JP2006294987A - Sample processing device - Google Patents

Sample processing device Download PDF

Info

Publication number
JP2006294987A
JP2006294987A JP2005115874A JP2005115874A JP2006294987A JP 2006294987 A JP2006294987 A JP 2006294987A JP 2005115874 A JP2005115874 A JP 2005115874A JP 2005115874 A JP2005115874 A JP 2005115874A JP 2006294987 A JP2006294987 A JP 2006294987A
Authority
JP
Japan
Prior art keywords
sample
chamber
light
light shielding
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005115874A
Other languages
Japanese (ja)
Inventor
Kohei Sato
浩平 佐藤
Akitaka Makino
昭孝 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005115874A priority Critical patent/JP2006294987A/en
Publication of JP2006294987A publication Critical patent/JP2006294987A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a space saving sample processing device having a short transfer time. <P>SOLUTION: The sample processing device 1 comprises a processing chamber 40 for vacuumizing its inside and processing the sample; a first sample-transfer chamber 30 keeping the inside for transferring the sample to the chamber 40 in a vacuum condition; a second sample-transfer vessel 10 having a sample-transfer robot 11, and keeping the inside for transferring the sample 60 contained in a sample containing cassette 70 in an atmosphere pressure condition; a locking chamber 20 coupled between the chamber 30 and the chamber 10, having a gate large enough to carry the sample in and out the boundary of each sample transfer chamber, and a valve for opening and closing the gate, and keeping the inside in the atmosphere condition or in the vacuum condition by closing the valve; and a control device 50. In the sample processing device 1, a plurality of light shielding sensors 23 are provided at the position where the sample intersects on the transfer path for transferring the sample from the chamber 10 to a sample stand 21 provided in the chamber 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体製造工程などにおける試料処理装置に関する。   The present invention relates to a sample processing apparatus in a semiconductor manufacturing process or the like.

半導体ウェハ処理装置などの試料処理装置は、処理室内部を真空状態にして試料に処理を施す。前記処理室には、枚様式に試料が搬送される。そのため、前記処理室には、試料を搬送するロボットを搭載した試料搬送室が連接されている。ここで、前記処理室内部は、試料処理装置の稼動中前記処理室内部は、装置の稼働中ほぼ真空状態に保たれるので、前記試料搬送室内部もほぼ常に真空状態に保たれる。しかし、処理前または処理後の試料を収納する試料収納カセットの内部は大気圧状態であるため、前記処理装置は、大気圧状態下において試料を搬送するロボットをも有している。このように、試料を試料収納カセットから真空処理室まで搬送する間に、試料は、大気圧状態下にある試料搬送室と真空状態下にある試料搬送室を経由するため、これらの搬送室の間には、大気圧状態下にある試料搬送室と真空圧状態下にある試料搬送室を連結し、連接する真空状態下にあるチャンバ内部を真空状態に保ったまま、その内部を加圧または減圧し、大気側試料搬送ロボットと真空側試料搬送ロボットとの間で試料の受渡しを可能にする、ロック室と呼ばれるユニットを有している。   A sample processing apparatus such as a semiconductor wafer processing apparatus performs processing on a sample while the inside of the processing chamber is in a vacuum state. A sample is conveyed to the processing chamber in a sheet format. Therefore, a sample transfer chamber equipped with a robot for transferring a sample is connected to the processing chamber. Here, since the inside of the processing chamber is kept in a vacuum state during the operation of the apparatus while the sample processing apparatus is in operation, the inside of the sample transfer chamber is also kept almost always in a vacuum state. However, since the inside of the sample storage cassette for storing the sample before or after the processing is in the atmospheric pressure state, the processing apparatus also includes a robot for transporting the sample under the atmospheric pressure state. Thus, while the sample is transported from the sample storage cassette to the vacuum processing chamber, the sample passes through the sample transport chamber under the atmospheric pressure state and the sample transport chamber under the vacuum state. In between, the sample transfer chamber under the atmospheric pressure state and the sample transfer chamber under the vacuum pressure state are connected, and the inside of the chamber under the connected vacuum state is kept in a vacuum state, or the inside is pressurized or It has a unit called a lock chamber that decompresses and enables sample transfer between the atmosphere side sample transfer robot and the vacuum side sample transfer robot.

通常大気側真空ロボットは、搬送中の試料を落とさないように、試料とハンドの間の間隙を減圧し、大気圧により試料とハンドを吸着しながら試料を搬送する。このように真空吸着力を用いて試料を搬送すると、前記搬送ロボットが試料を搬送中に、試料がハンドの上で動くことがないので、高速度で試料を搬送することが出来る。ただし、真空状態かでは、前記吸着力が働かないので、真空吸着方式の試料搬送ロボットは使用できない。そこで、真空側試料搬送ロボットは、ハンド上面に試料を載せ、ハンド上面の試料設置面の周囲部分に突起部を有し、その突起部の内部で試料が位置制限される構造を持つ。   Usually, the atmosphere-side vacuum robot depressurizes the gap between the sample and the hand so as not to drop the sample being conveyed, and conveys the sample while adsorbing the sample and the hand at atmospheric pressure. When the sample is transported using the vacuum adsorption force in this way, the sample does not move on the hand while the transport robot is transporting the sample, so that the sample can be transported at a high speed. However, since the suction force does not work in a vacuum state, a vacuum suction type sample transport robot cannot be used. Therefore, the vacuum side sample transport robot has a structure in which a sample is placed on the upper surface of the hand, a projection is provided around the sample installation surface on the upper surface of the hand, and the position of the sample is limited within the projection.

真空側試料搬送ロボットが前記ロック室から試料を受け取るとき、ロック室試料台の上に載っている試料は、例えばプッシャーなどにより持ち上げられ、真空側試料搬送ロボットのハンドが試料台と試料の間に挿入された後、プッシャーが引き下げられることによって、試料は前記ハンドの上に受け渡される。   When the vacuum side sample transport robot receives the sample from the lock chamber, the sample placed on the lock chamber sample stage is lifted by, for example, a pusher, and the hand of the vacuum side sample transport robot moves between the sample stage and the sample. After insertion, the sample is delivered onto the hand by pulling down the pusher.

このとき、ハンド上面の前記突起部の内側がテーパ形状になっており、前記ロック室からハンドに試料が受け渡されるとき、試料の位置がハンド上部の試料設置位置から外れていても、試料の位置が前記突起部のテーパ形状部の内側に納まっていれば、前記テーパ形状簿を試料が滑り落ちることで、前記突起部の内部に試料が納まる。   At this time, the inside of the protrusion on the upper surface of the hand has a tapered shape, and when the sample is transferred from the lock chamber to the hand, even if the position of the sample is off the sample setting position on the upper part of the hand, If the position is within the tapered portion of the protrusion, the sample slides down the taper shape book, so that the sample is stored inside the protrusion.

ロック室から真空側試料搬送ロボットが試料を受け取るとき、試料とハンドの位置のずれが前記許容ずれ量より大きい場合、試料の受け渡しに失敗するかあるいは、試料がハンド上面の突起部の内側に入らず搬送中に試料を落とすなどの危険がある。   When the vacuum-side sample transport robot receives a sample from the lock chamber, if the sample and hand position deviation is larger than the allowable deviation, the sample delivery fails or the sample enters the inside of the protrusion on the upper surface of the hand. There is a danger of dropping the sample during transport.

ここで、前記ハンドの突起部の内部にある試料設置面は、ハンドの上面で水平宝庫に微動することができる。このように、ハンド上で試料が自由に動くと、試料搬送精度が低下する。   Here, the sample setting surface inside the protrusion of the hand can be finely moved to the horizontal treasure on the upper surface of the hand. As described above, when the sample freely moves on the hand, the sample transport accuracy decreases.

