JP2017165643A - Composite silica glass-made light diffusion member - Google Patents

Composite silica glass-made light diffusion member Download PDF

Info

Publication number
JP2017165643A
JP2017165643A JP2017016833A JP2017016833A JP2017165643A JP 2017165643 A JP2017165643 A JP 2017165643A JP 2017016833 A JP2017016833 A JP 2017016833A JP 2017016833 A JP2017016833 A JP 2017016833A JP 2017165643 A JP2017165643 A JP 2017165643A
Authority
JP
Japan
Prior art keywords
silica glass
porous
composite
spherical
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017016833A
Other languages
Japanese (ja)
Other versions
JP6783159B2 (en
Inventor
由希 阿部
Yuki Abe
由希 阿部
岩崎 武士
Takeshi Iwasaki
武士 岩崎
晃 菅野
Akira Sugano
晃 菅野
創太郎 武田
Sotaro Takeda
創太郎 武田
裕 橋本
Yutaka Hashimoto
裕 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to US15/446,915 priority Critical patent/US10222519B2/en
Priority to KR1020170029444A priority patent/KR101893482B1/en
Publication of JP2017165643A publication Critical patent/JP2017165643A/en
Application granted granted Critical
Publication of JP6783159B2 publication Critical patent/JP6783159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite silica glass-made diffusion member constituted by a composite consisting of a dense silica glass and a porous silica glass, excellent in transmittance of ultraviolet and having no in-plane variation of ultraviolet strength.SOLUTION: There is provided a composite silica glass-made light diffusion member consisting of a dense silica glass and a porous silica glass formed on a surface thereof, the porous silica glass is a porous body having a skeleton consisting of a spherical silica glass, center pore diameter of 10 to 20 μm and porosity of 25 to 40%, the spherical silica glass has average diameter of 30 to 100 μm and average by measuring arithmetic average roughness Ra with measurement length of 1 μm in each spherical silica glass exposed to an outside surface 10 times of 0.8 to 4.0 nm and the porous silica glass has a uniform pore distribution from a boundary surface with the dense silica glass to the outside surface.SELECTED DRAWING: None

Description

本発明は、特に紫外線又は紫外線を含む光源光の拡散に用いられる複合シリカガラス製光拡散部材に関する。   The present invention relates to a light diffusing member made of composite silica glass particularly used for diffusing light source light including ultraviolet light or ultraviolet light.

一般に、光拡散部材には、光透過性の基材中に、基材と屈折率の異なる微細な粒子や気泡を存在させた光拡散部材や、すりガラスのように光透過性の基材表面にサンドブラスト又はエッチングなどの処理によって微細な凹凸を設けた光拡散部材等がある。これらの光拡散部材は、基材内部の微細な粒子や、表面の微細な凹凸形状によって紫外線などの光を散乱又は拡散させる。   Generally, a light diffusing member is a light diffusing member in which fine particles or bubbles having a refractive index different from that of the base material are present in a light transmissive base material, or a light transmissive base material surface such as ground glass. There is a light diffusing member or the like provided with fine irregularities by processing such as sandblasting or etching. These light diffusing members scatter or diffuse light such as ultraviolet rays by the fine particles inside the substrate and the fine irregularities on the surface.

基材と屈折率の異なる微細な粒子による光拡散部材においては、粒子の屈折率、粒子形状又は濃度によって光拡散の程度を変えられるものの、通常は光透過率が40〜60%程度であり光の透過ロスが大きい。また、すりガラスのように基材表面に微細な凹凸を設けた光拡散部材においては、紫外線を拡散することはできても、拡散角度が狭く、十分な拡散性を得ることは難しい。   In a light diffusing member composed of fine particles having a refractive index different from that of the base material, although the degree of light diffusion can be changed depending on the refractive index, particle shape or concentration of the particles, the light transmittance is usually about 40 to 60% and light. The transmission loss is large. Further, in a light diffusing member in which fine irregularities are provided on the surface of a substrate such as ground glass, it is difficult to obtain sufficient diffusibility because the diffusion angle is narrow even though ultraviolet rays can be diffused.

このような光拡散部材として、例えば、特許文献1では、シリカ多孔体同士、又は、シリカ多孔体と、石英ガラス等のシリカ緻密体とがシリカ粉を介して接合されたシリカ接合体が開示されている。特許文献1では、シリカ多孔体とシリカ緻密体とを接着するのに、これらの材料と同質のシリカ粉を用いることで、多孔体の気孔全体を目詰まりさせることがなく、高い接合強度で接合されたシリカ接合体が得られることが開示されている。   As such a light diffusing member, for example, Patent Document 1 discloses a silica bonded body in which silica porous bodies or silica porous bodies and silica dense bodies such as quartz glass are bonded via silica powder. ing. In Patent Document 1, by using silica powder of the same quality as these materials to bond the porous silica body and the dense silica body, the entire pores of the porous body are not clogged and bonded with high bonding strength. It is disclosed that an obtained silica joined body is obtained.

しかしながら、特許文献1に記載のシリカ接合体では、石英ガラスとなるシリカ緻密体と、シリカ多孔体とをそれぞれ製造してから接合するため、加工のリードタイムが長く、コストも多大となり、生産性が十分といえるものではなかった。また、シリカ緻密体とシリカ多孔体との界面近傍にシリカ粉を用いた接着層が存在するため、シリカ接合体において、紫外線の透過効率が劣る傾向があり、また、シリカ粉が介在する接着層の厚さが不均一となる傾向があり、スポット光源から照射された紫外線強度の面内均一性が十分なものではなかった。   However, in the silica joined body described in Patent Document 1, since a silica dense body that becomes quartz glass and a porous silica body are manufactured and joined together, the processing lead time is long, the cost is increased, and the productivity is increased. Was not enough. In addition, since there is an adhesive layer using silica powder in the vicinity of the interface between the silica dense body and the silica porous body, there is a tendency for the ultraviolet light transmission efficiency to be inferior in the silica joined body, and the adhesive layer in which the silica powder intervenes. The thickness of the film tends to be non-uniform, and the in-plane uniformity of the UV intensity irradiated from the spot light source is not sufficient.

特開2014−114186号公報JP, 2014-114186, A

本発明は、緻密質シリカガラス及び多孔質シリカガラスからなる複合体で構成され、紫外線の透過率に優れ、紫外線強度の面内バラツキのない複合シリカガラス製光拡散部材を提供することを課題とする。   It is an object of the present invention to provide a light diffusing member made of a composite silica glass that is composed of a composite made of dense silica glass and porous silica glass, has excellent ultraviolet transmittance, and has no in-plane variation in ultraviolet intensity. To do.

