JP2006294964A - Boron diffusing material and its manufacturing method - Google Patents

Boron diffusing material and its manufacturing method Download PDF

Info

Publication number
JP2006294964A
JP2006294964A JP2005115440A JP2005115440A JP2006294964A JP 2006294964 A JP2006294964 A JP 2006294964A JP 2005115440 A JP2005115440 A JP 2005115440A JP 2005115440 A JP2005115440 A JP 2005115440A JP 2006294964 A JP2006294964 A JP 2006294964A
Authority
JP
Japan
Prior art keywords
component
mass
boron
diffusing material
al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005115440A
Other languages
Japanese (ja)
Other versions
JP4347254B2 (en
Inventor
Masato Nishikawa
正人 西川
Yasuto Fushii
康人 伏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005115440A priority Critical patent/JP4347254B2/en
Publication of JP2006294964A publication Critical patent/JP2006294964A/en
Application granted granted Critical
Publication of JP4347254B2 publication Critical patent/JP4347254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boron diffusing material which further extends a diffusible time after an oxidation treatment. <P>SOLUTION: The boron diffusing material is constituted by a ceramic sintered body in which there are contained Al<SB>2</SB>O<SB>3</SB>component, SiO<SB>2</SB>component and BN component. A total percentage content of the Al<SB>2</SB>O<SB>3</SB>component and the SiO<SB>2</SB>component is 20 to 80 mass%, a percentage content of the BN component is 20 to 80 mass%, a mole ratio of Al<SB>2</SB>O<SB>3</SB>/SiO<SB>2</SB>is 1.0 to 2.4, and an open pore ratio is 13 to 43%. Moreover, a method of manufacturing the boron diffusing material comprises the steps of carrying out a CIP forming of mixed powder including a mixture and/or a compound of 20 to 80 mass% containing the Al<SB>2</SB>O<SB>3</SB>component and the SiO<SB>2</SB>component in which the mole ratio of Al<SB>2</SB>O<SB>3</SB>/SiO<SB>2</SB>is 1.0 to 2.4, and a boron nitride of 20 to 80 mass%; and carrying out a sintering in non-oxidizing atmosphere. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はホウ素拡散材およびその製造方法に関する。   The present invention relates to a boron diffusing material and a method for producing the same.

従来、例えばゲルマニウム、シリコン等にホウ素を熱拡散させてp型半導体とする際、ホウ素拡散材として窒化ホウ素焼結体が用いられている。このホウ素拡散材は、あらかじめその表面に酸化ホウ素を形成させそれを利用するものであり、酸化ホウ素が消費されると再度酸化処理が行われて酸化ホウ素が補給される。このような再酸化処理には多くの手間がかかるので、近年、酸化ホウ素含有の窒化ホウ素複合焼結体をホウ素拡散材とすることが開発された(以下、このホウ素拡散材を「酸化ホウ素複合拡散材」という。)。この酸化ホウ素複合拡散材であっても、使用に際してはその表面に酸化ホウ素が形成されるが、酸化処理後の拡散可能時間が窒化ホウ素焼結体からなるホウ素拡散材に比べて長くなる利点がある。   Conventionally, when boron is thermally diffused into, for example, germanium, silicon, or the like to form a p-type semiconductor, a boron nitride sintered body is used as a boron diffusion material. The boron diffusing material is formed by utilizing boron oxide on the surface in advance and using it. When the boron oxide is consumed, the oxidation treatment is performed again to replenish the boron oxide. Since such re-oxidation treatment takes a lot of work, in recent years it has been developed to use a boron nitride composite sintered body containing boron oxide as a boron diffusion material (hereinafter referred to as “boron oxide composite”). It is called "diffusing material.") Even when this boron oxide composite diffusion material is used, boron oxide is formed on the surface thereof, but the diffusion time after the oxidation treatment has an advantage that it is longer than that of a boron diffusion material made of a boron nitride sintered body. is there.

酸化ホウ素複合拡散材は、酸化ホウ素を多く含む窒化ホウ素粉末を焼結するか、又は酸化ホウ素粉末と窒化ホウ素粉末との混合粉末を焼結することによって製造される。この場合の問題は、焼結体の組織に多量の酸化ホウ素が含まれるため、使用時に反りなどが起こり、均一なホウ素拡散に支障があった。そこで、窒化ホウ素粉末と、アルミナ粉末と、高けい酸ガラス粉末及び/又はシリカ粉末とを含む混合粉末のホットプレス焼結体をホウ素拡散材とすることが提案されているが(特許文献1)、それでも酸化処理後の拡散可能時間は40時間程度であり、まだ改善の余地があった。
特開平10−303137号公報
The boron oxide composite diffusion material is manufactured by sintering boron nitride powder containing a large amount of boron oxide or sintering a mixed powder of boron oxide powder and boron nitride powder. The problem in this case is that since a large amount of boron oxide is contained in the structure of the sintered body, warping or the like occurs during use, which hinders uniform boron diffusion. Therefore, it has been proposed to use a hot pressed sintered body of a mixed powder containing boron nitride powder, alumina powder, high silicate glass powder and / or silica powder as a boron diffusion material (Patent Document 1). However, the diffusion time after the oxidation treatment is about 40 hours, and there is still room for improvement.
JP-A-10-303137

