JP2014114186A - Silica bonded body and method for manufacturing the same - Google Patents

Silica bonded body and method for manufacturing the same Download PDF

Info

Publication number
JP2014114186A
JP2014114186A JP2012269937A JP2012269937A JP2014114186A JP 2014114186 A JP2014114186 A JP 2014114186A JP 2012269937 A JP2012269937 A JP 2012269937A JP 2012269937 A JP2012269937 A JP 2012269937A JP 2014114186 A JP2014114186 A JP 2014114186A
Authority
JP
Japan
Prior art keywords
silica
porous
powder
average particle
dense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012269937A
Other languages
Japanese (ja)
Other versions
JP6059523B2 (en
Inventor
Akira Sugano
晃 菅野
Keita Ono
敬太 尾埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2012269937A priority Critical patent/JP6059523B2/en
Publication of JP2014114186A publication Critical patent/JP2014114186A/en
Application granted granted Critical
Publication of JP6059523B2 publication Critical patent/JP6059523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silica bonded body formed by bonding silica porous bodies to each other or bonding a silica porous body with a silica dense body such as quarts glass or the like with high bonding strength without impairing air permeability in the porous body and at the bonded part and to provide a method for manufacturing the silica bonded body.SOLUTION: A silica porous body composed of a sintered body of silica particles with an average particle diameter of 5-300 μm and having a pore diameter of 1-100 μm, a porosity of 5-45% and an apparent density of not less than 2.1 g/cmis bonded to the same silica porous body or a silica dense body having a porosity of not more than 5% by heat treatment using a bonding agent produced by mixing a silica powder containing 20-50 wt.% of a fine powder having a particle diameter of not more than a half of the pore diameter of the silica porous body, a compound reducing a melting point on the surface of the silica powder and a silicate compound producing silica by heating to be in such a state that the silica powder is present in the open pore of the silica porous body at the bonded interface or in the vicinity of the bonded interface.

Description

本発明は、シリカ多孔体同士又はシリカ多孔体と石英ガラス等のシリカ緻密体とが接合されたシリカ接合体及びその製造方法に関する。   The present invention relates to a silica joined body in which porous silica bodies or silica porous bodies and a silica dense body such as quartz glass are joined, and a method for producing the same.

半導体製造装置用部材には、金属及びセラミックスが多用されているが、各種部材は、その使用目的、環境等に応じた材質により構成される。その中でも、例えば、フィルタやガス拡散材、シャワープレート、チャック等においては、多孔体と緻密体を接合した部材が使用される場合がある。   Metals and ceramics are frequently used for semiconductor manufacturing apparatus members, but various members are made of materials according to the purpose of use, environment, and the like. Among them, for example, in a filter, a gas diffusion material, a shower plate, a chuck, or the like, a member obtained by joining a porous body and a dense body may be used.

従来、前記多孔体と緻密体との接合方法としては、ろう付け、樹脂やガラス等のみの接着剤による接着、加圧焼結等が知られている(例えば、特許文献1参照)。
また、他の方法としては、例えば、特許文献2には、セラミックス粉末とガラス粉末とからなる多孔体とセラミックス緻密体とが、前記ガラス粉末の軟化点以上の温度での焼成によって、前記多孔体のガラスにより接合され、接合界面が実質的に隙間なく一体的に焼成された接合体の真空吸着装置が得られることが記載されている。
Conventionally, as a method for joining the porous body and the dense body, brazing, adhesion with an adhesive such as resin or glass, pressure sintering, and the like are known (for example, see Patent Document 1).
As another method, for example, in Patent Document 2, a porous body made of ceramic powder and glass powder and a ceramic dense body are fired at a temperature equal to or higher than the softening point of the glass powder. It is described that a vacuum adsorbing device for a bonded body obtained by bonding with a glass of the above-mentioned glass and being integrally baked with substantially no gap between the bonding interfaces can be obtained.

特開2006−282419号公報JP 2006-282419 A 特開2009−147384号公報JP 2009-147384 A

しかしながら、ろう材や接着剤により多孔体と緻密体とを接合する場合、多孔体にろう材等が浸透し、接合界面において十分な接合強度が得られず、両者が剥離するおそれがあった。また、多孔体の気孔内に侵入したろう材等によって目詰まりを生じ、多孔体の特性である通気性がごく一部あるいはまた広い範囲で損なわれることも懸念された。
また、加圧焼結法による接合は、高気孔率の多孔体の場合には、強度が低いため、接合体が得られたとしても、多孔体部分が破損したり、気孔率が変化したりするおそれがあった。
However, when the porous body and the dense body are joined with the brazing material or the adhesive, the brazing material or the like penetrates into the porous body, and sufficient joining strength cannot be obtained at the joining interface, and both may be peeled off. Moreover, clogging is caused by the brazing material or the like that has entered the pores of the porous body, and there is a concern that the air permeability, which is a characteristic of the porous body, may be impaired in part or in a wide range.
In addition, the bonding by pressure sintering method has a low strength in the case of a porous body having a high porosity, so even if a bonded body is obtained, the porous body portion may be damaged or the porosity may be changed. There was a risk.

一方、上記特許文献2に記載された方法においては、接合される多孔体は、アルミナ又は炭化珪素とガラスからなり、他方の緻密体は、アルミナ、窒化珪素、炭化珪素又はジルコニアのセラミックスからなり、いずれも、結合材としての役割をするガラスとは異なる材料のセラミックスである。   On the other hand, in the method described in Patent Document 2, the porous body to be joined is made of alumina or silicon carbide and glass, and the other dense body is made of alumina, silicon nitride, silicon carbide, or zirconia ceramics, Both are ceramics made of a material different from glass that serves as a binder.

ところで、半導体製造装置用部材においては、半導体製品へのSi,O以外の元素の混入を防止し、高純度の製品を製造する観点から、シリカからなる部材が使用される場合がある。シリカ焼結体は、熱膨張係数が小さく、耐熱衝撃性に優れており、熱伝導率が低く、耐熱材料として優れている。また、耐薬品性及び溶融金属による耐溶損性にも優れていることから、半導体製造装置用部材に好適な材質である。
上記特許文献2には、このようなシリカからなる多孔体同士又は多孔体と緻密体を接合することは開示されていない。
By the way, in the member for semiconductor manufacturing apparatuses, the member which consists of silica may be used from a viewpoint which prevents mixing of elements other than Si and O to a semiconductor product, and manufactures a high purity product. The silica sintered body has a small thermal expansion coefficient, excellent thermal shock resistance, low thermal conductivity, and is excellent as a heat resistant material. In addition, since it is excellent in chemical resistance and resistance to melt damage by molten metal, it is a suitable material for a member for semiconductor manufacturing equipment.
Patent Document 2 does not disclose joining such porous bodies made of silica or a porous body and a dense body.