したがって、前記ロック室から前記真空側試料搬送ロボットハンドに試料が受け渡されるとき、試料とハンドの位置の許容ずれ量が大きくなるように、ハンド上面の試料設置面の面積を大きくすると、ハンド上面での試料延び同僚が大きくなり搬送精度が低下し、搬送精度を向上させるために前記真空側試料搬送ロボットの試料設置面上で試料延び同僚が小さなハンドを用いると前記ロック室から前記真空側試料搬送ロボットハンドが試料を受け取るときの試料とハンドの位置の許容ずれ量が小さくなる。   Accordingly, when the sample is transferred from the lock chamber to the vacuum side sample transport robot hand, if the area of the sample installation surface on the upper surface of the hand is increased so that an allowable deviation amount between the position of the sample and the hand is increased, If the colleague uses a small hand to extend the sample on the sample installation surface of the vacuum side sample transport robot in order to improve the transport accuracy, the colleague extends the sample at the vacuum side, and the vacuum side sample is removed from the lock chamber. The allowable deviation between the position of the sample and the hand when the transport robot hand receives the sample is reduced.

真空側試料搬送ロボットの試料搬送精度が悪いと、試料が処理室内部で処理されるときの処理性能に悪影響を及ぼすため、試料搬送ロボットによる試料搬送位置の高精度化は重要である。したがってロック室から真空側試料搬送ロボットが試料を受け取る際に、試料位置とハンド位置の許容ずれ量が小さくても確実に受け渡しに成功するように、試料とハンドの位置が試料受け渡し位置まで高精度に配置されていることが求められる。   If the sample transport accuracy of the vacuum side sample transport robot is poor, the processing performance when the sample is processed in the processing chamber is adversely affected. Therefore, it is important to increase the accuracy of the sample transport position by the sample transport robot. Therefore, when the vacuum side sample transport robot receives the sample from the lock chamber, the sample and hand positions are highly accurate up to the sample delivery position so that the delivery is surely successful even if the allowable deviation between the sample position and the hand position is small. It is required to be arranged in.

ところが、前記試料収納カセット内部では、試料の位置は、高精度の位置決めはされていない。大気側試料搬送ロボットが、前記試料収納カセットから前記ロック室まで試料を搬送すると、試料毎に目標搬送位置に対して試料搬送位置にずれが生じる。そのため、真空側試料搬送ロボットがロック室から試料を受け取るとき、ロボットハンドと試料位置の前記許容ずれ量が小さいと、試料の受け渡しに失敗することがある。   However, in the sample storage cassette, the position of the sample is not accurately positioned. When the atmosphere-side sample transport robot transports the sample from the sample storage cassette to the lock chamber, the sample transport position is shifted from the target transport position for each sample. Therefore, when the vacuum side sample transport robot receives a sample from the lock chamber, if the allowable deviation between the robot hand and the sample position is small, sample transfer may fail.

そこで、通常は、大気側試料搬送ロボットが前記試料収納カセットから前記ロック室まで試料を搬送するとき、前記試料収納カセットに収納される試料を大気側試料搬送ロボットによってセンタリングユニットと呼ばれる試料の芯出しを行うユニットに搬送し、センタリングユニットが試料の芯出しを行った後、再び大気側試料搬送ロボットが試料をロック室へ搬送する。これにより試料は、目標位置まで高精度に搬送される。   Therefore, normally, when the atmosphere-side sample transport robot transports a sample from the sample storage cassette to the lock chamber, the sample stored in the sample storage cassette is centered by a sample called a centering unit by the atmosphere-side sample transport robot. After the centering unit performs centering of the sample, the atmosphere side sample transport robot transports the sample to the lock chamber again. As a result, the sample is conveyed to the target position with high accuracy.

上記のようなセンタリングユニットは、ウェハをウェハ受け渡し位置に搬送するウェハ搬送部と、ウェハ搬送部の搬送方向中心軸に対して非対称に配置され前記ウェハの複数のエッジ座標データを検出する複数のセンサと、ウェハ搬送部において複数のセンサにより得られた複数のエッジ座標データのうちウェハに形成された位置合わせ形状部を含まない3点のエッジ座標データに基づきウェハの中心を求め、この求められたウェハ中心と受け渡し位置の中心とのずれ量を求める演算部と、演算部で求められたずれ量に基づいてウェハ受け渡し位置中心にウェハの中心を合わせるためにウェハ搬送部をXY方向に異動させる移動手段とを設けている(例えば、特許文献1参照)。   The centering unit as described above includes a wafer transfer unit that transfers a wafer to a wafer delivery position, and a plurality of sensors that are asymmetrically arranged with respect to the central axis in the transfer direction of the wafer transfer unit and detect a plurality of edge coordinate data of the wafer And determining the center of the wafer based on the edge coordinate data of the three points not including the alignment shape portion formed on the wafer among the plurality of edge coordinate data obtained by the plurality of sensors in the wafer transport unit. A calculation unit that calculates the amount of deviation between the center of the wafer and the center of the transfer position, and a movement that moves the wafer transfer unit in the XY directions to align the center of the wafer with the center of the wafer transfer position based on the amount of shift obtained by the calculation unit. Means (for example, refer to Patent Document 1).

ここでセンタリングユニットの試料芯出し位置とロック室の試料受け渡し位置までの位置関係は、前記大気側試料搬送室筐体などの機械加工品の加工公差や、前記大気側試料搬送室とロック室との組立公差などの要因により、装置それぞれに微小の差が生じるため、前期センタリングユニットで芯出しされた試料を前記ロック室の試料台中心まで高精度に搬送できるように、前記大気側試料搬送ロボットには、装置組み立ての段階で各装置毎にティーチングと呼ばれる搬送位置の微調整がされている。ティーチングとは、手動で試料搬送ロボットを目標位置まで動かし、その位置を試料搬送ロボットの駆動系に記憶させる作業である。   Here, the positional relationship between the sample centering position of the centering unit and the sample delivery position of the lock chamber depends on the machining tolerance of the machined product such as the atmosphere-side sample transfer chamber housing, the atmosphere-side sample transfer chamber and the lock chamber. Because of the assembly tolerances, etc., there will be a small difference in each device, so the atmosphere side sample transport robot can transport the sample centered in the previous centering unit to the center of the sample table in the lock chamber with high accuracy. In the apparatus assembly stage, fine adjustment of the transfer position called teaching is performed for each apparatus. Teaching is an operation of manually moving the sample transport robot to a target position and storing the position in the drive system of the sample transport robot.

同様に、真空側試料搬送装置に対しても、ロック室から真空処理室の試料台まで、高精度に試料を搬送できるように、装置ごとに、真空側試料搬送ロボットに対してもティーチング作業が行われる。   Similarly, teaching work can be performed on the vacuum side sample transfer robot for each device so that the sample can be transferred to the vacuum side sample transfer device from the lock chamber to the sample stage in the vacuum processing chamber with high accuracy. Done.

一度ティーチング作業を行った試料搬送ロボットは、ティーチング位置まで高精度に繰り返し動作する。   Once the teaching work has been performed, the sample transport robot repeatedly operates with high accuracy up to the teaching position.

さらに、試料を目的位置に高精度に搬送する方法として、試料を搬送する試料搬送ロボットに対して、試料のミスアライメントを検出して、試料搬送ロボットの動きを修正する技術が提案されている(例えば、特許文献2参照)。
特開2003−254738号公報 特開平10−64971号公報
Furthermore, as a method for transporting a sample to a target position with high accuracy, a technique has been proposed in which the sample transport robot detects the sample misalignment and corrects the movement of the sample transport robot with respect to the sample transport robot. For example, see Patent Document 2).
JP 2003-254738 A JP-A-10-64971

上記のように、従来は、試料を前記処理室の処理台中心まで高精度に搬送するために、センタリングユニットと呼ばれる装置を用いて試料の芯出しを行った後に、試料を前記処理室まで搬送しており、センタリングユニットを搭載することで装置全体が大きくなり、メンテナンススペースが小さくなることが問題であった。   As described above, conventionally, in order to transport the sample to the center of the processing table in the processing chamber with high accuracy, the sample is centered using an apparatus called a centering unit, and then the sample is transported to the processing chamber. However, the installation of the centering unit increases the size of the entire apparatus and reduces the maintenance space.