本発明の複合シリカガラス製光拡散部材は、緻密質シリカガラス及びこの表面に形成された多孔質シリカガラスからなり、前記多孔質シリカガラスが、複数の球状シリカガラスからなる骨格を有し、その間隙により連通気孔部を形成した、中心気孔径が10〜20μmで気孔率が25〜40%の多孔体であり、前記球状シリカガラスは平均径が30〜100μmであり、外表面に露出する各球状シリカガラスにおける測定長1μmでの算術平均粗さRaを10回測定した平均値が0.8〜4.0nmであり、かつ、前記多孔質シリカガラスは、前記緻密質シリカガラスとの界面から外表面まで均質な気孔分布を有することを特徴とする。   The composite silica glass light diffusing member of the present invention comprises a dense silica glass and a porous silica glass formed on the surface thereof, and the porous silica glass has a skeleton composed of a plurality of spherical silica glasses, A continuous air hole is formed by a gap, the porous body has a central pore diameter of 10 to 20 μm and a porosity of 25 to 40%, and the spherical silica glass has an average diameter of 30 to 100 μm and is exposed to the outer surface. The average value obtained by measuring the arithmetic average roughness Ra at the measurement length of 1 μm in the spherical silica glass 10 times is 0.8 to 4.0 nm, and the porous silica glass is from the interface with the dense silica glass. It has a uniform pore distribution to the outer surface.

前記球状シリカガラスの断面真円度は0.80以上であることが好ましい。
前記多孔質シリカガラス中のNa、Mg、Al、K、及びFeの含有量はいずれも0.2ppm以下であり、Cuの含有量は0.05ppm以下であることが好ましい。
The roundness of the spherical silica glass is preferably 0.80 or more.
It is preferable that the content of Na, Mg, Al, K, and Fe in the porous silica glass is 0.2 ppm or less, and the content of Cu is 0.05 ppm or less.

本発明の複合シリカガラス製光拡散部材は、上記構成を有することにより、紫外線の透過率に優れ、紫外線強度の面内均一性を高めることが可能となる。   The composite silica glass-made light diffusing member of the present invention has the above-described configuration, so that it has excellent ultraviolet transmittance and can improve the in-plane uniformity of ultraviolet intensity.

図1は、複合シリカガラス製光拡散部材を厚さ方向に切断した後の多孔質シリカガラス部分のSEM写真である。FIG. 1 is an SEM photograph of a porous silica glass portion after a light diffusing member made of composite silica glass is cut in the thickness direction. 図2は、複合シリカガラス製光拡散部材中の緻密質シリカガラスと多孔質シリカガラスとの界面近傍のSEM写真である。FIG. 2 is an SEM photograph of the vicinity of the interface between the dense silica glass and the porous silica glass in the composite silica glass light diffusion member. 図3は、複合シリカガラス製光拡散部材を構成する多孔質シリカガラスの細孔径粒子径分布を表すグラフである。FIG. 3 is a graph showing the pore size particle size distribution of the porous silica glass constituting the composite silica glass light diffusion member. 図4は、複合シリカガラス製光拡散部材を構成する多孔質シリカガラス中の受光角度(°)に対する相対透過率(%)の関係を表すグラフである。FIG. 4 is a graph showing the relationship of the relative transmittance (%) to the light receiving angle (°) in the porous silica glass constituting the composite silica glass light diffusion member.

以下、本発明について詳細に説明する。
本発明の複合シリカガラス製光拡散部材は、緻密質シリカガラス及びこの表面に形成された多孔質シリカガラスからなり、前記多孔質シリカガラスは、複数の球状シリカガラスからなる骨格を有し、その間隙により連通気孔部を形成した、中心気孔径が10〜20μmで気孔率が25〜40%の多孔体であり、前記球状シリカガラスの平均径が30〜100μmであり、外表面に露出する各球状シリカガラスにおける測定長1μmでの算術平均粗さRaを10回測定した平均値は0.8〜4.0nmであり、かつ、前記多孔質シリカガラスは、前記緻密質シリカガラスの界面から外表面まで均質な気孔分布を有する。
本発明の複合シリカガラス製光拡散部材において、多孔質シリカガラスは、緻密質シリカガラス上に位置する。
Hereinafter, the present invention will be described in detail.
The composite silica glass light diffusing member of the present invention comprises a dense silica glass and a porous silica glass formed on the surface thereof, and the porous silica glass has a skeleton composed of a plurality of spherical silica glasses, A continuous air hole is formed by a gap, a porous body having a central pore diameter of 10 to 20 μm and a porosity of 25 to 40%, and the spherical silica glass has an average diameter of 30 to 100 μm, and is exposed to the outer surface. The average value obtained by measuring the arithmetic average roughness Ra at the measurement length of 1 μm in the spherical silica glass 10 times is 0.8 to 4.0 nm, and the porous silica glass is removed from the interface of the dense silica glass. It has a homogeneous pore distribution to the surface.
In the light diffusion member made of composite silica glass of the present invention, the porous silica glass is located on the dense silica glass.

上記多孔質シリカガラスは、複数の球状シリカガラスからなる骨格構造を有している。シリカガラス破砕物を用いた非球状骨格からなる多孔体では、光源から照射される紫外線強度にバラツキが生じ易いことから、球状シリカガラスの骨格構造とすることが好ましい。本発明の複合シリカガラス製光拡散部材において、緻密質シリカガラスの表面に形成される多孔質シリカガラスは、その間隙により連通気孔部を形成した中心気孔径が10μm〜20μmで気孔率が25〜40%の多孔体である。前記中心気孔径が10μm未満、前記気孔率が25%未満では、出射される紫外線の透過率が不十分であり効率性が悪い。また前記中心気孔径が20μm超、前記気孔率が40%超では、上記多孔質シリカガラスの強度が低く、実用性に劣り、また紫外線の拡散性が不十分となる。   The porous silica glass has a skeleton structure composed of a plurality of spherical silica glasses. A porous body having a non-spherical skeleton using a crushed silica glass is preferably a skeleton structure of spherical silica glass because the intensity of ultraviolet rays irradiated from a light source is likely to vary. In the light diffusing member made of composite silica glass of the present invention, the porous silica glass formed on the surface of the dense silica glass has a central pore diameter of 10 μm to 20 μm and a porosity of 25 to 25 formed by the gaps. 40% porous body. When the central pore diameter is less than 10 μm and the porosity is less than 25%, the transmittance of the emitted ultraviolet light is insufficient and the efficiency is poor. On the other hand, if the central pore diameter exceeds 20 μm and the porosity exceeds 40%, the strength of the porous silica glass is low, the practicality is inferior, and the diffusibility of ultraviolet rays is insufficient.

