JP2006293292A - Optical storage medium making use of oligothiophene - Google Patents

Optical storage medium making use of oligothiophene Download PDF

Info

Publication number
JP2006293292A
JP2006293292A JP2005342451A JP2005342451A JP2006293292A JP 2006293292 A JP2006293292 A JP 2006293292A JP 2005342451 A JP2005342451 A JP 2005342451A JP 2005342451 A JP2005342451 A JP 2005342451A JP 2006293292 A JP2006293292 A JP 2006293292A
Authority
JP
Japan
Prior art keywords
group
optical storage
storage medium
energy
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005342451A
Other languages
Japanese (ja)
Other versions
JP4623515B2 (en
Inventor
Tamejiro Hiyama
爲次郎 檜山
Masaki Shimizu
正毅 清水
Yukio Kawanami
由紀夫 川波
Hirohisa Kanbara
浩久 神原
Yuhei Mori
裕平 森
Takashi Kurihara
栗原  隆
Akifumi Adachi
昌文 安達
Yutaka Sasaki
豊 佐々木
Seiji Akiyama
誠治 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Mitsubishi Chemical Corp
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Pioneer Corp
Kyoto University NUC
Original Assignee
Rohm Co Ltd
Mitsubishi Chemical Corp
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Pioneer Electronic Corp
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd, Mitsubishi Chemical Corp, Hitachi Ltd, Nippon Telegraph and Telephone Corp, Pioneer Electronic Corp, Kyoto University NUC filed Critical Rohm Co Ltd
Priority to JP2005342451A priority Critical patent/JP4623515B2/en
Priority to PCT/JP2006/304952 priority patent/WO2006098296A1/en
Priority to TW095108543A priority patent/TW200705090A/en
Publication of JP2006293292A publication Critical patent/JP2006293292A/en
Application granted granted Critical
Publication of JP4623515B2 publication Critical patent/JP4623515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Holo Graphy (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient two-stage-excited hologram memory or other optical storage medium making use of a compound, such as an oligothiophene compound, that although being high in the efficiency of generation of singlet excited state and triplet excited state, is not apt to immediately induce a chemical reaction involving a structural change, etc. <P>SOLUTION: There is provided an optical storage medium of organic mixture comprises a two-stage-excited energy donor capable of being excited to a singlet excited state by irradiation with a first exciting light, subsequently being transferred to the lowest triplet excited state by intersystem crossing and thereafter being excited to a higher triplet excited state by irradiation with a second exciting light and an energy acceptor capable of receiving energy from the energy donor and feeding the energy to a chemical reaction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、高励起三重項状態を経由する二段階励起型のエネルギー供与体及びこのエネルギー供与体からエネルギーを受け取るエネルギー受容体を有する有機混合体からなる光記憶媒体に関する。   The present invention relates to an optical storage medium comprising a two-stage excited type energy donor via a highly excited triplet state and an organic mixture having an energy acceptor that receives energy from the energy donor.

ホログラムメモリとして、一段階励起型のホログラムメモリ、すなわち、光記憶媒体にデータを載せた物体光と参照光を同時に照射して、この2つの光の干渉縞を形成させ、この干渉縞の強度分布をデータとして保存し、次に、参照光をこの光メモリ媒体に照射することにより、回折光を生成させ、この回折光からデータを再生するホログラムメモリが知られている。   As a hologram memory, a one-step excitation type hologram memory, that is, the object light and the reference light loaded with data on the optical storage medium are simultaneously irradiated to form interference fringes of these two lights, and the intensity distribution of the interference fringes Is stored as data, and then a diffracted light is generated by irradiating the optical memory medium with a reference light, and data is reproduced from the diffracted light.

このホログラムメモリを始めとする光記憶媒体が層構造をとる場合、その記録層は、通常、単層からなり、近年の大容量化への要望に応えるには限界がある。かかる限界を打破する有力な方法の一つとして、複数の記録層を積層することがあげられる。   When the optical storage medium such as the hologram memory has a layer structure, the recording layer is usually a single layer, and there is a limit to meet the recent demand for large capacity. One effective method for overcoming this limit is to stack a plurality of recording layers.

しかし、複数の記録層を積層した積層体を用いる場合、前記一段階励起型による場合は実現が困難である。すなわち、複数層の記録層にデータを記録する場合、まず、図7(a)に示すように、ある一つの記憶層a1に、データを記憶するべく参照光及び物体光を照射する。続いて、図7(b)に示すように、他の記憶層a2に、別のデータを記録すべく参照光及び物体光を照射する。このとき、物体光は、図7(a)(b)に示すように、物体光は層a2のみならず、層a1を含む他の層を通過する。このとき、層a1等のデータが記憶された層のデータが消去されてしまうという問題が生じる。さらに、データの再生時においても同様で、図7(c)に示すように、ある一つの層のデータを再生すると、再生光が他の層のデータを消去してしまうという問題が生じる。   However, in the case of using a laminate in which a plurality of recording layers are laminated, it is difficult to realize in the case of the one-step excitation type. That is, when data is recorded on a plurality of recording layers, first, as shown in FIG. 7A, a certain storage layer a1 is irradiated with reference light and object light to store data. Subsequently, as shown in FIG. 7B, the other storage layer a2 is irradiated with reference light and object light to record other data. At this time, as shown in FIGS. 7A and 7B, the object light passes through not only the layer a2 but also other layers including the layer a1. At this time, there arises a problem that data in the layer in which data such as the layer a1 is stored is erased. Further, the same applies to the reproduction of data, and as shown in FIG. 7C, when data of one layer is reproduced, there arises a problem that the reproduction light erases the data of the other layer.

この問題を解決する有望な手法として、図8に示すような、高励起三重項状態を経由する二段階励起型の光記憶媒体を適用する方法がある。ホログラムメモリの例で説明すると、図8(a)に示すように、第一励起光(=ゲート光)を照射すると、その層のみが最低三重項励起状態となって記録可能となり、ここに、第二励起光(=参照光+物体光)を照射することにより、高励起の三重項励起状態になって二光束干渉による干渉縞が媒体内に構造変化屈折率変化として定着され、その結果、光記憶が行われる。他方、図8(b)に示すように、第一励起光を照射していない層は、最低三重項励起状態になく、記憶できる状態にないので、たとえ、第二励起光(=参照光+物体光)を照射しても、三重項励起状態にならないため、二光束干渉が生じず、光記憶が行われない。このため、第一励起光を照射していない層は、既に記憶されたデータがあっても、消去されることはない。   As a promising technique for solving this problem, there is a method of applying a two-stage excitation type optical storage medium via a highly excited triplet state as shown in FIG. In the example of the hologram memory, as shown in FIG. 8A, when the first excitation light (= gate light) is irradiated, only the layer becomes the lowest triplet excited state and can be recorded. By irradiating the second excitation light (= reference light + object light), it becomes a highly excited triplet excited state, and interference fringes due to two-beam interference are fixed in the medium as a structural change refractive index change. Optical storage is performed. On the other hand, as shown in FIG. 8B, since the layer not irradiated with the first excitation light is not in the lowest triplet excitation state and is not in a memorizable state, the second excitation light (= reference light + Irradiation of (object light) does not result in a triplet excited state, so that two-beam interference does not occur and optical storage is not performed. For this reason, even if there is already stored data, the layer not irradiated with the first excitation light is not erased.

すなわち、二段階励起型においては、光記録のためには、第一励起光及び第二励起光の両方の照射が必要であり、図8(a)に示すように、ゲート光を照射させて記録可能な最低三重項励起状態に励起させた上で、データを載せる物体光、及びこの物体光と干渉して干渉縞を生じさせる参照光とを照射させることで初めて、エネルギー供与体をより高い三重項励起状態にすることができ、光記録が可能となる。   That is, in the two-stage excitation type, it is necessary to irradiate both the first excitation light and the second excitation light for optical recording. As shown in FIG. The energy donor becomes higher only by exciting the lowest triplet excited state that can be recorded, and then irradiating the object light on which data is placed and the reference light that interferes with the object light and generates interference fringes. A triplet excited state can be obtained, and optical recording becomes possible.

これに対し、ゲート光を照射せずに、物体光と参照光のみを照射しても、図8(b)に示すように、エネルギー供与体は記録可能な最低三重項励起状態に励起できないため、光記録は不可能であり、また、このゲート光の照射されない層では、データが消去されることもない。   On the other hand, even if only the object light and the reference light are irradiated without irradiating the gate light, the energy donor cannot be excited to the recordable triplet excited state as shown in FIG. 8B. Optical recording is impossible, and data is not erased in the layer not irradiated with the gate light.

このような高励起三重項状態を経由する二段階励起型のホログラムメモリを構成する有機材料として、ビアセチル(ブタン−2,3−ジオン、非特許文献1参照)やカルバゾール(9H−カルバゾール、非特許文献2参照)が知られている。   Biacetyl (butane-2,3-dione, see Non-Patent Document 1) and carbazole (9H-carbazole, non-patent) are used as an organic material that constitutes a two-stage excitation type hologram memory that passes through such a highly excited triplet state. Document 2) is known.

この非特許文献1や2に記載の方法においては、ビアセチルやカルバゾールが高励起の三重項励起状態(T)に励起されると、構造変化を起し、その結果、物体光と参照光とが作る干渉縞が媒質内の屈折率変化として定着され、ホログラムの記録・再生が可能と記載されている。 In the methods described in Non-Patent Documents 1 and 2, when biacetyl or carbazole is excited to a highly excited triplet excited state (T n ), a structural change occurs, and as a result, object light and reference light It is described that the interference fringes formed by the above are fixed as a change in the refractive index in the medium, and recording / reproducing of the hologram is possible.

しかし、これらのビアセチルやカルバゾールは、それら自体の効率が低いため、ホログラムの記憶・再生効率を示す指標となる参照光の回折効率が低く、回折効率1%を得るためには、最低でも200μm程度の厚みが必要となる。このため、ビアセチルやカルバゾールを用いる限り、実用的な膜厚とされる数μmの薄膜型の光記憶媒体の実現は難しいのが現状である。   However, since these biacetyls and carbazoles themselves have low efficiency, the diffraction efficiency of the reference beam, which is an index indicating the hologram storage / reproduction efficiency, is low, and in order to obtain a diffraction efficiency of 1%, at least about 200 μm. Thickness is required. For this reason, as long as biacetyl or carbazole is used, it is difficult to realize a thin film type optical storage medium having a practical thickness of several μm.

ところで、回折効率を向上させる方法としては、光源の強度をあげる方法や、集光レンズの焦点距離を短くして光密度をあげる等の方法があげられる。しかし、これらの方法によると、前記のビアセチルやカルバゾールでは、必要なゲート光の照射強度が高くなりすぎ、光損傷が生じてしまうという問題点を有していた。   By the way, as a method for improving the diffraction efficiency, there are a method of increasing the intensity of the light source and a method of increasing the light density by shortening the focal length of the condenser lens. However, according to these methods, the above-described biacetyl and carbazole have a problem that the necessary irradiation intensity of gate light becomes too high and optical damage occurs.

これらに対し、高励起三重項状態を生成する有機材料として、オリゴチオフェン系化合物(非特許文献3参照)が知られている。   In contrast, oligothiophene compounds (see Non-Patent Document 3) are known as organic materials that generate highly excited triplet states.

Opt.Lett.,7,177(1982)(Chr.Brauchle et al)Opt. Lett. , 7, 177 (1982) (Chr. Brauchle et al). Opt.Lett.,6,159(1981)(G.C.Bjorklund et al)Opt. Lett. 6,159 (1981) (GC Bjorklund et al). J.Phys.Chem.,100,18683(1996)(R.S.Becker et al)J. et al. Phys. Chem. , 100, 18683 (1996) (RS Becker et al).

しかしながら、オリゴチオフェン系化合物を用いる場合、高励起の三重項励起状態(T)に励起されても、そこから直ちに構造変化等の化学反応を起こすことは期待できず、このままでは、光記録を行うことはできない。 However, when an oligothiophene-based compound is used, even if excited to a highly excited triplet excited state (T n ), it cannot be expected to cause a chemical reaction such as a structural change immediately from that state. Can't do it.

すなわち、非特許文献3に記載されているように、オリゴチオフェン系化合物は、従来、一重項励起状態や三重項励起状態の生成効率が高いことが理論等で予測されているものの、直ちに構造変化等の化学反応は生じにくく、それだけではホログラムメモリなどの光記憶媒体に適用することはできないのである。   That is, as described in Non-Patent Document 3, oligothiophene compounds are conventionally predicted to have high generation efficiency in singlet excited states and triplet excited states by theory, but immediately undergo structural changes. Such chemical reactions are unlikely to occur and cannot be applied to an optical storage medium such as a hologram memory by itself.

そこで、この発明は、オリゴチオフェン系化合物のような一重項励起状態や三重項励起状態の生成効率が高いものの、直ちに構造変化等の化学反応は生じにくい化合物を用いた高効率な二段階励起型のホログラムメモリを始めとする光記憶媒体を提供することを目的とする。   Therefore, the present invention provides a high-efficiency two-step excitation type using a compound such as an oligothiophene compound that has a high generation efficiency of a singlet excited state or a triplet excited state, but does not readily cause a chemical reaction such as a structural change. It is an object of the present invention to provide an optical storage medium including the hologram memory.

この発明においては、第一励起光照射により、一重項励起状態に励起され、その後、項間交差により最低三重項励起状態に移行し、続いて、第二励起光照射により、より高い三重項励起状態に励起される二段階励起型のエネルギー供与体と、そのエネルギー供与体からエネルギーを受け取り、かかるエネルギーを化学反応に供与するエネルギー受容体とを有することを特徴とする有機混合体からなる光記憶媒体を用いることにより、前記課題を解決したのである。   In this invention, it is excited to the singlet excited state by the first excitation light irradiation, and then transitions to the lowest triplet excited state by the intersystem crossing, and then the higher triplet excitation by the second excitation light irradiation. An optical memory comprising an organic mixture comprising: a two-stage excited energy donor excited to a state; and an energy acceptor receiving energy from the energy donor and donating such energy to a chemical reaction By using a medium, the above problem has been solved.

この発明は特定のエネルギー供与体及びエネルギー受容体を用いるので、三重項励起状態に励起されたエネルギー供与体から、エネルギー受容体へエネルギーが渡され、その渡されたエネルギーを化学反応に供与することができる。これにより、適切にエネルギーが化学反応に供与され、光記録をより確実に行うことができ、高効率な二段階励起型のホログラムメモリを始めとする光記憶媒体を提供することができる。   Since this invention uses a specific energy donor and energy acceptor, energy is transferred from the energy donor excited to the triplet excited state to the energy acceptor, and the passed energy is donated to the chemical reaction. Can do. Accordingly, energy can be appropriately supplied to the chemical reaction, optical recording can be performed more reliably, and an optical storage medium such as a highly efficient two-stage excitation type hologram memory can be provided.