また、上記方法では、試料を前記処理室まで搬送する途中でセンタリングユニットを経由することで、搬送時間が長くなるとともに、センタリングユニットを搭載することで装置のコストが上がることが問題であった。さらに、試料の搬送に当たって、センタリングユニットを介することで、試料を汚染する機会が増えるという問題があった。   In addition, the above method has a problem that the transfer time is increased by passing the sample through the centering unit while the sample is transferred to the processing chamber, and the cost of the apparatus is increased by mounting the centering unit. Furthermore, there is a problem that the chance of contaminating the sample is increased by passing the centering unit when the sample is conveyed.

さらに、センタリングユニットで試料の中心を出しても、大気搬送室にロック室を取り付ける場合に誤差がある場合には、この取付誤差を改めて修正することが必要となるという問題がある。   Furthermore, even if the center of the sample is brought out by the centering unit, there is a problem that if there is an error in attaching the lock chamber to the atmospheric transfer chamber, this attachment error needs to be corrected again.

本発明の目的は、省スペースで、且つ、搬送時間が短く、試料収納カセットからロック室試料台への試料の搬送の過程で試料の位置合わせを行える試料搬送装置を提供することにある。また、本発明の別の目的は、低コストの試料処理装置を提供することにある。さらに、本発明の別の目的は、試料の汚染の機会を減らし、かつ大気搬送室にロック室を取り付ける場合に誤差が生じても、試料をロック室試料台に正確に搬送することができる試料処理装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a sample transport device that can save the space and has a short transport time, and can align the sample in the process of transporting the sample from the sample storage cassette to the lock chamber sample stage. Another object of the present invention is to provide a low-cost sample processing apparatus. Furthermore, another object of the present invention is to reduce the chance of contamination of the sample, and even if an error occurs when a lock chamber is attached to the atmospheric transfer chamber, the sample can be accurately transferred to the lock chamber sample stage. It is to provide a processing apparatus.

上記目的は、内部を真空状態にして試料を処理する処理室と、該処理室に試料を搬送する内部を真空状態に保った第1の試料搬送室と、試料搬送ロボットを有し試料収納カセットに収納された試料を搬送する内部を大気圧状態とする第2の試料搬送室と、第1の試料搬送室と第2の試料搬送室との間に連結され各試料搬送室との境界に試料を搬入出するのに十分な大きさのゲートと該ゲートを開閉するバルブを有し該バルブを閉じてその内部を大気圧状態または真空状態とするロック室と、制御装置とを有する試料処理装置において、第2の試料搬送室からロック室内に設けた試料台へ試料を搬送する搬送経路上で試料が横切る位置に一対以上の遮光センサを設けることによって、達成できる。   The object is to provide a processing chamber for processing a sample in a vacuum state, a first sample transport chamber for maintaining the interior in a vacuum state for transporting the sample to the processing chamber, and a sample storage cassette having a sample transport robot. Connected to the boundary between each of the second sample transfer chamber and the second sample transfer chamber, which is connected between the first sample transfer chamber and the second sample transfer chamber. Sample processing having a gate that is large enough to load and unload a sample, a valve that opens and closes the gate, a lock chamber that closes the valve to bring the inside into an atmospheric pressure state or a vacuum state, and a control device In the apparatus, this can be achieved by providing a pair of light-shielding sensors at positions where the sample crosses on the transport path for transporting the sample from the second sample transport chamber to the sample stage provided in the lock chamber.

さらに、上記目的は、上記試料処理装置において、ロック室の第2の試料搬送室側ゲートの近傍であって第2の試料搬送室からロック室内の試料台へ試料を搬送する搬送経路上で試料が横切る位置に一対以上の遮光センサを設けることによって達成される。   Further, the object is to provide a sample in the sample processing apparatus in the vicinity of the second sample transfer chamber side gate of the lock chamber and on the transfer path for transferring the sample from the second sample transfer chamber to the sample stage in the lock chamber. This is achieved by providing a pair or more of light shielding sensors at positions that cross each other.

さらに、上記目的は、上記試料処理装置において、遮光センサが光ビーム放射部と光ビーム検出部とを有し、制御装置が遮光センサの出力を用いて光ビームが搬送中の試料によって遮光される時間または時刻を計測して遮光センサが取り付けられる位置に対する試料の位置を演算することによって、達成される。   Further, in the sample processing apparatus, the light shielding sensor includes a light beam emitting unit and a light beam detecting unit, and the control device uses the output of the light shielding sensor to shield the light beam from the sample being transported. This is achieved by measuring the time or time and calculating the position of the sample relative to the position where the shading sensor is attached.

上記目的は、上記試料処理装置において、遮光センサが光ビーム放射部と光ビーム検出部とを有し、制御装置が遮光センサの出力を用いて光ビームが搬送中の試料によって遮光される時間または時刻を計測して遮光センサが取り付けられる位置に対する試料の位置を演算するとともに、試料搬送先である試料台に対する遮光センサの位置が明確にされており、試料搬送ロボットが所定の一定の搬送速度で試料を搬送することにより、制御装置が遮光センサの出力を用いて搬送中の試料と試料台の位置関係を演算することによって、達成される。   In the sample processing apparatus, the light shielding sensor has a light beam emitting unit and a light beam detecting unit, and the control device uses the output of the light shielding sensor to allow the light beam to be shielded by the sample being transported. The time of the sample is calculated to calculate the position of the sample relative to the position where the light-shielding sensor is attached, and the position of the light-shielding sensor relative to the sample stage that is the sample transport destination is clarified. By transporting the sample, the control device calculates the positional relationship between the sample being transported and the sample stage using the output of the light shielding sensor.

また、上記目的は、上記試料処理装置において、遮光センサが光ビーム放射部と光ビーム検出部とを有し、制御装置が遮光センサの出力を用いて光ビームが搬送中の試料によって遮光される時間または時刻を計測して遮光センサが取り付けられる位置に対する試料の位置を演算するとともに、試料搬送先である試料台に対する遮光センサの位置が明確にされており、制御装置が遮光センサの出力を用いて試料の搬送速度を演算し、搬送中の試料の位置と試料台との位置関係を演算することによって、達成される。   In the sample processing apparatus, the light shielding sensor includes a light beam emitting unit and a light beam detecting unit, and the control device uses the output of the light shielding sensor to shield the light beam from the sample being transported. The time or time is measured to calculate the position of the sample with respect to the position where the light shielding sensor is attached, and the position of the light shielding sensor with respect to the sample stage as the sample transport destination is clarified, and the control device uses the output of the light shielding sensor. This is achieved by calculating the transport speed of the sample and calculating the positional relationship between the position of the sample being transported and the sample stage.

さらに、上記目的は、上記試料処理装置において、遮光センサが光ビーム放射部と光ビーム検出部とを有し、制御装置が遮光センサの出力を用いて光ビームが搬送中の試料によって遮光される時間または時刻を計測して遮光センサが取り付けられる位置に対する試料の位置を演算するとともに、遮光センサの出力を用いて試料の搬送速度および搬送中の試料の位置と試料台との位置関係を演算し、その結果に基づいて搬送中の試料と試料台までの距離と方向を演算し、さらにこの演算結果に基づいて試料搬送ロボットの動作を制御することによって、達成される。   Further, in the sample processing apparatus, the light shielding sensor includes a light beam emitting unit and a light beam detecting unit, and the control device uses the output of the light shielding sensor to shield the light beam from the sample being transported. Measure the time or time to calculate the position of the sample relative to the position where the shading sensor is attached, and use the output of the shading sensor to calculate the sample transport speed and the positional relationship between the position of the sample being transported and the sample stage. This is achieved by calculating the distance and direction between the sample being transferred and the sample stage based on the result, and further controlling the operation of the sample transfer robot based on the calculation result.