したがって、シリカからなる多孔体同士又は多孔体と緻密体を、多孔体への接合剤の浸透を抑制し、通気性を損なうことなく、十分な接合強度で接合する手段が求められている。   Therefore, there is a need for a means for joining porous bodies made of silica or between a porous body and a dense body with sufficient bonding strength without suppressing penetration of the bonding agent into the porous body and without impairing air permeability.

本発明は、上記技術的課題を解決するためになされたものであり、シリカ多孔体同士、又は、シリカ多孔体と石英ガラス等のシリカ緻密体とが、前記多孔体及び接合部における通気性が損なわれることなく、高い接合強度で接合されたシリカ接合体及びその製造方法を提供することを目的とするものである。   The present invention has been made in order to solve the above technical problem, and the porous porous bodies and the silica dense bodies such as quartz glass are porous, and the porous body and the joined portion have air permeability. An object of the present invention is to provide a silica bonded body bonded with high bonding strength and a manufacturing method thereof without being damaged.

本発明に係るシリカ接合体は、シリカ多孔体と、シリカ多孔体又はシリカ緻密体とが、シリカ粉を介在して接合された接合体であって、前記シリカ多孔体は、平均粒子径が5〜300μm、かつ、粒子分布幅が前記平均粒子径の±50%以内にあるシリカ粒子の焼結体からなり、気孔径が1〜100μm、気孔率が5〜45%、見掛け密度が2.1g/cm3以上であり、断面における気孔の平均径が、該断面におけるシリカ粒子の平均粒子径の1/12〜3/4であり、前記シリカ緻密体は、気孔率5%以下であり、前記シリカ粉は、少なくとも、前記シリカ多孔体の気孔径の1/2以下の粒径のものが接合界面及び該接合界面近傍の前記シリカ多孔体の開気孔内に存在していることを特徴とする。
このようなシリカ接合体は、前記多孔体及び接合部における通気性が損なわれることなく、高い接合強度で接合されたものとして得ることができる。
The silica joined body according to the present invention is a joined body in which a silica porous body and a silica porous body or a silica dense body are joined via a silica powder, and the silica porous body has an average particle size of 5 ˜300 μm, and a sintered body of silica particles having a particle distribution width within ± 50% of the average particle size, with a pore size of 1-100 μm, a porosity of 5-45%, and an apparent density of 2.1 g. / Cm 3 or more, the average diameter of the pores in the cross section is 1/12 to 3/4 of the average particle diameter of the silica particles in the cross section, the silica dense body has a porosity of 5% or less, The silica powder is characterized in that at least particles having a particle size of 1/2 or less of the pore diameter of the porous silica material are present in the open pores of the porous silica material near the bonding interface and the bonding interface. .
Such a silica bonded body can be obtained as bonded with high bonding strength without impairing air permeability in the porous body and the bonded portion.

前記接合体は、高純度かつ高精度であることが求められる場合は、前記シリカ緻密体が石英ガラスであることが好ましい。   When the joined body is required to have high purity and high accuracy, it is preferable that the silica dense body is quartz glass.

また、本発明に係るシリカ接合体の製造方法は、シリカ多孔体と、シリカ多孔体又はシリカ緻密体とが、シリカ粉を介在して接合する接合体の製造方法であって、平均粒子径が5〜300μm、かつ、粒子分布幅が前記平均粒子径の±50%以内にあるシリカ粒子の焼結体からなり、気孔径が1〜100μm、気孔率が5〜45%、見掛け密度が2.1g/cm3以上であり、断面における気孔の平均径が、該断面におけるシリカ粒子の平均粒子径の1/12〜3/4であるシリカ多孔体と、気孔率5%以下であるシリカ緻密体とを、前記シリカ多孔体の気孔径の1/2以下の粒径の微粉を20〜50重量%含むシリカ粉と、前記シリカ粉の表面を低融点化させる化合物と、加熱によりシリカを生成するケイ酸化合物とを混合した接合剤を用いて加熱処理により接合し、前記シリカ粉が接合界面及び該接合界面近傍の前記シリカ多孔体の開気孔内に存在する状態となるようにすることを特徴とする。
このような方法で接合することにより、シリカ多孔体を目詰まりさせることがなく、接合部及びその近傍における通気性は損なわずに、接合強度の高い接合体が得られる。
In addition, the method for producing a silica joined body according to the present invention is a method for producing a joined body in which a silica porous body and a silica porous body or a silica dense body are joined via a silica powder, and the average particle size is It consists of a sintered body of silica particles having a particle distribution width of 5 to 300 μm and a particle distribution width within ± 50% of the average particle diameter, a pore diameter of 1 to 100 μm, a porosity of 5 to 45%, and an apparent density of 2. 1 g / cm 3 or more, a porous silica having an average pore diameter in a cross section of 1/12 to 3/4 of an average particle diameter of silica particles in the cross section, and a dense silica having a porosity of 5% or less A silica powder containing 20 to 50% by weight of fine powder having a particle size of ½ or less of the pore diameter of the porous silica, a compound that lowers the surface of the silica powder, and silica by heating. Using a bonding agent mixed with a silicate compound Joined by heat treatment, characterized in that such a state where the silica powder is present in the open pores of the porous silica material at the bonding interface and the bonding interface area.
By joining by such a method, the porous silica body is not clogged, and a joined body having high joining strength can be obtained without impairing the air permeability in the joined portion and the vicinity thereof.

また、本発明に係る他の態様のシリカ接合体の製造方法は、シリカ多孔体と、シリカ多孔体又はシリカ緻密体とが、シリカ粉を介在して接合する接合体の製造方法であって、平均粒子径が5〜300μm、かつ、粒子分布幅が前記平均粒子径の±50%以内にあるシリカ粒子の焼結体からなり、気孔径が1〜100μm、気孔率が5〜45%、見掛け密度が2.1g/cm3以上であり、断面における気孔の平均径が、該断面におけるシリカ粒子の平均粒子径の1/12〜3/4であるシリカ多孔体と、気孔率5%以下であるシリカ緻密体とを、エポキシ樹脂と粒径が前記シリカ多孔体の気孔径の1/2以下であるシリカ粉とを重量比1:1〜20:1で混合した接合剤を用いて50℃以下で加熱することにより接合し、前記シリカ粉が接合界面及び該接合界面近傍の前記シリカ多孔体の開気孔内に存在する状態となるようにすることを特徴とする。
このような方法で接合することにより、高温加熱することなく高い接合強度で接合することができるため、熱収縮や変形を生じることなく、寸法精度の高いシリカ接合体を得ることができる。
Further, the method for producing a silica joined body according to another aspect of the present invention is a method for producing a joined body in which a porous silica body and a porous silica body or a dense silica body are joined via a silica powder, It consists of a sintered body of silica particles having an average particle size of 5 to 300 μm and a particle distribution width within ± 50% of the average particle size, with a pore size of 1 to 100 μm and a porosity of 5 to 45%. A silica porous body having a density of 2.1 g / cm 3 or more and an average pore diameter in a cross section of 1/12 to 3/4 of an average particle diameter of silica particles in the cross section; and a porosity of 5% or less 50 ° C. using a bonding agent obtained by mixing a certain silica dense body with an epoxy resin and silica powder having a particle diameter of 1/2 or less of the pore diameter of the porous silica body at a weight ratio of 1: 1 to 20: 1. Joining by heating below, the silica powder is joined And characterized by such a state that exists in the open pores of the porous silica material of the bonding interface area.
By joining by such a method, since it is possible to join with high joining strength without heating at high temperature, a silica joined body with high dimensional accuracy can be obtained without causing thermal shrinkage or deformation.