本発明の目的は、酸化処理後の拡散可能時間を更に延長させたホウ素拡散材を提供することである。   An object of the present invention is to provide a boron diffusing material in which the diffusible time after the oxidation treatment is further extended.

本発明は、Al2O3成分とSiO2成分とBN成分とを含み、Al2O3成分とSiO2成分の合計含有率が20〜80質量%、BN成分の含有率が20〜80質量%であり、しかもAl2O3/SiO2のモル比が2.4〜1.0、開気孔率が13〜43%のセラミックス焼結体で構成されてなることを特徴とするホウ素拡散材である。また、本発明は、Al2O3/SiO2のモル比が1.0〜2.4である、Al2O3成分とSiO2成分とを含む混合物及び/又は化合物を20〜80質量%と、窒化ホウ素を20質量%〜80質量%とを含む混合粉末をCIP成型した後、非酸化雰囲気で焼結することを特徴とする上記ホウ素拡散材の製造方法である。   The present invention includes an Al2O3 component, a SiO2 component, and a BN component, the total content of the Al2O3 component and the SiO2 component is 20 to 80% by mass, the content of the BN component is 20 to 80% by mass, and Al2O3 / SiO2 The boron diffusion material is characterized by being composed of a ceramic sintered body having a molar ratio of 2.4 to 1.0 and an open porosity of 13 to 43%. The present invention also provides a mixture and / or compound containing Al2O3 and SiO2 components having a molar ratio of Al2O3 / SiO2 of 1.0 to 2.4, and 20% by mass of boron nitride. After the CIP molding of the mixed powder containing ˜80 mass%, it is sintered in a non-oxidizing atmosphere.

本発明によれば、酸化処理後の拡散可能時間を更に延長させたホウ素拡散材が提供される。   According to the present invention, there is provided a boron diffusion material that further extends the diffusible time after the oxidation treatment.

酸化処理によってホウ素拡散材の表面に生成させる酸化ホウ素量が少ないと、次の酸化処理までの拡散可能時間は短くなるので酸化ホウ素の生成量が多いほどよいが、酸化ホウ素量が多くなると、それが例えば石英ガラス等の治具に付着し、繰り返しの使用が困難となる。本発明ではこの課題をホウ素拡散材の開気孔率を13〜43%とすることで解決している。この開気孔率であれば、開気孔の内部にまで酸化ホウ素が生成するので生成量が多くなり、しかも多孔体であるので治具との接触面積も少なくなって付着が軽減される。開気孔率が13%未満では酸化ホウ素の生成量が少なくなり、43%をこえると拡散時のホウ素拡散材の変形が大きくなる。気孔径は0.5mm以下が好ましく、特に0.1mm以下が好ましい。   If the amount of boron oxide generated on the surface of the boron diffusing material by the oxidation treatment is small, the diffusible time until the next oxidation treatment is shortened. Therefore, the larger the amount of boron oxide produced, the better. However, it adheres to a jig such as quartz glass, and it becomes difficult to use it repeatedly. In the present invention, this problem is solved by setting the open porosity of the boron diffusion material to 13 to 43%. With this open porosity, boron oxide is generated up to the inside of the open pores, so the amount of generation increases, and since it is a porous body, the contact area with the jig is reduced and adhesion is reduced. When the open porosity is less than 13%, the amount of boron oxide produced decreases, and when it exceeds 43%, the deformation of the boron diffusing material during diffusion increases. The pore diameter is preferably 0.5 mm or less, particularly preferably 0.1 mm or less.

本発明における開気孔とは気孔の一端又は両端が外に開いている気孔のことである。開気孔率は、(飽水質量−乾燥質量)×100/(飽水質量−水中質量)、で表すことができ、アルキメデス法によって測定することができる。   The open pores in the present invention are pores in which one or both ends of the pores are open to the outside. The open porosity can be expressed by (saturated mass−dry mass) × 100 / (saturated mass−mass in water), and can be measured by Archimedes method.