また、エネルギー供与体としてオリゴチオフェン系化合物を用いる場合、この化合物は、一重項励起状態や三重項励起状態の生成効率が高いので、これを用いてホログラムメモリを作製すると、高い回折効率を得ることが可能となり、メモリ媒体を実用的な数μmの薄膜にすることが可能となる。   In addition, when an oligothiophene compound is used as an energy donor, this compound has a high generation efficiency of a singlet excited state or a triplet excited state, so that when a hologram memory is produced using this compound, high diffraction efficiency is obtained. Thus, the memory medium can be made into a practical thin film of several μm.

さらに、この発明の適用用途は、ホログラムメモリに止まらず、光照射により、二段階励起のプロセスを通して、媒体の内部の任意のスポット(=ドット)において、干渉縞に対応したものでない通常の屈折率変化を低パワーで起こさせる場合にも適用可能である。この場合は、第一励起光と第二励起光の2つのビームで実現でき、たとえば、三次元媒体において二つのビームの重なった任意のスポットで屈折率変化を起こさせること等が可能となる。   Furthermore, the application of the present invention is not limited to the hologram memory, but is a normal refractive index that does not correspond to the interference fringes at any spot (= dot) inside the medium through the process of two-step excitation by light irradiation. The present invention can also be applied to a case where the change is caused with low power. In this case, it can be realized by two beams of the first excitation light and the second excitation light. For example, it is possible to cause a refractive index change at an arbitrary spot where two beams overlap in a three-dimensional medium.

以下において、ホログラムメモリへの適用を中心に、本発明の光記憶媒体について詳細に説明する。この光記憶媒体にかかる発明は、所定のエネルギー供与体及びエネルギー受容体を用いた光記憶媒体である。   Hereinafter, the optical storage medium of the present invention will be described in detail with a focus on application to a hologram memory. The invention relating to this optical storage medium is an optical storage medium using a predetermined energy donor and energy acceptor.

前記エネルギー供与体とは、オリゴチオフェン系化合物等の一重項励起状態及び三重項励起状態の生成効率が高いものの、直ちに構造変化等の化学反応は生じにくい化合物をいう。前記の一重項励起状態や三重項励起状態の生成効率が高い化合物とは、第一励起光照射により、一重項励起状態に励起される効率が高く、また、最低三重項励起状態への項間交差への効率も高く、さらに、第二励起光照射により、より高い三重項励起状態に励起される効率も高い二段階励起型の化合物をいう。   The energy donor refers to a compound such as an oligothiophene compound that has high generation efficiency of a singlet excited state and a triplet excited state, but hardly undergoes a chemical reaction such as a structural change immediately. The compound having high generation efficiency of the singlet excited state or triplet excited state is high in the efficiency of being excited to the singlet excited state by irradiation with the first excitation light, and between the terms to the lowest triplet excited state. It refers to a two-stage excitation type compound that has a high efficiency for crossing and also has a high efficiency of being excited to a higher triplet excited state by irradiation with second excitation light.

また、前記エネルギー受容体とは、前記エネルギー供与体からエネルギーを受け取って最低三重項励起状態となり、化学反応へのエネルギーを供与し易い化合物をいう。すなわち、前記エネルギー受容体の三重項励起状態のエネルギーレベルが、前記エネルギー供与体の三重項励起状態のエネルギーレベルに比べて、同様又は少し小さい程度であるので、エネルギー受容体のエネルギー受容が容易となり、かつ、得たエネルギーのほとんどを化学反応に供与できる化合物がよい。   The energy acceptor refers to a compound that receives energy from the energy donor and is in a lowest triplet excited state and can easily donate energy to a chemical reaction. That is, since the energy level of the triplet excited state of the energy acceptor is similar to or slightly smaller than the energy level of the triplet excited state of the energy donor, the energy acceptor of the energy acceptor is easy. A compound that can donate most of the obtained energy to the chemical reaction is preferable.

前記のエネルギー供与体とエネルギー受容体とのエネルギーの受容関係の例を、図1に示すことができる。まず、エネルギー供与体にゲート光である第一励起光を与えることにより、エネルギー供与体は、基底状態(S)から、一重項励起状態(S)等となる。次いで、項間交差で、最低三重項励起状態(T)に移行する。そして、第二励起光(ホログラムの場合、物体光及び参照光)を与えることによって、より高い三重項励起状態(T)になる。 An example of the energy acceptance relationship between the energy donor and the energy acceptor can be shown in FIG. First, by giving first excitation light which is gate light to an energy donor, the energy donor changes from a ground state (S 0 ) to a singlet excited state (S 1 ) or the like. Next, transition to the lowest triplet excited state (T 1 ) occurs at the intersystem crossing. Then, by applying the second excitation light (in the case of a hologram, object light and reference light), a higher triplet excitation state (T n ) is obtained.

次に、三重項励起状態(T)のエネルギー供与体から、エネルギーがエネルギー受容体にエネルギー移動(ET)される。これにより、エネルギー供与体は基底状態(S)に戻り、一方、エネルギー受容体は、最低三重項励起状態(T)等になる。そして、エネルギー受容体は得たエネルギーを化学反応に供与して、基底状態(S)に戻るか、または、反応生成物へ変化する。 Next, energy is transferred (ET) from the energy donor in the triplet excited state (T n ) to the energy acceptor. This returns the energy donor to the ground state (S 0 ), while the energy acceptor is in the lowest triplet excited state (T 1 ) and the like. The energy acceptor then donates the obtained energy to the chemical reaction and returns to the ground state (S 0 ) or changes into a reaction product.

前記のようなエネルギー供与体とエネルギー受容体を用いる場合、エネルギー受容体が得たエネルギーによる化学反応によって、構造変化(=屈折率変化)が起こり、結果として光記録が行われたことになる。   In the case of using the energy donor and the energy acceptor as described above, a structural change (= refractive index change) occurs due to a chemical reaction by energy obtained by the energy acceptor, and as a result, optical recording is performed.

次に、前記光記憶媒体を構成するエネルギー供与体及びエネルギー受容体について記載する。このエネルギー供与体及びエネルギー受容体としては、前記の機能を発揮し得るものであれば特に限定されない。ただし、その中でも、好ましいエネルギー供与体及びエネルギー受容体があり、ここでは、その例について説明する。   Next, the energy donor and energy acceptor constituting the optical storage medium will be described. The energy donor and energy acceptor are not particularly limited as long as they can exhibit the above functions. However, among them, there are preferable energy donors and energy acceptors, and examples thereof will be described here.

前記の好ましいエネルギー供与体として、下記式(1−1)〜(1−4)のいずれかに示されるオリゴチオフェン系化合物をあげることができる。   Examples of the preferable energy donor include oligothiophene compounds represented by any of the following formulas (1-1) to (1-4).

Figure 2006293292
Figure 2006293292

前記式(1−1)〜(1−4)において、X〜X,X7a〜X7b,X8a〜X8d,X9a〜X9fは、水素原子、アルキル基、アルキル基の一部の炭素原子をケイ素原子と置き換えた基、ハロゲン、水酸基、アルキルオキシ基、アリールオキシ基、ジアルキルアミノ基等があげられる。そして、前記の、X〜X,X7a〜X7b,X8a〜X8d,X9a
〜X9fは、それぞれ同じであっても異なってもよい。
In the formulas (1-1) to (1-4), X 1 to X 6 , X 7a to X 7b , X 8a to X 8d , and X 9a to X 9f are ones of a hydrogen atom, an alkyl group, and an alkyl group. And a group in which a carbon atom in a part is replaced with a silicon atom, a halogen, a hydroxyl group, an alkyloxy group, an aryloxy group, a dialkylamino group, and the like. The above, X 1 ~X 6, X 7a ~X 7b, X 8a ~X 8d, X 9a
˜X 9f may be the same or different.

これらの中でも、下記式(2)に示されるようなオリゴチオフェン系化合物がより好ましい。この式(2)で示される化合物は、式(1−3)又は式(1−4)に示される化合物であって、X=X=X=X=X8a=X8b=X8c=X8d=X9a=X9b=X9c=X9d=X9e=X9f=水素原子であり、XはSi(R)(R)(R)を示し、XはSi(R)(R)(R)を示す。また、R〜Rは、水素原子、アルキル基、ハロゲン、水酸基、アルキルオキシ基、アリールオキシ基、ジアルキルアミノ基から選ばれる基を示す。さらに、R〜Rは、同じであっても異なってもよい。さらにまた、nは、4又は5を示す。 Among these, oligothiophene compounds as shown in the following formula (2) are more preferable. The compound represented by the formula (2) is a compound represented by the formula (1-3) or the formula (1-4), and X 2 = X 3 = X 4 = X 5 = X 8a = X 8b = X 8c = X 8d = X 9a = X 9b = X 9c = X 9d = X 9e = X 9f = hydrogen atom, X 1 represents Si (R 1 ) (R 2 ) (R 3 ), X 6 Represents Si (R 4 ) (R 5 ) (R 6 ). R 1 to R 6 represent a group selected from a hydrogen atom, an alkyl group, a halogen, a hydroxyl group, an alkyloxy group, an aryloxy group, and a dialkylamino group. Further, R 1 to R 6 may be the same or different. Furthermore, n represents 4 or 5.

Figure 2006293292
Figure 2006293292

このような前記式(2)に示されるオリゴチオフェン系化合物の具体例としては、下記の式(2−1)〜(2−5)に示されるような化合物があげられる。   Specific examples of the oligothiophene compound represented by the formula (2) include compounds represented by the following formulas (2-1) to (2-5).

Figure 2006293292
Figure 2006293292

Figure 2006293292
Figure 2006293292

Figure 2006293292
Figure 2006293292

Figure 2006293292
Figure 2006293292

Figure 2006293292
Figure 2006293292

さらにまた、前記式(2)に示されるオリゴチオフェン系化合物の中でも、R〜R炭素数1〜2のアルキル基、炭素数6〜10のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、ピリジル基、チオフェン環を示す化合物が、前記のエネルギー供与体としての機能をより顕著に有するので好ましく、特に、R〜R、R〜Rの各々について、その少なくとも1つが炭素数6〜10のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、ピリジル基、チオフェン環を示す化合物がより好ましい。この具体例としては、前記の式(2−2)〜式(2−5)に示されるような化合物があげられる。 Furthermore, in also the type oligothiophene compound represented by (2), R 1 ~R 6 is an alkyl group having 1 to 2 carbon atoms, an alkyl group having 6 to 10 carbon atoms, an aryl group, an alkenyl group, an alkynyl A compound exhibiting a group, an alkoxy group, a pyridyl group, or a thiophene ring is preferable because it has a more remarkable function as the energy donor, and particularly for each of R 1 to R 3 and R 4 to R 6 , at least A compound in which one of them represents an alkyl group having 6 to 10 carbon atoms, an aryl group, an alkenyl group, an alkynyl group, an alkoxy group, a pyridyl group, or a thiophene ring is more preferable. Specific examples thereof include compounds represented by the above formulas (2-2) to (2-5).

シリコン原子を介したアルキル基の導入が、溶解性に寄与するという知見は、例えば、J.Mater.Chem.,10,1471−1507,(2000).などで知られているが、共役分子長の限られたオリゴチオフェンの場合は、さらにその効果が顕在化される。   The knowledge that introduction of an alkyl group via a silicon atom contributes to solubility is described in, for example, J. Org. Mater. Chem. 10, 1471-1507, (2000). However, in the case of oligothiophene having a limited conjugated molecular length, the effect is further manifested.

すなわち、ペンタチオフェンに対して、その分子両端にn−デシル基を置換した場合(下記式(2−5)’で示される化合物)と、デシルジメチルシリル基を置換した場合(上記式(2−5)で示される化合物)では、同一溶媒に対して、後者は前者の3〜4桁多い重量を溶解することができる。   That is, when pentathiophene is substituted with an n-decyl group at both ends of the molecule (a compound represented by the following formula (2-5) ′) and when a decyldimethylsilyl group is substituted (the above formula (2- In the compound (5), the latter can dissolve 3 to 4 orders of magnitude more than the former in the same solvent.

具体的には、下記式(2−5)’で示される化合物のクロロホルムに対する溶解性は0.05mg/ml未満、トルエンに対する溶解性は0.05mg/ml未満、かつ、ヘキサンに対しては非溶解性であるのに対し、上記式(2−5)で示される化合物のクロロホルムに対する溶解性は200mg/ml以上、トルエンに対する溶解性は300mg/ml以上、かつ、ヘキサンに対する溶解性は100mg/ml以上を示すのである。   Specifically, the compound represented by the following formula (2-5) ′ has a solubility in chloroform of less than 0.05 mg / ml, a solubility in toluene of less than 0.05 mg / ml, and non-hexane. The solubility of the compound represented by the above formula (2-5) in chloroform is 200 mg / ml or more, the solubility in toluene is 300 mg / ml or more, and the solubility in hexane is 100 mg / ml. The above is shown.

Figure 2006293292
Figure 2006293292

また、トリオクチルシリル基を置換すると、室温に近い温度でも、オリゴチオフェンを液状化することが可能であり、100%濃度のアモルファス媒体を構成することが可能である。このような化合物は、例えば、中空キャピラリ型の容器に封入して、光記録媒体、非線形光学媒体として活用することができる。   Further, when the trioctylsilyl group is substituted, oligothiophene can be liquefied even at a temperature close to room temperature, and an amorphous medium having a concentration of 100% can be formed. Such a compound can be used, for example, as an optical recording medium or a non-linear optical medium by being enclosed in a hollow capillary container.

このように、アルキルシリル基を置換することは、置換された化合物を高濃度にマトリクス中に分散させることを可能にするばかりでなく、他の低分子化合物を、オリゴチオフェン部位近くに選択的に配置させる包摂的分子相互作用を発現させることができる。後述するように、式(2−5)で示される5,5’’’’−ビス(デシルジメチルシリル)ペンタチオフェンと、式(3−2)で示されるアジド化合物では、上記包摂的相互作用により、近傍位配置が可能となり、他の組み合わせでは得られない高効率の光書込を実現することができる。   Thus, substitution of the alkylsilyl group not only allows the substituted compound to be dispersed in the matrix at a high concentration, but also selectively allows other low molecular weight compounds to be close to the oligothiophene site. An inclusive molecular interaction to be deployed can be expressed. As will be described later, the inclusive interaction between the 5,5 ″ ″-bis (decyldimethylsilyl) pentathiophene represented by the formula (2-5) and the azide compound represented by the formula (3-2) Thus, the proximity arrangement is possible, and high-efficiency optical writing that cannot be obtained by other combinations can be realized.