本発明によれば、シリカ多孔体同士、又は、シリカ多孔体と石英ガラス等のシリカ緻密体とが、前記多孔体及び接合部における通気性が損なわれることなく、高い接合強度で接合されたシリカ接合体が得られる。
また、前記シリカ接合体は、接合されるシリカ多孔体及びシリカ緻密体の接合時における体積変化が抑制され、寸法精度の高い接合体として得られる。
したがって、本発明に係るシリカ接合体は、主に、フィルタやガス拡散材、シャワープレート、チャック等の半導体製造装置用部材、その他の構造材等の用途に好適である。
According to the present invention, the silica porous bodies or the silica porous bodies and the silica dense bodies such as quartz glass are bonded with high bonding strength without impairing the air permeability in the porous body and the bonded portion. A joined body is obtained.
Further, the silica joined body is obtained as a joined body with high dimensional accuracy by suppressing volume change at the time of joining the porous silica body and the dense silica body to be joined.
Therefore, the silica joined body according to the present invention is mainly suitable for applications such as filters, gas diffusion materials, shower plates, members for semiconductor manufacturing devices such as chucks, and other structural materials.

以下、本発明について、より詳細に説明する。
本発明に係るシリカ接合体は、シリカ多孔体と、シリカ多孔体又はシリカ緻密体とが、シリカ粉を介在して接合された接合体である。すなわち、接合体の一方はシリカ多孔体であり、他方はシリカ多孔体及びシリカ緻密体のいずれであってもよく、両者の接合部にはシリカ粉が存在している。
このようなシリカ接合体は、特に、半導体製造装置用部材におけるシリカ多孔体を含む複合部材として好適に適用することができる。
Hereinafter, the present invention will be described in more detail.
The silica joined body according to the present invention is a joined body in which a silica porous body and a silica porous body or a silica dense body are joined via a silica powder. That is, one of the joined bodies is a porous silica body, and the other may be either a porous silica body or a dense silica body, and silica powder is present at the joint portion between them.
Such a silica joined body can be suitably applied particularly as a composite member containing a porous silica material in a member for semiconductor manufacturing equipment.

本発明において接合するシリカ多孔体は、平均粒子径が5〜300μm、かつ、粒子分布幅が前記平均粒子径の±50%以内にあるシリカ粒子の焼結体からなり、気孔径が1〜100μm、気孔率が5〜45%、見掛け密度が2.1g/cm3以上であり、断面における気孔の平均径が、該断面におけるシリカ粒子の平均粒子径の1/12〜3/4であるものとする。
上記のような構成からなるシリカ多孔体は、本願出願人が特願2011−270768号において提案したものであり、見掛け密度が高く、すなわち、閉気孔が少なく、かつ、高反射率であり、通気性を有しており、半導体製造装置用部材としても十分な強度を有している。特に、真空チャックのチャックプレートに適用した場合に、安定した吸引保持性能を発揮し、構成材料に起因するパーティクルの発生が抑制されるという効果が得られ、好適である。
The porous silica to be joined in the present invention comprises a sintered body of silica particles having an average particle diameter of 5 to 300 μm and a particle distribution width within ± 50% of the average particle diameter, and the pore diameter is 1 to 100 μm. The porosity is 5 to 45%, the apparent density is 2.1 g / cm 3 or more, and the average diameter of the pores in the cross section is 1/12 to 3/4 of the average particle diameter of the silica particles in the cross section. And
The porous silica material having the above-described structure was proposed by the applicant of the present application in Japanese Patent Application No. 2011-270768, and has a high apparent density, that is, a small number of closed pores and a high reflectivity. And has sufficient strength as a member for semiconductor manufacturing equipment. In particular, when applied to a chuck plate of a vacuum chuck, a stable suction holding performance is exhibited, and the effect of suppressing generation of particles due to the constituent materials is obtained, which is preferable.

焼結体である前記シリカ多孔体の作製に用いられるシリカ粒子は、該シリカ多孔体に生じる反りやクラックを抑制する等の観点から、平均粒子径は5〜300μm、粒度分布幅は、全シリカ粒子が前記平均粒子径の±50%以内となるように調整する。
密度が均一な多孔体とする観点からは、前記粒度分布は単分散であることが好ましく、前記粒度分布幅は、平均粒子径の±40%以内であることが好ましく、±20%以内であることがより好ましい。
The silica particles used for the production of the porous silica body, which is a sintered body, have an average particle diameter of 5 to 300 μm and a particle size distribution width of all silica from the viewpoint of suppressing warpage and cracks generated in the porous silica body. The particles are adjusted so as to be within ± 50% of the average particle diameter.
From the viewpoint of obtaining a porous body having a uniform density, the particle size distribution is preferably monodisperse, and the particle size distribution width is preferably within ± 40% of the average particle diameter, and within ± 20%. It is more preferable.

また、前記シリカ多孔体は、通気性や強度、表面の平坦性等を考慮して、気孔径は1〜100μm、気孔率は5〜45%とし、また、見掛け密度は、できる限りシリカの真密度である2.2g/cm3に近いことが好ましく、2.1g/cm3以上とする。さらに、断面における気孔の平均径が、該断面におけるシリカ粒子の平均粒子径の1/12〜3/4となるようにする。 In addition, the porous silica has a pore diameter of 1 to 100 μm and a porosity of 5 to 45% in consideration of air permeability, strength, surface flatness, and the like. The density is preferably close to 2.2 g / cm 3, and is set to 2.1 g / cm 3 or more. Furthermore, the average diameter of the pores in the cross section is set to 1/12 to 3/4 of the average particle diameter of the silica particles in the cross section.

上記のようなシリカ多孔体の製造方法は、特に限定されるものではないが、例えば、特願2011−270768号明細書に記載されているような方法で、前記シリカ粒子を含む造粒粉を調製した後、成形、焼成することにより、焼結体として、所望の多孔体を得ることができる。   The method for producing the porous silica as described above is not particularly limited. For example, the granulated powder containing the silica particles is obtained by the method described in Japanese Patent Application No. 2011-270768. After the preparation, a desired porous body can be obtained as a sintered body by molding and firing.