本発明のホウ素拡散材にはBN成分が20〜80質量%含まれている。BN成分の多くはBNとして存在している。BN成分の含有量が20質量%未満であると酸化処理によって生成する酸化ホウ素量が少なくなり、80質量%をこえると酸化ホウ素の生成量が過多となってシリコンや治具への付着が多くなる。好ましいBN成分の含有量は30〜70質量%である。   The boron diffusion material of the present invention contains 20 to 80% by mass of a BN component. Many of the BN components exist as BN. If the content of the BN component is less than 20% by mass, the amount of boron oxide produced by the oxidation treatment decreases, and if it exceeds 80% by mass, the amount of boron oxide produced becomes excessive and adhesion to silicon and jigs increases. Become. The preferred BN component content is 30 to 70% by mass.

Al2O3成分とSiO2成分は両者の合計で20〜80質量%含まれている。この割合が20質量%未満であると、酸化処理時に酸化ホウ素の生成量が過多となって上記した不具合が起こり、80質量%をこえると酸化処理によって生成する酸化ホウ素量が少なくなるので拡散可能時間が短くなる。Al2O3成分とSiO2成分は、Al2O3/SiO2のモル比が1.0〜2.4の割合で含有している。このモル比が2.4をこえると拡散時の変形が大きくなり、1.0未満であると拡散可能時間が短くなる。特に好ましいAl2O3成分とSiO2成分の含有量は両者の合計で30〜70質量%であり、Al2O3/SiO2のモル比が1.2〜2.0である。Al2O3成分とSiO2成分は3Al2O3・2SiO2などとして存在する。   The Al2O3 component and the SiO2 component are contained in a total amount of 20 to 80% by mass. If this ratio is less than 20% by mass, the amount of boron oxide produced during the oxidation treatment will be excessive and the above-mentioned problems will occur, and if it exceeds 80% by mass, the amount of boron oxide produced by the oxidation treatment will decrease and diffusion will be possible. Time is shortened. The Al2O3 component and the SiO2 component are contained at a molar ratio of Al2O3 / SiO2 of 1.0 to 2.4. If this molar ratio exceeds 2.4, deformation during diffusion increases, and if it is less than 1.0, the diffusable time decreases. Particularly preferable contents of the Al2O3 component and the SiO2 component are 30 to 70% by mass in total, and the molar ratio of Al2O3 / SiO2 is 1.2 to 2.0. Al2O3 component and SiO2 component exist as 3Al2O3 · 2SiO2 and the like.

本発明のホウ素拡散材の製造方法は、Al2O3/SiO2のモル比が2.4〜1.0である、Al2O3成分とSiO2成分とを含む混合物及び/又は化合物を20〜80質量%と、窒化ホウ素を20〜80質量%とを含む混合粉末をCIP成型した後、非酸化雰囲気で焼結するものである。Al2O3成分とSiO2成分を含む混合物としては、例えばγ−アルミナ、α−アルミナ等のAl2O3成分と例えばアエロジル、ホウケイ酸ガラス等のSiO2成分との混合物が用いられ、またAl2O3成分とSiO2成分を含む化合物としては、例えばムライト等が用いられる。ホウ素拡散材のAl2O3成分、SiO2成分及びBN成分の含有量は、原料配合の割合によって制御することができる。また、開気孔率は、CIP成型体の密度で制御することができる。従来のホウ素拡散材はホットプレス法で製造されていたので、密度分布が生成するので、本発明のような開気孔率に制御することは困難であった。CIP成型体の焼結は、例えば窒素、アルゴン、ヘリウム等の非酸化雰囲気下、1400〜1900℃の温度で保持して行われる。   The method for producing a boron diffusing material of the present invention includes a mixture containing Al2O3 and SiO2 components and / or a compound containing 20 to 80% by mass of Al2O3 / SiO2 molar ratio of 2.4 to 1.0, and nitriding. A CIP-molded mixed powder containing 20 to 80% by mass of boron is sintered in a non-oxidizing atmosphere. As the mixture containing the Al2O3 component and the SiO2 component, for example, a mixture of an Al2O3 component such as γ-alumina or α-alumina and an SiO2 component such as Aerosil or borosilicate glass is used, and a compound containing the Al2O3 component and the SiO2 component For example, mullite or the like is used. The contents of the Al2O3 component, the SiO2 component and the BN component of the boron diffusing material can be controlled by the ratio of the raw material blend. The open porosity can be controlled by the density of the CIP molded body. Since the conventional boron diffusing material is manufactured by a hot press method, a density distribution is generated, so that it is difficult to control the open porosity as in the present invention. Sintering of the CIP molded body is performed by holding at a temperature of 1400 to 1900 ° C. in a non-oxidizing atmosphere such as nitrogen, argon, or helium.