前記オリゴチオフェン系化合物は、一重項励起状態(S)、三重項励起状態(T)の生成率が、従来二段階励起する化合物として知られているビアセチルに比べて、通常1桁以上、好ましくは2桁以上、さらに好ましくは3桁以上大きい。中でも、一般式(1−1)〜(1−4)に示す化合物は、ビアセチルに比べて当該生成率が数千倍高く、この発明のエネルギー供与体として使用することが、特に好ましい。 The oligothiophene compound has a singlet excited state (S 1 ) and a triplet excited state (T n ) production rate of usually one digit or more compared to biacetyl, which is conventionally known as a compound that is excited in two steps. Preferably it is 2 digits or more, more preferably 3 digits or more. Among these, the compounds represented by the general formulas (1-1) to (1-4) have a production rate several thousand times higher than that of biacetyl, and are particularly preferably used as the energy donor of the present invention.

次に、前記の好ましいエネルギー受容体として、下記式(3)に示されるアジド系化合物をあげることができる。   Next, examples of the preferable energy acceptor include azide compounds represented by the following formula (3).

Figure 2006293292
Figure 2006293292

式(3)中、Yは、アルキル基、ハロゲン、アジド基、スルホニル基、アリール基、水酸基及びアルコキシ基から選ばれる少なくとも1種の基を有する基、又は水素原子を示す。   In formula (3), Y represents a group having at least one group selected from an alkyl group, a halogen, an azide group, a sulfonyl group, an aryl group, a hydroxyl group and an alkoxy group, or a hydrogen atom.

このようなアジド系化合物の具体例としては、下記式(3−1)又は(3−2)に示されるアジド系化合物があげられる。

Figure 2006293292
Specific examples of such azide compounds include azide compounds represented by the following formula (3-1) or (3-2).
Figure 2006293292

Figure 2006293292
Figure 2006293292

前記アジド系化合物は、三重項励起状態となると、下記反応式<1>に示す反応を生じ、三重項ナイトレン及び窒素分子を生成する。次いで、この三重項ナイトレンは、カップリング反応、二重結合への付加反応、水素引き抜き反応等の化学反応を起こす。このため、前記アジド系化合物からなるエネルギー受容体を用いると、光照射された部分で、三重項ナイトレンが、エネルギー供与体及びエネルギー受容体を分散させる高分子化合物において構造変化を生じさせ、これにより屈折率変化を生じさせることが可能となる。   When the azide-based compound is in a triplet excited state, the reaction shown in the following reaction formula <1> is generated to generate triplet nitrene and nitrogen molecules. The triplet nitrene then undergoes a chemical reaction such as a coupling reaction, an addition reaction to a double bond, or a hydrogen abstraction reaction. For this reason, when an energy acceptor made of the azide compound is used, triplet nitrene causes a structural change in the polymer compound that disperses the energy donor and the energy acceptor in the portion irradiated with light. It is possible to cause a change in refractive index.

Figure 2006293292
Figure 2006293292

また、密度汎関数理論を用いて計算すると、前記オリゴチオフェン系化合物のS−Tの励起エネルギーは、3.65eV(340nm、n=2のとき)、3.05eV(407nm、n=3のとき)であり、一方、前記アジド系化合物のS−Tの励起エネルギーは、3.64eV(340nm,化合物(3−1)のとき)、3.47eV(357nm、化合物(3−2)のとき)である。数値に多少の高低はあるものの、これらから、これらの化合物は、エネルギー供与体とエネルギー受容体として組み合わせて使用することが可能である。 When calculated using density functional theory, the excitation energy of S 0 -T n of the oligothiophene compound is 3.65 eV (when 340 nm, n = 2), 3.05 eV (407 nm, n = 3). On the other hand, the excitation energy of S 0 -T 1 of the azide compound is 3.64 eV (340 nm, for compound (3-1)), 3.47 eV (357 nm, compound (3-2) ). Although there are some high and low numerical values, these compounds can be used in combination as an energy donor and an energy acceptor.

ところで、光記憶媒体は、均一かつ平坦性に優れることが重要である。例えば、ホログラム実験においては、媒体表面が平坦でない場合や、媒体内部に脈理が発生している場合には、物体光と参照光とのビームが重なりにくく、また、この二光束干渉が起こっても、これが作り出す干渉縞を媒体内に屈折率変化として定着しがたいからである。このため、図2に示すように、ブレードコート法および熱圧着法を組み合せることにより、光記憶媒体を均一かつ平坦に作製する方法を説明する。   By the way, it is important that the optical storage medium is uniform and excellent in flatness. For example, in a hologram experiment, when the medium surface is not flat or striae are generated inside the medium, the beam of the object beam and the reference beam is difficult to overlap, and this two-beam interference occurs. This is because it is difficult to fix the interference fringes generated by this as a change in refractive index in the medium. Therefore, as shown in FIG. 2, a method for uniformly and flatly manufacturing an optical storage medium by combining a blade coating method and a thermocompression bonding method will be described.

まず、前記のエネルギー供与体及びエネルギー受容体を所定割合で混合、分散させて光記憶媒体用溶液を得る。次いで、図2(a)に示すように、基板上に光記憶媒体用溶液を滴下する。そして、図2(b)に示すように、前記基板との距離を一定に保つ刃(ブレード)によってこの基板上を掃引して、前記光記憶媒体用溶液を平坦化する掃引工程を行う(図2(c))。次いで、かかる掃引後、加熱により溶媒を除去し(図2(d))、続いて、得られた媒体を基板から剥離する(図2(e))。次いで、得られた媒体を2枚の基板に挟み、加圧下で加熱する加熱工程を行う(図2(f))。その後、基板から媒体を剥離する(図2(g))ことにより、平坦性を高めた薄膜型の光記憶媒体を作製することができる。得られた光記憶媒体が薄い場合、2枚等、複数枚を積層し、図2(f)の方法と同様に熱圧縮することにより、厚膜の光記憶媒体が得られる(図2(h))。なお、図2(c)の工程後、図2(d)(e)の工程をせず、基板を媒体の上に載せ、図2(f)の工程を行ってもよい。   First, the above-mentioned energy donor and energy acceptor are mixed and dispersed at a predetermined ratio to obtain an optical storage medium solution. Next, as shown in FIG. 2A, an optical storage medium solution is dropped on the substrate. Then, as shown in FIG. 2 (b), a sweep process is performed to sweep the substrate by a blade (blade) that keeps the distance from the substrate constant, thereby flattening the optical storage medium solution (FIG. 2B). 2 (c)). Next, after such sweeping, the solvent is removed by heating (FIG. 2D), and then the obtained medium is peeled from the substrate (FIG. 2E). Next, a heating process is performed in which the obtained medium is sandwiched between two substrates and heated under pressure (FIG. 2 (f)). Thereafter, the medium is peeled from the substrate (FIG. 2G), whereby a thin film type optical storage medium with improved flatness can be manufactured. When the obtained optical storage medium is thin, a plurality of sheets, such as two, are stacked and thermally compressed in the same manner as in the method of FIG. 2 (f) to obtain a thick optical storage medium (FIG. 2 (h) )). Note that after the step of FIG. 2C, the step of FIG. 2F may be performed by placing the substrate on the medium without performing the steps of FIGS. 2D and 2E.

なお、光記憶媒体用溶液の基板への塗工方法としては、上記したブレードコート法以外に、スピンコート法、スプレー法、ワイヤーバー法、IJ法等の塗工方法を用いることができる。   In addition to the blade coating method described above, a coating method such as a spin coating method, a spray method, a wire bar method, or an IJ method can be used as a method for applying the optical storage medium solution to the substrate.

以下、実施例を用いて、この発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)(オリゴチオフェン系化合物の製造)
[式(2−1)で示される化合物の製造]
式(2−1)で示される化合物(5,5’’’’−ビス(t−ブチルジメチルシリル)−2,2’:5’,2”:5”,2’’’:5’’’,2’’’’−キンカチオフェン)の製造方法及び化合物データを示す。
Example 1 (Production of oligothiophene compound)
[Production of compound represented by formula (2-1)]
Compound represented by formula (2-1) (5,5 ″ ″-bis (t-butyldimethylsilyl) -2,2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″: 5 ″ ', 2''''-kinkathiophene) production method and compound data are shown.

[1]2−トリブチルスタニル−5−(t−ブチルジメチルシリル)チオフェンの製造
アルゴン雰囲気下、テトラヒドロフラン18mlにチオフェン(アルドリッチ社製)0.74g(8.8mmol)を溶解して−30℃に保った溶液に、ブチルリチウム(アルドリッチ社製)5.8ml(8.8mmol、ヘキサン溶液)を滴下した。この混合溶液を同温度で2時間撹拌した後、t−ブチルクロロジメチルシラン(アルドリッチ社製)1.4g(9.1mmol)を加え、さらに同温度で1時間撹拌した。この混合溶液に、ブチルリチウム6.0ml(9.1mmol、ヘキサン溶液)を滴下し、同温度で2時間撹拌した後、クロロトリブチルスズ(アルドリッチ社製)2.8g(8.8mmol)を加え、さらに同温度で1時間撹拌した。この混合溶液を室温で一晩撹拌した後、ジエチルエーテルで希釈し、激しく撹拌した氷冷飽和食塩水に投入した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧下で濃縮し、粗生成物5.1gを得た。
この粗生成物を170℃、0.3TorrでKugelrohr蒸留することにより、2−トリブチルスタニル−5−(t−ブチルジメチルシリル)チオフェン2.6gを得た。収率は60%であった。
[1] Preparation of 2-tributylstannyl-5- (t-butyldimethylsilyl) thiophene Under argon atmosphere, 0.74 g (8.8 mmol) of thiophene (manufactured by Aldrich) was dissolved in 18 ml of tetrahydrofuran, and the temperature was adjusted to -30 ° C. To the kept solution, 5.8 ml (8.8 mmol, hexane solution) of butyl lithium (manufactured by Aldrich) was added dropwise. After stirring this mixed solution at the same temperature for 2 hours, 1.4 g (9.1 mmol) of t-butylchlorodimethylsilane (manufactured by Aldrich) was added, and the mixture was further stirred at the same temperature for 1 hour. To this mixed solution, 6.0 ml (9.1 mmol, hexane solution) of butyllithium was added dropwise and stirred at the same temperature for 2 hours. Then, 2.8 g (8.8 mmol) of chlorotributyltin (Aldrich) was added, and Stir at the same temperature for 1 hour. The mixed solution was stirred at room temperature overnight, diluted with diethyl ether, and poured into a vigorously stirred ice-cold saturated brine. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then concentrated under reduced pressure to obtain 5.1 g of a crude product.
This crude product was subjected to Kugelrohr distillation at 170 ° C. and 0.3 Torr to obtain 2.6 g of 2-tributylstannyl-5- (t-butyldimethylsilyl) thiophene. The yield was 60%.

[2]式(2−1)で示される化合物の製造
トルエン4mlに、前記の2−トリブチルスタニル−5−(t−ブチルジメチルシリル)チオフェン0.59g(0.80mmol)と、5,5”−ジブロモ−2,2’:5’,2”−ターチオフェン(アルドリッチ社製)0.16g(0.4mmol)とテトラキス(トリフェニルホスフィン)パラジウム(0)(アルドリッチ社製)46mg(0.040mmol)を混合した溶液を、アルゴン雰囲気下油浴中、120℃で18時間加熱撹拌した。
反応溶液を減圧濃縮してトルエンを除いた後、残渣を乾燥酢酸エチルで洗浄し、ジクロロメタンで抽出した。このジクロロメタン溶液を濃縮し、式(2−1)で示される化合物の橙色粉末を0.11g(0.17mmol)得た。収率は42%であった。
[2] Production of compound represented by formula (2-1) To 4 ml of toluene, 0.59 g (0.80 mmol) of 2-tributylstannyl-5- (t-butyldimethylsilyl) thiophene and 5,5 "-Dibromo-2,2 ': 5', 2" -terthiophene (Aldrich) 0.16 g (0.4 mmol) and tetrakis (triphenylphosphine) palladium (0) (Aldrich) 46 mg (0. (040 mmol) was mixed and heated and stirred at 120 ° C. for 18 hours in an oil bath under an argon atmosphere.
The reaction solution was concentrated under reduced pressure to remove toluene, and the residue was washed with dry ethyl acetate and extracted with dichloromethane. The dichloromethane solution was concentrated to obtain 0.11 g (0.17 mmol) of an orange powder of the compound represented by the formula (2-1). The yield was 42%.

得られた化合物のH−NMR、13C−NMR、MSスペクトルは次の通りである。
H−NMR(200MHz、CDCl)σ7.24(AB,J=3.5Hz,2H)、7.14(AB,J=3.5Hz,2H)、7.10(AB,J=3.8Hz,2H)、7.07(AB,J=3.8Hz,2H)7.07(s,2H)、0.94(s,18H)、0.31(s,12H)ppm
1 H-NMR, 13 C-NMR, and MS spectra of the obtained compound are as follows.
· 1 H-NMR (200MHz, CDCl 3) σ7.24 (AB, J = 3.5Hz, 2H), 7.14 (AB, J = 3.5Hz, 2H), 7.10 (AB, J = 3 .8 Hz, 2H), 7.07 (AB, J = 3.8 Hz, 2H) 7.07 (s, 2H), 0.94 (s, 18H), 0.31 (s, 12H) ppm

13C−NMR(50MHz,CDCl)σ141.98,137.09,136.29,135.89,135.83,135.66,124.77,124.34,124.26,124.18,26.42,17.02−4.83ppm · 13 C-NMR (50MHz, CDCl 3) σ141.98,137.09,136.29,135.89,135.83,135.66,124.77,124.34,124.26,124.18 , 26.42, 17.02-4.83 ppm

・FAB−LRMS for C3240Si:641([M+H],60),640(M,100),583([M−tBu],25) · FAB-LRMS for C 32 H 40 S 5 Si 2: 641 ([M + H] +, 60), 640 (M +, 100), 583 ([M-tBu] +, 25)

また、洗浄で用いた乾燥酢酸エチル層を濃縮し、得られた残渣を乾燥アセトニトリルで洗浄し、5,5’−ビス(t−ブチルジメチルシリル)−2,2’−ビチオフェン0.0068g(0.017mmol)の黄色粉末を得た。収率は43%であった。   The dried ethyl acetate layer used for washing was concentrated, and the resulting residue was washed with dry acetonitrile to give 0.0068 g (0,5'-bis (t-butyldimethylsilyl) -2,2'-bithiophene). 017 mmol) of yellow powder. The yield was 43%.