前記シリカ多孔体とシリカ緻密体とを接合する場合の該シリカ緻密体は、気孔率5%以下のものとし、焼結体であっても、シリカガラス等の非晶質シリカであってもよい。特に、シリカ接合体が高純度かつ高精度であることが求められる場合には、石英ガラスであることが好ましい。   The silica dense body in the case where the porous silica body and the silica dense body are joined may have a porosity of 5% or less, and may be a sintered body or amorphous silica such as silica glass. . In particular, when the silica joined body is required to have high purity and high accuracy, quartz glass is preferable.

本発明においては、前記シリカ接合体の接合部は、少なくとも、前記シリカ多孔体の気孔径の1/2以下の粒径のシリカ粉が、接合界面及び該接合界面近傍の前記シリカ多孔体の開気孔内に存在している状態であることを特徴としている。
シリカ多孔体が、このようなシリカ粉が接合部に介在している状態で接合されることにより、該シリカ多孔体及び接合部における通気性が損なわれることなく、接合強度が高いシリカ接合体が得られる。
In the present invention, the bonded portion of the silica bonded body has at least a silica powder having a particle size of 1/2 or less of the pore diameter of the porous silica material to open the open surface of the porous silica material near the bonded interface and the bonded interface. It is characterized by being in the pores.
The silica porous body is bonded in a state where such silica powder is present in the bonded portion, whereby the porous silica and the silica bonded body having high bonding strength without impairing the air permeability in the bonded portion. can get.

なお、前記シリカ粉は、シリカ接合体が高純度かつ高精度であることが求められる場合には、合成シリカ粉であることが好ましい。また、接合面全体での均一な接合強度を得る観点から、前記シリカ粉は球状シリカであることが好ましい。   The silica powder is preferably a synthetic silica powder when the silica joined body is required to have high purity and high accuracy. Moreover, it is preferable that the said silica powder is spherical silica from a viewpoint of obtaining the uniform joint strength in the whole joint surface.

上記のようなシリカ接合体の製造方法の一態様としては、シリカ粉と、該シリカ粉の表面を低融点化させる化合物と、加熱接合時にシリカを生成するケイ酸化合物とを混合した接合剤を前記シリカ多孔体の接合面に塗布し、加熱して接合する方法を用いることができる。
このような方法によれば、シリカ粉が保水性を有するため、前記接合剤の液体成分がシリカ多孔体内部へ浸透することを抑制することができ、シリカ多孔体の接合面に前記接合剤を留めておくことができる。このため、加熱接合後も、シリカ粉が接合界面及び該接合界面近傍の前記シリカ多孔体の開気孔内に残存し、該シリカ多孔体は目詰まりすることがなく、接合部及びその近傍における通気性は損なわれない。また、加熱によって前記シリカ粉の表面のみが溶融状態となり、相互の接触点にいわゆるネック部が形成された状態となるため、高い接合強度が得られる。
As one aspect of the method for producing a silica bonded body as described above, a bonding agent in which silica powder, a compound that lowers the surface of the silica powder, and a silicate compound that generates silica at the time of heat bonding is mixed. The method of apply | coating to the joint surface of the said silica porous body, and joining by heating can be used.
According to such a method, since the silica powder has water retention, the liquid component of the bonding agent can be prevented from penetrating into the silica porous body, and the bonding agent is applied to the bonding surface of the silica porous body. You can keep it. Therefore, even after heat bonding, silica powder remains in the open pores of the silica porous body near the bonding interface and in the vicinity of the bonding interface, and the silica porous body is not clogged. Sex is not impaired. Further, only the surface of the silica powder is brought into a molten state by heating, and a so-called neck portion is formed at a mutual contact point, so that high bonding strength can be obtained.

上記接合方法においては、シリカ粉が、前記シリカ多孔体の気孔径の1/2以下の粒径のシリカ微粉をシリカ粉全量中20〜50重量%含むものであることが好ましい。該シリカ微粉は、前記シリカ多孔体の接合面の開気孔内に侵入し、接合強度を高める役割を果たす。
前記シリカ粉は、加熱による接合体の体積収縮を抑制する観点から、前記シリカ多孔体の接合部の開気孔の気孔径よりも大きいシリカ粗粉を前記シリカ微粉よりも多く配合して用いることが好ましい。このような骨材としての役割を果たすシリカ粗粉は、シリカ粉全量の50〜80重量%の割合で配合することが好ましく、65重量%が最も好ましい。
In the said joining method, it is preferable that a silica powder contains 20-50 weight% of silica fine powder with a particle size of 1/2 or less of the pore diameter of the said silica porous body in the silica powder whole quantity. The silica fine powder penetrates into the open pores of the bonded surface of the porous silica material and plays a role of increasing the bonding strength.
From the viewpoint of suppressing the volume shrinkage of the bonded body due to heating, the silica powder may be used by blending more silica coarse powder than the silica fine powder, which is larger than the pore diameter of the open pores of the bonded portion of the porous silica body. preferable. It is preferable to mix | blend the silica coarse powder which plays a role as such an aggregate in the ratio of 50 to 80 weight% of silica powder whole quantity, and 65 weight% is the most preferable.

前記シリカ粉の表面を低融点化させる化合物は、特に限定するものではなく、例えば、ナトリウム、カリウム、カルシウム、アルミニウム、リチウム、マグネシウム、リン、ボロン等の酸化物や水酸化物、塩化物等、有機化合物等が挙げられる。
これらの化合物は、前記シリカ多孔体の接合を促進するために添加されるものであり、その添加量は、前記シリカ粉に対して0.01〜2重量%程度でよい。
また、加熱接合時にシリカを生成するケイ酸化合物としては、オルトケイ酸テトラエチル(TEOS)、オルトケイ酸テトラメチル(TMOS)等の金属アルコキシドが挙げられる。その添加量は、前記シリカ粉に対して1〜30重量%程度であることが好ましい。
The compound that lowers the melting point of the surface of the silica powder is not particularly limited, and examples thereof include oxides such as sodium, potassium, calcium, aluminum, lithium, magnesium, phosphorus, and boron, hydroxides, chlorides, and the like. An organic compound etc. are mentioned.
These compounds are added to promote the bonding of the porous silica material, and the addition amount thereof may be about 0.01 to 2% by weight with respect to the silica powder.
Moreover, as a silicate compound which produces | generates a silica at the time of heat joining, metal alkoxides, such as orthosilicate tetraethyl (TEOS) and orthosilicate tetramethyl (TMOS), are mentioned. The addition amount is preferably about 1 to 30% by weight with respect to the silica powder.

上記の加熱による接合方法における熱処理温度は、前記シリカ多孔体を溶融することなく、前記シリカ粉の表面のみを溶融状態とする観点から、700〜1300℃が好ましい。より好ましくは、1200〜1250℃である。シリカ粉の表面を低融点化させる前記化合物を添加することにより、下限温度700℃でも接合することができる。
また、前記熱処理温度における保持時間は3時間以上であることが好ましく、熱処理雰囲気は大気中でよい。
The heat treatment temperature in the joining method by heating is preferably 700 to 1300 ° C. from the viewpoint of bringing only the surface of the silica powder into a molten state without melting the porous silica. More preferably, it is 1200-1250 degreeC. By adding the compound that lowers the melting point of the surface of the silica powder, bonding can be performed even at a minimum temperature of 700 ° C.
The holding time at the heat treatment temperature is preferably 3 hours or more, and the heat treatment atmosphere may be in the air.