実施例1〜7 比較例1〜5
窒化ホウ素粉末(BN純度:99質量%以上、平均粒径:7μm)と、アルミナ粉末(Al2O3純度:99質量%以上、平均粒径:0.2μm)と、ホウケイ酸ガラス粉末(純度:99質量%以上、組成:SiO2分が90質量%、B2O3分が10質量%、平均粒径:2.1μm)とを、表1に示すセラミックス焼結体組成に配合しボールミルで3時間混合した。この混合原料をゴム型を用い、表1に示す圧力でCIP成型(成型体寸法:外径約150mm、高さ約60mm)した後、温度1700℃、窒素ガス雰囲気中で焼結した。
Examples 1-7 Comparative Examples 1-5
Boron nitride powder (BN purity: 99 mass% or more, average particle size: 7 μm), alumina powder (Al 2 O 3 purity: 99 mass% or more, average particle size: 0.2 μm), and borosilicate glass powder (purity: 99 mass) % Or more, composition: 90% by mass of SiO 2, 10% by mass of B 2 O 3, and average particle size: 2.1 μm) were mixed in the ceramic sintered body composition shown in Table 1 and mixed for 3 hours by a ball mill. This mixed material was subjected to CIP molding (molded body dimensions: outer diameter: about 150 mm, height: about 60 mm) using a rubber mold and sintered in a nitrogen gas atmosphere at a temperature of 1700 ° C.

比較例6
混合原料を内径150mmの黒鉛ダイスに充填し、温度1600℃、保持時間4時間、圧力12MPaにてホットプレス焼結した。
Comparative Example 6
The mixed raw material was filled in a graphite die having an inner diameter of 150 mm, and hot press sintered at a temperature of 1600 ° C., a holding time of 4 hours, and a pressure of 12 MPa.

得られたセラミックス焼結体から、直径125mm、厚さ1.5mmの円盤を加工してホウ素拡散材となし、開気孔率、変形量及び拡散可能時間を測定した。それらの結果を表1に示す。   A disk having a diameter of 125 mm and a thickness of 1.5 mm was processed from the obtained ceramic sintered body to form a boron diffusing material, and the open porosity, deformation amount, and diffusible time were measured. The results are shown in Table 1.

(1)開気孔率:アルキメデス法によって測定した。
(2)変形量:ホウ素拡散材を酸素雰囲気下、温度1100℃、1時間加熱した後、窒素気流中、温度1200℃で10時間加熱した後の変形を隙間ゲ−ジで測定した。
(3)拡散可能時間:ホウ素拡散材を酸素雰囲気下、温度1100℃、1時間加熱した後、ホウ素拡散材とシリコンを3.5mmの間隔で交互に並べ、窒素気流中、温度1050℃、1時間の条件で繰り返し拡散試験を行い、フッ化水素酸で処理後、シリコンの層抵抗を4探針法にて測定した。層抵抗値が高く変化する前までの累積時間を拡散累積時間とした。
(1) Open porosity: measured by Archimedes method.
(2) Deformation amount: After the boron diffusion material was heated in an oxygen atmosphere at a temperature of 1100 ° C. for 1 hour, the deformation after heating in a nitrogen stream at a temperature of 1200 ° C. for 10 hours was measured with a gap gauge.
(3) Diffusion time: after heating the boron diffusing material in an oxygen atmosphere at a temperature of 1100 ° C. for 1 hour, the boron diffusing material and silicon are alternately arranged at an interval of 3.5 mm. Repeated diffusion tests were performed under the conditions of time, and after treatment with hydrofluoric acid, the layer resistance of silicon was measured by a four-probe method. The cumulative time before the layer resistance value changed to high was defined as the diffusion cumulative time.

本発明のホウ素拡散材は、pn接合、pp接合したデバイス、例えば太陽電池、インバ−タ−、光ダイオ−ド等に利用することができる。 The boron diffusion material of the present invention can be used for p + n junction, p + p junction devices, such as solar cells, inverters, and photodiodes.