得られた化合物のH−NMR、MSスペクトルは次の通りである。
H−NMR(200MHz、CDCl)σ7.25(AB,J=3.5Hz,2H)、7.13(AB,J=3.5Hz,2H)、7.13(AB,J=3.5Hz,2H)0.95(s,18H)、0.30(s,12H)ppm
1 H-NMR and MS spectra of the obtained compound are as follows.
· 1 H-NMR (200MHz, CDCl 3) σ7.25 (AB, J = 3.5Hz, 2H), 7.13 (AB, J = 3.5Hz, 2H), 7.13 (AB, J = 3 .5Hz, 2H) 0.95 (s, 18H), 0.30 (s, 12H) ppm

・FAB−LRMS for C3034Si:396([M+2],4),395([M+1],7),394(M,13),379([M−Me],1),337({M−t−Bu},14) FAB-LRMS for C 30 H 34 S 2 Si 2 : 396 ([M + 2] + , 4), 395 ([M + 1] + , 7), 394 (M + , 13), 379 ([M-Me] + , 1), 337 ({Mt-Bu} + , 14)

[式(2−2)で示される化合物の製造]
式(2−2)で示される化合物(5,5’’’’−ビス(ジメチルフェニルシリル)−2,2’:5’,2”:5”,2’’’:5’’’,2’’’’−キンカチオフェン)の製造方法及び化合物データを示す。
[Production of compound represented by formula (2-2)]
Compound represented by formula (2-2) (5,5 ″ ″-bis (dimethylphenylsilyl) -2,2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″: 5 ′ ″, 2 ""-kinkathiophene) production method and compound data are shown.

[1]2−トリブチルスタニル−5−(ジメチルフェニルシリル)チオフェンの製造
アルゴン雰囲気下、テトラヒドロフラン10mlにチオフェン0.42g(5.0mmol)を溶解して−30℃に保った溶液に、ブチルリチウム1.9ml(5.0mmol、ヘキサン溶液)を滴下した。この混合溶液を同温度で2時間撹拌した後、クロロジメチルフェニルシラン(アルドリッチ社製)0.88g(5.2mmol)を加え、さらに同温度で1時間撹拌した。この混合溶液に、ブチルリチウム2.4ml(6.2mmol、ヘキサン溶液)を滴下し、同温度で2時間撹拌した後、クロロトリブチルスズ2.0g(6.0mmol)を加え、さらに同温度で1時間撹拌した。この混合溶液を室温で一晩撹拌した後、ジエチルエーテルで希釈し、激しく撹拌した氷冷飽和食塩水に投入した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧下で濃縮し、粗生成物2.9gを得た。
この粗生成物を200℃、0.3TorrでKugelrohr蒸留することにより、2−トリブチルスタニル−5−(ジメチルフェニルシリル)チオフェン1.6gを得た。収率は64%であった。
[1] Production of 2-tributylstannyl-5- (dimethylphenylsilyl) thiophene In a solution of 0.42 g (5.0 mmol) of thiophene in 10 ml of tetrahydrofuran and kept at −30 ° C. in an argon atmosphere, butyllithium was added. 1.9 ml (5.0 mmol, hexane solution) was added dropwise. After this mixed solution was stirred at the same temperature for 2 hours, 0.88 g (5.2 mmol) of chlorodimethylphenylsilane (manufactured by Aldrich) was added, and the mixture was further stirred at the same temperature for 1 hour. To this mixed solution, 2.4 ml (6.2 mmol, hexane solution) of butyllithium was added dropwise and stirred for 2 hours at the same temperature. Then, 2.0 g (6.0 mmol) of chlorotributyltin was added, and the mixture was further stirred for 1 hour at the same temperature. Stir. The mixed solution was stirred at room temperature overnight, diluted with diethyl ether, and poured into a vigorously stirred ice-cold saturated brine. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then concentrated under reduced pressure to obtain 2.9 g of a crude product.
This crude product was subjected to Kugelrohr distillation at 200 ° C. and 0.3 Torr to obtain 1.6 g of 2-tributylstannyl-5- (dimethylphenylsilyl) thiophene. The yield was 64%.

[2]式(2−2)で示される化合物の製造
トルエン8mlに、前記の2−トリブチルスタニル−5−(ジメチルフェニルシリル)チオフェン0.81g(1.6mmol)と、5,5”−ジブロモ−2,2’:5’,2”−ターチオフェン0.32g(0.8mmol)とテトラキス(トリフェニルホスフィン)パラジウム(0)92mg(0.080mmol)を混合した溶液を、アルゴン雰囲気下油浴中、120℃で18時間加熱撹拌した。
反応溶液を減圧濃縮してトルエンを除いた後、残渣を乾燥酢酸エチルで洗浄し、ジクロロメタンで抽出した。このジクロロメタン溶液を濃縮し、式(2−2)で示される化合物の橙色粉末を0.31g(0.46mmol)得た。収率は57%であった。
[2] Preparation of compound represented by formula (2-2) To 8 ml of toluene, 0.81 g (1.6 mmol) of 2-tributylstannyl-5- (dimethylphenylsilyl) thiophene and 5,5 ″- A solution prepared by mixing 0.32 g (0.8 mmol) of dibromo-2,2 ′: 5 ′, 2 ″ -terthiophene with 92 mg (0.080 mmol) of tetrakis (triphenylphosphine) palladium (0) The mixture was heated and stirred in a bath at 120 ° C. for 18 hours.
The reaction solution was concentrated under reduced pressure to remove toluene, and the residue was washed with dry ethyl acetate and extracted with dichloromethane. The dichloromethane solution was concentrated to obtain 0.31 g (0.46 mmol) of an orange powder of the compound represented by the formula (2-2). The yield was 57%.

得られた化合物のH−NMR、13C−NMR、MSスペクトルは次の通りである。
H−NMR(200MHz、CDCl)σ7.55−7.62(m,4H)、7.35−7.43(m,6H)、7.24(AB,J=3.6Hz,2H)、7.16(AB,J=3.6Hz,2H)、7.09(AB,J=3.8Hz,2H)7.07(s,2H)、7.06(AB,J=3.8Hz,2H)、0.61(s,12H)ppm
1 H-NMR, 13 C-NMR, and MS spectra of the obtained compound are as follows.
· 1 H-NMR (200MHz, CDCl 3) σ7.55-7.62 (m, 4H), 7.35-7.43 (m, 6H), 7.24 (AB, J = 3.6Hz, 2H ), 7.16 (AB, J = 3.6 Hz, 2H), 7.09 (AB, J = 3.8 Hz, 2H) 7.07 (s, 2H), 7.06 (AB, J = 3. 8Hz, 2H), 0.61 (s, 12H) ppm

13C−NMR(50MHz,CDCl)σ142.72,137.95,137.93,136.37,136.07,136.04,135.97,133.85,129.41,127.88,125.04,124.55、124.34,124.29,−1.22ppm 13 C-NMR (50 MHz, CDCl 3 ) σ 142.72, 137.95, 137.93, 136.37, 136.07, 136.04, 135.97, 133.85, 129.41, 127.88 125.04, 124.55, 124.34, 124.29, -1.22 ppm

[式(2−3)で示される化合物の製造]
式(2−3)で示される化合物(5,5’’’’−ビス(トリオクチルシリル)−2,2’:5’,2”:5”,2’’’:5’’’,2’’’’−キンカチオフェン)の製造方法及び化合物データを示す。
[Production of compound represented by formula (2-3)]
Compound represented by formula (2-3) (5,5 ″ ″-bis (trioctylsilyl) -2,2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″: 5 ′ ″, 2 ""-kinkathiophene) production method and compound data are shown.

[1]2−トリブチルスタニル−5−(トリオクチルシリル)チオフェンの製造
アルゴン雰囲気下、テトラヒドロフラン10mlにチオフェン0.42g(5.0mmol)を溶解して−30℃に保った溶液に、ブチルリチウム3.3ml(5mmol、ヘキサン溶液)を滴下した。この混合溶液を同温度で2時間撹拌した後、クロロトリオクチルシラン(アルドリッチ社製)1.9g(5.2mmol)を加え、さらに同温度で1時間撹拌した。この混合溶液に、ブチルリチウム3.4ml(5.2mmol、ヘキサン溶液)を滴下し、同温度で2時間撹拌した後、クロロトリブチルスズ1.9g(5.2mmol)を加え、さらに同温度で1時間撹拌した。この混合溶液を室温で一晩撹拌した後、ジエチルエーテルで希釈し、激しく撹拌した氷冷飽和食塩水に投入した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧下で濃縮し、粗生成物3.7gを得た。
この粗生成物を250℃、0.3TorrでKugelrohr蒸留することにより、2−トリブチルスタニル−5−(トリオクチルシリル)チオフェン2.3gを得た。収率は63%であった。
[1] Preparation of 2-tributylstannyl-5- (trioctylsilyl) thiophene In a solution of 0.42 g (5.0 mmol) of thiophene in 10 ml of tetrahydrofuran and kept at −30 ° C. in an argon atmosphere, butyllithium was added. 3.3 ml (5 mmol, hexane solution) was added dropwise. After stirring this mixed solution at the same temperature for 2 hours, 1.9 g (5.2 mmol) of chlorotrioctylsilane (manufactured by Aldrich) was added, and the mixture was further stirred at the same temperature for 1 hour. To this mixed solution, 3.4 ml (5.2 mmol, hexane solution) of butyllithium was added dropwise and stirred at the same temperature for 2 hours. Then, 1.9 g (5.2 mmol) of chlorotributyltin was added, and further at the same temperature for 1 hour. Stir. The mixed solution was stirred at room temperature overnight, diluted with diethyl ether, and poured into a vigorously stirred ice-cold saturated brine. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then concentrated under reduced pressure to obtain 3.7 g of a crude product.
This crude product was subjected to Kugelrohr distillation at 250 ° C. and 0.3 Torr to obtain 2.3 g of 2-tributylstannyl-5- (trioctylsilyl) thiophene. The yield was 63%.

[2]式(2−3)で示される化合物の製造
トルエン6mlに、前記の2−トリブチルスタニル−5−(トリオクチルシリル)チオフェン0.90g(1.22mmol)と、5,5”−ジブロモ−2,2’:5’,2”−ターチオフェン0.25g(0.61mmol)とテトラキス(トリフェニルホスフィン)パラジウム(0)70mg(0.061mmol)を混合した溶液を、アルゴン雰囲気下油浴中、120℃で18時間加熱撹拌した。
120℃、0.3Torrで減圧蒸留して揮発成分を除去した残渣を、体積排除クロマトグラフィーによって精製し、式(2−3)で示される化合物の橙色油状物質を0.26g(0.22mmol)得た。収率は37%であった。
[2] Preparation of compound represented by formula (2-3) To 6 ml of toluene, 0.90 g (1.22 mmol) of 2-tributylstannyl-5- (trioctylsilyl) thiophene and 5,5 ″- A solution obtained by mixing 0.25 g (0.61 mmol) of dibromo-2,2 ′: 5 ′, 2 ″ -terthiophene and 70 mg (0.061 mmol) of tetrakis (triphenylphosphine) palladium (0) The mixture was heated and stirred in a bath at 120 ° C. for 18 hours.
The residue from which volatile components were removed by distillation under reduced pressure at 120 ° C. and 0.3 Torr was purified by volume exclusion chromatography, and 0.26 g (0.22 mmol) of an orange oily substance represented by the formula (2-3) was obtained. Obtained. The yield was 37%.

得られた化合物のH−NMR、13C−NMR、MSスペクトルは次の通りである。
H−NMR(200MHz、CDCl)σ7.24(AB,J=3.5Hz,2H)、7.12(AB,J=3.5Hz,2H)、7.10(AB,J=3.8Hz,2H)、7.07(AB,J=3.8Hz,2H)、7.07(s,2H)、1.22−1.46(m,72H)、0.76−0.96(m,30H)ppm
1 H-NMR, 13 C-NMR, and MS spectra of the obtained compound are as follows.
· 1 H-NMR (200MHz, CDCl 3) σ7.24 (AB, J = 3.5Hz, 2H), 7.12 (AB, J = 3.5Hz, 2H), 7.10 (AB, J = 3 .8 Hz, 2H), 7.07 (AB, J = 3.8 Hz, 2H), 7.07 (s, 2H), 1.22-1.46 (m, 72H), 0.76-0.96 (M, 30H) ppm

13C−NMR(50MHz,CDCl)σ141.85,137.61,136.48,135.97,135.66,135.34,124.84,124.31,124.26,124.16,33.69,31.94,29.28,29.21,23.73,22.70,14.13,13.37ppm 13 C-NMR (50 MHz, CDCl 3 ) σ 141.85, 137.61, 136.48, 135.97, 135.66, 135.34, 124.84, 124.31, 124.26, 124.16 33.69, 31.94, 29.28, 29.21, 23.73, 22.70, 14.13, 13.37 ppm.

・FAB−LRMS for C68112Si:1146([M+H],87),1145(M,100),1033([M−Oct+H],10),1032([M−Oct],10) · FAB-LRMS for C 68 H 112 S 5 Si 2: 1146 ([M + H] +, 87), 1145 (M +, 100), 1033 ([M-Oct + H] +, 10), 1032 ([M-Oct ] + , 10)

また、副生生物として、5,5’’’’’’’−ビス(トリオクチルシリル)−2,2’:5’,2”:5”、2’’’:5’’’、2’’’’:5’’’’,2’’’’:5’’’’’,2’’’’’’:5’’’’’’,2’’’’’’’−オクタチオフェン0.077g(0.055mmol)の赤色ペースト状固体を得た。収率は18%であった。   As by-products, 5,5 ′ ″ ″ ″-bis (trioctylsilyl) -2,2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″: 5 ′ ″, 2 '' '': 5 '' '', 2 '' '': 5 '' '' ', 2' '' '' ': 5' '' '' ', 2' '' '' ''-octa 0.077 g (0.055 mmol) of red thiophene solid was obtained. The yield was 18%.

得られた化合物のH−NMR、MSスペクトルは次の通りである。
H−NMR(200MHz、CDCl)σ7.23(AB,J=3.5Hz,2H)、7.12(AB,J=3.5Hz,2H)、7.07(br s,J=3.8Hz,12H)1.22−1.46(m,72H)、0.76−0.96(m,30H)ppm
1 H-NMR and MS spectra of the obtained compound are as follows.
1 H-NMR (200 MHz, CDCl 3 ) σ 7.23 (AB, J = 3.5 Hz, 2H), 7.12 (AB, J = 3.5 Hz, 2H), 7.07 (br s, J = 3.8 Hz, 12H) 1.22-1.46 (m, 72H), 0.76-0.96 (m, 30H) ppm

13C−NMR(50MHz,CDCl)σ141.71,137.62,136.50,136.12,135.79,135.63,135.49,135.25,124.81,124.29,124.12,33.75,32.01,31.66,29.34,29.28,23.81,22.78,22.74,14.22,13.49ppm 13 C-NMR (50 MHz, CDCl 3 ) σ 141.71, 137.62, 136.50, 136.12, 135.79, 135.63, 135.49, 135.25, 124.81, 124.29 , 124.12, 33.75, 32.01, 31.66, 29.34, 29.28, 23.81, 22.78, 22.74, 14.22, 13.49 ppm.