また、シリカ接合体の製造方法の他の態様としては、シリカ粉を添加したエポキシ樹脂を前記シリカ多孔体の接合面に塗布し、接合する方法を用いることもできる。
このような方法によれば、50℃以下の低温加熱により接合することができるため、高温加熱による熱収縮や変形を生じることなく、寸法精度の高いシリカ接合体を得ることができる。
また、上記の製造方法と同様に、シリカ粉により、前記エポキシ樹脂のシリカ多孔体内部への浸透が抑制され、シリカ多孔体の接合面に適量のエポキシ樹脂を留めておくことができるため、接合後も、シリカ粉が接合界面及び該接合界面近傍の前記シリカ多孔体の開気孔内に残存し、該シリカ多孔体は目詰まりせず、接合部及びその近傍における通気性が損なわれることなく、高い接合強度が得られる。
Moreover, as another aspect of the method for producing a silica joined body, a method in which an epoxy resin added with silica powder is applied to the joining surface of the porous silica body and joined can be used.
According to such a method, since bonding can be performed by low-temperature heating at 50 ° C. or less, a silica bonded body with high dimensional accuracy can be obtained without causing thermal shrinkage or deformation due to high-temperature heating.
Further, similarly to the above-described manufacturing method, the silica powder prevents the epoxy resin from penetrating into the porous silica body, and an appropriate amount of the epoxy resin can be retained on the bonded surface of the porous silica body. Later, silica powder remains in the open pores of the porous silica body in the vicinity of the bonding interface and the bonding interface, the porous silica body is not clogged, and the air permeability in the bonded portion and the vicinity thereof is not impaired. High bonding strength can be obtained.

この接合方法において用いられるシリカ粉は、前記シリカ多孔体の気孔径の1/2以下の粒径のシリカ微粉をシリカ粉全量中20重量%以上含むものであることが好ましい。該シリカ微粉は、前記シリカ多孔体の接合面の開気孔内に侵入し、接合強度を高める役割を果たす。
エポキシ樹脂は粘性が低く、シリカ粉の粒子表面及びシリカ多孔体の気孔内への浸透速度が大きいため、上記のようなシリカ微粉を用いてシリカ粉の表面積を大きくすることにより、シリカ多孔体の気孔内への浸透を抑制することができ、接合面におけるエポキシ樹脂による接合強度を高めることができる。
このため、上記の加熱による接合方法のような接合体の体積収縮を考慮する必要がなく、シリカ粗粉は混合しなくてもよい。
また、エポキシ樹脂は、粘性が低く、前記シリカ粉の粒子表面及びシリカ多孔体の気孔内面に広がりやすく、シリカ多孔体の気孔を閉塞することがないため、通気性を損なうことなく接合することができる。
The silica powder used in this bonding method preferably contains 20% by weight or more of silica fine powder having a particle size of 1/2 or less of the pore diameter of the porous silica material in the total amount of silica powder. The silica fine powder penetrates into the open pores of the bonded surface of the porous silica material and plays a role of increasing the bonding strength.
Since the epoxy resin has low viscosity and has a high penetration rate into the surface of the silica powder particles and the pores of the silica porous body, by increasing the surface area of the silica powder using the above silica fine powder, The penetration into the pores can be suppressed, and the bonding strength by the epoxy resin on the bonding surface can be increased.
For this reason, it is not necessary to consider volume shrinkage of a joined body like the joining method by heating, and the silica coarse powder does not have to be mixed.
In addition, the epoxy resin has a low viscosity, and is easy to spread on the surface of the silica powder particles and the inner surface of the pores of the porous silica material, and does not block the pores of the porous silica material. it can.

前記エポキシ樹脂とシリカ粉との配合重量比は、該エポキシ樹脂の浸透速度の適度な抑制及び接合強度とのバランスを考慮して、1:1〜20:1であることが好ましく、5:1〜10:1であることがより好ましい。   The blending weight ratio of the epoxy resin and the silica powder is preferably 1: 1 to 20: 1 in consideration of an appropriate suppression of the penetration rate of the epoxy resin and a balance with bonding strength. More preferably, it is -10: 1.

前記エポキシ樹脂の種類は、50℃以下の低温で接合力が得られるものであれば特に限定されず、市販のものを用いることができ、1液型でもよいが、特に、2液混合型の耐熱エポキシ接着剤が好適に用いられる。   The type of the epoxy resin is not particularly limited as long as the bonding force can be obtained at a low temperature of 50 ° C. or less, and a commercially available one can be used. A heat-resistant epoxy adhesive is preferably used.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は、下記実施例により制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not restrict | limited by the following Example.

(シリカ多孔体の作製)
粒径30〜60μm、平均粒径50μmのシリカ粉末500gに、純水80gと1%ポリビニルアルコール水溶液500gを添加してヘンシェルミキサーで混合し、シリカの造粒粉を得た。得られた造粒粉を直径200mm、高さ12mmの金型に入れ、0.5kN/cm2の圧力で加圧成形し、成形体を得た。
この成形体を、120℃で2時間乾燥させた後、1250〜1500℃の焼成温度にて10時間保持してシリカ多孔体を得た。
(Production of porous silica)
To 500 g of silica powder having a particle size of 30 to 60 μm and an average particle size of 50 μm, 80 g of pure water and 500 g of a 1% polyvinyl alcohol aqueous solution were added and mixed with a Henschel mixer to obtain a granulated powder of silica. The obtained granulated powder was put into a mold having a diameter of 200 mm and a height of 12 mm, and pressure-molded with a pressure of 0.5 kN / cm 2 to obtain a molded body.
The molded body was dried at 120 ° C. for 2 hours and then held at a firing temperature of 1250 to 1500 ° C. for 10 hours to obtain a porous silica body.