Claims (2)

Al2O3成分とSiO2成分とBN成分とを含み、Al2O3成分とSiO2成分の合計含有率が20〜80質量%、BN成分の含有率が20〜80質量%であり、しかもAl2O3/SiO2のモル比が1.0〜2.4、開気孔率が13〜43%のセラミックス焼結体で構成されてなることを特徴とするホウ素拡散材。 The Al2O3 component, the SiO2 component and the BN component are included, the total content of the Al2O3 component and the SiO2 component is 20 to 80% by mass, the content of the BN component is 20 to 80% by mass, and the molar ratio of Al2O3 / SiO2 is A boron diffusing material characterized by comprising a ceramic sintered body having 1.0 to 2.4 and an open porosity of 13 to 43%. Al2O3/SiO2のモル比が2.4〜1.0である、Al2O3成分とSiO2成分とを含む混合物及び/又は化合物を20〜80質量%と、窒化ホウ素を20質量%〜80質量%とを含む混合粉末をCIP成型した後、非酸化雰囲気で焼結することを特徴とする請求項1に記載のホウ素拡散材の製造方法。 The molar ratio of Al2O3 / SiO2 is 2.4 to 1.0, the mixture and / or compound containing the Al2O3 component and the SiO2 component is 20 to 80% by mass, and boron nitride is 20 to 80% by mass. The method for producing a boron diffusing material according to claim 1, wherein the mixed powder is sintered in a non-oxidizing atmosphere after CIP molding.
JP2005115440A 2005-04-13 2005-04-13 Boron diffusion material and manufacturing method thereof Active JP4347254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115440A JP4347254B2 (en) 2005-04-13 2005-04-13 Boron diffusion material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115440A JP4347254B2 (en) 2005-04-13 2005-04-13 Boron diffusion material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006294964A true JP2006294964A (en) 2006-10-26
JP4347254B2 JP4347254B2 (en) 2009-10-21

Family

ID=37415197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115440A Active JP4347254B2 (en) 2005-04-13 2005-04-13 Boron diffusion material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4347254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066088A1 (en) * 2006-11-29 2008-06-05 Denki Kagaku Kogyo Kabushiki Kaisha Method of using boron diffusion source and process for producing semiconductor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447397B2 (en) * 2010-02-03 2014-03-19 日立化成株式会社 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
CN103299399A (en) * 2011-01-13 2013-09-11 日立化成株式会社 P-type diffusion layer formation composition, method for producing p-type diffusion layer, and method for producing solar cell element
WO2012096311A1 (en) 2011-01-13 2012-07-19 日立化成工業株式会社 p-TYPE DIFFUSION LAYER FORMATION COMPOSITION, METHOD FOR PRODUCING SILICON SUBSTRATE HAVING p-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING SOLAR CELL ELEMENT, AND SOLAR CELL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066088A1 (en) * 2006-11-29 2008-06-05 Denki Kagaku Kogyo Kabushiki Kaisha Method of using boron diffusion source and process for producing semiconductor
JPWO2008066088A1 (en) * 2006-11-29 2010-03-11 電気化学工業株式会社 Method of using boron diffusion source and method of manufacturing semiconductor
KR101085254B1 (en) * 2006-11-29 2011-11-22 덴끼 가가꾸 고교 가부시키가이샤 Method of using boron diffusion source and process for producing semiconductor

Also Published As

Publication number Publication date
JP4347254B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP6651628B2 (en) High thermal conductivity silicon nitride sintered body and method for producing the same
JP2008024579A (en) Reaction sintered silicon nitride-based composite and method for producing the same
JP4347254B2 (en) Boron diffusion material and manufacturing method thereof
JP2008247716A (en) Reaction sintering silicon nitride-based sintered body and its producing process
KR101222478B1 (en) The High permeability Porous ceramics for vacuum chuck and method for manufacturing the same
JP5751672B2 (en) Method for producing sintered silicon nitride
JP2014114186A (en) Silica bonded body and method for manufacturing the same
JP2012111665A (en) Heat conductive glass, and method for manufacturing the same
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
JPWO2008066088A1 (en) Method of using boron diffusion source and method of manufacturing semiconductor
WO2007018140A2 (en) Aluminum nitride sintered body
JP4314231B2 (en) Method for producing sintered boron nitride
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP2008308373A (en) High durability silicon carbide sintered compact and its production method
JPH07215781A (en) Silicon carbide-based composite material and its production
JP5130599B2 (en) Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body
JP5224293B2 (en) Reaction-sintered silicon nitride ceramics and method for producing the same
CN103896282A (en) Method used for preparing silicon oxide nanowires via green compact of silicon carbide powder
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
TW201002417A (en) Method of coating protective layer on crucible for crystal growth
JP6667597B1 (en) Method for producing coating agent and coating agent
JP2009107864A (en) Parts for manufacturing semiconductor
JP2010254523A (en) Method for producing spinel-based ceramic
JP4118192B2 (en) Boron diffusion source for semiconductor manufacturing and manufacturing method thereof
JP2007277030A (en) Silicon carbide sintered compact for heater and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Ref document number: 4347254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250