・FAB−LRMS for C80118Si:1391([M+H]),1390(MFAB-LRMS for C 80 H 118 S 8 Si 2 : 1391 ([M + H] + ), 1390 (M + )

[式(2−4)及び式(2−5)で示される化合物の製造]
式(2−4)で示される化合物(5,5’’’−ビス(デシルジメチルシリル)クオーターチオフェン)、及び式(2−5)で示される化合物(5,5’’’’−ビス(デシルジメチルシリル)ペンタチオフェン)の製造方法及び化合物データを示す。
[Production of compounds represented by formula (2-4) and formula (2-5)]
A compound represented by formula (2-4) (5,5 ′ ″-bis (decyldimethylsilyl) quarterthiophene) and a compound represented by formula (2-5) (5,5 ″ ″-bis ( The production method and compound data of (decyldimethylsilyl) pentathiophene) are shown.

[1]デシルジメチル(2’−チエニル)シラン(下記式(4−1)で示される化合物)の製造

Figure 2006293292
[1] Production of decyldimethyl (2′-thienyl) silane (compound represented by the following formula (4-1))
Figure 2006293292

無水THF40mLに溶かしたチオフェン(1.68g,20.0mmol)を−20℃に冷却し、そこへブチルリチウム(13.0mL,20.0mmol,1.6M in hexanes)を30分かけてゆっくり滴下した。混合溶液を室温まで昇温し1時間攪拌した。再び、溶液を−20℃に冷却したあと、クロロデシルジメチルシラン(4.70g,20.0mmol)のTHF溶液(10mL)を素早く加えた。溶液を室温まで昇温して終夜攪拌したあと、塩化アンモニウム水溶液50mLを加えた。水相をジエチルエーテル100mLで3回抽出したあと、合わせた有機相を飽和食塩水150mLで洗浄した。有機相を無水硫酸マグネシウムで乾燥したのち、エバポレーターを使って濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶媒ヘキサン)で精製し、目的物(5.03g)を収率89%で得た。   Thiophene (1.68 g, 20.0 mmol) dissolved in anhydrous THF (40 mL) was cooled to −20 ° C., and butyl lithium (13.0 mL, 20.0 mmol, 1.6 M in hexanes) was slowly added dropwise thereto over 30 minutes. . The mixed solution was warmed to room temperature and stirred for 1 hour. Again, after cooling the solution to −20 ° C., a solution of chlorodecyldimethylsilane (4.70 g, 20.0 mmol) in THF (10 mL) was quickly added. The solution was warmed to room temperature and stirred overnight, and then 50 mL of an aqueous ammonium chloride solution was added. The aqueous phase was extracted 3 times with 100 mL of diethyl ether, and then the combined organic phases were washed with 150 mL of saturated brine. The organic phase was dried over anhydrous magnesium sulfate and concentrated using an evaporator. The resulting crude product was purified by silica gel column chromatography (solvent hexane) to obtain the desired product (5.03 g) in a yield of 89%. Obtained.

得られた化合物のTLCのR値、H−NMR、13C−NMR、IR、MSの各スペクトルは次の通りである。
・TLC:R=0.85(hexanes).
TLC R f value, 1 H-NMR, 13 C-NMR, IR, and MS spectra of the obtained compound are as follows.
TLC: Rf = 0.85 (hexanes).

H−NMR(400MHz,CDCl):σ=0.31(s,6H),0.77(dd,J=9.2,J=6.4Hz,2H),0.87(t,J = 6.6 Hz,3H),1.21−1.41(m,16H),7.06(dd,J=3.8,J=3.2Hz,1H),7.27(d,J=3.2Hz,1H),7.60(d,J=3.8Hz,1H)ppm. 1 H-NMR (400 MHz, CDCl 3 ): σ = 0.31 (s, 6H), 0.77 (dd, J = 9.2, J = 6.4 Hz, 2H), 0.87 (t, J = 6.6 Hz, 3H), 1.21-1.41 (m, 16H), 7.06 (dd, J = 3.8, J = 3.2 Hz, 1H), 7.27 (d, J = 3.2 Hz, 1H), 7.60 (d, J = 3.8 Hz, 1H) ppm.

13C−NMR(100MHz,CDCl):σ=−1.81,14.13,16.61,22.69,23.76,29.29,29.34,29.58,29.65,31.92,33.49,128.02,130.33,134.10,139.21ppm. · 13 C-NMR (100MHz, CDCl 3): σ = -1.81,14.13,16.61,22.69,23.76,29.29,29.34,29.58,29.65 31.92, 33.49, 128.02, 130.33, 134.10, 139.21 ppm.

・IR(KBr):3076,2922,2853,1499,1465,1407,1250,1213,1082,991,810,704cm−1
・FAB−MS:m/z=283/282(5/34,M).
IR (KBr): 3076, 2922, 2853, 1499, 1465, 1407, 1250, 1213, 1082, 991, 810, 704 cm −1 .
FAB-MS: m / z = 283/282 (5/34, M + ).

[2]2−デシルジメチルシリル−5−トリブチルスタニルチオフェン(下記式(4−2)で示される化合物)の製造

Figure 2006293292
[2] Production of 2-decyldimethylsilyl-5-tributylstannylthiophene (compound represented by the following formula (4-2))
Figure 2006293292

上記の方法で得られたデシルジメチル(2’−チエニル)シラン(式(4−1)で示される化合物)(2.82g、10.0mmol)のジエチルエーテル溶液(30mL)を0℃に冷却し、そこにブチルリチウム(6.25mL,10.0mmol,1.6M in hexanes)を15分かけて滴下した。その懸濁液を室温まで昇温して1時間攪拌した。黄色い反応溶液を0℃に冷却してクロロトリブチルスタンナン(3.26g,10.0mmol)を素早く加えた。その混合液を室温まで昇温して終夜攪拌したあと、飽和塩化アンモニウム水溶液50mLを加え、反応を停止した。水相をジエチルエーテル50mLで3回抽出したあと、合わせた有機相を飽和食塩水50mLで洗浄し、無水硫酸マグネシウムで乾燥した。有機溶媒をエバポレーターで濃縮し、得た黄色の粗生成物(5.44g,9.52mmol,95%)を精製することなく、そのまま次のカップリング反応に使用した。   A diethyl ether solution (30 mL) of decyldimethyl (2′-thienyl) silane (compound represented by formula (4-1)) (2.82 g, 10.0 mmol) obtained by the above method was cooled to 0 ° C. Then, butyl lithium (6.25 mL, 10.0 mmol, 1.6 M in hexanes) was added dropwise over 15 minutes. The suspension was warmed to room temperature and stirred for 1 hour. The yellow reaction solution was cooled to 0 ° C. and chlorotributylstannane (3.26 g, 10.0 mmol) was added quickly. The mixture was warmed to room temperature and stirred overnight, and then 50 mL of a saturated aqueous ammonium chloride solution was added to stop the reaction. The aqueous phase was extracted 3 times with 50 mL of diethyl ether, and then the combined organic phases were washed with 50 mL of saturated brine and dried over anhydrous magnesium sulfate. The organic solvent was concentrated by an evaporator, and the obtained yellow crude product (5.44 g, 9.52 mmol, 95%) was used as it was in the next coupling reaction without purification.

得られた化合物のH−NMR、13C−NMR、IR、MSの各スペクトルは次の通りである。 Each spectrum of 1 H-NMR, 13 C-NMR, IR, and MS of the obtained compound is as follows.

H−NMR(400MHz,CDCl):σ=0.30(s,6H),0.71−0.97(m,14H),0.99−1.21(m,6H),1.28−1.42(m,22H),1.44−1.66(m,6H),7.16−7.20(m,1H),7.39(bs,1H)ppm. 1 H-NMR (400 MHz, CDCl 3 ): σ = 0.30 (s, 6H), 0.71-0.97 (m, 14H), 0.99-1.21 (m, 6H), 1 .28-1.42 (m, 22H), 1.44-1.66 (m, 6H), 7.16-7.20 (m, 1H), 7.39 (bs, 1H) ppm.

13C−NMR(100MHz,CDCl):σ=−1.63,10.84,13.66,14.13,16.78,17.51,22.70,23.83,27.27,28.96,29.32,29.35,29.68,31.93,33.53,134.87,136.09,142.13,144.97ppm. · 13 C-NMR (100MHz, CDCl 3): σ = -1.63,10.84,13.66,14.13,16.78,17.51,22.70,23.83,27.27 28.96, 29.32, 29.35, 29.68, 31.93, 33.53, 134.87, 136.09, 142.13, 144.97 ppm.

・IR(KBr):2955,2922,2853,1466,1250,1200,1105,837,769cm−1
・FAB−MS:m/z=516/515/514/513/512(25/100/44/76/50,M−C).
IR (KBr): 2955, 2922, 2853, 1466, 1250, 1200, 1105, 837, 769 cm −1 .
FAB-MS: m / z = 516/515/514/513/512 (25/100/44/76/50, M + -C 4 H 9 ).

[3]式(2−4)で示される化合物の製造
5,5`−ジブロモ−2,2’−ビチオフェン(311mg,960mmol)の無水トルエン溶液15mLを注意深くアルゴンで脱気したのち、上記の方法で得られた2−デシルジメチルシリル−5−トリブチルスタニルチオフェン(式(4−2)で示される化合物)(1.65g,2.88mmol)を加えた。Pd(PPh(65.4mg,144mmol,15mol%)を加えたあと、反応溶液を120℃で24時間加熱した。溶媒を減圧留去したのち、粗生成物をアセトニトリルで洗浄した。残った固体をジクロロメタン100mLに溶解し、濾過した。ろ液にシリカゲルを加えて生成物を吸着させたのちに溶媒を減圧留去し、生成物を担持したシリカゲルを得た。これをカラム管に充填し、ヘキサン/ジクロロメタン混合溶媒をつかって生成物の精製をおこない、目的物を黄色固体(551mg,収率79%)として得た。
[3] Preparation of compound represented by formula (2-4) 15 mL of an anhydrous toluene solution of 5,5`-dibromo-2,2′-bithiophene (311 mg, 960 mmol) was carefully degassed with argon, and then the above method 2-decyldimethylsilyl-5-tributylstannylthiophene (compound represented by formula (4-2)) (1.65 g, 2.88 mmol) obtained in (1) was added. After adding Pd (PPh 3 ) 4 (65.4 mg, 144 mmol, 15 mol%), the reaction solution was heated at 120 ° C. for 24 hours. After the solvent was distilled off under reduced pressure, the crude product was washed with acetonitrile. The remaining solid was dissolved in 100 mL of dichloromethane and filtered. Silica gel was added to the filtrate to adsorb the product, and then the solvent was distilled off under reduced pressure to obtain silica gel carrying the product. This was packed in a column tube, and the product was purified using a mixed solvent of hexane / dichloromethane to obtain the desired product as a yellow solid (551 mg, yield 79%).

得られた化合物のMp(融点。なお、括弧内の溶媒は、融点測定に供した結晶の再結晶溶媒を示す。)、TLCのR値、H−NMR、13C−NMR、IR、MSの各スペクトルは次の通りである。 Mp of the obtained compound (melting point. The solvent in parentheses indicates a recrystallization solvent for crystals subjected to melting point measurement), TLC R f value, 1 H-NMR, 13 C-NMR, IR, Each spectrum of MS is as follows.

・Mp:70℃(hexanes/dichloromethane).
・TLC:R=0.70(hexanes:dichlormethane=7:1).
Mp: 70 ° C. (hexanes / dichloromethane).
TLC: R f = 0.70 (hexanes: dichloromethane = 7: 1).

H−NMR(400MHz,CDCl):σ=0.31(s,12H),0.78(dd,J=9.2,J=6.4Hz,4H),0.88(t,J=6.6Hz,6H),1.22−1.42(m,32H),7.06(d,J=3.8Hz,2H),7.09(d,J=3.8Hz,2H),7.13(d,J=3.4Hz,2H),7.23(d,J=3.4Hz,2H)ppm. 1 H-NMR (400 MHz, CDCl 3 ): σ = 0.31 (s, 12H), 0.78 (dd, J = 9.2, J = 6.4 Hz, 4H), 0.88 (t, J = 6.6 Hz, 6H), 1.22-1.42 (m, 32H), 7.06 (d, J = 3.8 Hz, 2H), 7.09 (d, J = 3.8 Hz, 2H) ), 7.13 (d, J = 3.4 Hz, 2H), 7.23 (d, J = 3.4 Hz, 2H) ppm.

13C−NMR(100MHz,CDCl):σ=−1.92,14.13,16.49,22.69,23.79,29.29,29.35,29.59,29.66,31.92,33.47,124.21,124.39,124.93,134.98,135.91,136.30,139.30,141.98ppm. · 13 C-NMR (100MHz, CDCl 3): σ = -1.92,14.13,16.49,22.69,23.79,29.29,29.35,29.59,29.66 31.92, 33.47, 124.21, 124.39, 124.93, 134.98, 135.91, 136.30, 139.30, 141.98 ppm.

・IR(KBr):3057,2957,2920,2851,1425,1257,1070,984,835,802,789cm−1
・FAB−MS:m/z=728/727/726/725(22/31/41/7,M).
IR (KBr): 3057, 2957, 2920, 2851, 1425, 1257, 1070, 984, 835, 802, 789 cm −1 .
FAB-MS: m / z = 728/727/726/725 (22/31/41/7, M + ).

[4]式(2−5)で示される化合物の製造
5,5’’’−ビス(デシルジメチルシリル)クオーターチオフェン(式(2−4)で示される化合物)と同様の手順にしたがって、5,5’’−ジブロモ−2,2’:5’,2’’−ターチオフェンと2−デシルジメチルシリル−5−トリブチルスタニルチオフェン(式(4−2)で示される化合物)から明るい橙色固体として収率76%で合成した。
[4] Production of compound represented by formula (2-5) According to the same procedure as 5,5 ′ ″-bis (decyldimethylsilyl) quarterthiophene (compound represented by formula (2-4)), 5 , 5 ″ -dibromo-2,2 ′: 5 ′, 2 ″ -terthiophene and 2-decyldimethylsilyl-5-tributylstannylthiophene (compound represented by formula (4-2)) as a bright orange solid As a yield of 76%.

得られた化合物のMp、TLCのR値、H−NMR、13C−NMR、IR、MSの各スペクトルは次の通りである。 Mp, TLC R f value, 1 H-NMR, 13 C-NMR, IR and MS spectra of the obtained compound are as follows.

・Mp.:101−103℃(hexanes/dichloromethane).
・TLC:R=0.65(hexanes:dichlormethane=7:1).
・ Mp. : 101-103 ° C. (hexanes / dichloromethane).
TLC: R f = 0.65 (hexanes: dichloromethane = 7: 1).