本発明によれば、省スペースで、且つ、搬送時間が短い試料処理装置を提供することができる。また、低コストの試料処理装置を提供することができる。さらに、本発明によれば、試料の汚染の機会を減らし、かつ大気搬送室にロック室を取り付ける場合に誤差が生じても、この考慮することなく試料をロック室試料台に正確に搬送することができる試料処理装置を提供できる。   According to the present invention, it is possible to provide a sample processing apparatus that saves space and has a short transport time. In addition, a low-cost sample processing apparatus can be provided. Furthermore, according to the present invention, it is possible to reduce the chance of contamination of the sample and accurately transport the sample to the lock chamber sample stand without considering this even if an error occurs when the lock chamber is attached to the atmospheric transfer chamber. It is possible to provide a sample processing apparatus capable of

本発明の実施例について、以下、図面を用いて詳細に説明する。図1は、本発明の実施例にかかる試料処理装置の全体図を示す上面図である。図2は、本発明の実施例にかかる試料処理装置の大気側試料搬送室を示す一部切り欠き斜視図である。図3は、本発明の実施例にかかる試料処理装置の真空側試料搬送室を示す一部切り欠き斜視図である。図4は、本発明の実施例にかかる試料処理装置の大気側試料搬送ロボットがロック室内部に試料を搬送するときの様子を表す一部切り欠き斜視図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a top view showing an overall view of a sample processing apparatus according to an embodiment of the present invention. FIG. 2 is a partially cutaway perspective view showing the atmosphere-side sample transfer chamber of the sample processing apparatus according to the embodiment of the present invention. FIG. 3 is a partially cutaway perspective view showing the vacuum side sample transfer chamber of the sample processing apparatus according to the embodiment of the present invention. FIG. 4 is a partially cutaway perspective view showing a state when the atmosphere side sample transport robot of the sample processing apparatus according to the embodiment of the present invention transports the sample into the lock chamber.

本実施例で示す試料処理装置は、処理室内部を真空状態に減圧して試料を処理する。試料処理装置1は、大気側試料搬送室10と、真空側試料搬送室30と、大気側試料搬送室10および真空側試料搬送室30に接続される複数のロック室20と、真空側試料搬送室30に接続される複数の試料処理室(真空処理室)40と、試料収納カセット70が載置される大気側試料搬送室10に装着されるカセット載置台(図示を省略)と、制御装置50とを有して構成される。   The sample processing apparatus shown in this embodiment processes a sample by reducing the pressure inside the processing chamber to a vacuum state. The sample processing apparatus 1 includes an atmosphere-side sample transfer chamber 10, a vacuum-side sample transfer chamber 30, a plurality of lock chambers 20 connected to the atmosphere-side sample transfer chamber 10 and the vacuum-side sample transfer chamber 30, and a vacuum-side sample transfer. A plurality of sample processing chambers (vacuum processing chambers) 40 connected to the chamber 30, a cassette mounting table (not shown) mounted on the atmosphere-side sample transfer chamber 10 on which the sample storage cassette 70 is mounted, and a control device 50.

大気側試料搬送室10の内部には大気側試料搬送ロボット11が設けられ、真空側試料搬送室30の内部には、真空側試料搬送ロボット31が設けられている。また、大気側試料搬送室10および真空側試料搬送室30にボルト等で連結されて取り付けられたロック室20の内部には試料が載置されるロック室試料台21が設けられ、真空処理室40内には試料処理台41がそれぞれ設けられる。これらロック室20、真空処理室40は、試料が載置されて作業が行われるワークステーションである。   An atmosphere-side sample transfer robot 11 is provided inside the atmosphere-side sample transfer chamber 10, and a vacuum-side sample transfer robot 31 is provided inside the vacuum-side sample transfer chamber 30. In addition, a lock chamber sample stage 21 on which a sample is placed is provided inside a lock chamber 20 that is connected to the atmosphere-side sample transfer chamber 10 and the vacuum-side sample transfer chamber 30 with bolts or the like. A sample processing table 41 is provided in each 40. The lock chamber 20 and the vacuum processing chamber 40 are workstations on which samples are placed and work is performed.

真空処理室40および真空側試料搬送室30の内部は、ほぼ常に真空状態であり、大気側試料搬送室10および処理前または処理後の試料を収納する試料収納カセット70は、常に大気状態にある。ロック室20は、その前後に試料を搬入または搬出するために十分な大きさの開口と、それらの開口部に開閉可能なバルブを有し、このバルブを閉じて、その内部を加圧または減圧することができる真空容器内に配置されている。   The insides of the vacuum processing chamber 40 and the vacuum side sample transfer chamber 30 are almost always in a vacuum state, and the atmosphere side sample transfer chamber 10 and the sample storage cassette 70 for storing a sample before or after processing are always in an atmospheric state. . The lock chamber 20 has an opening large enough to load or unload a sample before and after the lock chamber 20 and a valve that can be opened and closed at the opening, and closes the valve to pressurize or depressurize the inside. It can be arranged in a vacuum vessel.

大気側試料搬送室10の内部に設置された大気側試料搬送ロボット11によって、試料収納カセット70に収納される試料60は、ロック室20の内部に設置されるロック室試料台21に搬送される。つまりロック室20が搬送の目的地である。このときロック室20の内部は大気状態であり、ロック室内部の真空側のゲートは閉じられている。試料60がロック室試料台21上に搬送された後、ロック室20の大気側ゲートが閉じられ、その内部が減圧され真空状態になる。ロック室20内部が真空状態になった後、真空側ゲートが開き、試料60は、真空側試料搬送室30の内部に格納される真空側試料搬送ロボット31によって試料処理室40の内部に設置される試料処理台41に搬送される。試料処理室40と真空側試料搬送室30の境界にはバルブを有しており、このバルブを閉じた後、試料処理室40の内部で、試料に処理が施される。処理後の試料60は、上記と同様にして、真空側試料搬送ロボット31、ロック室20、大気側試料搬送ロボット11を介して、試料収納カセット70に回収される。   The sample 60 stored in the sample storage cassette 70 is transferred to the lock chamber sample stage 21 installed in the lock chamber 20 by the atmosphere side sample transfer robot 11 installed in the atmosphere side sample transfer chamber 10. . That is, the lock chamber 20 is a destination for conveyance. At this time, the inside of the lock chamber 20 is in an atmospheric state, and the vacuum side gate in the lock chamber is closed. After the sample 60 is transferred onto the lock chamber sample stage 21, the atmosphere side gate of the lock chamber 20 is closed, and the inside of the lock chamber 20 is depressurized to be in a vacuum state. After the inside of the lock chamber 20 is in a vacuum state, the vacuum side gate is opened, and the sample 60 is placed inside the sample processing chamber 40 by the vacuum side sample carrying robot 31 stored inside the vacuum side sample carrying chamber 30. The sample processing table 41 is conveyed. A valve is provided at the boundary between the sample processing chamber 40 and the vacuum side sample transfer chamber 30. After the valve is closed, the sample is processed inside the sample processing chamber 40. The processed sample 60 is collected in the sample storage cassette 70 via the vacuum side sample transport robot 31, the lock chamber 20, and the atmosphere side sample transport robot 11 in the same manner as described above.