上記球状シリカガラスは中実で透明なガラス構造体であることが好ましい。これにより、紫外線の透過率をより高く、かつ、より均一化することができるからである。
ここで、上述の中心気孔径とは、多孔質シリカガラス中の粒子同士の間に形成される間隙、及び気孔同士が連結した連通気孔径の中央値をいう。
The spherical silica glass is preferably a solid and transparent glass structure. This is because the transmittance of ultraviolet rays can be made higher and more uniform.
Here, the above-mentioned central pore diameter refers to the median value of the gap formed between the particles in the porous silica glass and the diameter of the continuous vent hole where the pores are connected.

また、上記球状シリカガラスは、平均径が30〜100μm、好ましくは50〜80μmの球状体とされる。前記平均径が30μm未満では、紫外線の透過率が不十分であり、また前記平均径を30μm未満とするために、30μm未満の粒子径を多量に含むシリカガラス粒子(原料)を用いると、焼結時の収縮率が高く、応力集中が生じ、多孔質シリカガラスが反りやクラックを有するものとなり、光拡散部材として用いることができない。また、前記平均径が100μmを超える場合、紫外線の拡散性が不十分となり、また、多孔体の強度不足により、粒子の脱落が生じるといった不具合が生じる。さらに、球状シリカガラスの粒子径の最小値は10μmであり、最大値は250μmであり、この範囲内に粒子径分布のピーク値を1つ有することがより好ましい。これにより、紫外線透過の面内均一性が得られ、安定した拡散光を実現することができる。   The spherical silica glass has a mean diameter of 30 to 100 μm, preferably 50 to 80 μm. When the average diameter is less than 30 μm, the transmittance of ultraviolet rays is insufficient, and in order to make the average diameter less than 30 μm, silica glass particles (raw material) containing a large amount of particle diameters less than 30 μm are used. The shrinkage rate at the time of congealing is high, stress concentration occurs, and the porous silica glass has warpage and cracks and cannot be used as a light diffusing member. Further, when the average diameter exceeds 100 μm, the ultraviolet diffusibility becomes insufficient, and the problem that the particles fall off due to insufficient strength of the porous body occurs. Further, the minimum particle diameter of the spherical silica glass is 10 μm, and the maximum value is 250 μm, and it is more preferable to have one peak value of the particle diameter distribution within this range. Thereby, in-plane uniformity of ultraviolet transmission can be obtained, and stable diffused light can be realized.

また、上記多孔質シリカガラスにおいては、この骨格をなす球状シリカガラスの平均径が30〜100μmであり、この骨格の間隙に形成される連通気孔部の中心気孔径が10〜20μmであって、かつ、前記中心気孔径が前記平均径の20%±5%の関係にあることがより最適である。これによって、光源からの紫外線の出射効率をより高めることができ、また出射される紫外線の拡散性をより高めることができる。   Further, in the porous silica glass, the spherical silica glass forming the skeleton has an average diameter of 30 to 100 μm, and the central pore diameter of the continuous air hole portion formed in the gap of the skeleton is 10 to 20 μm, In addition, it is more optimal that the central pore diameter has a relationship of 20% ± 5% of the average diameter. Thereby, the emission efficiency of the ultraviolet rays from the light source can be further increased, and the diffusibility of the emitted ultraviolet rays can be further increased.

上記球状シリカガラスについて、外表面に露出する各球状シリカガラスにおける測定長1μmでの算術平均粗さRaを10回測定した平均値は0.8〜4.0nmであり、好ましくは2.0〜3.0nmである。これによって、光源からの紫外線の透過性が高く、紫外線の出射効率をより高めることができ、さらに出射される紫外線の散乱性をより向上させることができる。   About the said spherical silica glass, the average value which measured 10 times arithmetic mean roughness Ra in measurement length 1 micrometer in each spherical silica glass exposed to an outer surface is 0.8-4.0 nm, Preferably it is 2.0- 3.0 nm. Thereby, the transmittance of ultraviolet rays from the light source is high, the emission efficiency of ultraviolet rays can be further increased, and the scattering property of the emitted ultraviolet rays can be further improved.

上記多孔質シリカガラスは、前記緻密質シリカガラスとの界面から外表面まで均質な気孔分布を有する。これによって、紫外線が入射され、前記多孔質シリカガラスから出射される紫外線強度の面内バラツキが低い複合シリカガラス製光拡散部材を提供することができる。   The porous silica glass has a uniform pore distribution from the interface with the dense silica glass to the outer surface. Accordingly, it is possible to provide a light diffusing member made of composite silica glass which has a low in-plane variation in the intensity of ultraviolet rays that are incident on ultraviolet rays and emitted from the porous silica glass.

前記均質な気孔分布とは、上述の従来技術の如く、前記界面近傍の多孔質ガラスの気孔部にシリカ粉が密に或いは分散されて介在することで、気孔径及び/又は気孔率が前記界面近傍と外表面近傍とで5%を超えて相違することがなく、5%以下の均質性があることを意味する。これによって、前記出射される紫外線強度の面内バラツキを極めて低減することができる。   The homogeneous pore distribution means that, as in the above-described prior art, the silica powder is densely or dispersed in the pore portion of the porous glass in the vicinity of the interface, so that the pore diameter and / or the porosity is the interface. There is no difference of more than 5% between the vicinity and the vicinity of the outer surface, which means that there is a homogeneity of 5% or less. Thereby, the in-plane variation of the emitted ultraviolet intensity can be greatly reduced.