H−NMR(400MHz,CDCl):σ=0.32(s,12H),0.79(dd,J=9.2,6.4Hz,4H),0.89(t,J=6.6Hz,6H),1.21−1.41(m,32H),7.07(s,2H),7.07(d,J=3.2Hz,2H),7.10(d,J=3.2Hz,2H),7.14(d,J=3.4Hz,2H),7.23(d,J=3.4Hz,2H)ppm. 1 H-NMR (400 MHz, CDCl 3 ): σ = 0.32 (s, 12H), 0.79 (dd, J = 9.2, 6.4 Hz, 4H), 0.89 (t, J = 6.6 Hz, 6H), 1.21-1.41 (m, 32H), 7.07 (s, 2H), 7.07 (d, J = 3.2 Hz, 2H), 7.10 (d, J = 3.2 Hz, 2H), 7.14 (d, J = 3.4 Hz, 2H), 7.23 (d, J = 3.4 Hz, 2H) ppm.

13C−NMR(100MHz,CDCl):σ=−1.93,14.13,16.48,22.69,23.74,29.29,29.35,29.59,29.65,31.92,33.47,124.23,124.32,124.40,124.95,134.98,135.75,135.97,136.41,139.34,141.93ppm. · 13 C-NMR (100MHz, CDCl 3): σ = -1.93,14.13,16.48,22.69,23.74,29.29,29.35,29.59,29.65 31.92, 33.47, 124.23, 124.32, 124.40, 124.95, 134.98, 135.75, 135.97, 136.41, 139.34, 141.93 ppm.

・IR(KBr):3059,2955,2920,2851,1442,1427,1250,1070,988,837,791cm−1
・FAB−MS:m/z=810/809/808/807(14/19/26/3,M).
IR (KBr): 3059, 2955, 2920, 2851, 1442, 1427, 1250, 1070, 988, 837, 791 cm −1 .
FAB-MS: m / z = 810/809/808/807 (14/19/26/3, M + ).

(実施例2)[オリゴチオフェン系化合物及びアジド系化合物の励起エネルギー]
図3に示す過渡吸収測定装置を用いて、エネルギー供与体である式(2−3)に示される化合物のT−T吸収を測定すると共に、TからSに落ちる際のリン光を測定した。この装置では、QスイッチYAGレーザーの第二高調波発生装置(SHG)あるいは第三高調波発生装置(THG)を通して得られた第二高調波あるいは第三高調波をポンプ光として用い、また、キセノンランプ光をプローブ光として用いて、チオフェンのT−T吸収あるいはT−S(りん光)を測定することができる。測定の結果、T−T吸収は650nmであり、T−Sエネルギーは、820nmであることが判明し、また、これらから、S−Tエネルギーは、360nmであることが分かった。通常の吸収スペクトル測定の結果からは、S−S吸収が405nmであることも分かった。
(Example 2) [Excitation energy of oligothiophene compound and azide compound]
Using the transient absorption measuring apparatus shown in FIG. 3, the T 1 -T n absorption of the compound represented by Formula (2-3), which is an energy donor, is measured, and phosphorescence when falling from T 1 to S 0 is measured. Was measured. In this apparatus, the second harmonic or the third harmonic obtained through the second harmonic generator (SHG) or the third harmonic generator (THG) of the Q-switched YAG laser is used as pump light, and xenon is used. Using lamp light as probe light, T 1 -T n absorption or T 1 -S 0 (phosphorescence) of thiophene can be measured. As a result of the measurement, it was found that the T 1 -T n absorption was 650 nm, the T 1 -S 0 energy was 820 nm, and from these, the S 0 -T n energy was found to be 360 nm. It was. From the results of normal absorption spectrum measurement, it was also found that S 0 -S 1 absorption was 405 nm.

次に、エネルギー受容体である化合物(3−1)で示される化合物及び(3−2)で示される化合物(東洋合成工業(株)製)のトルエン溶液のS−Tエネルギーを図3に示す装置を用いて測定した。その結果、化合物(3−1)は440nm、化合物(3−2)は、500nmであることがわかった。
これらから、式(2−3)で表されるチオフェン系化合物に対する好適なエネルギー受容体は式(3−1)あるいは式(3−2)で表されるアジド系化合物であることが実験的に確認された。もちろん、チオフェン化合物については、側鎖の形状が多少異なっても、そのエネルギーレベルが、今回の測定値から大きく異なった値になることはなく、例えば、式(2−1)で表されるチオフェンを用いる場合でも、式(3−1)あるいは式(3−2)で表されるアジド系化合物をエネルギー受容体として用いることができる。
Next, the S 0 -T 1 energy of the toluene solution of the compound represented by the compound (3-1) as an energy acceptor and the compound represented by (3-2) (manufactured by Toyo Gosei Co., Ltd.) is shown in FIG. It measured using the apparatus shown in. As a result, it was found that the compound (3-1) was 440 nm and the compound (3-2) was 500 nm.
From these results, it is experimentally confirmed that a suitable energy acceptor for the thiophene compound represented by the formula (2-3) is an azide compound represented by the formula (3-1) or the formula (3-2). confirmed. Of course, for the thiophene compound, even if the side chain shape is slightly different, the energy level does not vary greatly from the current measurement value. For example, the thiophene compound represented by the formula (2-1) Even when is used, an azide compound represented by the formula (3-1) or the formula (3-2) can be used as an energy acceptor.

(実施例3)[光記憶媒体の作製]
エネルギー供与体として、式(2−1)で示される化合物(5,5’’’’−ビス(t−ブチルジメチルシリル)−2,2’:5’,2”:5”,2’’’:5’’’,2’’’’−キンカチオフェン)を用い、エネルギー受容体として、DZDSあるいはBAP−Pを用いて、光学実験に好適な薄膜を作製した。
(Example 3) [Production of optical storage medium]
As an energy donor, a compound represented by the formula (2-1) (5,5 ″ ″-bis (t-butyldimethylsilyl) -2,2 ′: 5 ′, 2 ″: 5 ″, 2 ″ Thin films suitable for optical experiments were prepared using DZDS or BAP-P as an energy acceptor.

最初に、チオフェン(濃度0.1wt%)とアジドDZDS(濃度0.4wt%)あるいはBAP−P(濃度0.4wt%)に溶媒テトラヒドロフラン(THF)(濃度5.6wt%)を加え加熱し溶解させ、これに、光学用シクロオレフィンポリマー(日本ゼオン(株)製:商品名 ゼオネックス、濃度37.6wt%)とメシチレン(濃度56.3wt%)の混合溶液をさらに加えて、再び加熱し溶解させて、図2(a)の光記憶媒体用溶液を作製した。   First, solvent tetrahydrofuran (THF) (concentration 5.6 wt%) is added to thiophene (concentration 0.1 wt%) and azide DZDS (concentration 0.4 wt%) or BAP-P (concentration 0.4 wt%), and heated to dissolve. Further, a mixed solution of optical cycloolefin polymer (manufactured by ZEON Corporation: trade name ZEONEX, concentration 37.6 wt%) and mesitylene (concentration 56.3 wt%) is further added, and heated again to be dissolved. Thus, an optical storage medium solution shown in FIG.

ここで、式(2−1)のペンタチオフェンとアジドDZDSあるいはBAP−Pを溶解させる溶媒としてTHFを用いたが(THFでは常温下でも溶解可能)、このほか、4溶媒(キシレン、モノクロロベンゼン、トルエン、メシチレン)にも加熱下、溶解できることが確認された。この4溶媒の中では、メシチレンが最適であり、溶液が加熱後常温に戻った際に最大の透明性を有していた。式(2−1)のペンタチオフェンとアジドとを分散させる高分子としては、ポリメチルメタクリレート(PMMA)やシアノアクリレート等を種々検討した結果、光学用シクロオレフィンポリマー(日本ゼオン(株)製:商品名 ゼオネックス)が最適であることが分かった。ただし、PMMAやシアノアクリレートもペンタチオフェンの側鎖を化学修飾し溶解度を高める等を行えば良好な分散媒になり得る。   Here, THF was used as a solvent for dissolving the pentathiophene of formula (2-1) and azide DZDS or BAP-P (THF can be dissolved at room temperature), but in addition, four solvents (xylene, monochlorobenzene, Toluene and mesitylene) were confirmed to be soluble under heating. Among these four solvents, mesitylene was the most suitable and had the maximum transparency when the solution returned to room temperature after heating. As a polymer in which pentathiophene of formula (2-1) and azide are dispersed, polymethyl methacrylate (PMMA), cyanoacrylate, and the like have been variously studied. As a result, an optical cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd .: product) The name ZEONEX) was found to be optimal. However, PMMA and cyanoacrylate can also be good dispersion media if the side chain of pentathiophene is chemically modified to increase solubility.

光学用シクロオレフィンポリマー(日本ゼオン(株)製:商品名 ゼオネックス)を溶かす溶媒としてメシチレンが最適であったこと、および、式(2−1)のペンタチオフェンとアジドDZDSあるいはBAP−Pを溶解させる溶媒としてメシチレンも適していたことから、式(2−1)のペンタチオフェンとアジドのTHF溶液に加える光学用シクロオレフィンポリマー(日本ゼオン(株)製:商品名 ゼオネックス)溶液の溶媒としてメシチレンを使った。この混合溶液も、常温に戻ったとき、光学実験に適する透明性・均一性を有していた。   Mesitylene was optimal as a solvent for dissolving optical cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd .: trade name ZEONEX), and pentathiophene of formula (2-1) and azide DZDS or BAP-P were dissolved. Since mesitylene was also suitable as a solvent, mesitylene was used as a solvent for an optical cycloolefin polymer (made by Nippon Zeon Co., Ltd .: trade name ZEONEX) solution added to a THF solution of pentathiophene and azide of formula (2-1). It was. This mixed solution also had transparency and uniformity suitable for optical experiments when it returned to room temperature.

図2(b)(c)の基板との距離を一定に保つ刃(ブレード)によってこの基板上を掃引して平坦化した光記憶媒体用溶液を作るための基板として、本実施例では、通常のガラス製のスライドガラスを用いたが、これに限らず、石英基板を始めそれ自体の表面が平坦であれば基本的には何でも良い。   In this embodiment, as a substrate for preparing a solution for an optical storage medium that is flattened by sweeping the substrate with a blade that maintains a constant distance from the substrate in FIGS. However, the present invention is not limited to this, and any glass substrate may be used as long as the surface of the quartz substrate and the like itself is flat.

図2(d)の工程においては、90℃のオーブン内にて60分間ベークして、溶媒(THF、メシチレン)を除去した。ベーク後の各成分濃度は、チオフェンが0.3wt%、DZDSあるいはBAP−Pがともに1.0wt%、光学用シクロオレフィンポリマー(日本ゼオン(株)製:商品名 ゼオネックス)が98.7wt%となった。ベークの時間は、90℃のもとで、60分間とすれば、残留溶媒の量は光学実験に支障のないレベルに低減することができた。ブレードと基板との距離は任意に変えることができるので、この距離によって成膜後の膜厚を制御することが可能である。   In the step of FIG. 2D, the solvent (THF, mesitylene) was removed by baking in an oven at 90 ° C. for 60 minutes. The concentration of each component after baking was 0.3 wt% for thiophene, 1.0 wt% for both DZDS or BAP-P, and 98.7 wt% for optical cycloolefin polymer (product name: ZEONEX, manufactured by Nippon Zeon Co., Ltd.). became. If the baking time was 90 ° C. and 60 minutes, the amount of residual solvent could be reduced to a level that would not hinder optical experiments. Since the distance between the blade and the substrate can be arbitrarily changed, the film thickness after film formation can be controlled by this distance.

図2(d)を経た膜は、光記憶実験に十分な脈理のない均一性を有するものの、平坦性に問題があったので、本実施例では、媒体をスライドガラスから剥がし、万力に挟み込んで加圧下、100℃加熱を30分保つ熱圧着工程(図2(f))を加えた。   Although the film having passed through FIG. 2 (d) has sufficient uniformity for optical storage experiments, there was a problem in flatness. In this example, the medium was peeled off from the slide glass in a vise. A thermocompression bonding step (FIG. 2 (f)) was performed by sandwiching and maintaining heating at 100 ° C. for 30 minutes under pressure.

万力で挟む際には、膜の両面にスライドガラスを貼り付け、このスライドガラスによるサンドイッチ状態の媒体を挟むこととした。万力の圧力は、スライドガラスが破損する寸前までの大きさとした。加える圧力は、この程度の領域で大きさを変えていくつか試したところ、作製される膜の厚みや膜質には大きな影響を及ぼさず、スライドガラスが破損する寸前の圧力領域であれば、いかなる圧力であっても、ほぼ一定の厚膜と膜質となることが確認された。図2(f)のベークは、サンプルを万力に挟んだまま、ベーク炉に入れることによって行った。   When sandwiched with a vise, a slide glass was pasted on both sides of the membrane, and a sandwich medium was sandwiched between the slide glasses. The pressure of the vise was set to a magnitude just before the slide glass was broken. The applied pressure was varied in this range, and several trials were conducted. It did not significantly affect the thickness and quality of the film to be produced. It was confirmed that the film thickness and quality were almost constant even at pressure. The baking in FIG. 2 (f) was performed by placing the sample in a baking furnace with the vise sandwiched between them.

図2(g)に至ったときの膜は、上記DZDSおよびBAP−P溶液の場合、図2(b)、(c)におけるブレードと基板との距離を500μmとすると、膜厚はともに170μmであった。膜質は、脈理が認められないのみならず、後述のホログラム実験に十分資する媒体表面の平坦性を有していることが確認された。   In the case of the above DZDS and BAP-P solutions, the film when reaching FIG. 2G is 170 μm in thickness when the distance between the blade and the substrate in FIGS. 2B and 2C is 500 μm. there were. It was confirmed that the film quality has not only striae but also flatness of the surface of the medium that sufficiently contributes to the hologram experiment described later.

なお、作製された光記憶媒体が薄い場合、例えば、図2(g)を経たサンプルを2枚積層し、図2(f)の方法と同様に熱圧縮すれば、厚膜の光記憶媒体が得られる(図2(h))。上記DZDSおよびBAP−P溶液を用いて、膜厚170μmの膜を作製後、これを2枚重ねて熱圧着を行った結果、膜厚250μmの光記憶薄膜を得ることができた。ベークの温度は100℃とし、これを90分間行った。この工程による場合も、膜質は、脈理がないのみならず、実施例4のホログラム実験に十分資する平坦性を有していることが確認された。   If the produced optical storage medium is thin, for example, if two samples passed through FIG. 2G are stacked and thermally compressed in the same manner as in FIG. 2F, a thick optical storage medium is obtained. Is obtained (FIG. 2 (h)). Using the above DZDS and BAP-P solution, a film having a film thickness of 170 μm was prepared, and two of these films were stacked and subjected to thermocompression bonding. The baking temperature was 100 ° C., and this was performed for 90 minutes. Also in this process, it was confirmed that the film quality had not only striae but also flatness that sufficiently contributed to the hologram experiment of Example 4.

