view which shows the state which grinds the internal peripheral surface of the chip discharge groove | channel 3 of the conventional general solid end mill with the grindstone swing angle equal to torsion angle (theta).

符号の説明Explanation of symbols

11 エンドミル本体
12 シャンク部
13 切刃部
14 切屑排出溝
15 切刃(外周刃)
18 切上げ部
O エンドミル本体11の軸線O
T 切削時のエンドミル本体11の回転方向
D 切刃15の外径
L 切刃15の軸線O方向における切刃長
M エンドミル本体11の軸線O方向における長さ
N 切上げ部18の軸線O方向における長さ
S 主軸
R 主軸Sの端面
G 砥石
C 砥石Gの中心線
P 中心線Cに直交する平面
θ 切屑排出溝14の捩れ角
α 砥石振り角
11 End mill body 12 Shank part 13 Cutting edge part 14 Chip discharge groove 15 Cutting edge (peripheral edge)
18 Round-up part O Axis O of end mill body 11
T Direction of rotation of the end mill body 11 during cutting D Outer diameter of the cutting edge 15 L Cutting edge length in the axis O direction of the cutting edge M M Length of the end mill body 11 in the axis O direction N Length of the raised portion 18 in the axis O direction S Spindle R End face of Spindle S G Grindstone C Centerline of grindstone G P Plane perpendicular to centerline C θ Twist angle of chip discharge groove 14 Grinding wheel swing angle

Claims (4)

軸線回りに回転されるエンドミル本体の後端部がシャンク部とされるとともに、該エンドミル本体の先端部は、上記軸線回りに捩れる螺旋状の切屑排出溝が形成されて、この切屑排出溝のエンドミル回転方向を向く壁面の辺稜部に切刃が形成された切刃部とされ、上記切屑排出溝の少なくとも後端側の切上げ部においては、この切屑排出溝の内周面を研削して上記壁面の辺稜部に上記切刃を形成する研削砥石の上記軸線に対する砥石振り角が、上記切屑排出溝の捩れ角よりも該切屑排出溝が捩れる側に8°以上大きくされていることを特徴とするソリッドエンドミル。   The rear end portion of the end mill body rotated around the axis is a shank portion, and the tip end portion of the end mill body is formed with a helical chip discharge groove that is twisted around the axis. It is a cutting edge part in which a cutting edge is formed on the side ridge part of the wall surface facing the end mill rotation direction, and at least the rear end side of the chip discharging groove, the inner peripheral surface of this chip discharging groove is ground. The grinding wheel swing angle with respect to the axis of the grinding wheel forming the cutting edge on the side ridge portion of the wall surface is set to be 8 ° or more larger than the twist angle of the chip discharging groove on the side where the chip discharging groove is twisted. Solid end mill characterized by 上記切上げ部の上記軸線方向における長さが、上記切刃の外径Dに対して0.5×D以下とされていることを特徴とする請求項1に記載のソリッドエンドミル。   2. The solid end mill according to claim 1, wherein a length of the raised portion in the axial direction is 0.5 × D or less with respect to an outer diameter D of the cutting blade. 上記切刃の上記軸線方向における切刃長が、該切刃の外径D以下とされていることを特徴とする請求項1または請求項2に記載のソリッドエンドミル。   The solid end mill according to claim 1 or 2, wherein a cutting edge length of the cutting edge in the axial direction is equal to or less than an outer diameter D of the cutting edge. 上記エンドミル本体の上記軸線方向における長さが50mm以下とされていることを特徴とする請求項1ないし請求項3のいずれかに記載のソリッドエンドミル。

The solid end mill according to any one of claims 1 to 3, wherein a length of the end mill body in the axial direction is 50 mm or less.

JP2005122129A 2005-04-20 2005-04-20 Solid end mill Active JP4270162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005122129A JP4270162B2 (en) 2005-04-20 2005-04-20 Solid end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005122129A JP4270162B2 (en) 2005-04-20 2005-04-20 Solid end mill

Publications (2)

Publication Number Publication Date
JP2006297534A true JP2006297534A (en) 2006-11-02
JP4270162B2 JP4270162B2 (en) 2009-05-27

Family

ID=37466231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005122129A Active JP4270162B2 (en) 2005-04-20 2005-04-20 Solid end mill

Country Status (1)

Country Link
JP (1) JP4270162B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190299A (en) * 2015-03-31 2016-11-10 三菱マテリアル株式会社 Forming end mill

Also Published As

Publication number Publication date
JP4270162B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
KR101351727B1 (en) Radius end mill and cutting method
US9643263B2 (en) Milling and boring tool
JP5764181B2 (en) Hard film coated cutting tool
JP5194637B2 (en) End mill
EP1820589B1 (en) Ball end mill
JP5614511B2 (en) Ball end mill and insert
KR20090016575A (en) Cutting tool and cutting insert
JP2008093805A (en) Drill
US20080286058A1 (en) Ball Endmill
EP3023178B1 (en) A method of grinding a parting/grooving insert and a parting/grooving insert
CN110446575B (en) Ball end mill
JP5239963B2 (en) Ball end mill
JP2010234462A (en) End mill
JP2009184043A (en) Stepped twist drill and method of manufacturing the same
JP2013202748A (en) End mill
JP2006263870A (en) Radius end mill and manufacturing method of radius end mill
JPWO2018074542A1 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
CN210702770U (en) Milling cutter with end chip grooves
JP2009184044A (en) Stepped twist drill and method of manufacturing the same
JP2006088232A (en) Ball end mill
JP4270162B2 (en) Solid end mill
JP2003266231A (en) End mill and machining method and machine tool using end mill
JP2008264965A (en) Grinding forming method and rotary cutting tool
JP3639227B2 (en) Drilling tools for brittle materials
JP2007000975A (en) Drill

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5