ここで、真空側試料搬送ロボット31が、ロック室20と試料60を受け渡しするときの受け渡し方法を、図6を用いて説明する。大気側試料搬送ロボット11から搬送された試料60は、ロック室試料台21の上に設置される。ロック室試料台21には、プッシャー25が備え付けられている。プッシャー25は、ロック室試料台上面に対し垂直に取付けられており、その上下動作によってロック室試料台上方へ突き出されたり、ロック室試料台内部に引き戻されたりする。試料60が前記ロック室試料台21の上に載せられた状態で、プッシャー25がロック室試料台21内から押し上げることで、試料60はロック室試料台21の上方へ押し上げられる。プッシャー25が試料60を押し上げている状態で、真空側試料搬送ロボット31のロボットハンド311がロック室試料台21とプッシャー25によって押し上げられた試料60との間の空間に挿入され、プッシャー25がロック室試料台21の内部に引き戻されることで、試料60がロック室20内でロック室試料台21から真空側試料搬送ロボット31へ受け渡される。   Here, a delivery method when the vacuum-side sample transport robot 31 delivers the lock chamber 20 and the sample 60 will be described with reference to FIG. The sample 60 transported from the atmosphere-side sample transport robot 11 is placed on the lock chamber sample base 21. The lock chamber sample stage 21 is provided with a pusher 25. The pusher 25 is attached perpendicularly to the upper surface of the lock chamber sample stage, and is pushed up and down by the vertical movement of the pusher 25 or pulled back into the lock chamber sample stage. In a state where the sample 60 is placed on the lock chamber sample stage 21, the pusher 25 is pushed up from the lock chamber sample stage 21, whereby the sample 60 is pushed up above the lock chamber sample stage 21. In a state where the pusher 25 pushes up the sample 60, the robot hand 311 of the vacuum side sample transport robot 31 is inserted into the space between the lock chamber sample stage 21 and the sample 60 pushed up by the pusher 25, and the pusher 25 is locked. The sample 60 is transferred from the lock chamber sample table 21 to the vacuum side sample transport robot 31 in the lock chamber 20 by being pulled back into the chamber sample table 21.

ここで、真空側試料搬送ロボット31のロボットハンド311は、試料設置面313の少なくとも前後または左右方向の端部に突起部312を有する形状を持っており、ロック室20から真空側試料搬送ロボット31に試料60が受け渡されるとき、プッシャー25によって押し上げられた試料60の位置がロボットハンド311の試料設置面313とその周囲の突起部312の傾斜部分の外側までずれていた場合、試料60はロボットハンド311の試料設置面313に載らず、搬送エラーを発生する。   Here, the robot hand 311 of the vacuum side sample transport robot 31 has a shape having a protrusion 312 at least at the front and rear or left and right ends of the sample installation surface 313, and the vacuum side sample transport robot 31 from the lock chamber 20. If the position of the sample 60 pushed up by the pusher 25 is shifted to the outside of the inclined portion of the sample mounting surface 313 of the robot hand 311 and the protruding portion 312 around the sample 60, the sample 60 is moved to the robot. The sample is not placed on the sample setting surface 313 of the hand 311 and a conveyance error occurs.

このようなロック室20からロボットハンド311への試料60の受け渡し失敗の原因は、プッシャー25によって押し上げられた試料60の位置あるいは試料60の下方に挿入されたロボットハンド311の位置が適正な試料受け渡し位置からずれることによる。   The cause of the failure in delivering the sample 60 from the lock chamber 20 to the robot hand 311 is that the position of the sample 60 pushed up by the pusher 25 or the position of the robot hand 311 inserted below the sample 60 is appropriate. By shifting from position.

そのため、試料搬送ロボットハンド311の挿入位置は、装置の組立時にティーチングと呼ばれる微調整が行われる。ティーチング後のロボットハンド311は、繰り返し動作しても高精度でティーチング位置に移動することができる。   Therefore, the insertion position of the sample transport robot hand 311 is finely adjusted called teaching when the apparatus is assembled. The robot hand 311 after teaching can move to the teaching position with high accuracy even if it is repeatedly operated.

また、大気側試料搬送ロボット11が、試料60を試料収納カセット70から受け渡し位置まで高精度に搬送するために、ロック室20の入口の近傍に遮光センサを取付けて、搬送中の試料60と搬送先であるロック室試料台21の中心との相対的な位置関係を検出して、その結果に従い位置を調節して、試料60を搬送することで、高精度に試料60を搬送する。   Further, in order for the atmosphere-side sample transport robot 11 to transport the sample 60 from the sample storage cassette 70 to the delivery position with high accuracy, a light shielding sensor is attached in the vicinity of the entrance of the lock chamber 20 to transport the sample 60 being transported. By detecting the relative positional relationship with the center of the lock chamber sample stage 21 that is the tip, adjusting the position according to the result, and transporting the sample 60, the sample 60 is transported with high accuracy.

大気側試料搬送室10とロック室20を一部切り開いた上面斜視図である図4を用いて、本システムについて詳細に説明する。ロック室20には、ロック室試料台21と大気側試料搬送室10との境界の開口部22の間の空間上で、その検出用光ビーム24が搬送中の試料60によって遮光されるようにロック室試料台21と開口部22との間に設置された遮光センサ23を試料60の中心の経路の左右に2セット有している。この遮光センサ23は、その光ビームを放射する放射器23Rと、放射器23Rから放射された光ビーム24を受光して検出する検出器23Dから成る。ロック室20の上面外側に光ビーム24の検出器23Dが取付けられ、ロック室20の下面外側に光ビーム24の放射器23Rが取付けられる。ロック室20の上面および下面を構成する部品の光ビーム24が通過する部分には、光透過性のある素材、例えば透明塩化ビニルが用いられる。検出用のセンサは、光センサ以外にも、指向性の強いセンサを用いることができる。   The system will be described in detail with reference to FIG. 4 which is a top perspective view in which the atmosphere-side sample transfer chamber 10 and the lock chamber 20 are partially cut open. In the lock chamber 20, the detection light beam 24 is shielded by the sample 60 being transported in the space between the opening 22 at the boundary between the lock chamber sample stage 21 and the atmosphere-side sample transport chamber 10. Two sets of light-shielding sensors 23 installed between the lock chamber sample stage 21 and the opening 22 are provided on the left and right of the central path of the sample 60. The light shielding sensor 23 includes a radiator 23R that emits the light beam and a detector 23D that receives and detects the light beam 24 emitted from the radiator 23R. A detector 23 </ b> D of the light beam 24 is attached outside the upper surface of the lock chamber 20, and a radiator 23 </ b> R of the light beam 24 is attached outside the lower surface of the lock chamber 20. A light-transmitting material, for example, transparent vinyl chloride is used for a portion through which the light beam 24 of the parts constituting the upper and lower surfaces of the lock chamber 20 passes. As the detection sensor, a sensor having high directivity can be used in addition to the optical sensor.

試料60がロック室20内部に搬入され始めると、光ビーム24が搬送中の試料60によって遮光される。試料60がロック室20に搬入され始め、試料60が光ビーム24を遮光する直前の状態を表す概念図を図5(a)に示す。また、搬送中の試料60が光ビーム24を遮光している時の状態を表す概念図を図5(b)に示す。このとき、搬送中の試料60は、所定の一定速度で搬送される。2組の遮光センサ23のロック室試料台21に対する取付け位置はそれぞれ既知である。本例では、ロック室試料台21の中心を通る線について対称な位置に等距離に配置されている。   When the sample 60 starts to be carried into the lock chamber 20, the light beam 24 is shielded by the sample 60 being transferred. A conceptual diagram showing a state immediately before the sample 60 starts to be carried into the lock chamber 20 and the sample 60 blocks the light beam 24 is shown in FIG. FIG. 5B is a conceptual diagram showing a state when the sample 60 being transported blocks the light beam 24. At this time, the sample 60 being conveyed is conveyed at a predetermined constant speed. The attachment positions of the two sets of light shielding sensors 23 with respect to the lock chamber sample stage 21 are known. In this example, they are arranged equidistantly at symmetrical positions with respect to a line passing through the center of the lock chamber sample stage 21.