本発明の複合シリカガラス製光拡散部材について、当該球状シリカガラスの任意の断面における、断面真円度が0.80以上であることが好ましい。前記断面真円度が0.80以上であると、複数の球状シリカガラスにより形成される気孔、又は、これらの球状シリカガラスの間隙により形成される連通気孔部の径バラツキが十分に小さく、光源からの紫外線の出射先での拡散性をより高めることができる。本発明の複合シリカガラス製光拡散部材においては、上記多孔質シリカガラス中のNa、Mg、Al、K、及びFeの含有量が、いずれも0ppm以上0.2ppm以下であり、Cuの含有量は0ppm以上0.05ppm以下であることが好ましい。これらの金属は、多孔質シリカガラスの原料であるシリカガラス球状粒子の製造時に混入し得るものである。これらの金属の含有量を上記のとおり0ppm以上0.2ppm以下又は0ppm以上0.05ppm以下とすることによって、紫外線照射を受けても、これらの成分が蛍光等を発することがなく、また紫外線による多孔体の局部的劣化を生じることもなく、複合シリカガラス製光拡散部材の耐用寿命をより長くすることができる。   About the light-diffusion member made from the composite silica glass of this invention, it is preferable that the cross-sectional roundness in the arbitrary cross sections of the said spherical silica glass is 0.80 or more. When the roundness of the cross section is 0.80 or more, the pores formed by a plurality of spherical silica glasses or the diameter variation of the continuous ventilation holes formed by the gaps between these spherical silica glasses is sufficiently small, and the light source The diffusibility at the emission destination of the ultraviolet rays from can be further increased. In the light diffusing member made of composite silica glass of the present invention, the contents of Na, Mg, Al, K, and Fe in the porous silica glass are all 0 ppm or more and 0.2 ppm or less, and the content of Cu Is preferably 0 ppm or more and 0.05 ppm or less. These metals can be mixed in the production of spherical silica glass particles, which are raw materials for porous silica glass. By setting the content of these metals to 0 ppm or more and 0.2 ppm or less or 0 ppm or more and 0.05 ppm or less as described above, these components do not emit fluorescence or the like even when irradiated with ultraviolet rays, and also due to ultraviolet rays. The useful life of the light diffusing member made of composite silica glass can be extended without causing local deterioration of the porous body.

また、上記緻密質シリカガラスは、気孔率が0.1%以下であり、380〜450nmの波長の紫外線に対して90%以上の透過率を有することが好ましい。これにより、上記多孔質シリカガラスとの積層構造によって、十分な耐使用強度が確保され、上述の多孔質シリカガラス特性を有効に機能させた複合シリカガラス製光拡散部材を構成することができる。   The dense silica glass preferably has a porosity of 0.1% or less and a transmittance of 90% or more with respect to ultraviolet rays having a wavelength of 380 to 450 nm. Thus, a composite silica glass-made light diffusing member in which sufficient use strength is secured by the laminated structure with the porous silica glass and the above-described porous silica glass characteristics are effectively functioned can be configured.

前記多孔質シリカガラスの厚さは0.5mm以上3mm以下であり、前記緻密質シリカガラスの暑さは0.5mm以上5mm以下である。この組み合わせによって、実用的な強度が確保されるとともに、より効率的な紫外線の出射及び十分な拡散性が得られる複合シリカガラス製光拡散部材とすることができる。   The thickness of the porous silica glass is 0.5 mm or more and 3 mm or less, and the heat of the dense silica glass is 0.5 mm or more and 5 mm or less. By this combination, a practical strength can be ensured, and a light diffusing member made of composite silica glass that can obtain more efficient emission of ultraviolet rays and sufficient diffusibility can be obtained.

前記多孔質シリカガラスは、OH基含有量を550ppm以上1000ppm以下、Cl含有量を1ppm以下とするのがより好ましい。
これによって、紫外線照射に伴うシリカガラスの経時的劣化をより抑制することができる。
The porous silica glass preferably has an OH group content of 550 ppm to 1000 ppm and a Cl content of 1 ppm or less.
Thereby, the temporal deterioration of the silica glass accompanying ultraviolet irradiation can be further suppressed.

また、上記緻密質シリカガラスは、多孔質シリカガラスと同等の純度にすることが好ましい。具体的には、上記したNa、Mg、Al、K、及びFeの含有量をいずれも0ppm以上0.2ppm以下、Cuの含有量を0ppm以上0.05ppm以下とし、かつ、多孔質シリカガラスと同等、すなわち、Na、Mg、Al、K、及びFeは差が0.04ppm以下、Cuは差が0.01ppm以下に近似させることがより好ましい。これによって、緻密質シリカガラスと多孔質シリカガラスとを一体化するに際して、上記金属のような不純物が多孔質シリカガラスに熱拡散し、蛍光等を発することがなく、また紫外線による多孔体の局部的劣化も防止することができ、複合シリカガラス製光拡散部材の耐用寿命をより長くすることができる。   Moreover, it is preferable that the said dense silica glass is made into the purity equivalent to porous silica glass. Specifically, the Na, Mg, Al, K, and Fe contents described above are all 0 ppm to 0.2 ppm, the Cu content is 0 ppm to 0.05 ppm, and the porous silica glass More preferably, Na, Mg, Al, K, and Fe have a difference of 0.04 ppm or less, and Cu has a difference of 0.01 ppm or less. As a result, when the dense silica glass and the porous silica glass are integrated, impurities such as the above metal do not thermally diffuse into the porous silica glass and do not emit fluorescence or the like. Deterioration can be prevented, and the useful life of the light diffusing member made of composite silica glass can be extended.

本発明の複合シリカガラス製光拡散部材は、緻密質シリカガラスとして、例えば、石英ガラスを樹脂型に戴置し、ここに、結合材に分散させた中実の透明シリカガラス球状粒子を鋳込み、所定の温度下で一体化させることにより製造する。   The light diffusing member made of composite silica glass of the present invention is a dense silica glass, for example, quartz glass is placed in a resin mold, and solid transparent silica glass spherical particles dispersed in a binder are cast therein, It is manufactured by integrating at a predetermined temperature.

このような方法を用いることで、緻密質シリカガラス及び多孔質シリカガラスは、それぞれその表面のみが溶融状態となり、相互の接触点にいわゆるネック部が形成された状態となるため、シリカ粉などの接着剤を使用しなくても、高い接合強度が得られる。   By using such a method, the dense silica glass and the porous silica glass are each in a molten state only, and a so-called neck portion is formed at the mutual contact point. High bonding strength can be obtained without using an adhesive.