本実施例では、図2(c)の状態から、媒体をスライドガラスから剥がすことなく、熱圧着工程を行うことも可能であることを確認した。スライドガラスに付いていない側の媒体に別のスライドガラスを貼付し、その後、図2(f)以下の工程によると、上記と全く同じ膜質、膜厚を有する媒体を作製することができた。   In this example, it was confirmed from the state of FIG. 2C that the thermocompression bonding process can be performed without removing the medium from the slide glass. When another slide glass was affixed to the medium on the side not attached to the slide glass, and then, the media having exactly the same film quality and film thickness as those described above could be produced according to the steps shown in FIG.

(実施例4)[ホログラム実験]
実施例3で得られた媒体を用いて、図4に示す系で、ホログラム実験を行い、回折効率の時間依存性を測定した。ホログラム実験では、得られた媒体(膜厚250μm)を図4のSampleの位置に設置し、ゲート光(Gate Laser)を照射し、第一励起させた。次いで、第二励起レーザーたるホログラフィックレーザーを用いて、ビームスプリッター(BS)で参照光(Reference light)と物体光(Object
light)に分け、それぞれを媒体に照射した。
Example 4 [Hologram Experiment]
Using the medium obtained in Example 3, a hologram experiment was performed in the system shown in FIG. 4 to measure the time dependency of the diffraction efficiency. In the hologram experiment, the obtained medium (thickness 250 μm) was placed at the position of Sample in FIG. 4 and irradiated with gate light (Gate Laser) to perform first excitation. Next, using a holographic laser as a second excitation laser, a beam splitter (BS) and a reference light (Reference light) and an object light (Object)
light), and each medium was irradiated.

この構成では、ゲート光により第一励起された記憶可能状態にあるエリアにおいて、第二励起光たる物体光と参照光とにより生じる干渉縞が、メモリ媒体内に屈折率変化として定着され、その定着された干渉縞から回折される参照光の割合を測定することにより、光記憶媒体としてのポテンシャルを知ることが可能である。   In this configuration, interference fringes generated by the object light and the reference light, which are the second excitation light, are fixed as a change in refractive index in the memory medium in the area in the memorizable state excited by the gate light. By measuring the ratio of the reference light diffracted from the interference fringes, it is possible to know the potential as an optical storage medium.

本実施例では、第一励起光には波長410nmのGaNレーザー(連続光)を用い、第二励起光には、波長660nmの半導体レーザー(連続光)を用いた。物体光と参照光とのなす角度は、2度であった。入射光のスポットサイズは250μmであった。入射光の強度は、第一励起光が0.10W/cm、第二励起光が、参照光、物体光ともに20W/cmであった。 In this example, a GaN laser (continuous light) having a wavelength of 410 nm was used as the first excitation light, and a semiconductor laser (continuous light) having a wavelength of 660 nm was used as the second excitation light. The angle formed by the object beam and the reference beam was 2 degrees. The spot size of incident light was 250 μm. The intensity of the incident light was 0.10 W / cm 2 for the first excitation light, and 20 W / cm 2 for the second excitation light for both the reference light and the object light.

図4における構成では、回折効率の測定は、その測定時に物体光を一時遮断し、参照光がメモリ媒体内に生成した干渉縞に回折される割合を測定することにより行うことができる。図5に、その回折効率の時間依存性を測定した結果を示す。これは、参照光がサンプルを通過する光量を測定し、それから、回折光のできる割合(Efficiency η(%))を測定し、その時間依存性をプロットした図である。図中、(1)とあるのは、第一励起光を遮断し、第二励起光(参照光と物体光の双方)を入射した場合を示し、(2)とあるのは、第一励起光、第二励起光(参照光と物体光の双方)ともに、入力した場合を示す。実験結果から、(2)の場合は、ほぼ計算通りに、回折効率が照射時間の二乗に比例して増加する一方で、(1)の状態では、回折効率が増大しないことが分かった。第一励起光を照射し、第二励起光のうち、物体光あるいは参照光のどちらか一方のみを照射した場合も、回折効率の増加は見られなかった。第一励起(ゲート)光と、第二励起光(参照光と物体光の双方)との3ビームがサンプルに照射したときのみ、干渉縞が生成し物体光の回折が観測されたという今回の結果は、本発明の光記憶媒体内には、二段階励起過程を経て、干渉縞が形成されたことを示している。
また、ここでの結果は、実施例2において調べたエネルギーレベルが正しいこと、および、上述した、チオフェンからアジドにエネルギー移動を行わせ、それに起因する構造変化による干渉縞が形成できるとの本発明者の考え方が正しいことを証明している。
In the configuration in FIG. 4, the diffraction efficiency can be measured by temporarily blocking the object light during the measurement and measuring the ratio at which the reference light is diffracted by the interference fringes generated in the memory medium. FIG. 5 shows the results of measuring the time dependency of the diffraction efficiency. This is a diagram in which the amount of reference light passing through the sample is measured, and then the ratio of the diffracted light (Efficiency η (%)) is measured, and the time dependence thereof is plotted. In the figure, (1) indicates that the first excitation light is blocked and the second excitation light (both reference light and object light) is incident, and (2) indicates that the first excitation light is incident. A case where both light and second excitation light (both reference light and object light) are input is shown. From the experimental results, it was found that in the case of (2), the diffraction efficiency increases in proportion to the square of the irradiation time almost as calculated, whereas in the state of (1), the diffraction efficiency does not increase. When the first excitation light was irradiated and only either the object light or the reference light was irradiated among the second excitation light, no increase in diffraction efficiency was observed. This time, interference fringes were generated and diffraction of the object light was observed only when the sample was irradiated with three beams of the first excitation (gate) light and the second excitation light (both reference light and object light). The results show that interference fringes were formed in the optical storage medium of the present invention through a two-step excitation process.
In addition, the results here show that the energy level investigated in Example 2 is correct, and that the above-described interference fringes due to structural changes caused by the energy transfer from thiophene to azide can be formed. Prove that the person's way of thinking is correct.

本実施例3において作製した膜厚170μmの薄膜媒体を用いても、参照光の回折光が観測された。回折効率は、膜厚の二乗に比例することが計算上予測されているが、その実験での強度は、膜厚250μmでの結果の1/7倍となった。計算上は1/6.25倍となるはずであり、良い一致を示した。   Even when the thin film medium having a film thickness of 170 μm produced in Example 3 was used, the diffracted light of the reference light was observed. The diffraction efficiency is predicted to be proportional to the square of the film thickness, but the intensity in the experiment is 1/7 times the result at the film thickness of 250 μm. In calculation, it should be 1 / 6.25 times, showing good agreement.

図5における回折効率の絶対値が0.01%程度と小さいのは、本実施例で使用したレーザー光源のパワーあるいは光パワー密度(=集光レンズの焦点距離により増減可)が低いこと等が原因であり、より高強度のレーザーを用いるか集光レンズの焦点距離を短いものに換えれば、向上させることが出来る。ペンタチオフェン膜は十分な光耐性を有している。   The absolute value of the diffraction efficiency in FIG. 5 is as small as about 0.01% because the power or optical power density of the laser light source used in this embodiment (= can be increased or decreased depending on the focal length of the condensing lens) is low. This can be improved by using a higher-intensity laser or changing the focal length of the condenser lens to a shorter one. The pentathiophene film has sufficient light resistance.

図6は、図4での照射光強度等の実験条件に合わせて、従来材料ビアセチルの回折効率(実験結果)を規格化してプロットした結果である。ビアセチルでは、第一励起光の波長はチオフェンと同じ410nmであるが、第二励起光の波長は830nmとした。エネルギーレベルの相違に基づくものである。ビアセチル膜の膜厚は500μmであった。ビアセチルは、光路長500μmの石英セルの中にビアセチル溶液を封入するという方法により作製した。ビアセチルの分散媒には、シアノアクリレートを用い、ビアセチルの濃度は10wt%とした。   FIG. 6 is a result of normalizing and plotting the diffraction efficiency (experimental result) of the conventional material biacetyl in accordance with the experimental conditions such as the irradiation light intensity in FIG. In biacetyl, the wavelength of the first excitation light is 410 nm, which is the same as that of thiophene, but the wavelength of the second excitation light is 830 nm. This is based on energy level differences. The film thickness of the biacetyl film was 500 μm. Biacetyl was produced by a method of enclosing a biacetyl solution in a quartz cell having an optical path length of 500 μm. As the biacetyl dispersion medium, cyanoacrylate was used, and the biacetyl concentration was 10 wt%.

図6は、今回作製した媒体のチオフェンの濃度がビアセチルの1/30倍であることや膜厚の差を考慮すると、チオフェンのポテンシャルはビアセチルの2桁程度以上であることを示している。すなわち、本実施例では、チオフェンの濃度が0.3wt%の媒体を作製したが、チオフェン濃度をビアセチルと同程度として(アジドの濃度も相応して増大させて)光記憶媒体を作製し、また、膜厚もチオフェンと同等とするならば、実際に得られる媒体としての効率も2桁以上となることを示している。   FIG. 6 shows that the potential of thiophene is about two orders of magnitude or more of biacetyl, considering that the concentration of thiophene in the medium produced this time is 1/30 times that of biacetyl and the difference in film thickness. That is, in this example, a medium having a thiophene concentration of 0.3 wt% was produced, but an optical storage medium was produced by setting the thiophene concentration to the same level as that of biacetyl (with a corresponding increase in the azide concentration). If the film thickness is the same as that of thiophene, the efficiency of the actually obtained medium is 2 digits or more.

したがって、チオフェンを高濃度に分散させた媒体を用いて薄膜化して行けば、例えば、ビアセチルでは不可能と考えられる薄膜化媒体、すなわち数μmオーダに薄膜化した媒体においても、実用的な回折光を観測できることとなる。   Therefore, if thinning is performed using a medium in which thiophene is dispersed at a high concentration, practical diffracted light, for example, even in a thinned medium considered impossible with biacetyl, that is, a medium thinned to the order of several μm. Will be observable.

なお、本実施例4では、二段階励起過程を経て光記憶媒体に光照射に基づく構造変化(屈折率変化)が起こる様子を、第一励起光(ゲート光)で励起したエリアにおいて、第二励起光である物体光と参照光との二光束干渉により生じた干渉縞により参照光が回折される現象により観測したが、本発明の意図する二段階励起過程を経た光記憶媒体は、それに限られず、第二励起光は一つであっても構わない。図8に示すように、第一励起により記録可能な最低三重項状態となり、そこに第二励起光を一つだけ照射しても構造変化(屈折率変化)が起こるのであるから、この一つの第二励起光照射によって起こった変化を別の光を照射して透過率の変化を観測する等によって読み取ることとすれば、光記憶・再生を行うことができる。本実施例4では、構造変化(屈折率変化)が生じた様子を回折光の観測によって確認したに過ぎない。   In Example 4, the state in which the structural change (refractive index change) based on light irradiation occurs in the optical storage medium through the two-step excitation process is shown in the second excitation area (gate light) in the second area. Although the reference light is observed by the phenomenon that the reference light is diffracted by the interference fringes generated by the two-beam interference between the object light that is the excitation light and the reference light, the optical storage medium that has undergone the two-step excitation process intended by the present invention is not limited thereto. The second excitation light may be one. As shown in FIG. 8, the lowest triplet state that can be recorded by the first excitation is obtained, and even if only one second excitation light is irradiated there, the structural change (refractive index change) occurs. If the change caused by the second excitation light irradiation is read by irradiating another light and observing the change in transmittance, optical storage / reproduction can be performed. In Example 4, the appearance of the structural change (refractive index change) was merely confirmed by observing the diffracted light.

したがって、三次元の光記憶媒体において、第一励起光と第二励起光とを照射すれば、その両者の重なった部分のみにおいて構造変化(屈折率変化)が起こるのであるから、任意の形態の三次元媒体、例えば、DVDの記憶層を多層に積層したような媒体において、図7で説明した一段階励起過程のときのようなデータ消去の問題のない光記憶・再生が可能となる。   Therefore, in the three-dimensional optical storage medium, if the first excitation light and the second excitation light are irradiated, the structural change (refractive index change) occurs only in the overlapping portion of the two. In a three-dimensional medium, for example, a medium in which DVD storage layers are stacked in multiple layers, optical storage / reproduction without the problem of data erasure as in the one-step excitation process described in FIG. 7 is possible.

(実施例5)
式(2−4)および(2−5)で表されるチオフェンを用いて、実施例3と同様の実験を行った(濃度、膜厚も実施例3と同じ)ところ、媒体が良好に作製でき、さらに、スピンコート法によっても、光学的に良好な薄膜が作製できた。スピンコート法による作製では、ペンタチオフェンをメシチレンに溶解させDZDSを加え、加熱下、溶解させた。これに光学用シクロオレフィンポリマー(日本ゼオン(株)製:商品名 ゼオネックス)のメシチレン溶液を加えて溶解させ、スピンーターで薄膜を作製した。スピンコーターの回転数は1500rpmとした。作製されたスピンコート薄膜は、式(2−4)および(2−5)で表されるチオフェンがともに0.3wt%、DZDSが1.0wt%、光学用シクロオレフィンポリマー(日本ゼオン(株)製:商品名 ゼオネックス)が98.7wt%であった。膜厚はともに45μmであった。
(Example 5)
Using the thiophene represented by the formulas (2-4) and (2-5), an experiment similar to that of Example 3 was performed (the concentration and the film thickness are the same as those of Example 3). Furthermore, an optically good thin film could be produced by a spin coating method. In the production by the spin coat method, pentathiophene was dissolved in mesitylene, DZDS was added, and the mixture was dissolved under heating. A mesitylene solution of an optical cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd .: trade name ZEONEX) was added and dissolved therein, and a thin film was prepared with a spinter. The rotation speed of the spin coater was 1500 rpm. The prepared spin coat thin film is 0.3 wt% thiophene represented by formulas (2-4) and (2-5), 1.0 wt% DZDS, and an optical cycloolefin polymer (Nippon Zeon Corporation). Product: ZEONEX) was 98.7 wt%. Both film thicknesses were 45 μm.