得られたシリカ多孔体は、焼結シリカ粒子の平均粒子径が50μm、粒子分布幅が前記平均粒子径の±50%以内にあり、気孔径が20μm、気孔率が45%、見掛け密度が2.2g/cm3であり、断面における気孔の平均径が、該断面におけるシリカ粒子の平均粒子径の1/2〜3/4であった。
また、前記シリカ多孔体は、連通孔による通気性を有しており、直径150mm、厚さ5mmの円板上に加工した前記シリカ多孔体について、厚さ方向に窒素ガス50L/minを流した時の圧力損失が20kPa以下であった。
なお、前記シリカ多孔体の気孔率及び気孔径は、JIS R 1634(1998)準拠にて、水銀ポロシメータにより測定した。また、見掛け密度は、JIS R 2205(1992)準拠にて測定した。また、断面における気孔の平均径のシリカ粒子の平均粒子径に対する比は、前記シリカ多孔体の任意の切断面にて各気孔の内接円を求め、それらの内接円の平均径から求めた。
The obtained porous silica has an average particle diameter of sintered silica particles of 50 μm, a particle distribution width within ± 50% of the average particle diameter, a pore diameter of 20 μm, a porosity of 45%, and an apparent density of 2 was .2g / cm 3, the average diameter of the pores in the cross section was 1 / 2-3 / 4 of an average particle diameter of the silica particles in the cross section.
Further, the porous silica material has air permeability due to communication holes, and the porous silica material processed on a disk having a diameter of 150 mm and a thickness of 5 mm was supplied with nitrogen gas of 50 L / min in the thickness direction. The pressure loss at the time was 20 kPa or less.
The porosity and pore diameter of the porous silica were measured with a mercury porosimeter according to JIS R 1634 (1998). The apparent density was measured according to JIS R 2205 (1992). Further, the ratio of the average diameter of pores in the cross section to the average particle diameter of silica particles was obtained from the inscribed circle of each pore at an arbitrary cut surface of the porous silica material, and obtained from the average diameter of the inscribed circles. .

[実施例1〜3、比較例1,2](シリカ多孔体と石英ガラスとの加熱による接合)
上記において作製したシリカ多孔体(10mm×10mm×30mm)の接合面(10mm×10mm)に、平均粒径15μmのシリカ粗粉と平均粒径2μmのシリカ微粉とを下記表1に示す重量比で混合したシリカ粉に対して、アクリルエマルジョン0.1重量%と、TEOS15重量%を添加した接合剤を塗布して、石英ガラス(10mm×10mm×30mm)の接合面(10mm×10mm)と合わせた。これを、大気中、1200℃で3時間熱処理して接合した。
[Examples 1 to 3, Comparative Examples 1 and 2] (joining by heating of porous silica and quartz glass)
On the bonded surface (10 mm × 10 mm) of the porous silica body (10 mm × 10 mm × 30 mm) prepared above, silica coarse powder having an average particle diameter of 15 μm and fine silica powder having an average particle diameter of 2 μm are in a weight ratio shown in Table 1 below. To the mixed silica powder, a bonding agent added with 0.1% by weight of acrylic emulsion and 15% by weight of TEOS was applied to match the bonded surface (10 mm × 10 mm) of quartz glass (10 mm × 10 mm × 30 mm). . This was heat-treated at 1200 ° C. for 3 hours in the atmosphere and joined.

[比較例3,4](シリカ多孔体と石英ガラスとの加熱による接合)
接合剤中のシリカ粗粉とシリカ微粉とを下記表1に示す混合比とし、また、TEOSに代えて純水を添加し、この接合剤を用いて、それ以外は実施例1と同様にして、シリカ多孔と石英ガラスを接合した。
[Comparative Examples 3 and 4] (joining by heating silica porous body and quartz glass)
The silica coarse powder and the silica fine powder in the bonding agent are mixed at the mixing ratio shown in Table 1 below, and pure water is added instead of TEOS, and this bonding agent is used. The porous silica and quartz glass were joined.

上記実施例及び比較例で接合した各シリカ接合体について、接合強度を四点曲げ強さ測定により評価した。これらの結果を表1にまとめて示す。   About each silica joined body joined by the said Example and comparative example, joining strength was evaluated by four-point bending strength measurement. These results are summarized in Table 1.

Figure 2014114186
Figure 2014114186

実施例1〜3においては、いずれも、十分な接合強度が得られ、四点曲げ強さ測定では、多孔体部分が破損し、接合界面での剥離や破損は認められなかった。
一方、比較例1においては、接合界面にクラックが生じ、また、比較例2〜4においては、接合せず、いずれも、接合強度を測定することはできなかった。
In each of Examples 1 to 3, sufficient bonding strength was obtained. In the four-point bending strength measurement, the porous body portion was damaged, and no peeling or damage was observed at the bonding interface.
On the other hand, in Comparative Example 1, cracks occurred at the bonding interface, and in Comparative Examples 2 to 4, no bonding was performed, and none of the bonding strengths could be measured.

[実施例4〜6、比較例5〜7](シリカ多孔体同士の加熱による接合)
上記において作製したシリカ多孔体(10mm×10mm×30mm)同士を、実施例1〜3、比較例1〜3と同様の接合剤を用いて、同様の方法で接合し、各シリカ接合体について、接合強度を四点曲げ強さ測定により評価した。これらの結果を表2にまとめて示す。
[Examples 4 to 6 and Comparative Examples 5 to 7] (joining by heating between porous silica materials)
The silica porous bodies (10 mm × 10 mm × 30 mm) produced above were joined together in the same manner using the same bonding agents as in Examples 1 to 3 and Comparative Examples 1 to 3, and for each silica joined body, The joint strength was evaluated by measuring the four-point bending strength. These results are summarized in Table 2.

Figure 2014114186
Figure 2014114186

実施例4〜6においては、いずれも、十分な接合強度が得られ、四点曲げ強さ測定では、多孔体部分が破損し、接合界面での剥離や破損は認められなかった。
一方、比較例5においては、接合界面にクラックが生じ、また、比較例6,7においては、接合せず、いずれも、接合強度を測定することはできなかった。
In each of Examples 4 to 6, sufficient bonding strength was obtained, and in the four-point bending strength measurement, the porous body portion was damaged, and peeling or damage at the bonding interface was not observed.
On the other hand, in Comparative Example 5, cracks occurred at the bonding interface, and in Comparative Examples 6 and 7, no bonding was performed, and none of the bonding strengths could be measured.

[実施例7〜9、比較例8,9](シリカ多孔体と石英ガラスとのエポキシ樹脂による接合)
上記において作製したシリカ多孔体(10mm×10mm×30mm)の接合面(10mm×10mm)に、エポキシ樹脂(アレムコボンド820;アレムコプロダクツ社製)と平均粒径2μmのシリカ微粉とを下記表3に示す重量比で混合した接合剤を塗布して、石英ガラス(10mm×10mm×30mm)の接合面(10mm×10mm)と合わせた。これを、大気中、35℃で1時間保持して接合した。
[Examples 7 to 9, Comparative Examples 8 and 9] (Jointing of porous silica and quartz glass with epoxy resin)
Table 3 below shows epoxy resin (Alemcobond 820; manufactured by Alemco Products) and silica fine powder having an average particle diameter of 2 μm on the bonded surface (10 mm × 10 mm) of the porous silica material (10 mm × 10 mm × 30 mm) prepared above. The bonding agent mixed at the indicated weight ratio was applied and matched with the bonding surface (10 mm × 10 mm) of quartz glass (10 mm × 10 mm × 30 mm). This was joined at 35 ° C. for 1 hour in the atmosphere.