前記一体化させるときの温度は、通常1200〜1350℃である。1200℃未満であると、緻密質シリカガラスと多孔質シリカガラスとの接合が弱く、剥離し易い傾向がある。一方、1350℃を超えると、緻密質シリカガラスが失透することがある。
上記温度で一体化させることにより、得られる複合シリカガラス製光拡散部材において、多孔質シリカガラスは、緻密質シリカガラスとの界面近傍からその外表面まで均質な気孔分布を有することが可能となる。
上記結合材には、種々の汎用の材料を用いることができるが、例えば、シリカゾルが、高純度の複合シリカガラス製光拡散部材が得られる点から好ましい。
The temperature for the integration is usually 1200 to 1350 ° C. When the temperature is lower than 1200 ° C., the bonding between the dense silica glass and the porous silica glass is weak and tends to be peeled off. On the other hand, if it exceeds 1350 ° C., the dense silica glass may be devitrified.
By integrating at the above temperature, in the obtained composite silica glass light diffusing member, the porous silica glass can have a uniform pore distribution from the vicinity of the interface with the dense silica glass to the outer surface thereof. .
Although various general-purpose materials can be used for the binder, for example, silica sol is preferable from the viewpoint of obtaining a high-purity composite silica glass light diffusing member.

このような方法で製造した複合シリカガラス製光拡散部材において、緻密質シリカガラスと多孔質シリカガラスとの界面における前記中実の透明シリカガラス球状粒子は略変形することなく、球状のまま、緻密質シリカガラスと接合していることがより好ましい。   In the light diffusing member made of a composite silica glass produced by such a method, the solid transparent silica glass spherical particles at the interface between the dense silica glass and the porous silica glass are not deformed and remain in a spherical shape. More preferably, it is bonded to a porous silica glass.

本発明の複合シリカガラス製光拡散部材の評価に用いた装置及び方法を以下に示す。   The apparatus and method used for evaluating the composite silica glass light diffusion member of the present invention are shown below.

〔実施例1〕
(シリカゾルの調製)
結合剤となるシリカゾルは、オルトケイ酸テトラメチル(TEOS;tetramethylorthosilicate)、超純水、0.1mol/L塩酸、及びプロピレングリコールを、TEOS:超純水:0.1mol/L塩酸:プロピレングリコール=11.7:9:1:3の重量比で、スターラーで2.5時間攪拌した後、0.1mol/LアンモニアでpH4.5〜5.0に調整した。
[Example 1]
(Preparation of silica sol)
The silica sol used as the binder is tetramethylorthosilicate (TEOS), ultrapure water, 0.1 mol / L hydrochloric acid, and propylene glycol. TEOS: ultrapure water: 0.1 mol / L hydrochloric acid: propylene glycol = 11 After stirring for 2.5 hours with a stirrer at a weight ratio of 7: 9: 1: 3, the pH was adjusted to 4.5 to 5.0 with 0.1 mol / L ammonia.

(複合シリカガラス製光拡散部材の作製)
多孔質シリカガラスの原料粉として中実の透明シリカガラス球状粒子を湿式分級することで平均粒子径が75μmとなるようにし、十分な酸洗浄を行い、乾燥後、シリカゾルと該原料粉とを5:12の重量比で混合し、このスラリー状の混合物を超音波洗浄機を用いて分散させた後、樹脂型に石英ガラス板状体(外径20mm;厚さ2mm)を型内下部に配置し、その上方より鋳込み、50℃で3時間放置しゲル化させた。このゲルと前記石英ガラス板状体の一体物を離型し、焼成冶具に高純度アルミナ材料を用いて、昇温速度0.5℃/minで1300℃まで昇温し、12時間保持することで焼成し、多孔質シリカガラスの厚さが1mmとなるように加工した。得られた焼成体を純水洗浄した後、乾燥した。
得られた複合シリカガラス製光拡散部材は、剥がれ等もなく、良好に接合されていた。
(Preparation of composite silica glass light diffusing member)
As a raw material powder of porous silica glass, solid transparent silica glass spherical particles are wet-classified so that the average particle diameter becomes 75 μm, sufficient acid washing is performed, and after drying, silica sol and the raw material powder are mixed with 5 : After mixing at a weight ratio of 12 and dispersing this slurry-like mixture using an ultrasonic cleaner, a quartz glass plate (outer diameter 20 mm; thickness 2 mm) is placed in the lower part of the mold in the resin mold Then, it was cast from above and allowed to stand at 50 ° C. for 3 hours to cause gelation. The integral of the gel and the quartz glass plate is released, heated to 1300 ° C. at a heating rate of 0.5 ° C./min using a high-purity alumina material for the firing jig, and held for 12 hours. And was processed so that the thickness of the porous silica glass was 1 mm. The obtained fired body was washed with pure water and then dried.
The obtained composite silica glass light diffusing member was not peeled off, and was bonded well.

(評価)
(1)組織観察
得られた複合シリカガラス製光拡散部材を厚さ方向に切断した後の多孔体部分をSEM装置で観察したところ、図1に示すように、中実の透明シリカガラス球状粒子が接合され、その隙間に連通孔が形成された骨格を有する多孔質構造が確認できた。
なお、SEM写真中に、球状粒子が一部融着したような構造が確認されたが、これは原料(中実の透明シリカガラス球状粒子)の製造段階で混入したものである。本発明においては、このような粒状体は存在しないほうがよいが、球状粒子の全個数の10%以下、好ましくは5%以下までは許容される。
(Evaluation)
(1) Structure observation When the obtained porous silica glass light diffusing member was cut in the thickness direction, the porous body portion was observed with an SEM apparatus. As shown in FIG. 1, solid transparent silica glass spherical particles were observed. Was confirmed, and a porous structure having a skeleton in which communication holes were formed in the gaps was confirmed.
In the SEM photograph, a structure in which spherical particles are partly fused was confirmed, which was mixed in the production stage of the raw material (solid transparent silica glass spherical particles). In the present invention, such a granular material should not exist, but 10% or less, preferably 5% or less of the total number of spherical particles is allowed.

また、緻密質シリカガラスと多孔質シリカガラスとの界面近傍をSEMで観察したところ、図2に示すように、従来のシリカ接合体において認められたような、界面近傍の多孔質シリカガラス部にシリカ粉などの接着剤の残留がなく、多孔質シリカガラスが界面近傍からその外表面まで均質な気孔分布を有していることが確認された。   Further, when the vicinity of the interface between the dense silica glass and the porous silica glass was observed with an SEM, as shown in FIG. 2, the porous silica glass portion in the vicinity of the interface as observed in the conventional silica joined body was observed. It was confirmed that there was no residual adhesive such as silica powder, and the porous silica glass had a homogeneous pore distribution from the vicinity of the interface to its outer surface.