(実施例6)
式(2−5)で表されるチオフェンを用いて実施例5に従って作製した膜を用い、実施例4と同様のホログラム実験を行った。実施例3と同様の方法により作製した媒体を用いた結果(適用波長など光学系は同じ)、同様なホログラム回折を観測することができた。次に、スピンコート薄膜を用いた実験でも、膜厚が減少したことに相応して、信号強度は低下したものの、作製された薄膜が十分な光耐性を有していることから、使用したレーザの光強度を上げて補うことにより、図5及び図6と同様の効率を有する結果を得ることが可能であった。ただし、チオフェンのように、第一励起光の吸収係数が大きい材料では、媒体の物理的厚みが薄くなるほど、その物理的厚みと実効長は接近してくる(物理的厚みの減少ほどに実効長が減少しない)。このため、本実施例で検討した結果では、実施例3と同様の方法により作製した媒体170μmとスピンコート薄膜45μmの物理的厚みの差から予想されるよりも、2倍程度大きな回折効率を得ることが可能であった。すなわち、本実施例のスピンコート薄膜での結果は、実施例3の方法により作製した厚い膜での結論に加え、本発明のチオフェン膜によれば、厚みがミクロン単位となってもチオフェン薄膜媒体により実用的なホログラム回折を実現できることを支持するものであった。
(Example 6)
A hologram experiment similar to that of Example 4 was performed using a film manufactured according to Example 5 using thiophene represented by Formula (2-5). As a result of using a medium produced by the same method as in Example 3 (the optical system such as the applied wavelength is the same), similar hologram diffraction could be observed. Next, in the experiment using the spin coat thin film, although the signal intensity decreased corresponding to the decrease in the film thickness, the produced thin film had sufficient light resistance. It was possible to obtain a result having the same efficiency as that of FIGS. 5 and 6 by increasing the light intensity of. However, for materials with a large absorption coefficient of the first excitation light, such as thiophene, the physical thickness and the effective length become closer as the physical thickness of the medium decreases (the effective length decreases as the physical thickness decreases). Does not decrease). For this reason, in the result examined in this example, a diffraction efficiency about twice as large as expected from the difference in physical thickness between the medium 170 μm and the spin coat thin film 45 μm produced by the same method as in Example 3 is obtained. It was possible. That is, the result of the spin coat thin film of the present example is that the thiophene film according to the present invention has a thick film produced by the method of Example 3, and according to the thiophene film of the present invention, the thiophene thin film medium This supported the realization of practical hologram diffraction.

エネルギー供与体及びエネルギー受容体のエネルギー受容の関係を示す、エネルギー励起状態の模式図Schematic diagram of energy excited states showing the relationship between energy donor and energy acceptor energy acceptance. ブレードコート法と熱圧着法とによる光記憶媒体の作製工程を示す図The figure which shows the manufacturing process of the optical storage medium by the blade coat method and the thermocompression bonding method 化合物の励起エネルギーを測定する過渡吸収測定装置を示す模式図Schematic diagram showing a transient absorption measurement device that measures the excitation energy of a compound ホログラム実験の方法を示す模式図Schematic diagram showing the method of hologram experiment ホログラム実験の結果を示すグラフ(回折光のできる割合−時間)Graph showing the result of hologram experiment (ratio of diffracted light-time) ホログラム実験の結果を示すグラフ(従来材料ビアセチルとの比較)Graph showing results of hologram experiment (compared with conventional material biacetyl) 従来の一段階励起型メモリの問題点を示す模式図Schematic showing the problems of conventional one-stage excitation memory データ記録と光励起の関係を示す、エネルギー励起状態の模式図Schematic diagram of the energy excitation state showing the relationship between data recording and optical excitation.

Claims (8)

第一励起光照射により、一重項励起状態に励起され、その後、項間交差により最低三重項励起状態に移行し、続いて、第二励起光照射により、より高い三重項励起状態に励起される二段階励起型のエネルギー供与体と、そのエネルギー供与体からエネルギーを受け取り、かかるエネルギーを化学反応に供与するエネルギー受容体とを有することを特徴とする有機混合体からなる光記憶媒体。   Excited to the singlet excited state by the first excitation light irradiation, then moved to the lowest triplet excited state by intersystem crossing, and subsequently excited to the higher triplet excited state by the second excitation light irradiation. An optical storage medium comprising an organic mixture, comprising: a two-stage excitation type energy donor; and an energy acceptor that receives energy from the energy donor and supplies the energy to a chemical reaction. 前記エネルギー供与体が、下記式(1−1)〜(1−4)のいずれかに示されるオリゴチオフェン系化合物であることを特徴とする請求項1に記載の光記憶媒体。
Figure 2006293292
(式(1−1)〜(1−4)において、X〜X,X7a〜X7b,X8a〜X8d,X9a
〜X9fは、水素原子、アルキル基、アルキル基の一部の炭素原子をケイ素原子と置き換
えた基、ハロゲン、水酸基、アルキルオキシ基若しくはアリールオキシ基を有する基、又はジアルキルアミノ基から選ばれる基を示す。また、X〜X,X7a〜X7b,X8a〜X8d,X9a〜X9fは、それぞれ同じであっても異なってもよい。)
2. The optical storage medium according to claim 1, wherein the energy donor is an oligothiophene compound represented by any one of the following formulas (1-1) to (1-4).
Figure 2006293292
(In the formulas (1-1) to (1-4), X 1 to X 6 , X 7a to X 7b , X 8a to X 8d , X 9a
-X 9f is a group selected from a hydrogen atom, an alkyl group, a group in which some carbon atoms of the alkyl group are replaced with a silicon atom, a group having a halogen, a hydroxyl group, an alkyloxy group or an aryloxy group, or a dialkylamino group Indicates. X 1 to X 6 , X 7a to X 7b , X 8a to X 8d , and X 9a to X 9f may be the same or different. )
前記エネルギー供与体が、下記式(2)に示されるオリゴチオフェン系化合物であることを特徴とする請求項2に記載の光記憶媒体。
Figure 2006293292
(式(2)において、R〜Rは、水素原子、アルキル基、ハロゲン、水酸基、アルキルオキシ基若しくはアリールオキシ基を有する基、又はジアルキルアミノ基から選ばれる基を示す。また、R〜Rは、同じであっても異なってもよい。さらに、nは、4又は5を示す。)
The optical storage medium according to claim 2, wherein the energy donor is an oligothiophene compound represented by the following formula (2).
Figure 2006293292
In (Equation (2), R 1 ~R 6 represents a hydrogen atom, an alkyl group, a halogen, a hydroxyl, group having an alkyl group or an aryloxy group, or a group selected from a dialkylamino group. The, R 1 ˜R 6 may be the same or different, and n represents 4 or 5.)
前記R〜Rは、炭素数1〜2のアルキル基、炭素数6〜10のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、ピリジル基、チオフェン環から選ばれる請求項3に記載の光記憶媒体。 The R 1 to R 6 are selected from an alkyl group having 1 to 2 carbon atoms, an alkyl group having 6 to 10 carbon atoms, an aryl group, an alkenyl group, an alkynyl group, an alkoxy group, a pyridyl group, and a thiophene ring. The optical storage medium described. 前記エネルギー供与体が、下記式(2−1)〜(2−5)のいずれかに示されるオリゴチオフェン系化合物であることを特徴とする請求項3に記載の光記憶媒体。
Figure 2006293292
Figure 2006293292
Figure 2006293292
Figure 2006293292
Figure 2006293292
The optical storage medium according to claim 3, wherein the energy donor is an oligothiophene compound represented by any one of the following formulas (2-1) to (2-5).
Figure 2006293292
Figure 2006293292
Figure 2006293292
Figure 2006293292
Figure 2006293292
前記エネルギー受容体が、下記式(3)で示されるアジド系化合物であることを特徴とする請求項1乃至5のいずれかに記載の光記憶媒体。
Figure 2006293292
(式(3)中、Yは、アルキル基、ハロゲン、アジド基、スルホニル基、アリール基、水酸基及びアルコキシ基から選ばれる少なくとも1種の基を有する基、又は水素原子を示す。)
The optical storage medium according to any one of claims 1 to 5, wherein the energy acceptor is an azide compound represented by the following formula (3).
Figure 2006293292
(In formula (3), Y represents a group having at least one group selected from an alkyl group, halogen, azide group, sulfonyl group, aryl group, hydroxyl group and alkoxy group, or a hydrogen atom.)
前記エネルギー受容体が、下記式(3−1)又は(3−2)であることを特徴とする請求項6に記載の光記憶媒体。
Figure 2006293292
Figure 2006293292
The optical storage medium according to claim 6, wherein the energy acceptor is represented by the following formula (3-1) or (3-2).
Figure 2006293292
Figure 2006293292
基板上に請求項1乃至5のいずれかに記載のエネルギー供与体、及び請求項6又は7に記載のエネルギー受容体を分散させた光記憶媒体用溶液を滴下し、その後、この基板との距離を一定に保つ刃によってこの基板上を掃引して、前記光記憶媒体用溶液を平坦化する掃引工程、さらに加圧下で加熱することにより平坦性を高める加熱工程を含む薄膜型の光記憶媒体を作製する、光記憶媒体の作製方法。   An energy donor according to any one of claims 1 to 5 and a solution for an optical storage medium in which the energy acceptor according to claim 6 or 7 is dispersed are dropped on a substrate, and then the distance from the substrate A thin film type optical storage medium including a sweeping process for planarizing the solution for optical storage medium by sweeping the substrate with a blade that keeps the constant, and further a heating process for improving flatness by heating under pressure A method for manufacturing an optical storage medium.
JP2005342451A 2005-03-14 2005-11-28 Optical storage media using oligothiophene Active JP4623515B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005342451A JP4623515B2 (en) 2005-03-14 2005-11-28 Optical storage media using oligothiophene
PCT/JP2006/304952 WO2006098296A1 (en) 2005-03-14 2006-03-14 Optical storage medium making use of oligothiophene
TW095108543A TW200705090A (en) 2005-03-14 2006-03-14 Optical storage medium making use of oligothiophene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005071431 2005-03-14
JP2005342451A JP4623515B2 (en) 2005-03-14 2005-11-28 Optical storage media using oligothiophene

Publications (2)

Publication Number Publication Date
JP2006293292A true JP2006293292A (en) 2006-10-26
JP4623515B2 JP4623515B2 (en) 2011-02-02

Family

ID=36991639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342451A Active JP4623515B2 (en) 2005-03-14 2005-11-28 Optical storage media using oligothiophene

Country Status (3)

Country Link
JP (1) JP4623515B2 (en)
TW (1) TW200705090A (en)
WO (1) WO2006098296A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053676A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Composition, optical data storage medium and method for using the optical data storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147214A1 (en) * 2005-12-22 2007-06-28 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
JP4911569B2 (en) * 2006-01-18 2012-04-04 国立大学法人京都大学 Multilayer waveguide and manufacturing method thereof
WO2009096432A1 (en) * 2008-01-30 2009-08-06 Osaka University Optical recording material, optical recording method, photosensitive material, photolithography method, photopolymerization initiator and photosensitizing agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099754A (en) * 2003-08-25 2005-04-14 Fuji Photo Film Co Ltd Hologram recording method and hologram recording material
JP2005099751A (en) * 2003-08-22 2005-04-14 Fuji Photo Film Co Ltd Composition for hologram recording material, hologram recording material and hologram recording method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504423B2 (en) * 1995-03-17 2004-03-08 日本ビクター株式会社 Light control method using an optical element comprising a photoresponsive composition containing a polymethine dye
WO1996031805A1 (en) * 1995-04-03 1996-10-10 The Dow Chemical Company Photodefineable compositions
JP4307907B2 (en) * 2003-05-23 2009-08-05 富士フイルム株式会社 Three-dimensional refractive index modulation method and three-dimensional optical recording method using non-resonant two-photon absorption polymerization composition
JP2005102831A (en) * 2003-09-29 2005-04-21 Japan Science & Technology Agency Biomolecule damaging method and biomolecule damaging apparatus
JP2005165195A (en) * 2003-12-05 2005-06-23 Fuji Photo Film Co Ltd Lithographic printing plate original

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099751A (en) * 2003-08-22 2005-04-14 Fuji Photo Film Co Ltd Composition for hologram recording material, hologram recording material and hologram recording method
JP2005099754A (en) * 2003-08-25 2005-04-14 Fuji Photo Film Co Ltd Hologram recording method and hologram recording material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053676A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Composition, optical data storage medium and method for using the optical data storage medium

Also Published As

Publication number Publication date
WO2006098296A1 (en) 2006-09-21
JP4623515B2 (en) 2011-02-02
TW200705090A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US6267913B1 (en) Two-photon or higher-order absorbing optical materials and methods of use
Parol et al. A third-order nonlinear optical single crystal of 3, 4-dimethoxy-substituted chalcone derivative with high laser damage threshold value: a potential material for optical power limiting
Liu et al. Synthesis, crystal structures and two-photon absorption properties of a series of terpyridine-based chromophores
TW201128641A (en) Compositions, optical data storage media and methods for using the optical data storage media
Mendiratta et al. Metal–organic frameworks for electronics: emerging second order nonlinear optical and dielectric materials
WO1998021521A9 (en) Two-photon or higher-order absorbing optical materials and methods of use
Gautam et al. Using the negative hyperconjugation effect of pentafluorosulfanyl acceptors to enhance two-photon absorption in push–pull chromophores
JP4623515B2 (en) Optical storage media using oligothiophene
JP5774104B2 (en) Photorefractive composition responsive to multiple laser wavelengths in the visible light spectrum
Ni et al. Ultrafast spectroscopy reveals singlet fission, ionization and excimer formation in perylene film
Ambika et al. Growth, structural, spectral, optical and thermal studies of a novel third-order nonlinear optical single crystal: Piperazine-1, 4-diium bis (2, 4-dichlorobenzoate)
US11279677B2 (en) Photochromic hydrazone switches
JP4456603B2 (en) Photorefractive composition
Jędrzejewska et al. Studies on an argon laser-induced photopolymerization employing both mono-and bischromophoric hemicyanine dye–borate complex as a photoinitiator
JP4636823B2 (en) Two-photon absorption optical recording material, two-photon absorption optical recording method and two-photon absorption optical recording / reproducing method using the same
Tian et al. Two novel two-photon polymerization initiators with extensive application prospects
JP3390921B2 (en) Novel compound and optical element using the compound
Kabatc et al. The synthesis, spectroscopic and electrochemical properties, and application of new dyeing photoinitiator systems for acrylate monomers polymerization
US20030072250A1 (en) Optical recording material
JP2004346238A (en) Two-photon absorption polymerizable composition and three-dimensional optical recording medium produced by using the same
JP4751998B2 (en) Two-photon absorption material
Kabatc et al. New heterobicationic hemicyanine dyes: Synthesis, spectroscopic properties, and photoinitiating ability
Suzuki et al. Two-photon absorption properties of an acetylene derivative confined in the interlayer space of a smectite
Kabatc et al. Visible light-induced polymerization initiated by borate salts of bicationic monochromophoric benzothiazolestyrylium dyes
US20040251452A1 (en) 1,3,5-Tricyano-2,4,6-tris(vinyl)benzene derivatives and method for preparing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060614

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

R150 Certificate of patent or registration of utility model

Ref document number: 4623515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250