ここで、光ビーム放射器23Rと光ビーム検出器23Dの1組を遮光センサA、別の1組を遮光センサBとすると、遮光センサAの光ビーム24が搬送中の試料60によって遮光され始めた時刻t1(A)と、搬送中の試料60によって遮光されていた光ビームが、試料60が通り過ぎることによって、再び光ビーム検出器23Dが光ビーム24を検出し始めるときの時刻t2(A)が検出される。したがって、搬送中の試料60によって遮光センサAの光ビーム24が遮光される時間Ta=(t2(A)−t1(A))が検出される。同様に、搬送中の試料60によって光センサBの光ビーム24が遮光される時間Tb=(t2(B)−t1(B))が検出される。   Here, if one set of the light beam radiator 23R and the light beam detector 23D is a light shielding sensor A and the other one is a light shielding sensor B, the light beam 24 of the light shielding sensor A starts to be shielded by the sample 60 being conveyed. Time t1 (A) and the time t2 (A) when the light beam detector 23D starts detecting the light beam 24 again when the light beam that has been shielded by the sample 60 being conveyed passes by the sample 60. Is detected. Therefore, the time Ta = (t2 (A) −t1 (A)) in which the light beam 24 of the light shielding sensor A is shielded by the sample 60 being conveyed is detected. Similarly, a time Tb = (t2 (B) −t1 (B)) in which the light beam 24 of the optical sensor B is shielded by the sample 60 being conveyed is detected.

光ビーム検出器23Dの光ビーム検出量の時系列データの一例を図7に示す。試料搬送速度およびセンサ取付け位置と目標搬送先であるロック室20の試料台21までの位置関係は既知であるため、TaあるいはTbが検出されることによって、ロック室試料台21の中心に対する搬送中の試料60の搬送方向横方向の位置が計算できる。ただし、計算結果の信頼性を向上させるため、本実施例では、2対の遮光センサ23を用いて計算精度を向上させている。また、搬送中の試料が、光ビーム24を遮光し始めた時刻t1(A)、t1(B)、あるいは、遮光センサ23が再び光ビーム24を検知し始めた時刻t2(A)、t2(B)を用いて試料台21の中心から試料60の中心までの搬送方向の距離が計算できる。したがって、搬送中の試料と目標搬送先であるロック室試料台21の中心位置までの位置関係が検出され、その検出結果に従い、搬送位置を決定することにより、試料収納カセット70の内部で、試料毎に位置が定まっていなくても、ロック室試料台21の中心まで高精度に試料を搬送することができる。   An example of the time-series data of the light beam detection amount of the light beam detector 23D is shown in FIG. Since the positional relationship between the sample transport speed and the sensor mounting position and the sample stage 21 of the lock chamber 20 as the target transport destination is known, Ta or Tb is detected, so that the center of the lock chamber sample stage 21 is being transported. The lateral position of the sample 60 in the transport direction can be calculated. However, in order to improve the reliability of the calculation result, in this embodiment, the calculation accuracy is improved by using two pairs of light shielding sensors 23. Also, the time t1 (A), t1 (B) when the sample being transported begins to shield the light beam 24, or the time t2 (A), t2 (when the light shielding sensor 23 begins to detect the light beam 24 again. The distance in the transport direction from the center of the sample stage 21 to the center of the sample 60 can be calculated using B). Therefore, the positional relationship between the sample being transported and the center position of the lock chamber sample stage 21 that is the target transport destination is detected, and the transport position is determined according to the detection result, so that the sample is stored inside the sample storage cassette 70. Even if the position is not fixed every time, the sample can be conveyed to the center of the lock chamber sample stage 21 with high accuracy.

予め検出され、あるいは設定されている試料搬送速度および搬送先であるロック室試料台21の中心から遮光センサ取付け位置までの距離は、図示しない記憶装置の記憶媒体に必要に応じて読み出し可能に保存されており、これらの情報と遮光センサ23によって測定されたデータが制御装置50に取り込まれ、制御装置50から大気側試料搬送ロボット11に制御信号が送られる。   The previously detected or set sample transport speed and the distance from the center of the lock chamber sample base 21 as the transport destination to the light shielding sensor mounting position are stored in a storage medium (not shown) so as to be readable as necessary. These information and data measured by the light shielding sensor 23 are taken into the control device 50, and a control signal is sent from the control device 50 to the atmosphere-side sample transport robot 11.

ここで、ロック室試料台21とロック室20に取付けられる遮光センサ23の位置関係は、高精度にその配置が設定され、あるいは検出された位置関係が必要となるため、ロック室試料台21を取付けるチャンバと遮光センサ23を取付けるチャンバは同一部品とされるのが好ましい。本実施例では、ロック室20のチャンバ部品は一つのパーツで構成されており、このチャンバ部品に試料台21および遮光センサ23が取付けられる。また、ロック室試料台21に遮光センサ23を取り付けるようにしてもよい。   Here, since the positional relationship between the lock chamber sample stage 21 and the light shielding sensor 23 attached to the lock chamber 20 is set with high accuracy or the detected positional relationship is required, The chamber to be attached and the chamber to which the light-shielding sensor 23 is attached are preferably the same parts. In this embodiment, the chamber part of the lock chamber 20 is composed of one part, and the sample stage 21 and the light shielding sensor 23 are attached to this chamber part. Further, the light shielding sensor 23 may be attached to the lock chamber sample base 21.

また、遮光センサ23は、試料60が試料収納カセット70からロック室試料台21まで搬送されるまでの空間上において、必ずその光ビーム24を搬送中の試料60が横切る任意の位置に配置してもよい。ただし、例えば、遮光センサ23を大気側試料搬送室10に設置する場合、遮光センサ設置位置と目標搬送先であるロック室20の試料台21までの位置関係は、大気側試料搬送室10の筐体の加工公差や、大気側試料搬送室10とロック室20の筐体の組立公差などによって、装置ごとに位置関係が明確でなくなるため、センサ設置位置とロック室20の試料台21までの位置関係は、装置の組み立て後にティーチングする必要がある。   The light-shielding sensor 23 is always arranged at an arbitrary position where the sample 60 being transported crosses the light beam 24 in the space from the sample storage cassette 70 to the lock chamber sample stage 21 being transported. Also good. However, for example, when the light shielding sensor 23 is installed in the atmosphere-side sample transport chamber 10, the positional relationship between the light-shielding sensor installation position and the sample stage 21 of the lock chamber 20 that is the target transport destination is the housing of the atmosphere-side sample transport chamber 10. Since the positional relationship is not clear for each apparatus due to the body processing tolerance and the assembly tolerance of the casing of the atmosphere-side sample transfer chamber 10 and the lock chamber 20, the position where the sensor is installed and the position of the lock chamber 20 up to the sample stage 21 The relationship needs to be taught after assembly of the device.

本発明を用いると、試料収納カセット70からロック室20の試料台21まで搬送された試料60は、試料60ごとに位置のずれが低減され、高精度に搬送されるので、ロック室20の試料台21から真空側試料搬送ロボット31に試料60が受け渡されるとき、受け渡しの失敗が抑制される。   When the present invention is used, the sample 60 transported from the sample storage cassette 70 to the sample stage 21 of the lock chamber 20 is transported with high accuracy because the positional deviation is reduced for each sample 60. When the sample 60 is delivered from the table 21 to the vacuum side sample transport robot 31, the failure of delivery is suppressed.

また、本発明を用いると、センタリングユニットを経由して試料を搬送する場合と比べて搬送時間が短くなる。   Further, when the present invention is used, the transport time is shortened compared to the case of transporting the sample via the centering unit.

本発明にかかる試料処理装置の構成を説明する上面図。The top view explaining the structure of the sample processing apparatus concerning this invention. 本発明にかかる試料処理装置の大気側試料搬送室の構造を説明する一部切り欠き斜視図。FIG. 4 is a partially cutaway perspective view illustrating the structure of the atmosphere-side sample transfer chamber of the sample processing apparatus according to the present invention. 本発明にかかる試料処理装置の真空側試料搬送室の構造を説明する一部切り欠き斜視図。The partially cutaway perspective view explaining the structure of the vacuum side sample conveyance chamber of the sample processing apparatus concerning this invention. 本発明にかかる試料処理装置において、大気側試料搬送ロボットがロック室内部に試料を搬送するときの様子を表す一部切り欠き斜視図。In the sample processing apparatus according to the present invention, a partially cutaway perspective view showing a state when the atmosphere-side sample transport robot transports a sample into the lock chamber. 本発明にかかる試料処理装置において、大気側試料搬送ロボットがロック室内部に試料を搬送する際に、ロック室に取付けられる遮光センサを試料が通過する直前の様子を示す概念図。In the sample processing apparatus concerning this invention, when the atmosphere side sample conveyance robot conveys a sample to the inside of a lock chamber, the conceptual diagram which shows a mode just before a sample passes the light-shielding sensor attached to a lock chamber. 本発明にかかる試料処理装置において、大気側試料搬送ロボットが試料をロック室内部に試料を搬送する際に、ロック室に取付けられる遮光センサを遮光しながら通過する様子示す概念図。In the sample processing apparatus concerning this invention, when the atmosphere side sample conveyance robot conveys a sample to the inside of a lock chamber, it is a conceptual diagram which shows a mode that it passes through the light-shielding sensor attached to a lock chamber, light-shielding. ロック室から真空側試料搬送ロボットハンドに試料がけ渡されるときの様子を示す概念図。The conceptual diagram which shows a mode when a sample is handed over to the vacuum side sample conveyance robot hand from a lock chamber. 前記遮光センサの検出器が検出した光ビーム受光量の時系列データを表す概略図。Schematic showing the time series data of the light beam received amount which the detector of the said light-shielding sensor detected.