(2)多孔質シリカガラスの細孔径分布
得られた複合シリカガラス光拡散部材中の多孔質シリカガラスを厚さ約0.8mmに切り出し、細孔径分布を測定したところ、図3に示すように、孔径は約5μmから約30μmの範囲に分布し、その中心気孔径は16.8μm、気孔率は37.7%であった。
なお、この測定は、JIS R 1634に基づき、以下の測定機器を用いて行った。
水銀ポロシメータ:AutoPore IV 9500((株)島津製作所製)
水銀表面張力:485.0dynes/cm
水銀接触角:130.0°
水銀密度:13.5335g/ml
(2) Pore size distribution of porous silica glass The porous silica glass in the obtained composite silica glass light diffusing member was cut out to a thickness of about 0.8 mm, and the pore size distribution was measured. As shown in FIG. The pore diameter was distributed in the range of about 5 μm to about 30 μm, the central pore diameter was 16.8 μm, and the porosity was 37.7%.
In addition, this measurement was performed using the following measuring devices based on JIS R1634.
Mercury porosimeter: AutoPore IV 9500 (manufactured by Shimadzu Corporation)
Mercury surface tension: 485.0 dynes / cm
Mercury contact angle: 130.0 °
Mercury density: 13.5335 g / ml

(3)多孔質シリカガラス中の球状シリカガラスの粒子径分布及び真円度
SEM写真から、粒子が結合した形状のものを除く、20個の粒子をランダムに選択し、その最長径(l1)と最短径(l2)を計測し、その平均値を各粒子の粒子径とした。球状シリカガラス粒子断面の真円度はl2/l1で算出した。
(3) Particle Size Distribution and Roundness of Spherical Silica Glass in Porous Silica Glass Twenty particles are randomly selected from the SEM photograph, excluding those having a bonded shape, and the longest diameter (l 1 ) And the shortest diameter (l 2 ) were measured, and the average value was taken as the particle diameter of each particle. The roundness of the cross section of the spherical silica glass particle was calculated by l 2 / l 1 .

この結果は、粒子径は約20μmから約100μmの範囲に分布し、その平均粒子径は39.2μmであった。
球状シリカガラス断面の真円度は0.93以上であった。
As a result, the particle size was distributed in the range of about 20 μm to about 100 μm, and the average particle size was 39.2 μm.
The roundness of the spherical silica glass cross section was 0.93 or more.

(4)多孔質シリカガラス中の外表面に露出する測定長1μmの球状シリカガラスの表面粗さRa
算術平均粗さRaは、バネ定数3N/m、共振周波数75kHzのカンチレバー(シリコンカンチレバー)を用いて、ACモード(タッピングモード)で原子間力顕微鏡(Digital Instruments製)を使用し、各サンプルの表面形状をスキャンすることで測定した。測定は標準スキャナの最大範囲10μm四方で走査し、その後に、表面形状の特徴が反映されるように視野の絞込み(拡大)を行った。算術平均粗さRaの算出は1μm長さにて実施した。上記算術平均粗さRaを10回(n=10)測定し、平均値をとった。
(4) Surface roughness Ra of spherical silica glass having a measurement length of 1 μm exposed on the outer surface in porous silica glass
Arithmetic mean roughness Ra is obtained by using an atomic force microscope (manufactured by Digital Instruments) in AC mode (tapping mode) using a cantilever (silicon cantilever) having a spring constant of 3 N / m and a resonance frequency of 75 kHz. The shape was measured by scanning. The measurement was performed by scanning a standard scanner with a maximum range of 10 μm square, and then narrowing (enlarging) the field of view so that the characteristics of the surface shape were reflected. The arithmetic average roughness Ra was calculated with a length of 1 μm. The arithmetic average roughness Ra was measured 10 times (n = 10), and the average value was taken.

多孔質シリカガラス中の表面に露出する球状シリカガラス20個につき、各々10回、上記方法により算術表面粗さRaの測定を行った。その結果は、各々10回平均値で3.1〜3.9nmの範囲内にあった。   For 20 spherical silica glasses exposed on the surface in the porous silica glass, the arithmetic surface roughness Ra was measured 10 times each by the above method. The results were in the range of 3.1 to 3.9 nm with an average value of 10 times each.

(5)多孔質シリカガラスの光学特性
積分球式測定装置を用い、相対透過率の測定を行った。相対透過率は以下の式で定義され、各サンプルの出射角θ=0°の出射光量に対する角θの光量の割合を示す。
(5) Optical properties of porous silica glass Relative transmittance was measured using an integrating sphere type measuring device. The relative transmittance is defined by the following equation, and indicates the ratio of the light quantity at the angle θ to the emitted light quantity at the output angle θ = 0 ° of each sample.

受光角0(θ=0)°における透過光量を100とした場合に相対透過率が50%の光量となる出射角度(分散度)は53°であり、広い拡散性が確認された。   When the amount of transmitted light at a light receiving angle of 0 (θ = 0) ° is 100, the emission angle (dispersion degree) at which the relative transmittance is 50% is 53 °, and a wide diffusivity was confirmed.

(6)緻密質シリカガラス及び多孔質シリカガラスの純度分析
得られた複合シリカガラス製光拡散部材の緻密質シリカガラス側から、加熱(130℃)したフッ化水素酸(50%)と硫酸(20%)との混酸で10μm厚さのエッチングを5回行い、5回目のエッチング液について、冷却後、純水で濃度調整し、ICP質量分析装置で測定した。また、多孔質シリカガラスを一部破砕し、この破砕粒につき、上記加熱混酸でエッチングを行い、このエッチング液について同様にして測定を行った。その結果を表1に示す。
(6) Purity analysis of dense silica glass and porous silica glass From the dense silica glass side of the obtained composite silica glass light diffusion member, heated (130 ° C) hydrofluoric acid (50%) and sulfuric acid ( 20%) mixed acid and 10 μm-thick etching were performed 5 times, and the fifth etching solution was cooled, adjusted in concentration with pure water, and measured with an ICP mass spectrometer. In addition, a part of the porous silica glass was crushed, and the crushed particles were etched with the heated mixed acid, and the etching solution was measured in the same manner. The results are shown in Table 1.