上記実施例及び比較例で接合した各シリカ接合体について、接合強度を四点曲げ強さ測定により評価した。これらの結果を表3にまとめて示す。   About each silica joined body joined by the said Example and comparative example, joining strength was evaluated by four-point bending strength measurement. These results are summarized in Table 3.

Figure 2014114186
Figure 2014114186

実施例7〜10においては、いずれも、十分な接合強度が得られ、四点曲げ強さ測定では、多孔体部分が破損し、接合界面での剥離や破損は認められなかった。また、接合界面と反対側の石英ガラス表面の平面度は5μmであり、接合前後での変化は見られなかった。
一方、比較例8は、流動性のある接合剤とならず、塗布後、シリカ粒子間のエポキシ樹脂の一部がシリカ多孔体に浸透し、接合界面における十分な接合強度が得られなかった。また、比較例9においては、接合せず、接合強度を測定することはできなかった。
In each of Examples 7 to 10, sufficient bonding strength was obtained. In the four-point bending strength measurement, the porous body portion was damaged, and no peeling or damage was observed at the bonding interface. Further, the flatness of the quartz glass surface opposite to the bonding interface was 5 μm, and no change was observed before and after bonding.
On the other hand, Comparative Example 8 was not a fluid bonding agent, and after application, part of the epoxy resin between the silica particles permeated the porous silica, and sufficient bonding strength at the bonding interface was not obtained. Moreover, in the comparative example 9, it did not join and it was not possible to measure joining strength.

[実施例11〜14、比較例10,11](シリカ多孔体同士のエポキシ樹脂による接合)
上記において作製したシリカ多孔体(10mm×10mm×30mm)同士を、実施例7〜10、比較例8,9と同様の接合剤を用いて、同様の方法で接合し、各シリカ接合体について、接合強度を四点曲げ強さ測定により評価した。これらの結果を表4にまとめて示す。
[Examples 11 to 14, Comparative Examples 10 and 11] (Jointing of Porous Silicas with Epoxy Resin)
The silica porous bodies (10 mm × 10 mm × 30 mm) produced above were joined together in the same manner using the same bonding agent as in Examples 7 to 10 and Comparative Examples 8 and 9, and for each silica joined body, The joint strength was evaluated by measuring the four-point bending strength. These results are summarized in Table 4.

Figure 2014114186
Figure 2014114186

実施例11〜14においては、いずれも、十分な接合強度が得られ、四点曲げ強さ測定では、多孔体部分が破損し、接合界面での剥離や破損は認められなかった。
一方、比較例10は、流動性のある接合剤とならず、塗布後、シリカ粒子間のエポキシ樹脂の一部がシリカ多孔体に浸透し、接合界面における十分な接合強度が得られなかった。また、比較例11においては、接合せず、接合強度を測定することはできなかった。
In each of Examples 11 to 14, sufficient bonding strength was obtained, and in the four-point bending strength measurement, the porous body portion was damaged, and peeling or damage at the bonding interface was not recognized.
On the other hand, Comparative Example 10 was not a fluid bonding agent, and after application, a part of the epoxy resin between the silica particles permeated the porous silica, and sufficient bonding strength at the bonding interface was not obtained. Moreover, in the comparative example 11, it did not join and it was not possible to measure joining strength.

Claims (4)

シリカ多孔体と、シリカ多孔体又はシリカ緻密体とが、シリカ粉を介在して接合された接合体であって、
前記シリカ多孔体は、平均粒子径が5〜300μm、かつ、粒子分布幅が前記平均粒子径の±50%以内にあるシリカ粒子の焼結体からなり、気孔径が1〜100μm、気孔率が5〜45%、見掛け密度が2.1g/cm3以上であり、断面における気孔の平均径が、該断面におけるシリカ粒子の平均粒子径の1/12〜3/4であり、
前記シリカ緻密体は、気孔率5%以下であり、
前記シリカ粉は、少なくとも、前記シリカ多孔体の気孔径の1/2以下の粒径のものが接合界面及び該接合界面近傍の前記シリカ多孔体の開気孔内に存在していることを特徴とするシリカ接合体。
A porous silica body and a porous silica body or a dense silica body are bonded bodies with silica powder interposed therebetween,
The porous silica is composed of a sintered body of silica particles having an average particle diameter of 5 to 300 μm and a particle distribution width within ± 50% of the average particle diameter, and has a pore diameter of 1 to 100 μm and a porosity of 5 to 45%, the apparent density is 2.1 g / cm 3 or more, and the average diameter of the pores in the cross section is 1/12 to 3/4 of the average particle diameter of the silica particles in the cross section.
The silica dense body has a porosity of 5% or less,
The silica powder is characterized in that at least particles having a particle size of 1/2 or less of the pore diameter of the porous silica material are present in the open pores of the porous silica material near the bonding interface and the bonding interface. Silica bonded body.
前記シリカ緻密体が石英ガラスであることを特徴とする請求項1記載のシリカ接合体。   The silica joined body according to claim 1, wherein the silica dense body is quartz glass. シリカ多孔体と、シリカ多孔体又はシリカ緻密体とが、シリカ粉を介在して接合する接合体の製造方法であって、
平均粒子径が5〜300μm、かつ、粒子分布幅が前記平均粒子径の±50%以内にあるシリカ粒子の焼結体からなり、気孔径が1〜100μm、気孔率が5〜45%、見掛け密度が2.1g/cm3以上であり、断面における気孔の平均径が、該断面におけるシリカ粒子の平均粒子径の1/12〜3/4であるシリカ多孔体と、気孔率5%以下であるシリカ緻密体とを、
前記シリカ多孔体の気孔径の1/2以下の粒径の微粉を20〜50重量%含むシリカ粉と、前記シリカ粉の表面を低融点化させる化合物と、加熱によりシリカを生成するケイ酸化合物とを混合した接合剤を用いて加熱処理により接合し、前記シリカ粉が接合界面及び該接合界面近傍の前記シリカ多孔体の開気孔内に存在する状態となるようにすることを特徴とするシリカ接合体の製造方法。
A method for producing a joined body in which a porous silica body and a porous silica body or a dense silica body are joined via a silica powder,
It consists of a sintered body of silica particles having an average particle size of 5 to 300 μm and a particle distribution width within ± 50% of the average particle size, with a pore size of 1 to 100 μm and a porosity of 5 to 45%. A silica porous body having a density of 2.1 g / cm 3 or more and an average pore diameter in a cross section of 1/12 to 3/4 of an average particle diameter of silica particles in the cross section; and a porosity of 5% or less A certain silica dense body,
Silica powder containing 20 to 50% by weight of fine powder having a particle size of ½ or less of the pore diameter of the porous silica, a compound for lowering the melting point of the surface of the silica powder, and a silicate compound for generating silica by heating The silica powder is bonded by heat treatment using a bonding agent in which the silica powder is mixed so that the silica powder is present in the open pores of the silica porous body near the bonding interface and the bonding interface. Manufacturing method of joined body.
シリカ多孔体と、シリカ多孔体又はシリカ緻密体とが、シリカ粉を介在して接合する接合体の製造方法であって、
平均粒子径が5〜300μm、かつ、粒子分布幅が前記平均粒子径の±50%以内にあるシリカ粒子の焼結体からなり、気孔径が1〜100μm、気孔率が5〜45%、見掛け密度が2.1g/cm3以上であり、断面における気孔の平均径が、該断面におけるシリカ粒子の平均粒子径の1/12〜3/4であるシリカ多孔体と、気孔率5%以下であるシリカ緻密体とを、
エポキシ樹脂と粒径が前記シリカ多孔体の気孔径の1/2以下であるシリカ粉とを重量比1:1〜20:1で混合した接合剤を用いて50℃以下で加熱することにより接合し、前記シリカ粉が接合界面及び該接合界面近傍の前記シリカ多孔体の開気孔内に存在する状態となるようにすることを特徴とするシリカ接合体の製造方法。
A method for producing a joined body in which a porous silica body and a porous silica body or a dense silica body are joined via a silica powder,
It consists of a sintered body of silica particles having an average particle size of 5 to 300 μm and a particle distribution width within ± 50% of the average particle size, with a pore size of 1 to 100 μm and a porosity of 5 to 45%. A silica porous body having a density of 2.1 g / cm 3 or more and an average pore diameter in a cross section of 1/12 to 3/4 of an average particle diameter of silica particles in the cross section; and a porosity of 5% or less A certain silica dense body,
Joining by heating at 50 ° C. or less using a bonding agent in which an epoxy resin and silica powder having a particle size of 1/2 or less of the pore size of the porous silica material are mixed at a weight ratio of 1: 1 to 20: 1. And a method for producing a silica joined body, wherein the silica powder is in a state in which the silica powder is present in the open pores of the porous silica body in the vicinity of the joining interface and the joining interface.
JP2012269937A 2012-12-11 2012-12-11 Silica bonded body and method for producing the same Active JP6059523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269937A JP6059523B2 (en) 2012-12-11 2012-12-11 Silica bonded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269937A JP6059523B2 (en) 2012-12-11 2012-12-11 Silica bonded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014114186A true JP2014114186A (en) 2014-06-26
JP6059523B2 JP6059523B2 (en) 2017-01-11