符号の説明Explanation of symbols

1…試料処理装置、10…大気側試料搬送室、11…大気側試料搬送ロボット、20…ロック室、21…ロック室試料台、22…開口部、23…遮光センサ、23R…光ビーム投射器、23D…光ビーム検出器、24…光ビーム、25…プッシャー、30…真空側試料搬送室、31…真空側試料搬送ロボット、311…真空ロボットハンド、312…突起部、313…試料設置面、40…真空処理室、41…真空処理室処理台、50…制御装置、60…試料、70…試料収納カセット DESCRIPTION OF SYMBOLS 1 ... Sample processing apparatus, 10 ... Atmosphere side sample conveyance chamber, 11 ... Atmosphere side sample conveyance robot, 20 ... Lock chamber, 21 ... Lock chamber sample stand, 22 ... Opening part, 23 ... Light-shielding sensor, 23R ... Light beam projector 23D ... Light beam detector, 24 ... Light beam, 25 ... Pusher, 30 ... Vacuum side sample transfer chamber, 31 ... Vacuum side sample transfer robot, 311 ... Vacuum robot hand, 312 ... Protrusion, 313 ... Sample mounting surface, DESCRIPTION OF SYMBOLS 40 ... Vacuum processing chamber, 41 ... Vacuum processing chamber processing stand, 50 ... Control apparatus, 60 ... Sample, 70 ... Sample storage cassette

Claims (6)

内部を真空状態にして試料を処理する処理室と、該処理室に試料を搬送する内部を真空状態に保った第1の試料搬送室と、試料搬送ロボットを有し試料収納カセットに収納された試料を搬送する内部を大気圧状態とする第2の試料搬送室と、第1の試料搬送室と第2の試料搬送室との間に連結され各試料搬送室との境界に試料を搬入出するのに十分な大きさのゲートと該ゲートを開閉するバルブを有し該バルブを閉じてその内部を大気圧状態または真空状態とするロック室と、制御装置とを有する試料処理装置であって、
第2の試料搬送室からロック室内に設けた試料台へ試料を搬送する搬送経路上で試料が横切る位置に一対以上の遮光センサを設けた
ことを特徴とする試料処理装置。
A processing chamber in which the sample is processed in a vacuum state, a first sample transfer chamber in which the inside of the sample is transferred to the processing chamber in a vacuum state, and a sample transfer robot are stored in a sample storage cassette. A sample is transferred into and out of the boundary between each of the second sample transfer chamber, which is set to atmospheric pressure inside the sample transfer chamber, and between the first sample transfer chamber and the second sample transfer chamber. A sample processing apparatus having a gate that is large enough to open, a valve that opens and closes the gate, a lock chamber that closes the valve to bring the inside into an atmospheric pressure state or a vacuum state, and a control device. ,
A sample processing apparatus comprising a pair of light-shielding sensors at a position where a sample crosses on a transport path for transporting a sample from a second sample transport chamber to a sample stage provided in a lock chamber.
内部を真空状態にして試料を処理する処理室と、該処理室に試料を搬送する内部を真空状態に保った第1の試料搬送室と、試料搬送ロボットを有し試料収納カセットに収納された試料を搬送する内部を大気圧状態とする第2の試料搬送室と、第1の試料搬送室と第2の試料搬送室との間に連結され各試料搬送室との境界に試料を搬入出するのに十分な大きさのゲートと該ゲートを開閉するバルブを有し該バルブを閉じてその内部を大気圧状態または真空状態とするロック室と、制御装置とを有する試料処理装置であって、
ロック室の第2の試料搬送室側ゲートの近傍であって第2の試料搬送室からロック室内の試料台へ試料を搬送する搬送経路上で試料が横切る位置に一対以上の遮光センサを設けた
ことを特徴とする試料処理装置。
A processing chamber in which the sample is processed in a vacuum state, a first sample transfer chamber in which the inside of the sample is transferred to the processing chamber in a vacuum state, and a sample transfer robot are stored in a sample storage cassette. A sample is transferred into and out of the boundary between each of the second sample transfer chamber, which is set to atmospheric pressure inside the sample transfer chamber, and between the first sample transfer chamber and the second sample transfer chamber. A sample processing apparatus having a gate that is large enough to open, a valve that opens and closes the gate, a lock chamber that closes the valve to bring the inside into an atmospheric pressure state or a vacuum state, and a control device. ,
A pair of light-shielding sensors are provided in the vicinity of the second sample transfer chamber side gate of the lock chamber and at a position where the sample crosses on the transfer path for transferring the sample from the second sample transfer chamber to the sample stage in the lock chamber. A sample processing apparatus.
請求項1または請求項2に記載の試料処理装置であって、遮光センサが光ビーム放射部と光ビーム検出部とを有し、制御装置が遮光センサの出力を用いて光ビームが搬送中の試料によって遮光される時間または時刻を計測して遮光センサが取り付けられる位置に対する試料の位置を演算することを特徴とする試料処理装置。   3. The sample processing apparatus according to claim 1, wherein the light shielding sensor includes a light beam emitting unit and a light beam detecting unit, and the control device uses the output of the light shielding sensor to transmit the light beam. A sample processing apparatus that measures the time or time of light shielding by a sample and calculates the position of the sample relative to the position where the light shielding sensor is attached. 請求項1または請求項2に記載の試料処理装置であって、遮光センサが光ビーム放射部と光ビーム検出部とを有し、制御装置が遮光センサの出力を用いて光ビームが搬送中の試料によって遮光される時間または時刻を計測して遮光センサが取り付けられる位置に対する試料の位置を演算するとともに、試料搬送先である試料台に対する遮光センサの位置が明確にされており、試料搬送ロボットが所定の一定の搬送速度で試料を搬送することにより、制御装置が遮光センサの出力を用いて搬送中の試料と試料台の位置関係を演算することを特徴とする試料処理装置。   3. The sample processing apparatus according to claim 1, wherein the light shielding sensor includes a light beam emitting unit and a light beam detecting unit, and the control device uses the output of the light shielding sensor to transmit the light beam. The time or time when light is shielded by the sample is measured to calculate the position of the sample relative to the position where the light-shielding sensor is attached, and the position of the light-shielding sensor relative to the sample stage that is the sample transport destination is clarified. A sample processing apparatus, wherein a control device calculates a positional relationship between a sample being transported and a sample stage by using the output of a light shielding sensor by transporting the sample at a predetermined constant transport speed. 請求項1または請求項2に記載の試料処理装置であって、遮光センサが光ビーム放射部と光ビーム検出部とを有し、制御装置が遮光センサの出力を用いて光ビームが搬送中の試料によって遮光される時間または時刻を検出して遮光センサが取り付けられる位置に対する試料の位置を演算するとともに、試料搬送先である試料台に対する遮光センサの位置が明確にされており、制御装置が遮光センサの出力を用いて試料の搬送速度を演算し、搬送中の試料の位置と試料台との位置関係を演算することを特徴とする試料処理装置。   3. The sample processing apparatus according to claim 1, wherein the light shielding sensor includes a light beam emitting unit and a light beam detecting unit, and the control device uses the output of the light shielding sensor to transmit the light beam. The position or position of the sample with respect to the position where the light shielding sensor is mounted is calculated by detecting the time or time when the light is shielded by the sample, and the position of the light shielding sensor with respect to the sample stage as the sample transport destination is clarified. A sample processing apparatus characterized by calculating a transport speed of a sample using an output of a sensor and calculating a positional relationship between a position of a sample being transported and a sample stage. 請求項1または請求項2に記載の試料処理装置であって、遮光センサが光ビーム放射部と光ビーム検出部とを有し、制御装置が遮光センサの出力を用いて光ビームが搬送中の試料によって遮光される時間または時刻を計測して遮光センサが取り付けられる位置に対する試料の位置を演算するとともに、遮光センサの出力を用いて試料の搬送速度および搬送中の試料の位置と試料台との位置関係を演算し、その結果に基づいて搬送中の試料と試料台までの距離と方向を演算し、さらにこの演算結果に基づいて試料搬送ロボットの動作を制御することを特徴とする試料処理装置。   3. The sample processing apparatus according to claim 1, wherein the light shielding sensor includes a light beam emitting unit and a light beam detecting unit, and the control device uses the output of the light shielding sensor to transmit the light beam. Measures the time or time of light shielding by the sample and calculates the position of the sample relative to the position where the light shielding sensor is attached. Using the output of the light shielding sensor, the sample transport speed and the position of the sample being transported and the sample stage A sample processing apparatus that calculates a positional relationship, calculates a distance and direction between a sample being transferred and a sample stage based on the result, and controls the operation of the sample transfer robot based on the calculation result .
JP2005115874A 2005-04-13 2005-04-13 Sample processing device Pending JP2006294987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115874A JP2006294987A (en) 2005-04-13 2005-04-13 Sample processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115874A JP2006294987A (en) 2005-04-13 2005-04-13 Sample processing device