〔比較例1〕
以下に示すように、特許文献1に記載の方法に従って、シリカ接合体を作製した。
(シリカ多孔体の作製)
粒径30〜60μm、平均粒子径50μmのシリカ粉末500gに、純水80g及び1%ポリビニルアルコール水溶液500gを添加してヘンシェルミキサーで混合し、シリカの造粒粉を得た。得られた造粒粉を直径200mm、高さ12mmの金型に入れ、0.5kN/cm2の圧力で加圧成形し、成形体を得た。
この成形体を、120℃で2時間乾燥させた後、1250〜1500℃の焼成温度にて10時間保持してシリカ多孔体を得た。
なお、得られたシリカ多孔体は、焼結シリカ粒子の平均粒子径が50μm、粒子分布幅が該平均粒子径の±50%以内にあり、気孔径が20μm、気孔率が45%、及び見掛け密度が2.2g/cm3であった。
[Comparative Example 1]
As shown below, a silica joined body was produced according to the method described in Patent Document 1.
(Production of porous silica)
To 500 g of silica powder having a particle size of 30 to 60 μm and an average particle size of 50 μm, 80 g of pure water and 500 g of a 1% polyvinyl alcohol aqueous solution were added and mixed with a Henschel mixer to obtain silica granulated powder. The obtained granulated powder was put into a mold having a diameter of 200 mm and a height of 12 mm, and pressure-molded with a pressure of 0.5 kN / cm 2 to obtain a molded body.
The molded body was dried at 120 ° C. for 2 hours and then held at a firing temperature of 1250 to 1500 ° C. for 10 hours to obtain a porous silica body.
The obtained porous silica has an average particle diameter of sintered silica particles of 50 μm, a particle distribution width within ± 50% of the average particle diameter, a pore diameter of 20 μm, a porosity of 45%, and an apparent appearance. The density was 2.2 g / cm 3 .

(シリカ接合体の作製)
得られたシリカ多孔体(10mm×10mm×30mm)の接合面(10mm×10mm)に、平均粒径15μmのシリカ粗粉と平均粒子径2μmのシリカ微粉とを6.5:3.5の重量比で混合したシリカ粉に対して、アクリルエマルジョン0.1重量%と、TEOS15重量%を添加した接合剤を塗布して、石英ガラス(10mm×10mm×30mm)の接合面(10mm×10mm)と合わせた。これを、大気中、1200℃で3時間熱処理して接合した。
(Preparation of silica bonded body)
The obtained silica porous body (10 mm × 10 mm × 30 mm) has a joint surface (10 mm × 10 mm) with a coarse silica powder having an average particle diameter of 15 μm and a fine silica powder having an average particle diameter of 2 μm of 6.5: 3.5 weight. To the silica powder mixed in a ratio, a bonding agent added with 0.1% by weight of acrylic emulsion and 15% by weight of TEOS was applied, and a bonded surface (10 mm × 10 mm) of quartz glass (10 mm × 10 mm × 30 mm) Combined. This was heat-treated at 1200 ° C. for 3 hours in the atmosphere and joined.

比較例1のシリカ接合体では、シリカ多孔体と石英ガラスとの界面近傍にシリカ粉が介在するため、実施例1に比べて、紫外線の透過効率が劣る、紫外線強度のシリカ接合体面内でのバラツキが大きくなる、といった結果となった。   In the silica joined body of Comparative Example 1, silica powder is present in the vicinity of the interface between the porous silica body and the quartz glass. Therefore, compared with Example 1, the ultraviolet light transmission efficiency is inferior, and the ultraviolet joined strength is within the silica joined surface. As a result, the variation became larger.

Claims (3)

緻密質シリカガラス及びこの表面に形成された多孔質シリカガラスからなる複合シリカガラス製光拡散部材であって、
前記多孔質シリカガラスが、複数の球状シリカガラスからなる骨格を有し、その間隙により連通気孔部を形成した、中心気孔径が10〜20μmで気孔率が25〜40%の多孔体であり、
前記球状シリカガラスの平均径が30〜100μmであり、外表面に露出する各球状シリカガラスにおける測定長1μmの算術平均粗さRaを10回測定した平均値が0.8〜4.0nmであり、かつ、
前記多孔質シリカガラスは、前記緻密質シリカガラスとの界面から外表面まで均質な気孔分布を有することを特徴とする複合シリカガラス製光拡散部材。
A light diffusing member made of a composite silica glass comprising a dense silica glass and a porous silica glass formed on the surface,
The porous silica glass is a porous body having a skeleton composed of a plurality of spherical silica glasses and having a continuous ventilation hole portion formed by the gaps, having a central pore diameter of 10 to 20 μm and a porosity of 25 to 40%.
The average diameter of the spherical silica glass is 30 to 100 μm, and the average value obtained by measuring the arithmetic average roughness Ra of the measurement length of 1 μm in each spherical silica glass exposed on the outer surface 10 times is 0.8 to 4.0 nm. ,And,
The porous silica glass has a homogeneous pore distribution from the interface with the dense silica glass to the outer surface, and is a composite silica glass light diffusing member.
前記球状シリカガラスの断面真円度が0.80以上であることを特徴とする請求項1に記載の複合シリカガラス製光拡散部材。   The composite silica glass-made light diffusing member according to claim 1, wherein the spherical silica glass has a cross-sectional roundness of 0.80 or more. 前記多孔質シリカガラス中のNa、Mg、Al、K、及びFeの含有量がいずれも0.2ppm以下であり、Cuの含有量が0.05ppm以下であることを特徴とする請求項1又は2に記載の複合シリカガラス製光拡散部材。   The contents of Na, Mg, Al, K, and Fe in the porous silica glass are all 0.2 ppm or less, and the content of Cu is 0.05 ppm or less. The light diffusing member made of composite silica glass according to 2.
JP2017016833A 2016-03-10 2017-02-01 Light diffusing member made of composite silica glass Active JP6783159B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/446,915 US10222519B2 (en) 2016-03-10 2017-03-01 Composite silica glass made light diffusion member
KR1020170029444A KR101893482B1 (en) 2016-03-10 2017-03-08 Composite silica glass made light diffusion member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016046569 2016-03-10
JP2016046569 2016-03-10

Publications (2)

Publication Number Publication Date
JP2017165643A true JP2017165643A (en) 2017-09-21
JP6783159B2 JP6783159B2 (en) 2020-11-11

Family

ID=59912885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016833A Active JP6783159B2 (en) 2016-03-10 2017-02-01 Light diffusing member made of composite silica glass