Family

ID=51170608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269937A Active JP6059523B2 (en) 2012-12-11 2012-12-11 Silica bonded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP6059523B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170106217A (en) 2016-03-10 2017-09-20 쿠어스택 가부시키가이샤 Composite silica glass made light diffusion member
US10222519B2 (en) 2016-03-10 2019-03-05 Coorstek Kk Composite silica glass made light diffusion member
US10703879B2 (en) 2014-12-30 2020-07-07 The Boeing Company Process and formulation to join ceramic forms while maintaining structural and physical characteristics across the bond surface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017209278A1 (en) 2017-06-01 2018-12-06 Conti Temic Microelectronic Gmbh Electronic component and method for producing an electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244837A (en) * 1975-04-25 1977-04-08 Mitsui Mining & Smelting Co Method of joining porous sintered body to glass tube
JPH05345685A (en) * 1992-06-15 1993-12-27 Toshiba Ceramics Co Ltd Production of siliceous porous material
JPH07138081A (en) * 1993-09-20 1995-05-30 Asahi Glass Co Ltd Composition for joining ceramics and method for joining
JP2013121888A (en) * 2011-12-12 2013-06-20 Covalent Materials Corp Silica porous body for vacuum chuck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244837A (en) * 1975-04-25 1977-04-08 Mitsui Mining & Smelting Co Method of joining porous sintered body to glass tube
JPH05345685A (en) * 1992-06-15 1993-12-27 Toshiba Ceramics Co Ltd Production of siliceous porous material
JPH07138081A (en) * 1993-09-20 1995-05-30 Asahi Glass Co Ltd Composition for joining ceramics and method for joining
JP2013121888A (en) * 2011-12-12 2013-06-20 Covalent Materials Corp Silica porous body for vacuum chuck

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10703879B2 (en) 2014-12-30 2020-07-07 The Boeing Company Process and formulation to join ceramic forms while maintaining structural and physical characteristics across the bond surface
US11718731B2 (en) 2014-12-30 2023-08-08 The Boeing Company Process and formulation to join ceramic forms while maintaining structural and physical characteristics across the bond surface
KR20170106217A (en) 2016-03-10 2017-09-20 쿠어스택 가부시키가이샤 Composite silica glass made light diffusion member
JP2017165643A (en) * 2016-03-10 2017-09-21 クアーズテック株式会社 Composite silica glass-made light diffusion member
KR101893482B1 (en) * 2016-03-10 2018-08-30 쿠어스택 가부시키가이샤 Composite silica glass made light diffusion member
US10222519B2 (en) 2016-03-10 2019-03-05 Coorstek Kk Composite silica glass made light diffusion member

Also Published As

Publication number Publication date
JP6059523B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
Sun et al. Fabrication of transparent Y2O3 ceramics via aqueous gelcasting
JP6059523B2 (en) Silica bonded body and method for producing the same
CN106187297A (en) A kind of preparation method of composite silicon carbide ceramic filter membrane material
EP3075719B1 (en) Porous material and heat insulating film
CN107001149A (en) Without boron aluminum alloy ceramic foam filter
CN104529524A (en) Silicon carbide porous ceramic and preparation method thereof
JP5709007B2 (en) Heat storage body for heat storage type burner and method for manufacturing heat storage body for heat storage type burner
JP2004315358A (en) Porous alumina sintered compact and method for manufacturing the same
JP3296495B2 (en) Hydrogen torch
WO2014184961A1 (en) Heat collector for solar thermal power generation
TW200831442A (en) Method of joining a porous silicon carbide body and a silicon carbide-silicon composite
KR20160082473A (en) Bonding dissimilar ceramic components
JP4571588B2 (en) Silicon carbide ceramic member having an oxide layer
TWI532549B (en) Alumina bonded body and alumina sintered body
JP2012501851A5 (en)
JP4347254B2 (en) Boron diffusion material and manufacturing method thereof
JP2008166312A (en) Vacuum chuck and vacuum sucker employing it
JP4824049B2 (en) Oxygen separation membrane element, joining method and joining material for the element
JP2007246321A (en) Low thermal expansion ceramic joined body having hollow structure
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2007153700A (en) Method of joining silicon carbide porous ceramic and joined member
JP2008308373A (en) High durability silicon carbide sintered compact and its production method
JP6567450B2 (en) Heat resistant seal material
JP5568792B2 (en) Method for producing porous body
CN103896282A (en) Method used for preparing silicon oxide nanowires via green compact of silicon carbide powder

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160930

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161209

R150 Certificate of patent or registration of utility model

Ref document number: 6059523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350