Publications (1)

Publication Number Publication Date
JP2006294987A true JP2006294987A (en) 2006-10-26

Family

ID=37415213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115874A Pending JP2006294987A (en) 2005-04-13 2005-04-13 Sample processing device

Country Status (1)

Country Link
JP (1) JP2006294987A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403253A (en) * 2011-11-04 2012-04-04 中微半导体设备(上海)有限公司 Method for realizing silicon wafer transmission by using composite transmission path
CN104752128A (en) * 2013-12-25 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 Wafer processing system and wafer processing method
CN111710628A (en) * 2020-06-03 2020-09-25 西安交通大学 Ultrahigh vacuum environment multifunctional sample stage and in-situ patterning method for sample
CN112505335A (en) * 2019-09-16 2021-03-16 中国科学院苏州纳米技术与纳米仿生研究所 Ultrahigh vacuum sample transfer equipment and method
CN112505336A (en) * 2019-09-16 2021-03-16 中国科学院苏州纳米技术与纳米仿生研究所 Ultrahigh vacuum sample transfer equipment and method
JP2021136359A (en) * 2020-02-28 2021-09-13 東京エレクトロン株式会社 Part conveyance device and processing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448443A (en) * 1987-04-20 1989-02-22 Applied Materials Inc System and method for detecting center of integrated circuit wafer
JPH0199229A (en) * 1987-10-13 1989-04-18 Nec Corp Belt conveyor for semiconductor wafer
JPH0529441A (en) * 1991-07-23 1993-02-05 Oki Electric Ind Co Ltd Detection of wafer position and orientation flat direction
JPH07263518A (en) * 1994-03-18 1995-10-13 Fujitsu Ltd Method and apparatus for transferring semiconductor wafer, and wafer treatment method
JP2003254738A (en) * 2002-02-28 2003-09-10 Olympus Optical Co Ltd Wafer centering device, its method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448443A (en) * 1987-04-20 1989-02-22 Applied Materials Inc System and method for detecting center of integrated circuit wafer
JPH0199229A (en) * 1987-10-13 1989-04-18 Nec Corp Belt conveyor for semiconductor wafer
JPH0529441A (en) * 1991-07-23 1993-02-05 Oki Electric Ind Co Ltd Detection of wafer position and orientation flat direction
JPH07263518A (en) * 1994-03-18 1995-10-13 Fujitsu Ltd Method and apparatus for transferring semiconductor wafer, and wafer treatment method
JP2003254738A (en) * 2002-02-28 2003-09-10 Olympus Optical Co Ltd Wafer centering device, its method, and program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403253A (en) * 2011-11-04 2012-04-04 中微半导体设备(上海)有限公司 Method for realizing silicon wafer transmission by using composite transmission path
CN104752128A (en) * 2013-12-25 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 Wafer processing system and wafer processing method
CN112505335A (en) * 2019-09-16 2021-03-16 中国科学院苏州纳米技术与纳米仿生研究所 Ultrahigh vacuum sample transfer equipment and method
CN112505336A (en) * 2019-09-16 2021-03-16 中国科学院苏州纳米技术与纳米仿生研究所 Ultrahigh vacuum sample transfer equipment and method
CN112505336B (en) * 2019-09-16 2022-12-13 中国科学院苏州纳米技术与纳米仿生研究所 Ultrahigh vacuum sample transfer equipment and method
CN112505335B (en) * 2019-09-16 2023-02-28 中国科学院苏州纳米技术与纳米仿生研究所 Ultrahigh vacuum sample transfer equipment and method
JP2021136359A (en) * 2020-02-28 2021-09-13 東京エレクトロン株式会社 Part conveyance device and processing system
JP7471106B2 (en) 2020-02-28 2024-04-19 東京エレクトロン株式会社 Parts transport device
JP7481568B2 (en) 2020-02-28 2024-05-10 東京エレクトロン株式会社 Processing device and processing system
CN111710628A (en) * 2020-06-03 2020-09-25 西安交通大学 Ultrahigh vacuum environment multifunctional sample stage and in-situ patterning method for sample
CN111710628B (en) * 2020-06-03 2023-04-28 西安交通大学 Multifunctional sample stage in ultrahigh vacuum environment and sample in-situ patterning method

Similar Documents

Publication Publication Date Title
US6166509A (en) Detection system for substrate clamp
EP1062687B1 (en) On the fly center-finding during substrate handling in a processing system
JP4402811B2 (en) SUBSTITUTION CONVEYING SYSTEM AND METHOD FOR DETECTING POSITION SHIFT
JP2006294987A (en) Sample processing device
KR102157440B1 (en) Substrate transfer method and substrate transfer apparatus
KR101817395B1 (en) Method and apparatus for detecting position of substrate transfer device, and storage medium
KR101009092B1 (en) Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate
KR20180031604A (en) Substrate processing apparatus and method of transferring substrate
US7440091B2 (en) Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate
JP2001068531A (en) Method for detecting wafer position
JP2006351883A (en) Substrate conveyance mechanism and processing system
JP2007227781A (en) Misregistration inspection mechanism of substrate, processing system, and misregistration inspection method of substrate
JP2011124294A (en) Vacuum processing apparatus
JP2006024683A (en) Conveying apparatus, exposure apparatus, and conveyance method
KR102228920B1 (en) Automatic supervising method and control device
KR100863690B1 (en) Wafer dectecting system
JP2010062215A (en) Vacuum treatment method and vacuum carrier
KR101620545B1 (en) Substrate aligning device, gate Valve And Cluster Apparatus Including The Same
JPH10335420A (en) Work aligning apparatus
JP3065843B2 (en) Object detection device
CN219513051U (en) Wafer position detecting device
CN220290764U (en) Transmission and position calibration system for process ring and process tray
KR102616703B1 (en) Transfer device and teaching method of robot arm
JP7491870B2 (en) Measuring equipment and in-line deposition equipment
JP6059934B2 (en) Teaching method for sample transport device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080403

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907