Country Status (2)

Country Link
JP (1) JP6783159B2 (en)
KR (1) KR101893482B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187314A (en) * 2019-05-17 2020-11-19 Agc株式会社 Glass substrate and on-vehicle display device
WO2021049256A1 (en) * 2019-09-13 2021-03-18 信越石英株式会社 Reflective member and glass layered member production method
WO2022215662A1 (en) * 2021-04-07 2022-10-13 Agc株式会社 Silica glass porous body and manufacturing method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300326A (en) * 1994-04-28 1995-11-14 Shinetsu Quartz Prod Co Ltd Production of laminated quartz glass member having both transparent layer and opaque layer
JPH11160505A (en) * 1997-09-25 1999-06-18 Dainippon Printing Co Ltd Light diffusion film and its manufacture, polarizing plate with diffusion layer, and liquid crystal display device
JPH11292568A (en) * 1997-12-09 1999-10-26 Nippon Sheet Glass Co Ltd Antireflection glass sheet, its production and coating composition for antireflection film
JP2004142996A (en) * 2002-10-24 2004-05-20 Tosoh Corp Quartz glass thermal sprayed componentt and method for producing the same
JP2013033188A (en) * 2010-11-26 2013-02-14 Canon Inc Optical member and imaging apparatus
JP2013227206A (en) * 2012-03-27 2013-11-07 Mitsubishi Chemicals Corp Porous silica film
JP2014114186A (en) * 2012-12-11 2014-06-26 Covalent Materials Corp Silica bonded body and method for manufacturing the same
WO2015009054A1 (en) * 2013-07-17 2015-01-22 Saint-Gobain Glass France Laminate for light emitting device and process of preparing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032824A (en) * 2006-07-26 2008-02-14 Kyodo Printing Co Ltd Light diffusing sheet
KR20180100721A (en) 2010-10-20 2018-09-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Low refractive index diffuser element having interconnected voids
DE102011115379B4 (en) 2011-10-10 2018-09-27 Schott Ag Coated glass or glass ceramic substrate with haptic properties and glass ceramic hob
JP6187115B2 (en) * 2013-10-04 2017-08-30 三菱ケミカル株式会社 Silica porous membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300326A (en) * 1994-04-28 1995-11-14 Shinetsu Quartz Prod Co Ltd Production of laminated quartz glass member having both transparent layer and opaque layer
JPH11160505A (en) * 1997-09-25 1999-06-18 Dainippon Printing Co Ltd Light diffusion film and its manufacture, polarizing plate with diffusion layer, and liquid crystal display device
JPH11292568A (en) * 1997-12-09 1999-10-26 Nippon Sheet Glass Co Ltd Antireflection glass sheet, its production and coating composition for antireflection film
JP2004142996A (en) * 2002-10-24 2004-05-20 Tosoh Corp Quartz glass thermal sprayed componentt and method for producing the same
JP2013033188A (en) * 2010-11-26 2013-02-14 Canon Inc Optical member and imaging apparatus
JP2013227206A (en) * 2012-03-27 2013-11-07 Mitsubishi Chemicals Corp Porous silica film
JP2014114186A (en) * 2012-12-11 2014-06-26 Covalent Materials Corp Silica bonded body and method for manufacturing the same
WO2015009054A1 (en) * 2013-07-17 2015-01-22 Saint-Gobain Glass France Laminate for light emitting device and process of preparing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187314A (en) * 2019-05-17 2020-11-19 Agc株式会社 Glass substrate and on-vehicle display device
JP7283222B2 (en) 2019-05-17 2023-05-30 Agc株式会社 Glass substrate and in-vehicle display device
WO2021049256A1 (en) * 2019-09-13 2021-03-18 信越石英株式会社 Reflective member and glass layered member production method
CN114364641A (en) * 2019-09-13 2022-04-15 信越石英株式会社 Reflecting member and method for manufacturing glass laminated member
EP4029838A4 (en) * 2019-09-13 2023-10-11 Shin-Etsu Quartz Products Co., Ltd. Reflective member and glass layered member production method
JP7369573B2 (en) 2019-09-13 2023-10-26 信越石英株式会社 Method for manufacturing reflective members and glass laminated members
WO2022215662A1 (en) * 2021-04-07 2022-10-13 Agc株式会社 Silica glass porous body and manufacturing method therefor

Also Published As

Publication number Publication date
KR101893482B1 (en) 2018-08-30
KR20170106217A (en) 2017-09-20
JP6783159B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
KR101893482B1 (en) Composite silica glass made light diffusion member
US10222519B2 (en) Composite silica glass made light diffusion member
WO2009104356A1 (en) Wavelength conversion member and method for manufacturing the same
JP6323928B2 (en) Transparent porous sustained-release body and method for producing the same, sustained-release body kit, sustained-release apparatus, and sustained-release method
TWI531786B (en) Raman detecting system
EP3075719A1 (en) Porous material and heat insulating film
JP2017178665A (en) Porous ceramic, gas dispersion sheet and member for absorption
TWI546247B (en) Method for making bowl-metal nanostructure array
JP6751822B1 (en) Opaque quartz glass and its manufacturing method
TW201532949A (en) Bowl-metal nanostructure array
JP6326412B2 (en) Window material for ultraviolet light emitting element and method for manufacturing the same
JP2014220289A (en) Manufacturing method of light wavelength conversion glass, light wavelength conversion glass and light-emitting apparatus
JP2007070201A (en) Transparent silica sintered compact and method of manufacturing the same
JP2019182730A (en) Ceramic composite, projector, and manufacturing of ceramic composite
US11920068B2 (en) Method of manufacturing wavelength conversion member and wavelength conversion member
CN112867698B (en) Method for producing multilayer silica glass body
JPWO2014088011A1 (en) Transparent member and light emitting module
JP2017095349A (en) Method for manufacturing composite formed of high silicic acid containing material
JP5047402B2 (en) Opal and its manufacturing method
JP2018090440A (en) Method for manufacturing optical component having acute part
JP2017216389A (en) Silica glass member for hermetic seal of ultraviolet smd type led element
JP7156935B2 (en) Silica porous material for vacuum chuck
JP2014228614A (en) Light transmissive composition and optical functional member using the same and method of producing light transmissive composition
KR102203690B1 (en) Phosphor plate and manufacturing method thereof
JP2020083682A (en) Method for producing silica porous body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6783159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350